| Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-09 21:31 -0500 (Sat, 09 Nov 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4505 |
| palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4506 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4538 |
| kjohnson3 | macOS 13.6.5 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4486 |
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.6.5 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.12.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
| StartedAt: 2024-11-09 04:39:18 -0500 (Sat, 09 Nov 2024) |
| EndedAt: 2024-11-09 04:48:49 -0500 (Sat, 09 Nov 2024) |
| EllapsedTime: 571.5 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.6.7
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib:
cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES'
OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Unknown package ‘ftrCOOL’ in Rd xrefs
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 15.541 0.391 15.934
var_imp 15.414 0.452 15.865
corr_plot 15.106 0.393 15.508
enrichfindP 0.128 0.022 10.686
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 96.549834
final value 94.477594
converged
Fitting Repeat 2
# weights: 103
initial value 101.698007
final value 94.026542
converged
Fitting Repeat 3
# weights: 103
initial value 105.864213
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 99.771719
iter 10 value 94.480785
final value 94.477626
converged
Fitting Repeat 5
# weights: 103
initial value 104.360039
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 99.082743
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 102.148729
final value 94.428839
converged
Fitting Repeat 3
# weights: 305
initial value 109.762878
iter 10 value 93.792175
iter 20 value 93.788088
final value 93.788077
converged
Fitting Repeat 4
# weights: 305
initial value 95.885912
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 114.218863
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 101.080935
final value 94.026542
converged
Fitting Repeat 2
# weights: 507
initial value 112.824974
iter 10 value 94.428839
iter 10 value 94.428839
iter 10 value 94.428839
final value 94.428839
converged
Fitting Repeat 3
# weights: 507
initial value 99.850654
iter 10 value 92.007986
iter 20 value 91.603929
final value 91.603811
converged
Fitting Repeat 4
# weights: 507
initial value 104.301683
iter 10 value 93.668813
final value 93.668704
converged
Fitting Repeat 5
# weights: 507
initial value 106.024790
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 99.839443
iter 10 value 93.961816
iter 20 value 84.666325
iter 30 value 84.027912
iter 40 value 83.896913
iter 50 value 81.139888
iter 60 value 80.023094
iter 70 value 79.766798
iter 80 value 79.756198
iter 90 value 79.386948
iter 100 value 79.303014
final value 79.303014
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.503375
iter 10 value 87.024007
iter 20 value 86.075383
iter 30 value 84.800531
iter 40 value 84.094198
iter 50 value 84.005075
iter 60 value 83.442116
iter 70 value 83.040078
iter 80 value 83.008085
final value 83.008032
converged
Fitting Repeat 3
# weights: 103
initial value 98.950812
iter 10 value 94.129625
iter 20 value 88.885640
iter 30 value 83.709661
iter 40 value 83.196587
iter 50 value 82.301830
iter 60 value 80.364864
iter 70 value 79.413998
iter 80 value 79.349137
iter 90 value 79.308752
iter 100 value 79.299647
final value 79.299647
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.017215
iter 10 value 94.472926
iter 20 value 88.222466
iter 30 value 87.302250
iter 40 value 86.974660
iter 50 value 86.256075
iter 60 value 86.054366
iter 60 value 86.054366
final value 86.054366
converged
Fitting Repeat 5
# weights: 103
initial value 101.001363
iter 10 value 94.501758
iter 20 value 84.620922
iter 30 value 82.816734
iter 40 value 82.031081
iter 50 value 81.855768
iter 60 value 80.461958
iter 70 value 79.365102
iter 80 value 79.306152
iter 90 value 79.289222
final value 79.289219
converged
Fitting Repeat 1
# weights: 305
initial value 108.380961
iter 10 value 94.074638
iter 20 value 88.888619
iter 30 value 84.194045
iter 40 value 83.255441
iter 50 value 82.271413
iter 60 value 80.748019
iter 70 value 79.509302
iter 80 value 78.668325
iter 90 value 78.434228
iter 100 value 78.350328
final value 78.350328
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.550448
iter 10 value 95.135423
iter 20 value 83.510300
iter 30 value 82.271688
iter 40 value 81.648527
iter 50 value 80.105762
iter 60 value 79.581493
iter 70 value 79.401516
iter 80 value 79.148381
iter 90 value 79.089417
iter 100 value 79.070950
final value 79.070950
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.292998
iter 10 value 94.023409
iter 20 value 89.794775
iter 30 value 85.820953
iter 40 value 81.195214
iter 50 value 79.830467
iter 60 value 79.733151
iter 70 value 78.628742
iter 80 value 78.276313
iter 90 value 78.053406
iter 100 value 77.826091
final value 77.826091
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.885065
iter 10 value 88.135110
iter 20 value 83.534195
iter 30 value 83.110102
iter 40 value 82.992207
iter 50 value 82.612372
iter 60 value 80.751907
iter 70 value 79.354412
iter 80 value 79.077957
iter 90 value 78.959400
iter 100 value 78.878794
final value 78.878794
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 113.975434
iter 10 value 94.532011
iter 20 value 94.162176
iter 30 value 93.901298
iter 40 value 91.554448
iter 50 value 86.583169
iter 60 value 85.323301
iter 70 value 84.371611
iter 80 value 83.872479
iter 90 value 83.331549
iter 100 value 82.972384
final value 82.972384
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 128.733612
iter 10 value 93.663570
iter 20 value 92.456746
iter 30 value 89.698938
iter 40 value 85.513055
iter 50 value 83.392563
iter 60 value 80.301986
iter 70 value 79.724480
iter 80 value 79.675780
iter 90 value 79.498297
iter 100 value 79.066711
final value 79.066711
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 118.215507
iter 10 value 95.844079
iter 20 value 94.210679
iter 30 value 92.172856
iter 40 value 90.981781
iter 50 value 87.080337
iter 60 value 83.934985
iter 70 value 81.011723
iter 80 value 78.734485
iter 90 value 78.065771
iter 100 value 77.952238
final value 77.952238
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.708773
iter 10 value 94.582035
iter 20 value 93.402995
iter 30 value 87.214123
