| Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-20 12:07 -0500 (Wed, 20 Nov 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4481 |
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4479 |
| palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4359 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4539 |
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
| palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
| Package: HPiP |
| Version: 1.12.0 |
| Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz |
| StartedAt: 2024-11-20 08:52:29 -0000 (Wed, 20 Nov 2024) |
| EndedAt: 2024-11-20 08:58:28 -0000 (Wed, 20 Nov 2024) |
| EllapsedTime: 358.7 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
gcc (GCC) 12.2.1 20220819 (openEuler 12.2.1-14)
GNU Fortran (GCC) 10.3.1
* running under: openEuler 22.03 (LTS-SP1)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 38.230 0.683 39.047
var_imp 37.618 0.703 38.398
corr_plot 37.931 0.271 38.285
pred_ensembel 19.082 1.012 16.924
enrichfindP 0.514 0.053 21.100
getFASTA 0.083 0.005 5.501
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.4.1/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 97.478620
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 105.828160
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 98.335800
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 103.970494
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.159495
final value 94.354396
converged
Fitting Repeat 1
# weights: 305
initial value 95.228575
iter 10 value 90.185757
iter 20 value 89.290927
final value 89.234725
converged
Fitting Repeat 2
# weights: 305
initial value 102.901551
final value 94.052435
converged
Fitting Repeat 3
# weights: 305
initial value 112.453440
iter 10 value 93.285860
iter 20 value 93.283340
final value 93.283334
converged
Fitting Repeat 4
# weights: 305
initial value 108.796558
iter 10 value 92.873173
iter 20 value 82.075624
iter 30 value 81.280900
iter 40 value 81.279022
final value 81.279018
converged
Fitting Repeat 5
# weights: 305
initial value 100.459371
final value 94.354396
converged
Fitting Repeat 1
# weights: 507
initial value 107.517735
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 103.006991
iter 10 value 94.162315
iter 20 value 94.144499
final value 94.144481
converged
Fitting Repeat 3
# weights: 507
initial value 99.027589
iter 10 value 93.272729
iter 20 value 93.148416
iter 30 value 92.950677
final value 92.949136
converged
Fitting Repeat 4
# weights: 507
initial value 105.522571
final value 94.354396
converged
Fitting Repeat 5
# weights: 507
initial value 96.694005
iter 10 value 92.647746
final value 92.613874
converged
Fitting Repeat 1
# weights: 103
initial value 98.934856
iter 10 value 94.484105
iter 20 value 84.106651
iter 30 value 82.552791
iter 40 value 81.324651
iter 50 value 80.895658
iter 60 value 80.638708
iter 70 value 80.570483
iter 80 value 80.565330
final value 80.565327
converged
Fitting Repeat 2
# weights: 103
initial value 96.814922
iter 10 value 93.775560
iter 20 value 85.861603
iter 30 value 85.469663
iter 40 value 85.018065
iter 50 value 82.205758
iter 60 value 81.565095
iter 70 value 81.034828
iter 80 value 80.748243
iter 90 value 80.608416
iter 100 value 80.565334
final value 80.565334
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 100.046030
iter 10 value 94.490109
iter 20 value 93.925465
iter 30 value 83.937603
iter 40 value 83.249921
iter 50 value 82.672230
iter 60 value 82.633618
final value 82.633609
converged
Fitting Repeat 4
# weights: 103
initial value 110.116450
iter 10 value 94.590218
iter 20 value 94.139053
iter 30 value 92.942194
iter 40 value 83.406240
iter 50 value 82.676735
iter 60 value 82.642774
iter 70 value 82.628393
iter 70 value 82.628392
iter 70 value 82.628392
final value 82.628392
converged
Fitting Repeat 5
# weights: 103
initial value 98.375720
iter 10 value 93.338579
iter 20 value 88.031008
iter 30 value 87.257428
iter 40 value 83.335738
iter 50 value 83.299485
iter 60 value 82.894790
iter 70 value 81.437972
iter 80 value 80.405188
iter 90 value 80.373404
iter 100 value 80.348606
final value 80.348606
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 133.200634
iter 10 value 94.484634
iter 20 value 93.732724
iter 30 value 91.212846
iter 40 value 83.870027
iter 50 value 83.676184
iter 60 value 83.000252
iter 70 value 81.873839
iter 80 value 81.690333
iter 90 value 81.350988
iter 100 value 81.257308
final value 81.257308
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.297486
iter 10 value 94.507362
iter 20 value 84.191372
iter 30 value 82.422613
iter 40 value 80.575913
iter 50 value 80.378492
iter 60 value 80.342684
iter 70 value 80.274301
iter 80 value 80.096081
iter 90 value 79.859994
iter 100 value 79.581546
final value 79.581546
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.086496
iter 10 value 94.983256
iter 20 value 94.026474
iter 30 value 87.232592
iter 40 value 85.464601
iter 50 value 84.927634
iter 60 value 82.802255
iter 70 value 81.874199
iter 80 value 81.796926
iter 90 value 81.605410
iter 100 value 80.553651
final value 80.553651
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.275916
iter 10 value 94.429207
iter 20 value 92.182819
iter 30 value 84.781075
iter 40 value 83.398386
iter 50 value 83.360721
iter 60 value 82.303145
iter 70 value 81.079429
iter 80 value 80.596533
iter 90 value 79.939479
iter 100 value 79.623906
final value 79.623906
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 108.033918
iter 10 value 93.410324
iter 20 value 86.520249
iter 30 value 82.915254
iter 40 value 82.822643
iter 50 value 82.366411
iter 60 value 81.218406
iter 70 value 80.493121
iter 80 value 80.453024
iter 90 value 80.441205
iter 100 value 80.422678
final value 80.422678
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.742904
iter 10 value 94.570352
iter 20 value 83.600288
iter 30 value 82.600980
iter 40 value 81.432479
iter 50 value 80.760241
iter 60 value 79.868571
iter 70 value 79.639267
iter 80 value 79.495957
iter 90 value 79.408237
iter 100 value 79.365879
final value 79.365879
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.240019
iter 10 value 84.951577
iter 20 value 82.328778
iter 30 value 81.627143
iter 40 value 80.387102
iter 50 value 80.094645
