| Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-20 12:02 -0500 (Wed, 20 Nov 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4481 |
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4479 |
| palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4359 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4539 |
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
| palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.12.0 |
| Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
| StartedAt: 2024-11-20 04:26:25 -0500 (Wed, 20 Nov 2024) |
| EndedAt: 2024-11-20 04:37:12 -0500 (Wed, 20 Nov 2024) |
| EllapsedTime: 646.9 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/media/volume/teran2_disk/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.2 (2024-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0
GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0
* running under: Ubuntu 24.04.1 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 26.097 0.422 26.531
FSmethod 25.711 0.272 25.989
corr_plot 24.653 0.125 24.950
pred_ensembel 9.448 0.181 8.649
enrichfindP 0.321 0.040 14.086
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/media/volume/teran2_disk/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/media/volume/teran2_disk/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 101.623993
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.098426
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.395975
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 99.275979
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.370765
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 102.216702
final value 94.354396
converged
Fitting Repeat 2
# weights: 305
initial value 99.112379
final value 94.354396
converged
Fitting Repeat 3
# weights: 305
initial value 112.029565
iter 10 value 93.465505
iter 20 value 93.464286
iter 20 value 93.464286
iter 20 value 93.464286
final value 93.464286
converged
Fitting Repeat 4
# weights: 305
initial value 109.979767
iter 10 value 94.401697
iter 20 value 91.543685
iter 30 value 86.686528
iter 40 value 86.196565
iter 50 value 86.108977
iter 60 value 84.961672
iter 70 value 83.214847
iter 80 value 82.912525
iter 90 value 82.749302
iter 100 value 82.578653
final value 82.578653
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 108.433796
final value 94.354396
converged
Fitting Repeat 1
# weights: 507
initial value 102.460418
iter 10 value 87.590965
final value 87.590732
converged
Fitting Repeat 2
# weights: 507
initial value 119.187477
iter 10 value 94.354396
iter 10 value 94.354396
iter 10 value 94.354396
final value 94.354396
converged
Fitting Repeat 3
# weights: 507
initial value 110.337345
final value 94.354395
converged
Fitting Repeat 4
# weights: 507
initial value 96.274149
iter 10 value 93.312179
iter 20 value 93.010992
iter 30 value 93.009742
iter 40 value 92.994167
iter 50 value 92.990273
final value 92.990260
converged
Fitting Repeat 5
# weights: 507
initial value 111.867713
final value 94.449438
converged
Fitting Repeat 1
# weights: 103
initial value 103.647095
iter 10 value 94.486511
iter 20 value 94.321120
iter 30 value 94.114378
iter 40 value 94.082081
iter 50 value 93.650856
iter 60 value 89.535499
iter 70 value 87.718315
iter 80 value 87.159032
iter 90 value 86.802494
iter 100 value 86.700413
final value 86.700413
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.265700
iter 10 value 93.454369
iter 20 value 88.405683
iter 30 value 88.182492
iter 40 value 86.634908
iter 50 value 84.990221
iter 60 value 84.720294
final value 84.715472
converged
Fitting Repeat 3
# weights: 103
initial value 98.969142
iter 10 value 94.521439
iter 20 value 94.426915
iter 30 value 94.176354
iter 40 value 93.715897
iter 50 value 93.649998
iter 60 value 93.619992
iter 70 value 93.609210
iter 80 value 90.310145
iter 90 value 88.611814
iter 100 value 88.017311
final value 88.017311