iter 40 value 82.654380
iter 50 value 80.063904
iter 60 value 79.376805
iter 70 value 78.810290
iter 80 value 78.377971
iter 90 value 78.331301
iter 100 value 78.196858
final value 78.196858
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.147674
iter 10 value 94.370065
iter 20 value 86.831347
iter 30 value 85.697116
iter 40 value 84.379096
iter 50 value 83.650559
iter 60 value 83.215226
iter 70 value 82.855272
iter 80 value 81.224752
iter 90 value 80.757143
iter 100 value 80.011363
final value 80.011363
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.789038
iter 10 value 94.958131
iter 20 value 89.954079
iter 30 value 84.593013
iter 40 value 83.457794
iter 50 value 81.943293
iter 60 value 79.172655
iter 70 value 78.514543
iter 80 value 78.310587
iter 90 value 77.815454
iter 100 value 77.718266
final value 77.718266
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.630045
final value 94.485677
converged
Fitting Repeat 2
# weights: 103
initial value 96.774871
final value 94.470631
converged
Fitting Repeat 3
# weights: 103
initial value 97.329501
final value 94.486174
converged
Fitting Repeat 4
# weights: 103
initial value 101.353018
iter 10 value 94.028359
iter 20 value 94.026957
final value 94.026704
converged
Fitting Repeat 5
# weights: 103
initial value 112.156003
final value 94.485977
converged
Fitting Repeat 1
# weights: 305
initial value 121.315279
iter 10 value 94.485948
iter 20 value 82.830481
iter 30 value 79.266560
iter 40 value 77.010851
iter 50 value 76.671937
iter 60 value 76.453382
iter 70 value 76.421384
iter 80 value 76.419470
iter 90 value 76.413488
iter 100 value 76.411420
final value 76.411420
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 95.039013
iter 10 value 94.093790
iter 20 value 91.783634
iter 30 value 83.833398
iter 40 value 83.646979
iter 50 value 83.628796
final value 83.628629
converged
Fitting Repeat 3
# weights: 305
initial value 100.591979
iter 10 value 93.981956
iter 20 value 93.620741
iter 30 value 87.067709
iter 40 value 86.130584
iter 50 value 86.120966
iter 60 value 85.493435
iter 70 value 85.353191
iter 80 value 85.349515
iter 90 value 85.347055
iter 100 value 85.345785
final value 85.345785
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.801275
iter 10 value 91.988355
iter 20 value 84.980536
iter 30 value 83.667863
iter 40 value 83.484609
iter 50 value 82.343797
iter 60 value 80.289861
iter 70 value 79.690025
iter 80 value 79.689508
iter 90 value 79.451320
final value 79.450188
converged
Fitting Repeat 5
# weights: 305
initial value 94.981392
iter 10 value 94.488812
iter 20 value 94.482921
iter 30 value 94.027647
iter 40 value 94.026958
iter 50 value 92.726128
iter 60 value 84.283063
iter 70 value 84.154541
iter 80 value 84.023464
iter 90 value 83.806626
iter 100 value 83.806104
final value 83.806104
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 94.632182
iter 10 value 93.629072
iter 20 value 93.558071
iter 30 value 93.553003
iter 40 value 93.262311
iter 50 value 90.116710
iter 60 value 84.015142
iter 70 value 78.625951
iter 80 value 78.044138
iter 90 value 78.014811
iter 100 value 77.969586
final value 77.969586
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.046295
iter 10 value 94.037436
iter 20 value 94.031987
iter 30 value 93.957612
iter 40 value 93.942569
iter 50 value 93.940970
final value 93.939444
converged
Fitting Repeat 3
# weights: 507
initial value 106.252733
iter 10 value 94.035154
iter 20 value 93.744399
iter 30 value 90.663930
iter 40 value 90.337966
iter 50 value 90.336884
iter 60 value 87.305123
iter 70 value 87.256988
iter 80 value 87.255743
iter 90 value 87.138505
iter 100 value 87.133628
final value 87.133628
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 99.020434
iter 10 value 94.035112
iter 20 value 93.253779
iter 30 value 85.105724
iter 40 value 79.586560
iter 50 value 79.379804
iter 60 value 79.139333
iter 70 value 79.128457
iter 80 value 79.108281
final value 79.108238
converged
Fitting Repeat 5
# weights: 507
initial value 95.493408
iter 10 value 94.491298
iter 20 value 94.313310
iter 30 value 85.279744
iter 40 value 85.211421
iter 50 value 84.871270
iter 60 value 84.669691
iter 70 value 84.668477
iter 80 value 84.665094
iter 90 value 83.604995
iter 100 value 81.491258
final value 81.491258
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 105.763501
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 106.764704
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 109.185422
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.344867
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 107.318537
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 100.738700
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 110.197831
final value 94.275362
converged
Fitting Repeat 3
# weights: 305
initial value 96.205082
iter 10 value 94.322897
iter 10 value 94.322897
iter 10 value 94.322897
final value 94.322897
converged
Fitting Repeat 4
# weights: 305
initial value 96.324800
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 99.465502
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 104.582521
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 108.606436
iter 10 value 93.159468
iter 20 value 87.082990
iter 30 value 86.451452
iter 40 value 85.752648
iter 50 value 85.524228
final value 85.523080
converged
Fitting Repeat 3
# weights: 507
initial value 96.110496
iter 10 value 86.582496
iter 20 value 84.438048
iter 30 value 84.437367
iter 40 value 84.431557
iter 50 value 84.407264
final value 84.407143
converged
Fitting Repeat 4
# weights: 507
initial value 99.627779
final value 94.275362
converged
Fitting Repeat 5
# weights: 507
initial value 120.553417
iter 10 value 92.519179
iter 20 value 84.155620
iter 30 value 83.829712
iter 40 value 83.829353
iter 50 value 83.732876
final value 83.674441
converged
Fitting Repeat 1
# weights: 103
initial value 101.523968
iter 10 value 94.487297
iter 20 value 94.486662
iter 30 value 92.803527
iter 40 value 87.007663
iter 50 value 85.597591
iter 60 value 85.343124
iter 70 value 84.917389
iter 80 value 84.706998
iter 90 value 84.684198
final value 84.680077
converged
Fitting Repeat 2
# weights: 103
initial value 108.628899
iter 10 value 94.465163
iter 20 value 92.341870
iter 30 value 90.891264
iter 40 value 88.279255
iter 50 value 84.719000
iter 60 value 82.901026
iter 70 value 82.248285
iter 80 value 82.145921