iter 60 value 79.976843
iter 70 value 79.701988
iter 80 value 79.607488
iter 90 value 79.400479
iter 100 value 79.248698
final value 79.248698
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.525654
iter 10 value 94.415554
iter 20 value 92.193973
iter 30 value 91.783565
iter 40 value 91.387151
iter 50 value 90.288395
iter 60 value 89.957861
iter 70 value 84.009874
iter 80 value 81.976046
iter 90 value 80.933422
iter 100 value 80.652265
final value 80.652265
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.386434
iter 10 value 95.090425
iter 20 value 94.019051
iter 30 value 92.620454
iter 40 value 88.810019
iter 50 value 86.850186
iter 60 value 84.201527
iter 70 value 82.473046
iter 80 value 81.027523
iter 90 value 80.627401
iter 100 value 80.125874
final value 80.125874
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 115.378800
iter 10 value 95.160854
iter 20 value 87.736038
iter 30 value 85.181152
iter 40 value 81.471254
iter 50 value 80.999311
iter 60 value 80.894795
iter 70 value 80.052446
iter 80 value 79.366372
iter 90 value 78.864870
iter 100 value 78.717339
final value 78.717339
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.281098
final value 94.485804
converged
Fitting Repeat 2
# weights: 103
initial value 100.097700
iter 10 value 94.486160
iter 20 value 93.679910
iter 30 value 93.661273
iter 40 value 93.659598
iter 50 value 93.658698
iter 60 value 90.245588
iter 70 value 84.416946
iter 80 value 84.403042
iter 90 value 84.402927
iter 90 value 84.402927
iter 100 value 84.402851
final value 84.402851
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 106.618924
final value 94.054274
converged
Fitting Repeat 4
# weights: 103
initial value 94.896721
final value 94.486009
converged
Fitting Repeat 5
# weights: 103
initial value 98.880622
final value 94.485907
converged
Fitting Repeat 1
# weights: 305
initial value 97.024483
iter 10 value 89.996810
iter 20 value 89.993560
iter 30 value 89.988378
iter 40 value 89.985687
iter 50 value 89.979667
iter 60 value 89.092482
iter 70 value 88.577216
iter 80 value 88.567377
final value 88.567371
converged
Fitting Repeat 2
# weights: 305
initial value 98.586258
iter 10 value 94.488805
iter 20 value 94.481975
iter 30 value 84.223167
iter 40 value 79.864082
iter 50 value 79.860958
iter 60 value 79.835349
iter 70 value 79.319103
iter 80 value 79.230889
iter 90 value 79.230233
iter 100 value 79.230006
final value 79.230006
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 95.923356
iter 10 value 94.486524
iter 20 value 83.718605
iter 30 value 82.561883
iter 40 value 82.556252
iter 50 value 82.500492
iter 60 value 81.223574
final value 81.223363
converged
Fitting Repeat 4
# weights: 305
initial value 96.071274
iter 10 value 94.488063
iter 20 value 94.473200
iter 30 value 85.205143
iter 40 value 85.171564
iter 50 value 85.169933
iter 60 value 85.037576
iter 70 value 85.021794
iter 80 value 85.021316
iter 90 value 84.771240
iter 100 value 84.693139
final value 84.693139
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 118.600098
iter 10 value 94.280454
iter 20 value 94.276375
iter 30 value 93.774349
iter 40 value 87.186341
iter 50 value 85.801035
iter 60 value 81.479646
iter 70 value 80.074339
iter 80 value 79.427025
iter 90 value 79.420627
iter 100 value 79.287464
final value 79.287464
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 100.088119
iter 10 value 88.594419
iter 20 value 83.382714
iter 30 value 81.839599
iter 40 value 81.614601
iter 50 value 81.482607
iter 60 value 81.473091
iter 70 value 79.256392
iter 80 value 78.733113
iter 90 value 78.731211
iter 100 value 78.729594
final value 78.729594
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.317707
iter 10 value 93.920315
iter 20 value 93.895585
iter 30 value 93.650701
iter 40 value 93.641103
iter 50 value 93.640992
iter 60 value 93.640809
final value 93.640794
converged
Fitting Repeat 3
# weights: 507
initial value 96.478818
iter 10 value 94.491282
iter 20 value 94.317573
iter 30 value 91.337379
iter 40 value 90.790833
iter 50 value 90.790045
iter 60 value 90.786510
iter 70 value 90.786435
final value 90.786393
converged
Fitting Repeat 4
# weights: 507
initial value 103.090448
iter 10 value 93.011869
iter 20 value 88.237628
iter 30 value 86.130394
iter 40 value 86.098155
iter 50 value 84.764127
iter 60 value 84.750564
iter 70 value 84.750120
iter 80 value 84.748610
final value 84.748580
converged
Fitting Repeat 5
# weights: 507
initial value 111.637396
iter 10 value 94.492102
iter 20 value 94.355694
final value 94.355686
converged
Fitting Repeat 1
# weights: 103
initial value 96.864808
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 98.607866
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 101.439873
final value 94.467391
converged
Fitting Repeat 4
# weights: 103
initial value 99.874699
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.469395
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 94.869845
iter 10 value 89.605303
iter 20 value 88.845203
final value 88.315362
converged
Fitting Repeat 2
# weights: 305
initial value 103.434339
final value 94.476471
converged
Fitting Repeat 3
# weights: 305
initial value 105.079522
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 99.912608
final value 94.323810
converged
Fitting Repeat 5
# weights: 305
initial value 96.495910
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 100.572691
final value 94.365462
converged
Fitting Repeat 2
# weights: 507
initial value 100.333209
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 104.488599
final value 94.467391
converged
Fitting Repeat 4
# weights: 507
initial value 122.578151
iter 10 value 94.467400
final value 94.467392
converged
Fitting Repeat 5
# weights: 507
initial value 96.542343
final value 94.399733
converged
Fitting Repeat 1
# weights: 103
initial value 109.324865
iter 10 value 94.455455
iter 20 value 90.522847
iter 30 value 88.592038
iter 40 value 86.113686
iter 50 value 85.435102
iter 60 value 85.336542
final value 85.336537
converged
Fitting Repeat 2
# weights: 103
initial value 98.066356
iter 10 value 94.488997
iter 20 value 93.368687
iter 30 value 89.086866
iter 40 value 88.302971
iter 50 value 87.752919
iter 60 value 86.279265
iter 70 value 85.317722
iter 80 value 84.449003
iter 90 value 84.388163