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.671240
iter 10 value 94.486382
iter 20 value 94.402407
iter 30 value 92.413736
iter 40 value 87.364068
iter 50 value 87.255252
iter 60 value 87.033562
iter 70 value 86.896964
iter 80 value 86.894970
final value 86.894912
converged
Fitting Repeat 5
# weights: 103
initial value 96.777281
iter 10 value 94.290837
iter 20 value 92.915190
iter 30 value 90.579660
iter 40 value 89.197051
iter 50 value 87.253581
iter 60 value 86.033425
iter 70 value 84.973657
iter 80 value 84.903661
iter 90 value 84.879873
iter 100 value 84.720041
final value 84.720041
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 108.591281
iter 10 value 94.388664
iter 20 value 93.186913
iter 30 value 87.027017
iter 40 value 86.274326
iter 50 value 85.250949
iter 60 value 85.177620
iter 70 value 84.607560
iter 80 value 84.012032
iter 90 value 83.744147
iter 100 value 83.481377
final value 83.481377
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 112.133910
iter 10 value 94.560534
iter 20 value 94.098078
iter 30 value 90.417339
iter 40 value 88.237541
iter 50 value 88.198484
iter 60 value 86.048636
iter 70 value 84.980059
iter 80 value 84.673869
iter 90 value 84.464657
iter 100 value 84.048636
final value 84.048636
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 124.412204
iter 10 value 94.741793
iter 20 value 91.079842
iter 30 value 87.005652
iter 40 value 86.300209
iter 50 value 85.273298
iter 60 value 84.963083
iter 70 value 84.771800
iter 80 value 84.558015
iter 90 value 84.356675
iter 100 value 84.285185
final value 84.285185
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 120.820378
iter 10 value 95.064537
iter 20 value 94.483698
iter 30 value 94.009297
iter 40 value 92.766024
iter 50 value 92.500119
iter 60 value 89.898882
iter 70 value 87.403196
iter 80 value 86.629398
iter 90 value 85.583246
iter 100 value 83.846414
final value 83.846414
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 122.263562
iter 10 value 94.511328
iter 20 value 93.936715
iter 30 value 88.697616
iter 40 value 86.186944
iter 50 value 84.284138
iter 60 value 84.000388
iter 70 value 83.878941
iter 80 value 83.424879
iter 90 value 83.367619
iter 100 value 83.357111
final value 83.357111
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.744185
iter 10 value 94.964835
iter 20 value 90.757397
iter 30 value 87.310148
iter 40 value 86.453101
iter 50 value 85.546604
iter 60 value 85.098561
iter 70 value 84.614476
iter 80 value 83.981980
iter 90 value 83.742249
iter 100 value 83.710320
final value 83.710320
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.130780
iter 10 value 96.085594
iter 20 value 94.620030
iter 30 value 89.513475
iter 40 value 88.101941
iter 50 value 87.192026
iter 60 value 86.801239
iter 70 value 86.390786
iter 80 value 86.010212
iter 90 value 85.236151
iter 100 value 84.338179
final value 84.338179
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.770579
iter 10 value 90.639157
iter 20 value 87.371884
iter 30 value 86.100269
iter 40 value 85.608519
iter 50 value 85.252439
iter 60 value 84.892932
iter 70 value 84.637309
iter 80 value 84.418071
iter 90 value 84.077453
iter 100 value 83.811477
final value 83.811477
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.100440
iter 10 value 94.547403
iter 20 value 93.838706
iter 30 value 90.601374
iter 40 value 89.189299
iter 50 value 85.305224
iter 60 value 84.536317
iter 70 value 83.753621
iter 80 value 83.355727
iter 90 value 83.238971
iter 100 value 83.028511
final value 83.028511
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.567988
iter 10 value 95.463680
iter 20 value 94.384264
iter 30 value 89.908142
iter 40 value 87.882545
iter 50 value 87.416052
iter 60 value 85.932969
iter 70 value 84.611113
iter 80 value 84.199589
iter 90 value 83.942787
iter 100 value 83.596158
final value 83.596158
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 109.820493
final value 94.485726
converged