iter 90 value 82.009405
final value 82.008704
converged
Fitting Repeat 3
# weights: 103
initial value 96.726389
iter 10 value 94.488676
iter 20 value 92.007730
iter 30 value 89.971137
iter 40 value 87.343346
iter 50 value 83.838104
iter 60 value 82.569353
iter 70 value 82.168217
iter 80 value 82.105955
iter 90 value 81.937920
iter 100 value 81.904607
final value 81.904607
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 101.753474
iter 10 value 94.494658
iter 20 value 94.410003
iter 30 value 90.757683
iter 40 value 89.302181
iter 50 value 87.512777
iter 60 value 85.864417
iter 70 value 84.442940
iter 80 value 84.373542
iter 90 value 84.324885
iter 100 value 84.318032
final value 84.318032
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.680604
iter 10 value 94.486695
iter 10 value 94.486694
iter 20 value 94.377485
iter 30 value 91.782088
iter 40 value 88.853140
iter 50 value 86.396895
iter 60 value 83.575808
iter 70 value 82.939572
iter 80 value 82.580026
iter 90 value 82.318380
iter 100 value 82.021093
final value 82.021093
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 109.717881
iter 10 value 94.464129
iter 20 value 88.953435
iter 30 value 85.166022
iter 40 value 84.194239
iter 50 value 83.391135
iter 60 value 82.675197
iter 70 value 82.564300
iter 80 value 81.403743
iter 90 value 81.212461
iter 100 value 80.985747
final value 80.985747
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.921605
iter 10 value 94.471090
iter 20 value 94.328308
iter 30 value 94.306877
iter 40 value 86.894593
iter 50 value 85.254077
iter 60 value 83.996555
iter 70 value 83.083615
iter 80 value 82.812308
iter 90 value 82.251299
iter 100 value 81.276907
final value 81.276907
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.175804
iter 10 value 94.139607
iter 20 value 86.391908
iter 30 value 85.591497
iter 40 value 85.071215
iter 50 value 82.366858
iter 60 value 81.430945
iter 70 value 81.203983
iter 80 value 80.774899
iter 90 value 80.618579
iter 100 value 80.500720
final value 80.500720
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.228980
iter 10 value 94.443348
iter 20 value 93.679118
iter 30 value 91.671379
iter 40 value 90.897971
iter 50 value 90.616773
iter 60 value 83.781470
iter 70 value 82.432963
iter 80 value 82.217279
iter 90 value 82.060992
iter 100 value 81.443710
final value 81.443710
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.715786
iter 10 value 91.694859
iter 20 value 89.281456
iter 30 value 87.157151
iter 40 value 85.408539
iter 50 value 84.804200
iter 60 value 83.372838
iter 70 value 82.729091
iter 80 value 82.514915
iter 90 value 82.056511
iter 100 value 81.550601
final value 81.550601
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.734742
iter 10 value 94.534632
iter 20 value 92.286795
iter 30 value 91.628157
iter 40 value 91.240826
iter 50 value 90.796754
iter 60 value 90.616894
iter 70 value 90.463677
iter 80 value 89.913159
iter 90 value 85.543399
iter 100 value 84.362472
final value 84.362472
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 136.073525
iter 10 value 94.510468
iter 20 value 94.318741
iter 30 value 93.319751
iter 40 value 88.527029
iter 50 value 85.956425
iter 60 value 82.285874
iter 70 value 81.717570
iter 80 value 81.339116
iter 90 value 80.921013
iter 100 value 80.685403
final value 80.685403
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.763316
iter 10 value 96.636560
iter 20 value 92.058670
iter 30 value 90.068113
iter 40 value 83.819520
iter 50 value 81.510350
iter 60 value 81.264594
iter 70 value 81.095357
iter 80 value 80.852495
iter 90 value 80.709637
iter 100 value 80.662111
final value 80.662111
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.391901
iter 10 value 92.764927
iter 20 value 85.550436
iter 30 value 85.153261
iter 40 value 84.487259
iter 50 value 82.948005
iter 60 value 81.870042
iter 70 value 81.156532
iter 80 value 80.935803
iter 90 value 80.777838
iter 100 value 80.651191
final value 80.651191
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.796744
iter 10 value 93.507805
iter 20 value 85.831743
iter 30 value 85.464038
iter 40 value 84.495118
iter 50 value 84.023229
iter 60 value 83.902544
iter 70 value 83.385730
iter 80 value 82.633656
iter 90 value 81.671891
iter 100 value 80.697710
final value 80.697710
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.097254
final value 94.485738
converged
Fitting Repeat 2
# weights: 103
initial value 98.786747
final value 94.485731
converged
Fitting Repeat 3
# weights: 103
initial value 99.404005
final value 94.485858
converged
Fitting Repeat 4
# weights: 103
initial value 99.546495
final value 94.485761
converged
Fitting Repeat 5
# weights: 103
initial value 103.970011
final value 94.485892
converged
Fitting Repeat 1
# weights: 305
initial value 101.994813
iter 10 value 94.489221
iter 20 value 94.444504
iter 30 value 92.168210
iter 40 value 90.673004
iter 50 value 90.400567
iter 60 value 90.395924
iter 70 value 90.395794
final value 90.395177
converged
Fitting Repeat 2
# weights: 305
initial value 95.763365
iter 10 value 94.488682
iter 20 value 94.414899
final value 94.275469
converged
Fitting Repeat 3
# weights: 305
initial value 101.050612
iter 10 value 94.489044
iter 20 value 93.018794
iter 30 value 90.177508
iter 40 value 89.712712
iter 50 value 89.591195
iter 60 value 89.591054
iter 60 value 89.591054
iter 60 value 89.591054
final value 89.591054
converged
Fitting Repeat 4
# weights: 305
initial value 94.765622
iter 10 value 94.487394
iter 20 value 92.888654
iter 30 value 92.503002
iter 40 value 91.668734
iter 50 value 91.640353
final value 91.640293
converged
Fitting Repeat 5
# weights: 305
initial value 97.756044
iter 10 value 94.488056
iter 20 value 94.420070
iter 30 value 91.515050
iter 40 value 91.381679
iter 50 value 91.381335
iter 60 value 91.380564
iter 70 value 91.380379
iter 80 value 91.374840
iter 90 value 90.218535
iter 100 value 89.994078
final value 89.994078
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.984816
iter 10 value 94.283734
iter 20 value 94.281493
iter 30 value 94.279837
iter 40 value 94.002175
iter 50 value 88.112512
iter 60 value 87.291965
iter 70 value 87.224780
iter 80 value 84.018342
iter 90 value 81.460536
iter 100 value 79.703042
final value 79.703042
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.016033
iter 10 value 94.492070
iter 20 value 94.484356