final value 84.381490
converged
Fitting Repeat 3
# weights: 103
initial value 97.893853
iter 10 value 90.069438
iter 20 value 87.477344
iter 30 value 87.043609
iter 40 value 86.442289
iter 50 value 86.088042
iter 60 value 85.858517
iter 70 value 85.633333
iter 80 value 83.438024
iter 90 value 82.862075
iter 100 value 82.564730
final value 82.564730
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.265356
iter 10 value 94.489893
iter 20 value 93.706165
iter 30 value 86.751453
iter 40 value 85.043734
iter 50 value 84.623863
iter 60 value 84.594775
final value 84.592027
converged
Fitting Repeat 5
# weights: 103
initial value 98.518616
iter 10 value 94.510061
iter 20 value 94.482227
iter 30 value 92.637322
iter 40 value 88.379523
iter 50 value 87.191121
iter 60 value 85.482428
iter 70 value 84.528645
iter 80 value 83.528662
iter 90 value 83.436965
final value 83.436633
converged
Fitting Repeat 1
# weights: 305
initial value 119.571601
iter 10 value 94.652708
iter 20 value 90.392149
iter 30 value 86.189103
iter 40 value 84.238873
iter 50 value 83.958945
iter 60 value 83.934921
iter 70 value 83.858512
iter 80 value 83.253451
iter 90 value 82.729346
iter 100 value 82.297245
final value 82.297245
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.908949
iter 10 value 94.980408
iter 20 value 92.002467
iter 30 value 89.478422
iter 40 value 85.663669
iter 50 value 84.960669
iter 60 value 84.341301
iter 70 value 84.219834
iter 80 value 84.166525
iter 90 value 84.120404
iter 100 value 83.433858
final value 83.433858
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.874842
iter 10 value 94.414326
iter 20 value 91.265601
iter 30 value 86.910466
iter 40 value 84.390084
iter 50 value 83.453009
iter 60 value 82.192094
iter 70 value 81.903784
iter 80 value 81.666316
iter 90 value 81.279981
iter 100 value 81.003765
final value 81.003765
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 126.611058
iter 10 value 93.383167
iter 20 value 88.574100
iter 30 value 88.347766
iter 40 value 88.308259
iter 50 value 88.153388
iter 60 value 84.588353
iter 70 value 84.349004
iter 80 value 84.033075
iter 90 value 83.195451
iter 100 value 82.882387
final value 82.882387
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.680979
iter 10 value 94.315291
iter 20 value 92.388981
iter 30 value 91.865825
iter 40 value 87.524648
iter 50 value 83.938791
iter 60 value 82.082984
iter 70 value 81.072393
iter 80 value 80.961766
iter 90 value 80.918712
iter 100 value 80.860794
final value 80.860794
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.982844
iter 10 value 94.519288
iter 20 value 88.157701
iter 30 value 87.615871
iter 40 value 84.639287
iter 50 value 83.486266
iter 60 value 82.733319
iter 70 value 82.034131
iter 80 value 81.478714
iter 90 value 81.098962
iter 100 value 80.936118
final value 80.936118
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 127.602524
iter 10 value 94.492522
iter 20 value 89.487255
iter 30 value 86.883595
iter 40 value 85.839516
iter 50 value 84.807871
iter 60 value 84.353813
iter 70 value 84.014134
iter 80 value 82.612287
iter 90 value 81.741583
iter 100 value 81.317218
final value 81.317218
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 137.287620
iter 10 value 94.165349
iter 20 value 86.459643
iter 30 value 84.963156
iter 40 value 82.598478
iter 50 value 81.595151
iter 60 value 81.450363
iter 70 value 81.357660
iter 80 value 81.285052
iter 90 value 81.259728
iter 100 value 81.238629
final value 81.238629
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.572455
iter 10 value 94.489320
iter 20 value 93.529466
iter 30 value 92.561704
iter 40 value 92.260873
iter 50 value 89.860443
iter 60 value 87.355920
iter 70 value 83.924973
iter 80 value 81.910923
iter 90 value 81.649367
iter 100 value 81.310684
final value 81.310684
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 137.264521
iter 10 value 94.900058
iter 20 value 93.493899
iter 30 value 89.412588
iter 40 value 87.388966
iter 50 value 86.417023
iter 60 value 83.906302
iter 70 value 82.702697
iter 80 value 82.119007
iter 90 value 81.943800
iter 100 value 81.622122
final value 81.622122
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.576025
final value 94.485906
converged
Fitting Repeat 2
# weights: 103
initial value 98.189866
final value 94.485766
converged
Fitting Repeat 3
# weights: 103
initial value 99.993422
final value 94.485881
converged
Fitting Repeat 4
# weights: 103
initial value 102.458416
final value 94.485670
converged
Fitting Repeat 5
# weights: 103
initial value 102.619591
final value 94.485843
converged
Fitting Repeat 1
# weights: 305
initial value 101.084184
iter 10 value 94.404884
iter 20 value 94.336259
iter 30 value 87.092232
iter 40 value 87.003761
iter 50 value 86.469151
iter 60 value 86.342220
iter 70 value 86.331409
iter 80 value 86.331216
iter 90 value 86.330264
final value 86.329871
converged
Fitting Repeat 2
# weights: 305
initial value 94.752591
iter 10 value 94.488904
iter 20 value 94.337454
iter 30 value 91.396379
iter 40 value 88.284927
iter 50 value 88.212704
iter 60 value 87.561157
iter 70 value 86.273461
iter 80 value 86.227949
iter 90 value 86.157274
iter 100 value 85.960967
final value 85.960967
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 98.525135
iter 10 value 94.478874
iter 20 value 89.189168
iter 30 value 88.929257
iter 40 value 88.249671
iter 50 value 87.537420
iter 60 value 86.738022
iter 70 value 84.760390
iter 80 value 84.284450
iter 90 value 84.241098
iter 100 value 81.954934
final value 81.954934
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.386929
iter 10 value 94.491597
iter 20 value 94.486309
iter 30 value 94.428501
iter 40 value 87.307175
iter 50 value 87.169041
final value 87.137128
converged
Fitting Repeat 5
# weights: 305
initial value 97.123504
iter 10 value 94.488754
iter 20 value 94.484248
iter 30 value 94.469627
iter 40 value 92.360939
iter 50 value 92.006494
iter 60 value 91.912266
iter 70 value 91.910734
final value 91.909489
converged
Fitting Repeat 1
# weights: 507
initial value 97.684563
iter 10 value 93.330516
iter 20 value 88.793035
iter 30 value 87.753735
iter 40 value 86.737391
iter 50 value 86.722808
iter 60 value 86.719465
iter 70 value 86.715843
iter 80 value 86.159161
iter 90 value 82.159049