Fitting Repeat 2
# weights: 103
initial value 98.134008
iter 10 value 94.356249
iter 20 value 94.354660
final value 94.354487
converged
Fitting Repeat 3
# weights: 103
initial value 114.131911
final value 94.485959
converged
Fitting Repeat 4
# weights: 103
initial value 115.246099
iter 10 value 93.921371
iter 20 value 93.839000
iter 30 value 93.838968
iter 40 value 93.838319
iter 50 value 93.837547
final value 93.837469
converged
Fitting Repeat 5
# weights: 103
initial value 102.365242
final value 94.486262
converged
Fitting Repeat 1
# weights: 305
initial value 121.460137
iter 10 value 94.488987
iter 20 value 94.484233
final value 94.484213
converged
Fitting Repeat 2
# weights: 305
initial value 105.606496
iter 10 value 94.217337
iter 20 value 87.607218
iter 30 value 87.602445
iter 40 value 87.597122
iter 50 value 87.146950
iter 60 value 86.844727
final value 86.844628
converged
Fitting Repeat 3
# weights: 305
initial value 96.301490
iter 10 value 94.359546
iter 20 value 93.734125
iter 30 value 87.990288
iter 40 value 85.911962
iter 50 value 85.663292
iter 60 value 85.610175
iter 70 value 85.167627
iter 80 value 83.221437
iter 90 value 83.185101
final value 83.184643
converged
Fitting Repeat 4
# weights: 305
initial value 97.543559
iter 10 value 94.488839
iter 20 value 94.484222
iter 30 value 94.073136
final value 94.053589
converged
Fitting Repeat 5
# weights: 305
initial value 100.033692
iter 10 value 94.489199
iter 20 value 94.484483
final value 94.484474
converged
Fitting Repeat 1
# weights: 507
initial value 126.887304
iter 10 value 94.362363
iter 20 value 94.126847
iter 30 value 90.521843
iter 40 value 87.303601
iter 50 value 87.082879
iter 60 value 86.709716
iter 70 value 86.665283
iter 80 value 86.073394
iter 90 value 85.707457
iter 100 value 85.707204
final value 85.707204
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.511176
iter 10 value 94.492575
iter 20 value 94.435563
iter 30 value 87.710978
iter 40 value 85.812295
iter 50 value 84.931661
iter 60 value 84.886525
iter 70 value 84.886263
final value 84.886101
converged
Fitting Repeat 3
# weights: 507
initial value 97.173503
iter 10 value 94.362477
iter 20 value 94.354771
iter 30 value 94.334861
iter 40 value 93.313997
iter 50 value 92.330726
iter 60 value 92.240164
iter 70 value 92.239605
iter 80 value 92.238917
iter 90 value 92.238376
iter 100 value 92.238229
final value 92.238229
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 124.387510
iter 10 value 94.490902
iter 20 value 91.485193
iter 30 value 87.685178
iter 30 value 87.685178
iter 30 value 87.685178
final value 87.685178
converged
Fitting Repeat 5
# weights: 507
initial value 107.544022
iter 10 value 94.362461
iter 20 value 94.356307
iter 30 value 93.604307
final value 93.600677
converged
Fitting Repeat 1
# weights: 103
initial value 100.170787
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 101.226982
final value 94.046753
converged
Fitting Repeat 3
# weights: 103
initial value 100.975018
final value 93.969041
converged
Fitting Repeat 4
# weights: 103
initial value 97.164448
iter 10 value 94.020213
iter 20 value 93.645436
final value 93.642191
converged
Fitting Repeat 5
# weights: 103
initial value 96.221274
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 98.980025
iter 10 value 93.966932
final value 93.963025
converged
Fitting Repeat 2
# weights: 305
initial value 107.563205
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 105.979113
final value 93.671508
converged
Fitting Repeat 4
# weights: 305
initial value 98.096133
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 95.327644
final value 94.008696
converged
Fitting Repeat 1
# weights: 507
initial value 115.733941
iter 10 value 93.976145
iter 20 value 93.783209
final value 93.782932
converged
Fitting Repeat 2
# weights: 507
initial value 106.373220
iter 10 value 94.039042
iter 20 value 89.593532
iter 30 value 87.509759
final value 87.508032
converged
Fitting Repeat 3