iter 30 value 92.127272
iter 40 value 85.101821
iter 50 value 85.039765
iter 60 value 82.439937
iter 70 value 80.974294
iter 80 value 80.867133
iter 90 value 80.850870
final value 80.850118
converged
Fitting Repeat 3
# weights: 507
initial value 97.202438
iter 10 value 94.451060
iter 20 value 93.769358
iter 30 value 90.761675
iter 40 value 89.055303
iter 50 value 89.054579
iter 60 value 88.864324
iter 70 value 88.714483
final value 88.714475
converged
Fitting Repeat 4
# weights: 507
initial value 101.107129
iter 10 value 94.194871
iter 20 value 94.088012
iter 30 value 94.081250
iter 40 value 94.080546
iter 50 value 94.077389
iter 60 value 94.077074
iter 70 value 94.057321
iter 80 value 90.468234
iter 90 value 87.568706
iter 100 value 83.473187
final value 83.473187
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 99.116057
iter 10 value 94.493094
iter 20 value 94.475783
iter 30 value 93.886097
iter 40 value 90.167492
iter 50 value 89.991917
iter 60 value 89.988998
iter 70 value 86.186569
iter 80 value 83.341458
iter 90 value 82.773371
iter 100 value 82.468333
final value 82.468333
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.512643
final value 93.943841
converged
Fitting Repeat 2
# weights: 103
initial value 94.700284
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 101.563032
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 102.262641
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 101.382067
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 104.256778
final value 94.032967
converged
Fitting Repeat 2
# weights: 305
initial value 107.697475
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 106.542716
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 101.942273
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 98.745072
final value 94.032967
converged
Fitting Repeat 1
# weights: 507
initial value 97.551712
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 107.276650
final value 94.032967
converged
Fitting Repeat 3
# weights: 507
initial value 101.754983
iter 10 value 93.808316
final value 93.808310
converged
Fitting Repeat 4
# weights: 507
initial value 109.120980
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 100.413848
iter 10 value 92.909260
iter 20 value 92.274256
final value 92.274075
converged
Fitting Repeat 1
# weights: 103
initial value 103.177091
iter 10 value 94.258936
iter 20 value 94.038842
iter 30 value 93.460491
iter 40 value 93.151781
iter 50 value 90.534067
iter 60 value 88.804750
iter 70 value 86.320779
iter 80 value 86.021506
iter 90 value 85.618774
iter 100 value 85.588015
final value 85.588015
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.158587
iter 10 value 93.891385
iter 20 value 91.839983
iter 30 value 86.400555
iter 40 value 85.811537
iter 50 value 85.682686
iter 60 value 85.633731
iter 70 value 85.589808
final value 85.588011
converged
Fitting Repeat 3
# weights: 103
initial value 107.725756
iter 10 value 94.054849
iter 20 value 90.987855
iter 30 value 88.246389
iter 40 value 88.172580
iter 50 value 86.304602
iter 60 value 85.851861
iter 70 value 85.779896
iter 80 value 85.683710
iter 90 value 85.633112
iter 100 value 85.588016
final value 85.588016
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.420920
iter 10 value 94.371676
iter 20 value 94.042955
iter 30 value 93.866352
iter 40 value 92.242407
iter 50 value 91.143862
iter 60 value 87.185142
iter 70 value 86.137049
iter 80 value 85.728288
iter 90 value 85.569209
iter 100 value 85.522540
final value 85.522540
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 104.500999
iter 10 value 94.028247
iter 20 value 90.302833
iter 30 value 89.702022
iter 40 value 89.425678
iter 50 value 89.396407
iter 60 value 87.181604
iter 70 value 85.510600
iter 80 value 85.262035
iter 90 value 85.237733
final value 85.237717
converged
Fitting Repeat 1
# weights: 305
initial value 102.860198
iter 10 value 94.062188
iter 20 value 93.274935
iter 30 value 87.299230
iter 40 value 86.291273
iter 50 value 86.162918
iter 60 value 84.970012
iter 70 value 82.388617
iter 80 value 81.795224
iter 90 value 81.695429
iter 100 value 81.674622
final value 81.674622
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 119.128451
iter 10 value 94.049029
iter 20 value 90.222366
iter 30 value 87.879947
iter 40 value 86.984536
iter 50 value 86.017870
iter 60 value 84.094120
iter 70 value 82.622397
iter 80 value 82.427698
iter 90 value 82.058113
iter 100 value 81.869113
final value 81.869113
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.321940
iter 10 value 93.849003
iter 20 value 89.203389
iter 30 value 87.445292
iter 40 value 86.310120
iter 50 value 83.969876
iter 60 value 82.973927
iter 70 value 82.631709
iter 80 value 82.548950
iter 90 value 82.219904
iter 100 value 81.974415
final value 81.974415
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.081819
iter 10 value 94.129453
iter 20 value 93.859950
iter 30 value 89.572124
iter 40 value 88.678957
iter 50 value 86.207598
iter 60 value 85.638399
iter 70 value 85.476116
iter 80 value 85.333806
iter 90 value 85.171979
iter 100 value 84.480683
final value 84.480683
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.660983
iter 10 value 94.133577
iter 20 value 92.604002
iter 30 value 91.707512
iter 40 value 88.418261
iter 50 value 87.916499
iter 60 value 86.789932
iter 70 value 84.104178
iter 80 value 83.656861
iter 90 value 83.536733
iter 100 value 83.156420
final value 83.156420
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 118.324007
iter 10 value 94.019256
iter 20 value 91.108277
iter 30 value 86.259793
iter 40 value 84.980735
iter 50 value 83.604851
iter 60 value 82.303841
iter 70 value 81.889982
iter 80 value 81.680021
iter 90 value 81.636417
iter 100 value 81.518433
final value 81.518433
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 130.656479
iter 10 value 94.434549
iter 20 value 90.534188
iter 30 value 86.777796
iter 40 value 86.532769
iter 50 value 86.016986
iter 60 value 85.140912
iter 70 value 84.664802
iter 80 value 84.361283
iter 90 value 83.607643
iter 100 value 82.985366
final value 82.985366
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.577863
iter 10 value 89.552477
iter 20 value 86.536852
iter 30 value 86.303839
iter 40 value 85.395993
iter 50 value 85.057951
iter 60 value 84.871957
iter 70 value 84.477588
iter 80 value 83.794786
iter 90 value 83.710194