iter 100 value 81.269216
final value 81.269216
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 100.695383
iter 10 value 94.492250
iter 20 value 94.472571
iter 30 value 89.172547
iter 40 value 83.698195
iter 50 value 82.958915
iter 60 value 82.871433
iter 70 value 82.855116
final value 82.854896
converged
Fitting Repeat 3
# weights: 507
initial value 100.911236
iter 10 value 94.491964
iter 20 value 94.447670
iter 30 value 86.333165
iter 40 value 86.328138
iter 50 value 86.326985
final value 86.326830
converged
Fitting Repeat 4
# weights: 507
initial value 99.917104
iter 10 value 94.492320
iter 20 value 94.484291
iter 30 value 92.137440
iter 40 value 83.854643
iter 50 value 82.294919
iter 60 value 82.116164
iter 70 value 82.100705
iter 80 value 82.099357
iter 90 value 81.944617
iter 100 value 81.647366
final value 81.647366
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.321671
iter 10 value 94.491846
iter 20 value 94.484074
iter 30 value 94.063147
iter 40 value 88.592477
iter 50 value 88.569452
iter 60 value 88.568112
iter 70 value 88.549427
iter 80 value 88.445720
iter 90 value 88.040278
iter 100 value 86.763047
final value 86.763047
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 117.276292
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.079959
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 96.145496
final value 93.482758
converged
Fitting Repeat 4
# weights: 103
initial value 96.180231
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 99.173330
final value 93.371808
converged
Fitting Repeat 1
# weights: 305
initial value 99.612700
iter 10 value 91.556094
final value 91.374293
converged
Fitting Repeat 2
# weights: 305
initial value 98.002330
final value 93.810010
converged
Fitting Repeat 3
# weights: 305
initial value 98.133749
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 97.556814
iter 10 value 93.672981
final value 93.672973
converged
Fitting Repeat 5
# weights: 305
initial value 98.936143
iter 10 value 92.603369
iter 20 value 92.310479
iter 20 value 92.310478
iter 20 value 92.310478
final value 92.310478
converged
Fitting Repeat 1
# weights: 507
initial value 112.507237
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 98.306593
final value 93.810010
converged
Fitting Repeat 3
# weights: 507
initial value 95.815406
iter 10 value 93.701870
final value 93.622234
converged
Fitting Repeat 4
# weights: 507
initial value 99.800572
iter 10 value 93.673026
final value 93.672973
converged
Fitting Repeat 5
# weights: 507
initial value 99.346831
final value 93.672973
converged
Fitting Repeat 1
# weights: 103
initial value 100.265871
iter 10 value 93.950214
iter 20 value 88.101093
iter 30 value 86.571712
iter 40 value 85.092265
iter 50 value 84.560295
iter 60 value 84.362243
final value 84.360551
converged
Fitting Repeat 2
# weights: 103
initial value 105.537475
iter 10 value 94.026860
iter 20 value 93.566211
iter 30 value 93.535985
final value 93.535957
converged
Fitting Repeat 3
# weights: 103
initial value 98.860667
iter 10 value 94.057318
iter 20 value 92.237413
iter 30 value 86.830682
iter 40 value 84.685793
iter 50 value 84.370312
iter 60 value 84.299502
iter 70 value 84.293328
iter 70 value 84.293328
iter 70 value 84.293328
final value 84.293328
converged
Fitting Repeat 4
# weights: 103
initial value 96.712856
iter 10 value 94.028563
iter 20 value 85.691809
iter 30 value 84.568697
iter 40 value 84.105178
iter 50 value 82.140251
iter 60 value 81.780529
iter 70 value 81.464326
iter 80 value 81.385718
iter 90 value 81.343788
final value 81.343769
converged
Fitting Repeat 5
# weights: 103
initial value 103.794217
iter 10 value 94.056375
iter 20 value 93.823376
iter 30 value 93.788787
iter 40 value 93.547046
iter 50 value 93.169607
iter 60 value 93.156320
iter 70 value 93.156014
iter 80 value 93.155859
final value 93.155779
converged
Fitting Repeat 1
# weights: 305
initial value 99.451462
iter 10 value 93.350461
iter 20 value 88.961987
iter 30 value 88.189191
iter 40 value 87.763397
iter 50 value 85.966856
iter 60 value 85.272955
iter 70 value 83.131898
iter 80 value 81.526784
iter 90 value 80.966263
iter 100 value 79.531355
final value 79.531355
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.949522
iter 10 value 94.032796
iter 20 value 88.645683
iter 30 value 87.738224
iter 40 value 85.287127
iter 50 value 84.837422
iter 60 value 83.527502
iter 70 value 82.346836
iter 80 value 82.131811
iter 90 value 81.812240
iter 100 value 81.588906
final value 81.588906
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.833110
iter 10 value 94.008999
iter 20 value 93.484134
iter 30 value 93.394101
iter 40 value 89.755451
iter 50 value 88.007515
iter 60 value 85.565569
iter 70 value 83.373320
iter 80 value 82.898791
iter 90 value 80.176035
iter 100 value 79.636604
final value 79.636604
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 115.222564
iter 10 value 94.098894
iter 20 value 93.484658
iter 30 value 92.026782
iter 40 value 90.172842
iter 50 value 88.282332
iter 60 value 85.233922
iter 70 value 83.417488
iter 80 value 80.617193
iter 90 value 79.976418
iter 100 value 79.572182
final value 79.572182
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.104583
iter 10 value 88.005178
iter 20 value 86.829146
iter 30 value 86.459418
iter 40 value 86.341962
iter 50 value 86.323615
iter 60 value 86.099505
iter 70 value 84.585935
iter 80 value 82.576539
iter 90 value 80.802380
iter 100 value 80.207765
final value 80.207765
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 130.638029
iter 10 value 95.435328
iter 20 value 94.243332
iter 30 value 93.934315
iter 40 value 90.608658
iter 50 value 87.834179
iter 60 value 86.724739
iter 70 value 85.980926
iter 80 value 83.025515
iter 90 value 80.323734
iter 100 value 79.123027
final value 79.123027
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.257298
iter 10 value 98.024395
iter 20 value 96.502077
iter 30 value 94.991292
iter 40 value 87.565981
iter 50 value 84.081708
iter 60 value 82.452429
iter 70 value 81.979154
iter 80 value 81.069211
iter 90 value 80.319669
iter 100 value 80.102482
final value 80.102482
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.556623
iter 10 value 93.898091
iter 20 value 92.145488
iter 30 value 84.976307
iter 40 value 83.772621
iter 50 value 82.564474