# weights: 507
initial value 99.004483
iter 10 value 89.954205
iter 20 value 87.606522
iter 30 value 87.594531
iter 30 value 87.594530
iter 30 value 87.594530
final value 87.594530
converged
Fitting Repeat 4
# weights: 507
initial value 94.607138
iter 10 value 92.170393
iter 20 value 90.261623
iter 30 value 87.472866
iter 40 value 87.156478
iter 50 value 86.981241
iter 60 value 84.558175
iter 70 value 84.453932
iter 80 value 84.444145
iter 80 value 84.444144
iter 80 value 84.444144
final value 84.444144
converged
Fitting Repeat 5
# weights: 507
initial value 114.807518
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 103.837915
iter 10 value 94.081355
iter 20 value 94.054907
iter 30 value 94.013076
iter 40 value 92.901146
iter 50 value 92.063448
iter 60 value 91.722020
iter 70 value 89.742045
iter 80 value 88.078907
iter 90 value 87.772788
iter 100 value 86.013827
final value 86.013827
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.036074
iter 10 value 94.124687
iter 20 value 93.903000
iter 30 value 93.744530
iter 40 value 93.598280
iter 50 value 89.855234
iter 60 value 87.333872
iter 70 value 86.012698
iter 80 value 85.885100
final value 85.881237
converged
Fitting Repeat 3
# weights: 103
initial value 97.369410
iter 10 value 93.182973
iter 20 value 89.074396
iter 30 value 88.876269
iter 40 value 88.334140
iter 50 value 85.856730
iter 60 value 85.854010
iter 70 value 85.853563
iter 80 value 85.852596
final value 85.852529
converged
Fitting Repeat 4
# weights: 103
initial value 98.653717
iter 10 value 94.042300
iter 20 value 87.153131
iter 30 value 86.743325
iter 40 value 86.108336
iter 50 value 85.881681
iter 60 value 85.852740
final value 85.852528
converged
Fitting Repeat 5
# weights: 103
initial value 103.330687
iter 10 value 93.992429
iter 20 value 86.959818
iter 30 value 86.326786
iter 40 value 86.086542
iter 50 value 85.989628
iter 60 value 85.893492
iter 70 value 85.852806
iter 80 value 85.852573
final value 85.852563
converged
Fitting Repeat 1
# weights: 305
initial value 104.566706
iter 10 value 94.540946
iter 20 value 94.195660
iter 30 value 93.248300
iter 40 value 91.601773
iter 50 value 89.408296
iter 60 value 86.297203
iter 70 value 84.908195
iter 80 value 83.644790
iter 90 value 83.386572
iter 100 value 82.973736
final value 82.973736
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.438663
iter 10 value 94.289977
iter 20 value 89.163543
iter 30 value 84.819379
iter 40 value 84.121370
iter 50 value 83.526623
iter 60 value 83.249474
iter 70 value 82.855565
iter 80 value 82.768310
iter 90 value 82.569522
iter 100 value 82.397885
final value 82.397885
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 133.521928
iter 10 value 94.135937
iter 20 value 88.955517
iter 30 value 87.848804
iter 40 value 86.412740
iter 50 value 84.757120
iter 60 value 84.502320
iter 70 value 84.304390
iter 80 value 84.034624
iter 90 value 83.881963
iter 100 value 83.598911
final value 83.598911
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.408768
iter 10 value 90.222875
iter 20 value 89.065543
iter 30 value 86.560994
iter 40 value 85.497084
iter 50 value 84.764915
iter 60 value 84.411262
iter 70 value 83.829207
iter 80 value 83.229845
iter 90 value 82.258560
iter 100 value 82.032061
final value 82.032061
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.628387
iter 10 value 93.488353
iter 20 value 89.561116
iter 30 value 87.559112
iter 40 value 85.711561
iter 50 value 84.311234
iter 60 value 83.389317
iter 70 value 82.677684
iter 80 value 82.490014
iter 90 value 82.377491
iter 100 value 82.325435
final value 82.325435
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.563787
iter 10 value 94.037114
iter 20 value 93.950961
iter 30 value 87.885485
iter 40 value 86.517922
iter 50 value 85.890693
iter 60 value 84.547574
iter 70 value 83.384568
iter 80 value 83.160805
iter 90 value 83.037114
iter 100 value 82.934933
final value 82.934933