iter 100 value 83.457542
final value 83.457542
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 127.598502
iter 10 value 97.604287
iter 20 value 89.835002
iter 30 value 89.091279
iter 40 value 88.065315
iter 50 value 85.231864
iter 60 value 84.613893
iter 70 value 83.594495
iter 80 value 83.196935
iter 90 value 83.007265
iter 100 value 82.388417
final value 82.388417
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.097246
iter 10 value 94.514748
iter 20 value 92.576539
iter 30 value 88.026420
iter 40 value 86.459068
iter 50 value 85.523061
iter 60 value 85.167551
iter 70 value 84.026602
iter 80 value 84.001867
iter 90 value 83.918309
iter 100 value 83.517365
final value 83.517365
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.187543
final value 94.054600
converged
Fitting Repeat 2
# weights: 103
initial value 106.823222
iter 10 value 93.418650
iter 20 value 93.323474
iter 30 value 93.323307
iter 40 value 93.084096
iter 40 value 93.084095
iter 40 value 93.084095
final value 93.084095
converged
Fitting Repeat 3
# weights: 103
initial value 98.137247
final value 94.054622
converged
Fitting Repeat 4
# weights: 103
initial value 106.829951
final value 94.043575
converged
Fitting Repeat 5
# weights: 103
initial value 97.178084
iter 10 value 94.054396
iter 20 value 94.049860
iter 30 value 87.440847
iter 40 value 86.331992
final value 86.331822
converged
Fitting Repeat 1
# weights: 305
initial value 101.128233
iter 10 value 93.071305
iter 20 value 89.981580
iter 30 value 85.600799
iter 40 value 85.445630
iter 50 value 84.763188
iter 60 value 84.557392
iter 70 value 84.411629
iter 80 value 84.365865
iter 90 value 84.364659
iter 100 value 84.194846
final value 84.194846
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 120.027617
iter 10 value 94.057798
iter 20 value 92.586137
iter 30 value 86.735237
iter 40 value 86.009487
iter 50 value 85.480984
iter 60 value 83.397288
iter 70 value 82.019864
iter 80 value 81.888640
iter 90 value 81.787343
iter 100 value 81.735682
final value 81.735682
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 95.421241
iter 10 value 94.055598
iter 20 value 91.993899
iter 30 value 85.854883
iter 40 value 85.194988
iter 50 value 85.184156
final value 85.184111
converged
Fitting Repeat 4
# weights: 305
initial value 110.854583
iter 10 value 92.707016
iter 20 value 92.705272
iter 30 value 92.702125
final value 92.701977
converged
Fitting Repeat 5
# weights: 305
initial value 117.307190
iter 10 value 94.058471
iter 20 value 91.538110
iter 30 value 85.738215
iter 40 value 85.540756
final value 85.536763
converged
Fitting Repeat 1
# weights: 507
initial value 96.277491
iter 10 value 88.215366
iter 20 value 85.161278
iter 30 value 85.153038
iter 40 value 85.142338
iter 50 value 85.095678
iter 60 value 84.709747
iter 70 value 84.661258
iter 80 value 84.590000
iter 90 value 84.132394
iter 100 value 84.048469
final value 84.048469
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.265244
iter 10 value 93.573434
iter 20 value 93.540564
iter 30 value 92.925141
iter 40 value 92.896030
iter 50 value 92.892929
iter 60 value 88.345459
iter 70 value 85.247144
iter 80 value 85.170359
iter 90 value 85.168367
final value 85.168202
converged
Fitting Repeat 3
# weights: 507
initial value 100.518658
iter 10 value 94.040543
iter 20 value 94.039363
iter 30 value 94.038360
iter 40 value 93.893354
iter 50 value 91.415847
iter 60 value 89.431646
iter 70 value 87.220825
iter 80 value 84.357453
iter 90 value 83.836795
iter 100 value 83.833882
final value 83.833882
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.637298
iter 10 value 94.052889
iter 20 value 94.044546
iter 30 value 91.433528
iter 40 value 85.271149
iter 50 value 83.835665
iter 60 value 83.492009
iter 70 value 82.750481
iter 80 value 82.249455
iter 90 value 82.243890
iter 100 value 82.242675
final value 82.242675
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.159417
iter 10 value 94.060723
iter 20 value 93.972088
iter 30 value 87.601864
iter 40 value 84.974299
iter 50 value 84.886546
iter 60 value 84.494957
iter 70 value 83.203304
iter 80 value 83.042930
iter 90 value 81.343101
iter 100 value 80.409503
final value 80.409503
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 106.947943
final value 94.354396
converged
Fitting Repeat 2
# weights: 103
initial value 95.109669
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.874195
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 113.611034
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.795590
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 96.978498
iter 10 value 93.645257
final value 93.643491
converged
Fitting Repeat 2
# weights: 305
initial value 96.306893
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 110.058756
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 108.110972
final value 94.354396
converged
Fitting Repeat 5
# weights: 305
initial value 106.529871
iter 10 value 92.776778
iter 20 value 86.029012
iter 30 value 82.798580
iter 40 value 82.789208
iter 50 value 82.788232
iter 60 value 82.787994
iter 70 value 82.769898
iter 80 value 82.663410
final value 82.663181
converged
Fitting Repeat 1
# weights: 507
initial value 110.152037
iter 10 value 90.513790
iter 20 value 86.106880
iter 30 value 85.647642
iter 40 value 85.633713
iter 50 value 85.442400
iter 60 value 85.304768
iter 70 value 85.296457
iter 80 value 85.293677
final value 85.291026
converged
Fitting Repeat 2
# weights: 507
initial value 100.238772
iter 10 value 93.665025
final value 93.623583
converged
Fitting Repeat 3
# weights: 507
initial value 97.585687
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 102.459140
final value 94.354396
converged
Fitting Repeat 5
# weights: 507
initial value 96.636414
iter 10 value 94.359148
iter 20 value 94.354397
final value 94.354396
converged
Fitting Repeat 1
# weights: 103
initial value 99.603103
iter 10 value 94.424091
iter 20 value 86.441476
iter 30 value 83.845438
iter 40 value 83.510255
iter 50 value 83.344648
iter 60 value 83.303630
iter 70 value 83.302743
final value 83.302686
converged
Fitting Repeat 2
# weights: 103
initial value 97.899719
iter 10 value 94.526808
iter 20 value 94.488214
iter 30 value 93.767682
iter 40 value 93.742983
iter 50 value 93.675945
iter 60 value 91.196215
iter 70 value 84.473778
iter 80 value 84.299262
iter 90 value 84.059695
iter 100 value 83.987604