iter 60 value 80.896043
iter 70 value 80.304419
iter 80 value 80.067771
iter 90 value 79.718825
iter 100 value 79.617504
final value 79.617504
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.893926
iter 10 value 93.745298
iter 20 value 88.463416
iter 30 value 86.646401
iter 40 value 86.218394
iter 50 value 85.478182
iter 60 value 83.917123
iter 70 value 82.450703
iter 80 value 80.505202
iter 90 value 79.062588
iter 100 value 78.391617
final value 78.391617
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.494202
iter 10 value 93.961172
iter 20 value 93.800427
iter 30 value 93.526404
iter 40 value 85.853037
iter 50 value 84.789848
iter 60 value 84.600035
iter 70 value 84.195635
iter 80 value 82.535375
iter 90 value 80.177877
iter 100 value 79.626990
final value 79.626990
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.555842
iter 10 value 94.054416
iter 20 value 94.050932
final value 93.673225
converged
Fitting Repeat 2
# weights: 103
initial value 101.270837
iter 10 value 93.513346
final value 93.484367
converged
Fitting Repeat 3
# weights: 103
initial value 98.362820
final value 94.054658
converged
Fitting Repeat 4
# weights: 103
initial value 95.488950
final value 93.811613
converged
Fitting Repeat 5
# weights: 103
initial value 95.259448
final value 93.484394
converged
Fitting Repeat 1
# weights: 305
initial value 95.372694
iter 10 value 93.033525
iter 20 value 93.032988
iter 30 value 91.688785
iter 40 value 84.776363
iter 50 value 83.162598
iter 60 value 82.814759
iter 70 value 82.743192
iter 80 value 82.731076
iter 90 value 79.989980
iter 100 value 78.943003
final value 78.943003
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.581022
iter 10 value 93.035827
iter 20 value 93.022259
iter 30 value 93.020374
iter 40 value 93.019925
iter 50 value 93.018893
iter 60 value 93.017415
iter 70 value 92.688439
final value 92.683480
converged
Fitting Repeat 3
# weights: 305
initial value 105.953655
iter 10 value 93.678594
iter 20 value 93.677234
iter 30 value 93.455783
iter 40 value 92.860859
iter 50 value 87.465337
iter 60 value 84.873986
iter 70 value 84.864244
iter 80 value 84.812663
iter 90 value 84.810156
final value 84.806473
converged
Fitting Repeat 4
# weights: 305
initial value 95.298107
iter 10 value 93.678083
iter 20 value 93.675110
iter 30 value 86.879431
iter 40 value 86.788219
iter 50 value 86.787925
iter 60 value 86.787865
iter 70 value 86.787190
iter 80 value 86.302040
iter 90 value 85.173977
iter 100 value 81.808185
final value 81.808185
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.988449
iter 10 value 92.107234
iter 20 value 84.119661
iter 30 value 84.116880
iter 40 value 84.115046
iter 50 value 84.114949
iter 60 value 84.059833
final value 84.059267
converged
Fitting Repeat 1
# weights: 507
initial value 108.674832
iter 10 value 94.060689
iter 20 value 93.905497
iter 30 value 87.013903
iter 40 value 86.361610
iter 50 value 85.894047
iter 60 value 85.886058
iter 70 value 83.374599
iter 80 value 82.613347
iter 90 value 82.609998
final value 82.609001
converged
Fitting Repeat 2
# weights: 507
initial value 111.998269
iter 10 value 93.540894
iter 20 value 93.489924
iter 30 value 93.488779
iter 40 value 93.485805
iter 50 value 93.483874
iter 60 value 93.483677
iter 70 value 93.483134
final value 93.483116
converged
Fitting Repeat 3
# weights: 507
initial value 118.184987
iter 10 value 93.681123
iter 20 value 93.677157
iter 30 value 93.408635
iter 40 value 93.408297
iter 50 value 93.407733
final value 93.407628
converged
Fitting Repeat 4
# weights: 507
initial value 113.632651
iter 10 value 94.060638
iter 20 value 94.053200
iter 30 value 94.035837
iter 40 value 84.599453
iter 50 value 84.163482
iter 60 value 84.128521
iter 70 value 84.068541
iter 80 value 84.062690
iter 90 value 84.061499
iter 100 value 83.982966
final value 83.982966
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 94.429867
iter 10 value 90.543915
iter 20 value 90.411830
iter 30 value 90.397500
iter 40 value 86.854883
iter 50 value 86.828274
iter 60 value 86.656138
iter 70 value 85.772417
iter 80 value 85.405030
iter 90 value 85.300413
final value 85.300078
converged
Fitting Repeat 1
# weights: 103
initial value 99.551184
iter 10 value 92.106136
final value 92.030026
converged
Fitting Repeat 2
# weights: 103
initial value 100.011411
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 95.748270
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.462529
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.292431
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 94.798951
final value 94.354396
converged
Fitting Repeat 2
# weights: 305
initial value 129.235196
iter 10 value 88.591544
iter 20 value 86.876778
iter 30 value 86.864376
final value 86.864309
converged
Fitting Repeat 3
# weights: 305
initial value 95.821673
final value 94.354396
converged
Fitting Repeat 4
# weights: 305
initial value 106.055355
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 110.796538
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 96.026688
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 97.539406
iter 10 value 93.207161
iter 20 value 93.205835
final value 93.205815
converged
Fitting Repeat 3
# weights: 507
initial value 107.708601
iter 10 value 93.638947
final value 93.621187
converged
Fitting Repeat 4
# weights: 507
initial value 109.516333
iter 10 value 94.325970
final value 94.325945
converged
Fitting Repeat 5
# weights: 507
initial value 104.586897
iter 10 value 93.281932
iter 20 value 92.933488
final value 92.933431
converged
Fitting Repeat 1
# weights: 103
initial value 97.179456
iter 10 value 94.376819
iter 20 value 86.637093
iter 30 value 86.413972
iter 40 value 84.736728
iter 50 value 84.371750
iter 60 value 83.746186
iter 70 value 83.577894
final value 83.577693
converged
Fitting Repeat 2
# weights: 103
initial value 99.826156
iter 10 value 94.483216
iter 20 value 90.634433
iter 30 value 90.027798
iter 40 value 87.800116
iter 50 value 86.071148
iter 60 value 82.626595
iter 70 value 80.984170
iter 80 value 80.659506
iter 90 value 80.336647
iter 100 value 80.328048
final value 80.328048
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.363740
iter 10 value 94.496526
iter 20 value 89.237533
iter 30 value 85.410354
iter 40 value 85.080077