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 101.570897
iter 10 value 94.854800
iter 20 value 87.359716
iter 30 value 86.755095
iter 40 value 84.623845
iter 50 value 83.903781
iter 60 value 83.716657
iter 70 value 83.493748
iter 80 value 83.075413
iter 90 value 82.914841
iter 100 value 82.358933
final value 82.358933
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.780814
iter 10 value 93.949440
iter 20 value 89.773048
iter 30 value 88.984811
iter 40 value 87.777180
iter 50 value 84.588632
iter 60 value 83.600925
iter 70 value 83.064185
iter 80 value 82.484985
iter 90 value 82.328296
iter 100 value 82.207585
final value 82.207585
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.770534
iter 10 value 94.122305
iter 20 value 88.854327
iter 30 value 85.730741
iter 40 value 85.065358
iter 50 value 84.788702
iter 60 value 84.278643
iter 70 value 83.689774
iter 80 value 83.322947
iter 90 value 82.698177
iter 100 value 82.501290
final value 82.501290
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.194056
iter 10 value 93.997583
iter 20 value 92.861550
iter 30 value 86.643509
iter 40 value 84.704774
iter 50 value 83.644508
iter 60 value 83.270263
iter 70 value 83.142426
iter 80 value 82.897764
iter 90 value 82.775732
iter 100 value 82.706104
final value 82.706104
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.167540
iter 10 value 94.054751
final value 94.052919
converged
Fitting Repeat 2
# weights: 103
initial value 94.494833
final value 94.056031
converged
Fitting Repeat 3
# weights: 103
initial value 95.939444
final value 94.054476
converged
Fitting Repeat 4
# weights: 103
initial value 96.354696
final value 94.054471
converged
Fitting Repeat 5
# weights: 103
initial value 95.901939
final value 94.054198
converged
Fitting Repeat 1
# weights: 305
initial value 112.902500
iter 10 value 94.058093
iter 20 value 94.053550
final value 94.053399
converged
Fitting Repeat 2
# weights: 305
initial value 95.388060
iter 10 value 94.056462
final value 94.052929
converged
Fitting Repeat 3
# weights: 305
initial value 98.095857
iter 10 value 94.013564
iter 20 value 94.008787
iter 30 value 90.426671
iter 40 value 83.298339
iter 50 value 82.581373
iter 60 value 82.548394
iter 60 value 82.548393
final value 82.548393
converged
Fitting Repeat 4
# weights: 305
initial value 97.768214
iter 10 value 93.976843
iter 20 value 93.973287
iter 30 value 93.966609
iter 40 value 93.965242
iter 50 value 88.104617
iter 60 value 87.511830
iter 70 value 87.511665
final value 87.511491
converged
Fitting Repeat 5
# weights: 305
initial value 107.819894
iter 10 value 94.056291
iter 20 value 93.820394
iter 30 value 90.228078
iter 40 value 88.601551
iter 50 value 88.291304
iter 60 value 88.008846
iter 70 value 87.762388
iter 80 value 86.817413
iter 90 value 84.092172
iter 100 value 81.516813
final value 81.516813
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 116.145609
iter 10 value 93.527220
iter 20 value 92.794021
iter 30 value 91.686198
iter 40 value 86.084035
iter 50 value 86.080752
iter 60 value 85.697896
iter 70 value 85.692519
iter 80 value 85.687197
iter 80 value 85.687197
final value 85.687197
converged
Fitting Repeat 2
# weights: 507
initial value 101.849398
iter 10 value 94.061081
iter 20 value 93.852560
iter 30 value 93.015681
iter 40 value 92.529216
iter 50 value 88.499746
iter 60 value 86.911998
iter 70 value 86.865155
iter 80 value 86.863150
iter 90 value 85.840543
iter 100 value 85.548933
final value 85.548933
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 96.071878
iter 10 value 94.060564
iter 20 value 93.920153
iter 30 value 93.708303
final value 93.671669
converged
Fitting Repeat 4
# weights: 507
initial value 118.566856
iter 10 value 90.175285
iter 20 value 89.434639
iter 30 value 87.839685
iter 40 value 87.744782
iter 50 value 87.613619
iter 60 value 87.594275
iter 70 value 87.540653
iter 80 value 86.471739
iter 90 value 86.434996
iter 100 value 86.354947