final value 83.987604
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 100.399122
iter 10 value 94.488825
iter 20 value 94.155975
iter 30 value 91.880979
iter 40 value 91.527889
iter 50 value 86.587726
iter 60 value 83.851939
iter 70 value 83.834209
iter 80 value 83.778286
iter 90 value 83.749240
iter 100 value 83.721907
final value 83.721907
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 98.654823
iter 10 value 94.242481
iter 20 value 93.743073
iter 30 value 93.672656
iter 40 value 92.100568
iter 50 value 91.091184
iter 60 value 88.517976
iter 70 value 86.613950
iter 80 value 82.781486
iter 90 value 82.045294
iter 100 value 81.916132
final value 81.916132
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 103.279500
iter 10 value 90.642562
iter 20 value 86.396781
iter 30 value 84.257498
iter 40 value 83.403893
iter 50 value 83.368615
iter 60 value 83.365585
iter 70 value 83.362344
iter 80 value 83.310872
final value 83.302572
converged
Fitting Repeat 1
# weights: 305
initial value 103.581838
iter 10 value 94.531324
iter 20 value 94.344909
iter 30 value 86.643853
iter 40 value 85.911402
iter 50 value 84.152060
iter 60 value 83.346170
iter 70 value 81.809796
iter 80 value 81.235799
iter 90 value 81.003296
iter 100 value 80.988563
final value 80.988563
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.323791
iter 10 value 95.387866
iter 20 value 93.731212
iter 30 value 91.573343
iter 40 value 86.263370
iter 50 value 85.418836
iter 60 value 83.783727
iter 70 value 82.104471
iter 80 value 81.504364
iter 90 value 81.439685
iter 100 value 81.373696
final value 81.373696
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.011772
iter 10 value 94.529217
iter 20 value 84.689016
iter 30 value 84.062774
iter 40 value 83.629110
iter 50 value 81.555659
iter 60 value 80.500612
iter 70 value 80.342993
iter 80 value 80.113511
iter 90 value 79.938401
iter 100 value 79.759668
final value 79.759668
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.059653
iter 10 value 94.538781
iter 20 value 87.524585
iter 30 value 86.779088
iter 40 value 86.198730
iter 50 value 86.007050
iter 60 value 84.796566
iter 70 value 82.615559
iter 80 value 82.157129
iter 90 value 81.955859
iter 100 value 81.846636
final value 81.846636
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.805167
iter 10 value 94.513552
iter 20 value 93.454988
iter 30 value 86.963729
iter 40 value 83.268246
iter 50 value 83.074994
iter 60 value 82.778888
iter 70 value 82.289515
iter 80 value 82.092942
iter 90 value 81.425742
iter 100 value 80.976061
final value 80.976061
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.319201
iter 10 value 94.304214
iter 20 value 85.864107
iter 30 value 82.545359
iter 40 value 82.046850
iter 50 value 81.530321
iter 60 value 80.844185
iter 70 value 80.553170
iter 80 value 80.441614
iter 90 value 80.418795
iter 100 value 80.366445
final value 80.366445
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.052641
iter 10 value 93.920158
iter 20 value 85.888962
iter 30 value 84.334673
iter 40 value 83.589786
iter 50 value 83.386354
iter 60 value 82.458102
iter 70 value 81.849173
iter 80 value 81.015484
iter 90 value 80.259431
iter 100 value 79.839026
final value 79.839026
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 115.764021
iter 10 value 94.508759
iter 20 value 93.626214
iter 30 value 92.533675
iter 40 value 83.902764
iter 50 value 82.325868
iter 60 value 80.880081
iter 70 value 80.070905
iter 80 value 79.916726
iter 90 value 79.777706
iter 100 value 79.635937
final value 79.635937
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.576930
iter 10 value 94.847375
iter 20 value 87.947842
iter 30 value 84.675402
iter 40 value 83.554948
iter 50 value 83.294673
iter 60 value 82.854305
iter 70 value 81.723544
iter 80 value 81.243102
iter 90 value 81.057107
iter 100 value 80.811319
final value 80.811319
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.406360
iter 10 value 94.439795
iter 20 value 89.033180
iter 30 value 86.816805
iter 40 value 86.187398
iter 50 value 85.334435
iter 60 value 83.008227
iter 70 value 81.364750
iter 80 value 81.079875
iter 90 value 80.673763
iter 100 value 80.186243
final value 80.186243
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.302844
final value 94.485836
converged
Fitting Repeat 2
# weights: 103
initial value 102.982252
final value 94.485911
converged
Fitting Repeat 3
# weights: 103
initial value 101.239953
final value 94.355918
converged
Fitting Repeat 4
# weights: 103
initial value 98.207497
final value 94.486319
converged
Fitting Repeat 5
# weights: 103
initial value 96.074735
final value 94.485990
converged
Fitting Repeat 1
# weights: 305
initial value 98.089567
iter 10 value 94.488736
iter 20 value 94.484252
final value 94.484242
converged
Fitting Repeat 2
# weights: 305
initial value 96.470914
iter 10 value 93.815118
iter 20 value 89.871447
iter 30 value 88.148412
iter 40 value 88.021560
iter 50 value 87.931053
final value 87.907499
converged
Fitting Repeat 3
# weights: 305
initial value 112.077984
iter 10 value 94.359236
iter 20 value 94.356119
iter 30 value 94.354571
final value 94.354562
converged
Fitting Repeat 4
# weights: 305
initial value 99.865777
iter 10 value 94.489088
iter 20 value 93.814662
iter 30 value 93.312703
iter 40 value 93.308947
iter 50 value 84.075908
iter 60 value 83.455332
iter 70 value 83.450708
iter 80 value 82.019478
iter 90 value 81.543750
iter 100 value 81.330772
final value 81.330772
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.028950
iter 10 value 94.097833
iter 20 value 93.814678
iter 30 value 93.700738
iter 40 value 93.643856
final value 93.643854
converged
Fitting Repeat 1
# weights: 507
initial value 100.641037
iter 10 value 93.709968
iter 20 value 93.628190
iter 30 value 91.220188
iter 40 value 83.282625
iter 50 value 82.917299
iter 60 value 82.827772
final value 82.827443
converged
Fitting Repeat 2
# weights: 507
initial value 108.431715
iter 10 value 94.492291
iter 20 value 94.484212
iter 30 value 93.921210
iter 40 value 93.595444
final value 93.590832
converged
Fitting Repeat 3
# weights: 507
initial value 100.169086
iter 10 value 94.316424
iter 20 value 94.289920
iter 30 value 84.349472
iter 40 value 81.535381
iter 50 value 81.527839
iter 60 value 81.466239
iter 70 value 81.164236
iter 80 value 79.648559
iter 90 value 79.383549
iter 100 value 79.351754
final value 79.351754