iter 50 value 84.568277
iter 60 value 82.187024
iter 70 value 81.713285
iter 80 value 81.679664
final value 81.679114
converged
Fitting Repeat 4
# weights: 103
initial value 103.918474
iter 10 value 92.857612
iter 20 value 91.847013
iter 30 value 91.826238
iter 40 value 91.825035
iter 50 value 91.396102
iter 60 value 86.144127
iter 70 value 84.875849
iter 80 value 84.373657
iter 90 value 84.085947
iter 100 value 83.629428
final value 83.629428
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 96.313809
iter 10 value 94.060708
iter 20 value 91.144438
iter 30 value 84.345323
iter 40 value 83.658814
iter 50 value 81.657411
iter 60 value 80.613260
iter 70 value 80.514937
iter 80 value 80.446046
iter 90 value 80.376800
iter 100 value 80.328053
final value 80.328053
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 108.627047
iter 10 value 94.875214
iter 20 value 94.494232
iter 30 value 94.282246
iter 40 value 86.796890
iter 50 value 85.875420
iter 60 value 83.112717
iter 70 value 79.967648
iter 80 value 79.603356
iter 90 value 79.508637
iter 100 value 79.331222
final value 79.331222
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.404949
iter 10 value 94.989625
iter 20 value 92.389922
iter 30 value 85.640647
iter 40 value 82.699839
iter 50 value 81.741850
iter 60 value 80.983106
iter 70 value 80.314912
iter 80 value 79.820566
iter 90 value 79.512010
iter 100 value 79.492012
final value 79.492012
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.815251
iter 10 value 94.490060
iter 20 value 93.741723
iter 30 value 89.856517
iter 40 value 86.405151
iter 50 value 84.885183
iter 60 value 83.949943
iter 70 value 83.917332
iter 80 value 83.681872
iter 90 value 81.093548
iter 100 value 79.778158
final value 79.778158
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.425530
iter 10 value 94.692101
iter 20 value 94.504967
iter 30 value 91.535005
iter 40 value 86.389050
iter 50 value 86.113682
iter 60 value 85.714011
iter 70 value 84.015242
iter 80 value 83.556122
iter 90 value 83.287146
iter 100 value 82.824822
final value 82.824822
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.476049
iter 10 value 94.522061
iter 20 value 90.884813
iter 30 value 85.422556
iter 40 value 82.836120
iter 50 value 82.554565
iter 60 value 81.641398
iter 70 value 80.463460
iter 80 value 80.316269
iter 90 value 79.785128
iter 100 value 79.644048
final value 79.644048
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 122.141080
iter 10 value 94.738793
iter 20 value 91.483163
iter 30 value 84.954532
iter 40 value 83.982246
iter 50 value 82.654812
iter 60 value 80.977542
iter 70 value 80.650872
iter 80 value 80.032579
iter 90 value 79.586852
iter 100 value 79.404103
final value 79.404103
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.239654
iter 10 value 94.387240
iter 20 value 90.576627
iter 30 value 87.291139
iter 40 value 85.163359
iter 50 value 84.794643
iter 60 value 84.040807
iter 70 value 83.674219
iter 80 value 83.494062
iter 90 value 82.596171
iter 100 value 81.358456
final value 81.358456
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 117.858678
iter 10 value 93.825436
iter 20 value 85.486814
iter 30 value 82.020755
iter 40 value 80.131463
iter 50 value 79.952208
iter 60 value 79.382247
iter 70 value 79.094549
iter 80 value 78.981586
iter 90 value 78.790305
iter 100 value 78.606052
final value 78.606052
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.530994
iter 10 value 95.742361
iter 20 value 90.433903
iter 30 value 87.233179
iter 40 value 85.098908
iter 50 value 82.373143
iter 60 value 81.067357
iter 70 value 80.408775
iter 80 value 80.010250
iter 90 value 79.685647
iter 100 value 79.373120
final value 79.373120
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.384702
iter 10 value 94.580336
iter 20 value 89.121703
iter 30 value 88.002702
iter 40 value 87.717876
iter 50 value 86.604192
iter 60 value 83.869597
iter 70 value 81.527792
iter 80 value 80.702060
iter 90 value 80.099633
iter 100 value 79.840209
final value 79.840209
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.343039
iter 10 value 94.486317
final value 94.484638
converged
Fitting Repeat 2
# weights: 103
initial value 98.954208
final value 94.485984
converged
Fitting Repeat 3
# weights: 103
initial value 95.224456
final value 94.485745
converged
Fitting Repeat 4
# weights: 103
initial value 97.428458
final value 94.485838
converged
Fitting Repeat 5
# weights: 103
initial value 96.476269
iter 10 value 94.485475
iter 20 value 89.483357
iter 30 value 88.875413
iter 40 value 88.873289
final value 88.872854
converged
Fitting Repeat 1
# weights: 305
initial value 96.851522
iter 10 value 94.488208
iter 20 value 94.450389
iter 30 value 93.816884
iter 40 value 93.810039
final value 93.810008
converged
Fitting Repeat 2
# weights: 305
initial value 115.807514
iter 10 value 94.489955
iter 20 value 94.484766
final value 94.484589
converged
Fitting Repeat 3
# weights: 305
initial value 128.102038
iter 10 value 94.489019
iter 20 value 94.352795
iter 30 value 90.506908
iter 40 value 87.643215
iter 50 value 85.789920
iter 60 value 85.787230
iter 70 value 84.141803
iter 80 value 83.731980
iter 90 value 83.677589
iter 100 value 83.676641
final value 83.676641
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 116.297069
iter 10 value 93.481354
iter 20 value 92.952239
iter 30 value 91.570301
iter 40 value 90.722237
iter 50 value 90.496188
iter 60 value 90.495779
iter 70 value 90.494533
final value 90.494187
converged
Fitting Repeat 5
# weights: 305
initial value 98.074175
iter 10 value 90.203230
iter 20 value 86.152233
final value 86.149858
converged
Fitting Repeat 1
# weights: 507
initial value 106.504413
iter 10 value 94.492346
iter 20 value 94.111323
iter 30 value 85.168428
iter 40 value 85.167908
iter 50 value 85.155467
iter 60 value 82.098864
iter 70 value 81.473793
final value 81.473039
converged
Fitting Repeat 2
# weights: 507
initial value 104.120444
iter 10 value 94.492586
iter 20 value 94.484229
iter 30 value 94.354688
iter 30 value 94.354688
iter 30 value 94.354688
final value 94.354688
converged
Fitting Repeat 3
# weights: 507
initial value 111.828883
iter 10 value 94.498817
iter 20 value 93.591200
iter 30 value 91.571107
iter 40 value 91.470654
iter 50 value 91.470157