final value 86.354947
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.030388
iter 10 value 94.016631
iter 20 value 94.010680
final value 94.008759
converged
Fitting Repeat 1
# weights: 103
initial value 94.432919
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 97.827630
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 109.537986
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 102.404300
final value 93.371808
converged
Fitting Repeat 5
# weights: 103
initial value 108.526079
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 104.072116
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 101.616977
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 104.405353
final value 94.052926
converged
Fitting Repeat 4
# weights: 305
initial value 102.437964
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 106.716748
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 99.655788
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 112.305126
iter 10 value 93.519960
iter 10 value 93.519960
iter 10 value 93.519960
final value 93.519960
converged
Fitting Repeat 3
# weights: 507
initial value 96.272056
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 109.687967
iter 10 value 93.766000
final value 93.765896
converged
Fitting Repeat 5
# weights: 507
initial value 95.728894
final value 93.836066
converged
Fitting Repeat 1
# weights: 103
initial value 99.158687
iter 10 value 94.045666
iter 20 value 88.353945
iter 30 value 86.977467
iter 40 value 85.039761
iter 50 value 83.250680
iter 60 value 81.798693
iter 70 value 81.256482
iter 80 value 80.913088
iter 90 value 80.620005
final value 80.490919
converged
Fitting Repeat 2
# weights: 103
initial value 102.443945
iter 10 value 94.074583
iter 20 value 93.479054
iter 30 value 87.850291
iter 40 value 87.087899
iter 50 value 85.762418
iter 60 value 84.511496
iter 70 value 84.166624
iter 80 value 83.789232
iter 90 value 83.307521
iter 100 value 83.243733
final value 83.243733
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.600906
iter 10 value 94.057150
iter 20 value 93.977036
iter 30 value 89.287774
iter 40 value 84.459328
iter 50 value 83.782796
iter 60 value 83.270864
iter 70 value 83.229022
final value 83.228882
converged
Fitting Repeat 4
# weights: 103
initial value 102.459192
iter 10 value 93.845535
iter 20 value 89.294670
iter 30 value 88.450092
iter 40 value 87.673605
iter 50 value 87.032964
iter 60 value 82.125016
iter 70 value 80.982012
iter 80 value 80.358960
iter 90 value 80.299330
final value 80.299148
converged
Fitting Repeat 5
# weights: 103
initial value 104.184073
iter 10 value 94.056874
iter 20 value 93.846940
iter 30 value 90.991494
iter 40 value 89.356774
iter 50 value 85.677308
iter 60 value 85.007636
iter 70 value 84.772063
iter 80 value 84.477624
iter 90 value 84.342771
final value 84.342610
converged
Fitting Repeat 1
# weights: 305
initial value 99.347083
iter 10 value 94.199277
iter 20 value 91.321055
iter 30 value 85.831313
iter 40 value 84.391513
iter 50 value 84.016822
iter 60 value 83.669673
iter 70 value 83.169527
iter 80 value 82.999136
iter 90 value 82.988214
iter 100 value 82.951739
final value 82.951739
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.304137
iter 10 value 94.211251
iter 20 value 89.086474
iter 30 value 85.300138
iter 40 value 82.970359
iter 50 value 82.810747
iter 60 value 82.726991
iter 70 value 81.933864
iter 80 value 80.356635
iter 90 value 79.929335
iter 100 value 79.896719
final value 79.896719
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.632088
iter 10 value 94.119144
iter 20 value 93.830144
iter 30 value 93.565131
iter 40 value 88.628359
iter 50 value 88.376403
iter 60 value 85.287372
iter 70 value 83.215587
iter 80 value 82.335285
iter 90 value 82.082557
iter 100 value 81.940248
final value 81.940248
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 114.327817
iter 10 value 93.934560
iter 20 value 87.975101