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 95.176016
iter 10 value 94.492602
iter 20 value 93.665307
iter 30 value 87.571378
iter 40 value 82.900149
iter 50 value 82.767191
iter 60 value 82.722435
iter 70 value 82.721785
iter 80 value 82.720900
final value 82.720895
converged
Fitting Repeat 5
# weights: 507
initial value 99.387901
iter 10 value 93.070966
iter 20 value 87.394184
iter 30 value 85.644765
iter 40 value 85.641459
iter 50 value 85.640492
final value 85.640467
converged
Fitting Repeat 1
# weights: 103
initial value 107.978959
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 94.524742
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.832820
final value 93.671508
converged
Fitting Repeat 4
# weights: 103
initial value 114.032171
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 95.851874
iter 10 value 90.527847
iter 20 value 85.621384
iter 30 value 84.747505
final value 84.747127
converged
Fitting Repeat 1
# weights: 305
initial value 106.817665
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 95.997263
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 105.080735
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 112.468790
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 100.709858
final value 93.551913
converged
Fitting Repeat 1
# weights: 507
initial value 111.764452
iter 10 value 93.606492
iter 20 value 93.590871
final value 93.590851
converged
Fitting Repeat 2
# weights: 507
initial value 102.468247
iter 10 value 93.314188
final value 93.309302
converged
Fitting Repeat 3
# weights: 507
initial value 105.821747
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 96.878399
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 100.844117
final value 93.722222
converged
Fitting Repeat 1
# weights: 103
initial value 95.860740
iter 10 value 93.639745
iter 20 value 85.937480
iter 30 value 85.109992
iter 40 value 83.399797
iter 50 value 83.340191
iter 60 value 82.917143
iter 70 value 82.386562
iter 80 value 82.279735
final value 82.276922
converged
Fitting Repeat 2
# weights: 103
initial value 104.193956
iter 10 value 94.056691
iter 20 value 89.176205
iter 30 value 85.247623
iter 40 value 82.743274
iter 50 value 82.443506
iter 60 value 82.168413
iter 70 value 81.951140
iter 80 value 81.912176
final value 81.911852
converged
Fitting Repeat 3
# weights: 103
initial value 98.798707
iter 10 value 93.638332
iter 20 value 85.226975
iter 30 value 82.408747
iter 40 value 81.702562
iter 50 value 81.514165
iter 60 value 81.464564
iter 70 value 81.297698
iter 80 value 80.953002
iter 90 value 80.411361
iter 100 value 80.363613
final value 80.363613
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.740793
iter 10 value 93.862315
iter 20 value 87.642104
iter 30 value 83.557425
iter 40 value 82.956204
iter 50 value 82.503679
iter 60 value 82.321913
iter 70 value 81.148404
iter 80 value 80.693909
iter 90 value 80.673067
iter 100 value 80.631958
final value 80.631958
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 116.846397
iter 10 value 93.715237
iter 20 value 85.168599
iter 30 value 83.126009
iter 40 value 82.677876
iter 50 value 82.497082
iter 60 value 82.290612
iter 70 value 82.276923
final value 82.276922
converged
Fitting Repeat 1
# weights: 305
initial value 99.099908
iter 10 value 94.059232
iter 20 value 91.281484
iter 30 value 86.237044
iter 40 value 83.224296
iter 50 value 82.990115
iter 60 value 82.456252
iter 70 value 82.153761
iter 80 value 81.965129
iter 90 value 81.864072
iter 100 value 81.420958
final value 81.420958
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.979476
iter 10 value 95.130660
iter 20 value 91.339683
iter 30 value 85.384055
iter 40 value 84.347654
iter 50 value 83.005512
iter 60 value 82.100917
iter 70 value 81.552125
iter 80 value 79.881219
iter 90 value 79.400199
iter 100 value 79.065075
final value 79.065075
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.496999
iter 10 value 93.252559
iter 20 value 82.973288
iter 30 value 81.494810
iter 40 value 81.251886
iter 50 value 80.695216
iter 60 value 79.657509
iter 70 value 79.304670
iter 80 value 78.936316
iter 90 value 78.840751
iter 100 value 78.812452
final value 78.812452
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 112.475894
iter 10 value 96.341234
iter 20 value 94.408812
iter 30 value 94.012914
iter 40 value 87.304982
iter 50 value 86.160512
iter 60 value 85.294447
iter 70 value 82.443391
iter 80 value 81.437677
iter 90 value 80.946279
iter 100 value 80.774682
final value 80.774682
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.525665
iter 10 value 94.184647
iter 20 value 93.050550
iter 30 value 90.285733
iter 40 value 84.668365
iter 50 value 83.887543
iter 60 value 83.721082
iter 70 value 83.186855
iter 80 value 82.418774
iter 90 value 82.182940
iter 100 value 81.920535
final value 81.920535
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.232062
iter 10 value 94.018855
iter 20 value 85.071617
iter 30 value 83.915060
iter 40 value 83.437642
iter 50 value 82.297011
iter 60 value 80.125531
iter 70 value 79.876000
iter 80 value 79.757517
iter 90 value 79.518312
iter 100 value 79.294230
final value 79.294230
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 145.007031
iter 10 value 97.321498
iter 20 value 90.371766
iter 30 value 84.732234
iter 40 value 83.487002
iter 50 value 82.098663
iter 60 value 80.583828
iter 70 value 79.707086
iter 80 value 79.426760
iter 90 value 78.892972
iter 100 value 78.778963
final value 78.778963
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.204433
iter 10 value 95.750545
iter 20 value 95.253313
iter 30 value 86.538988
iter 40 value 84.695493
iter 50 value 82.906545
iter 60 value 81.725601
iter 70 value 80.548697
iter 80 value 80.385961
iter 90 value 80.271729
iter 100 value 80.269167
final value 80.269167
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.957358
iter 10 value 93.906291
iter 20 value 92.207912
iter 30 value 86.877087
iter 40 value 84.820874
iter 50 value 84.417610
iter 60 value 83.600135
iter 70 value 82.033036
iter 80 value 81.483460
iter 90 value 79.960084
iter 100 value 79.430393
final value 79.430393
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.213897
iter 10 value 94.399805
iter 20 value 85.483443
iter 30 value 84.155167
iter 40 value 83.762965
iter 50 value 82.548797
iter 60 value 81.455259
iter 70 value 80.607010