iter 60 value 91.466933
iter 70 value 87.273566
iter 80 value 84.068877
iter 90 value 83.926986
iter 100 value 82.500939
final value 82.500939
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 133.204569
iter 10 value 94.364135
iter 20 value 94.269834
iter 30 value 93.766910
final value 93.693709
converged
Fitting Repeat 5
# weights: 507
initial value 100.181161
iter 10 value 94.296369
iter 20 value 94.219311
iter 30 value 94.206559
iter 40 value 93.748299
iter 50 value 92.921074
iter 60 value 83.740394
iter 70 value 82.855054
iter 80 value 82.834301
iter 90 value 82.834147
final value 82.833977
converged
Fitting Repeat 1
# weights: 103
initial value 99.188879
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 101.213890
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 101.744498
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 94.457633
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 97.017179
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 99.312219
iter 10 value 94.042030
final value 94.042012
converged
Fitting Repeat 2
# weights: 305
initial value 97.412761
iter 10 value 94.057646
iter 20 value 94.052913
final value 94.052911
converged
Fitting Repeat 3
# weights: 305
initial value 95.422277
iter 10 value 94.008699
final value 94.008696
converged
Fitting Repeat 4
# weights: 305
initial value 101.175962
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 96.111931
final value 94.042012
converged
Fitting Repeat 1
# weights: 507
initial value 102.755132
iter 10 value 92.701660
final value 92.701657
converged
Fitting Repeat 2
# weights: 507
initial value 99.341809
iter 10 value 94.053561
iter 20 value 93.637003
iter 30 value 93.507271
iter 40 value 93.506763
final value 93.506755
converged
Fitting Repeat 3
# weights: 507
initial value 96.163176
iter 10 value 94.043544
final value 94.015123
converged
Fitting Repeat 4
# weights: 507
initial value 130.295312
iter 10 value 94.054701
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 117.759489
iter 10 value 93.808689
final value 93.808679
converged
Fitting Repeat 1
# weights: 103
initial value 100.855073
iter 10 value 94.033831
iter 20 value 92.177141
iter 30 value 91.433179
iter 40 value 88.233473
iter 50 value 83.296233
iter 60 value 80.962909
iter 70 value 80.883385
iter 80 value 80.828651
iter 90 value 80.786012
iter 100 value 80.405288
final value 80.405288
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.225159
iter 10 value 93.182406
iter 20 value 85.608848
iter 30 value 84.797918
iter 40 value 84.672500
iter 50 value 84.562507
iter 60 value 84.352017
iter 70 value 82.741272
iter 80 value 80.874116
iter 90 value 80.615641
iter 100 value 80.139816
final value 80.139816
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 103.519334
iter 10 value 94.056682
iter 20 value 93.840341
iter 30 value 83.979772
iter 40 value 83.118394
iter 50 value 82.855278
iter 60 value 81.991113
iter 70 value 81.710432
iter 80 value 81.627175
final value 81.627173
converged
Fitting Repeat 4
# weights: 103
initial value 113.590833
iter 10 value 94.054816
iter 20 value 90.038617
iter 30 value 88.260588
iter 40 value 81.415686
iter 50 value 80.876797
iter 60 value 80.811857
iter 70 value 80.611227
iter 80 value 80.193407
iter 90 value 80.106102
iter 100 value 80.079850
final value 80.079850
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.523816
iter 10 value 94.056640
iter 20 value 92.392864
iter 30 value 85.178386
iter 40 value 83.915779
iter 50 value 83.407886
iter 60 value 83.282375
iter 70 value 83.278123
iter 70 value 83.278122
iter 70 value 83.278122
final value 83.278122
converged
Fitting Repeat 1
# weights: 305
initial value 100.588059
iter 10 value 94.121560
iter 20 value 93.953021
iter 30 value 90.346900
iter 40 value 86.231053
iter 50 value 84.803070
iter 60 value 82.323664
iter 70 value 81.778976
iter 80 value 81.634376
iter 90 value 81.538771
iter 100 value 81.436573
final value 81.436573
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.893918
iter 10 value 94.074342
iter 20 value 93.817779
iter 30 value 90.195021
iter 40 value 85.360166
iter 50 value 84.634437
iter 60 value 82.127742
iter 70 value 80.893121
iter 80 value 80.577368
iter 90 value 80.151755
iter 100 value 79.490034
final value 79.490034
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.060695
iter 10 value 94.210671
iter 20 value 87.510746
iter 30 value 85.943860
iter 40 value 83.616628
iter 50 value 82.843877
iter 60 value 82.093145
iter 70 value 81.676389
iter 80 value 80.939383
iter 90 value 80.164703
iter 100 value 79.231398
final value 79.231398
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 119.957239
iter 10 value 108.416751
iter 20 value 93.483020
iter 30 value 88.599447
iter 40 value 83.206401
iter 50 value 82.712376
iter 60 value 81.089298
iter 70 value 80.719607
iter 80 value 80.418285
iter 90 value 80.207949
iter 100 value 80.162960
final value 80.162960
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.679585
iter 10 value 94.657578
iter 20 value 88.770336
iter 30 value 85.095738
iter 40 value 83.880291
iter 50 value 82.073880
iter 60 value 80.540077
iter 70 value 80.012284
iter 80 value 79.677333
iter 90 value 79.099133
iter 100 value 78.758508
final value 78.758508
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.300604
iter 10 value 94.145807
iter 20 value 93.895542
iter 30 value 88.969237
iter 40 value 83.122468
iter 50 value 82.035359
iter 60 value 81.168215
iter 70 value 79.224773
iter 80 value 78.352474
iter 90 value 78.213214
iter 100 value 78.192100
final value 78.192100
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 120.636700
iter 10 value 93.944577
iter 20 value 85.702580
iter 30 value 83.437608
iter 40 value 82.988712
iter 50 value 82.281983
iter 60 value 79.972290
iter 70 value 78.912793
iter 80 value 78.743840
iter 90 value 78.606302
iter 100 value 78.546278
final value 78.546278
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.214609
iter 10 value 94.089544
iter 20 value 93.773644
iter 30 value 88.709841
iter 40 value 84.331003
iter 50 value 83.254427
iter 60 value 82.155266
iter 70 value 81.323198
iter 80 value 80.611211
iter 90 value 80.195277
iter 100 value 79.464885
final value 79.464885
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 139.078355