iter 30 value 85.230961
iter 40 value 84.800836
iter 50 value 83.748056
iter 60 value 81.335508
iter 70 value 80.068956
iter 80 value 79.468484
iter 90 value 79.378906
iter 100 value 79.210042
final value 79.210042
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.628511
iter 10 value 94.207284
iter 20 value 89.993876
iter 30 value 84.839807
iter 40 value 84.709536
iter 50 value 83.651913
iter 60 value 82.035073
iter 70 value 80.277094
iter 80 value 79.998944
iter 90 value 79.892607
iter 100 value 79.872450
final value 79.872450
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.481802
iter 10 value 94.534932
iter 20 value 88.569498
iter 30 value 84.409012
iter 40 value 84.078344
iter 50 value 83.896499
iter 60 value 83.375680
iter 70 value 81.309129
iter 80 value 80.587332
iter 90 value 79.664368
iter 100 value 79.195346
final value 79.195346
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 127.956573
iter 10 value 94.047151
iter 20 value 92.575683
iter 30 value 87.354051
iter 40 value 84.084589
iter 50 value 82.588758
iter 60 value 80.963229
iter 70 value 79.556370
iter 80 value 79.391988
iter 90 value 78.814165
iter 100 value 78.622188
final value 78.622188
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.674596
iter 10 value 93.879837
iter 20 value 92.473911
iter 30 value 86.772035
iter 40 value 83.902884
iter 50 value 82.413417
iter 60 value 81.634882
iter 70 value 80.634547
iter 80 value 80.130733
iter 90 value 79.942502
iter 100 value 79.754253
final value 79.754253
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.567350
iter 10 value 91.871810
iter 20 value 86.563488
iter 30 value 82.938608
iter 40 value 80.644309
iter 50 value 80.394898
iter 60 value 80.089257
iter 70 value 79.675259
iter 80 value 79.398336
iter 90 value 79.247546
iter 100 value 79.142397
final value 79.142397
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.853145
iter 10 value 93.997519
iter 20 value 88.522009
iter 30 value 86.528052
iter 40 value 83.405943
iter 50 value 81.703570
iter 60 value 80.623020
iter 70 value 79.724396
iter 80 value 79.040478
iter 90 value 78.852657
iter 100 value 78.721567
final value 78.721567
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.017924
final value 94.054376
converged
Fitting Repeat 2
# weights: 103
initial value 94.725721
final value 94.054438
converged
Fitting Repeat 3
# weights: 103
initial value 96.018030
final value 93.837850
converged
Fitting Repeat 4
# weights: 103
initial value 102.050378
iter 10 value 93.767692
iter 20 value 93.734094
final value 93.734088
converged
Fitting Repeat 5
# weights: 103
initial value 98.111249
iter 10 value 92.345659
iter 20 value 87.817881
iter 30 value 87.814412
iter 40 value 85.868874
iter 50 value 85.849249
iter 60 value 85.747779
iter 70 value 85.745259
iter 80 value 85.742555
final value 85.740837
converged
Fitting Repeat 1
# weights: 305
initial value 94.661856
iter 10 value 94.056883
iter 20 value 92.798215
iter 30 value 83.396818
iter 40 value 81.915114
iter 50 value 79.691167
iter 60 value 78.758995
iter 70 value 78.671545
iter 80 value 78.671156
iter 90 value 78.671131
iter 90 value 78.671130
iter 90 value 78.671130
final value 78.671130
converged
Fitting Repeat 2
# weights: 305
initial value 99.340735
iter 10 value 94.057836
iter 20 value 94.052925
iter 30 value 85.599552
iter 40 value 85.591923
iter 50 value 85.590713
iter 60 value 85.359686
iter 70 value 85.227965
iter 80 value 81.983061
iter 90 value 80.510544
iter 100 value 80.423929
final value 80.423929
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.303213
iter 10 value 93.770750
iter 20 value 91.522207
iter 30 value 86.583568
final value 86.561699
converged
Fitting Repeat 4
# weights: 305
initial value 126.985508
iter 10 value 94.048646
iter 20 value 93.743566
iter 30 value 91.666981
iter 40 value 90.460080
iter 50 value 90.425355
iter 60 value 90.194165
iter 70 value 90.008978
iter 80 value 90.008779
iter 90 value 90.008097