iter 80 value 79.790029
iter 90 value 79.537536
iter 100 value 79.268746
final value 79.268746
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.946706
iter 10 value 94.054340
iter 20 value 94.052948
final value 94.052915
converged
Fitting Repeat 2
# weights: 103
initial value 99.227807
final value 94.044872
converged
Fitting Repeat 3
# weights: 103
initial value 99.189798
final value 94.054441
converged
Fitting Repeat 4
# weights: 103
initial value 95.183399
final value 94.054439
converged
Fitting Repeat 5
# weights: 103
initial value 108.342104
final value 94.054493
converged
Fitting Repeat 1
# weights: 305
initial value 100.786928
iter 10 value 94.058109
iter 20 value 94.031718
iter 30 value 92.463562
iter 40 value 86.878541
iter 50 value 83.142069
iter 60 value 80.769386
iter 70 value 79.979596
iter 80 value 79.961095
iter 90 value 79.892309
iter 100 value 79.522848
final value 79.522848
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.778683
iter 10 value 93.556851
iter 20 value 93.552423
iter 30 value 89.115023
iter 40 value 85.021564
iter 50 value 84.108037
iter 60 value 82.566406
iter 70 value 82.522743
final value 82.522638
converged
Fitting Repeat 3
# weights: 305
initial value 94.468593
iter 10 value 85.507766
iter 20 value 84.735422
iter 30 value 84.686337
iter 40 value 83.810219
iter 50 value 83.487869
iter 60 value 83.487083
final value 83.484182
converged
Fitting Repeat 4
# weights: 305
initial value 101.390118
iter 10 value 93.547844
iter 20 value 93.498087
iter 30 value 93.495756
iter 40 value 92.801024
iter 50 value 90.121579
iter 60 value 90.087456
iter 70 value 90.086743
iter 80 value 90.086520
iter 90 value 89.485186
iter 100 value 89.039407
final value 89.039407
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 111.051876
iter 10 value 93.740856
iter 20 value 92.772955
iter 30 value 92.770073
iter 40 value 92.177171
iter 50 value 92.110563
iter 60 value 92.087043
iter 70 value 92.061767
iter 80 value 92.059976
iter 90 value 91.095885
final value 91.095786
converged
Fitting Repeat 1
# weights: 507
initial value 94.487269
iter 10 value 93.685092
iter 20 value 86.896957
iter 30 value 86.688745
iter 40 value 85.174462
iter 50 value 83.762471
iter 60 value 83.740387
iter 70 value 83.737542
iter 80 value 83.673585
iter 90 value 83.364665
iter 100 value 81.976880
final value 81.976880
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.798315
iter 10 value 93.335233
iter 20 value 93.330694
iter 30 value 85.274979
iter 40 value 82.659922
iter 50 value 79.942696
iter 60 value 79.419159
iter 70 value 78.709116
iter 80 value 78.397946
iter 90 value 78.206669
iter 100 value 78.001059
final value 78.001059
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.468134
iter 10 value 84.557806
iter 20 value 82.543892
iter 30 value 82.186363
iter 40 value 82.141871
iter 50 value 81.470966
iter 60 value 81.371858
iter 70 value 81.270363
iter 80 value 81.268597
iter 90 value 81.266930
final value 81.266096
converged
Fitting Repeat 4
# weights: 507
initial value 95.961945
iter 10 value 94.051258
iter 20 value 94.043559
iter 30 value 92.930193
iter 40 value 84.882510
iter 50 value 84.879729
iter 60 value 84.879249
iter 70 value 81.474081
iter 80 value 81.180375
iter 80 value 81.180375
final value 81.180375
converged
Fitting Repeat 5
# weights: 507
initial value 94.343893
iter 10 value 84.771158
iter 20 value 84.763074
iter 30 value 84.067349
iter 40 value 83.889492
iter 50 value 82.793667
iter 60 value 82.244043
iter 70 value 82.200954
iter 80 value 82.111689
iter 90 value 79.705835
iter 100 value 79.687014
final value 79.687014
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 124.032709
iter 10 value 117.897411
iter 20 value 117.828399
iter 30 value 108.394686
iter 40 value 106.557218
iter 50 value 106.552812
iter 60 value 106.533815
iter 70 value 106.524182
iter 80 value 106.523042
iter 90 value 106.518729
iter 100 value 106.518045
final value 106.518045
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 123.321294
iter 10 value 115.151256
iter 20 value 114.205184
iter 30 value 112.773675
iter 40 value 112.640118
iter 50 value 111.592047
iter 60 value 111.462024
iter 70 value 111.452188
iter 80 value 111.306345
iter 90 value 108.211519
iter 100 value 105.516109
final value 105.516109
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 154.868601
iter 10 value 117.901115
iter 20 value 117.819486
iter 30 value 110.190279
iter 40 value 105.670155
iter 50 value 104.814104
iter 60 value 104.813320
iter 70 value 104.719522
final value 104.689521
converged
Fitting Repeat 4
# weights: 507
initial value 119.972547
iter 10 value 117.557815
iter 20 value 109.509941
iter 30 value 109.488812
final value 109.488111
converged
Fitting Repeat 5
# weights: 507
initial value 119.566015
iter 10 value 110.673539
iter 20 value 107.966485
iter 30 value 107.062452
iter 40 value 106.959692
iter 50 value 106.945852
iter 60 value 106.941450
iter 70 value 106.937018
iter 80 value 105.107819
iter 90 value 104.343322
iter 100 value 104.304189
final value 104.304189
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Sat Nov 9 04:48:46 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
15.441 0.506 25.256
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 15.541 | 0.391 | 15.934 | |
| FreqInteractors | 0.071 | 0.003 | 0.075 | |
| calculateAAC | 0.013 | 0.002 | 0.015 | |
| calculateAutocor | 0.135 | 0.025 | 0.160 | |
| calculateCTDC | 0.022 | 0.001 | 0.024 | |
| calculateCTDD | 0.156 | 0.008 | 0.165 | |
| calculateCTDT | 0.072 | 0.004 | 0.075 | |
| calculateCTriad | 0.126 | 0.014 | 0.141 | |
| calculateDC | 0.028 | 0.002 | 0.030 | |
| calculateF | 0.082 | 0.004 | 0.086 | |
| calculateKSAAP | 0.028 | 0.002 | 0.030 | |
| calculateQD_Sm | 0.516 | 0.033 | 0.549 | |
| calculateTC | 0.485 | 0.044 | 0.529 | |
| calculateTC_Sm | 0.085 | 0.003 | 0.088 | |
| corr_plot | 15.106 | 0.393 | 15.508 | |
| enrichfindP | 0.128 | 0.022 | 10.686 | |
| enrichfind_hp | 0.021 | 0.003 | 0.979 | |
| enrichplot | 0.101 | 0.002 | 0.103 | |
| filter_missing_values | 0.000 | 0.000 | 0.001 | |
| getFASTA | 0.026 | 0.004 | 2.818 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0 | 0 | 0 | |
| get_positivePPI | 0.001 | 0.000 | 0.000 | |
| impute_missing_data | 0.000 | 0.000 | 0.001 | |
| plotPPI | 0.021 | 0.001 | 0.022 | |
| pred_ensembel | 4.859 | 0.121 | 4.306 | |
| var_imp | 15.414 | 0.452 | 15.865 | |