iter 10 value 94.032405
iter 20 value 86.068470
iter 30 value 82.855054
iter 40 value 80.992177
iter 50 value 80.298411
iter 60 value 80.152489
iter 70 value 80.036004
iter 80 value 78.952364
iter 90 value 78.544470
iter 100 value 78.398335
final value 78.398335
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.684299
iter 10 value 93.796196
iter 20 value 85.256233
iter 30 value 82.734375
iter 40 value 82.545945
iter 50 value 82.327804
iter 60 value 81.813147
iter 70 value 80.421226
iter 80 value 79.279026
iter 90 value 78.749484
iter 100 value 78.469242
final value 78.469242
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.101168
final value 94.054802
converged
Fitting Repeat 2
# weights: 103
initial value 103.493372
iter 10 value 93.837761
iter 20 value 93.836673
iter 30 value 93.786498
iter 40 value 93.786058
final value 93.786041
converged
Fitting Repeat 3
# weights: 103
initial value 95.662925
iter 10 value 91.574666
iter 20 value 90.787081
iter 30 value 90.785657
iter 40 value 90.784939
iter 50 value 83.091564
iter 60 value 82.166526
iter 70 value 81.521465
iter 80 value 81.506112
final value 81.492035
converged
Fitting Repeat 4
# weights: 103
initial value 104.472181
final value 94.054680
converged
Fitting Repeat 5
# weights: 103
initial value 94.311364
final value 94.054703
converged
Fitting Repeat 1
# weights: 305
initial value 110.622054
iter 10 value 94.057972
iter 20 value 94.053013
iter 30 value 93.926123
iter 40 value 84.661595
iter 50 value 81.560844
iter 60 value 81.553482
final value 81.553267
converged
Fitting Repeat 2
# weights: 305
initial value 98.729896
iter 10 value 94.055253
iter 20 value 91.471406
iter 30 value 81.541436
iter 40 value 81.136579
final value 81.136165
converged
Fitting Repeat 3
# weights: 305
initial value 118.203754
iter 10 value 91.468816
iter 20 value 84.492500
iter 30 value 84.054583
iter 40 value 83.991644
iter 50 value 83.989839
iter 60 value 82.026914
iter 70 value 80.426124
iter 80 value 78.444656
iter 90 value 78.388788
iter 100 value 78.387553
final value 78.387553
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 96.602964
iter 10 value 94.058915
iter 20 value 89.910435
iter 30 value 85.400669
iter 40 value 84.066148
iter 50 value 82.992363
iter 60 value 81.848463
iter 70 value 81.845312
iter 80 value 81.841680
iter 90 value 81.598181
iter 100 value 80.711562
final value 80.711562
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 97.595858
iter 10 value 94.058045
iter 20 value 94.053111
iter 30 value 93.950076
iter 40 value 92.955549
iter 50 value 92.954771
iter 60 value 92.927108
iter 70 value 92.313887
iter 80 value 90.156361
iter 90 value 90.156071
iter 100 value 90.147988
final value 90.147988
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 123.134370
iter 10 value 93.844694
iter 20 value 93.738999
iter 30 value 85.124319
iter 40 value 83.172138
iter 50 value 82.497893
final value 82.495503
converged
Fitting Repeat 2
# weights: 507
initial value 94.244176
iter 10 value 93.613639
iter 20 value 93.610224
iter 30 value 93.604820
iter 40 value 87.208830
iter 50 value 84.278879
iter 60 value 84.278159
iter 70 value 84.262948
iter 80 value 84.256388
final value 84.256074
converged
Fitting Repeat 3
# weights: 507
initial value 95.067582
iter 10 value 81.757385
iter 20 value 81.123177
iter 30 value 80.737155
iter 40 value 80.726132
iter 50 value 80.719468
iter 60 value 80.510984
iter 70 value 79.594221
iter 80 value 79.402828
iter 90 value 79.394379
final value 79.394315
converged
Fitting Repeat 4
# weights: 507
initial value 102.099073
iter 10 value 93.844725
iter 20 value 93.836782
iter 30 value 90.813852
iter 40 value 83.014265
iter 50 value 82.894574
iter 60 value 82.893534
final value 82.893486
converged
Fitting Repeat 5
# weights: 507
initial value 97.391857
iter 10 value 83.673048
iter 20 value 80.905886
iter 30 value 79.352688
final value 79.342731
converged
Fitting Repeat 1
# weights: 305
initial value 129.220099
iter 10 value 117.735322
iter 20 value 117.415346
iter 30 value 105.532073
iter 40 value 105.364069
iter 50 value 105.362852
iter 60 value 105.347472
iter 70 value 105.345880
final value 105.343681
converged
Fitting Repeat 2
# weights: 305
initial value 123.026387
iter 10 value 117.894469
iter 20 value 112.625751
iter 30 value 106.938511
iter 40 value 106.737980
iter 50 value 106.724543
iter 60 value 106.724414
final value 106.723665
converged
Fitting Repeat 3
# weights: 305
initial value 133.343116
iter 10 value 117.763421
iter 20 value 117.737507
iter 30 value 117.728663
final value 117.728589
converged
Fitting Repeat 4
# weights: 305
initial value 118.469178
iter 10 value 117.894652
iter 20 value 115.235998
iter 30 value 107.288329
iter 40 value 106.777879
iter 50 value 106.774416
final value 106.773103
converged
Fitting Repeat 5
# weights: 305
initial value 119.933242
iter 10 value 117.893779
iter 20 value 117.580795
final value 117.511456
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Wed Nov 20 08:58:24 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
55.427 1.875 76.126
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 38.230 | 0.683 | 39.047 | |
| FreqInteractors | 0.284 | 0.007 | 0.293 | |
| calculateAAC | 0.042 | 0.005 | 0.046 | |
| calculateAutocor | 0.733 | 0.031 | 0.768 | |
| calculateCTDC | 0.071 | 0.024 | 0.095 | |
| calculateCTDD | 0.794 | 0.008 | 0.804 | |
| calculateCTDT | 0.266 | 0.004 | 0.270 | |
| calculateCTriad | 0.459 | 0.012 | 0.472 | |
| calculateDC | 0.131 | 0.000 | 0.131 | |
| calculateF | 0.437 | 0.004 | 0.442 | |
| calculateKSAAP | 0.144 | 0.000 | 0.144 | |
| calculateQD_Sm | 2.327 | 0.024 | 2.357 | |
| calculateTC | 2.366 | 0.048 | 2.467 | |
| calculateTC_Sm | 0.316 | 0.012 | 0.329 | |
| corr_plot | 37.931 | 0.271 | 38.285 | |
| enrichfindP | 0.514 | 0.053 | 21.100 | |
| enrichfind_hp | 0.099 | 0.008 | 1.499 | |
| enrichplot | 0.524 | 0.079 | 0.606 | |
| filter_missing_values | 0.000 | 0.001 | 0.001 | |
| getFASTA | 0.083 | 0.005 | 5.501 | |
| getHPI | 0.001 | 0.000 | 0.000 | |
| get_negativePPI | 0.002 | 0.000 | 0.002 | |
| get_positivePPI | 0.000 | 0.000 | 0.001 | |
| impute_missing_data | 0.002 | 0.000 | 0.002 | |
| plotPPI | 0.083 | 0.012 | 0.095 | |
| pred_ensembel | 19.082 | 1.012 | 16.924 | |
| var_imp | 37.618 | 0.703 | 38.398 | |