final value 90.008023
converged
Fitting Repeat 5
# weights: 305
initial value 104.356842
iter 10 value 93.770791
iter 20 value 93.536811
final value 93.535671
converged
Fitting Repeat 1
# weights: 507
initial value 111.987166
iter 10 value 93.943758
iter 20 value 93.939534
iter 30 value 90.074741
iter 40 value 82.836887
iter 50 value 81.180702
iter 60 value 80.746985
final value 80.741454
converged
Fitting Repeat 2
# weights: 507
initial value 94.899065
iter 10 value 92.382657
iter 20 value 87.754786
iter 30 value 86.941220
iter 40 value 86.928561
iter 50 value 85.611673
iter 60 value 85.463746
iter 70 value 85.462018
iter 80 value 85.457277
iter 90 value 85.454331
final value 85.453905
converged
Fitting Repeat 3
# weights: 507
initial value 96.961852
iter 10 value 93.844251
iter 20 value 89.845434
iter 30 value 86.309130
iter 40 value 83.720432
iter 50 value 81.381358
iter 60 value 80.532245
iter 70 value 80.216022
iter 80 value 79.978162
iter 90 value 79.931142
iter 100 value 79.928621
final value 79.928621
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 98.116084
iter 10 value 92.627486
iter 20 value 83.444505
iter 30 value 83.438567
iter 40 value 83.434831
iter 50 value 83.432100
iter 60 value 83.350398
iter 70 value 83.320183
iter 80 value 83.318049
iter 90 value 83.317322
final value 83.317254
converged
Fitting Repeat 5
# weights: 507
initial value 96.666586
iter 10 value 94.061356
iter 20 value 93.858499
iter 30 value 83.828814
iter 40 value 80.198893
iter 50 value 79.260787
iter 60 value 79.242066
iter 70 value 79.216659
iter 80 value 79.026632
iter 90 value 78.559313
iter 100 value 78.530606
final value 78.530606
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.813148
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 95.751507
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.632096
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.224714
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 104.623670
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 95.404034
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 97.544925
iter 10 value 94.275366
final value 94.275362
converged
Fitting Repeat 3
# weights: 305
initial value 108.603171
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 96.779935
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 96.510793
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 112.974982
iter 10 value 93.210064
iter 20 value 83.847197
iter 30 value 82.651176
final value 82.649363
converged
Fitting Repeat 2
# weights: 507
initial value 115.013553
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 115.902195
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 102.952864
iter 10 value 85.238490
iter 20 value 81.464384
iter 30 value 81.271486
iter 40 value 81.270042
final value 81.269954
converged
Fitting Repeat 5
# weights: 507
initial value 98.455270
final value 94.286550
converged
Fitting Repeat 1
# weights: 103
initial value 101.862410
iter 10 value 94.660046
iter 20 value 94.442301
iter 30 value 94.316852
iter 40 value 94.284678
iter 50 value 85.000153
iter 60 value 84.040825
iter 70 value 82.376443
iter 80 value 80.972883
iter 90 value 80.022394
iter 100 value 79.649328
final value 79.649328
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.372920
iter 10 value 94.192014
iter 20 value 89.938196
iter 30 value 83.980812
iter 40 value 83.163991
iter 50 value 79.901736
iter 60 value 79.338059
iter 70 value 79.251432
iter 80 value 79.208902
final value 79.208858
converged
Fitting Repeat 3
# weights: 103
initial value 98.478006
iter 10 value 94.345570
iter 20 value 91.952088
iter 30 value 83.202286
iter 40 value 82.354330
iter 50 value 82.098433
iter 60 value 82.011515
iter 70 value 81.887136
final value 81.884195
converged
Fitting Repeat 4
# weights: 103
initial value 103.397080
iter 10 value 94.488496
iter 20 value 93.897177
iter 30 value 86.951681
iter 40 value 86.231447
iter 50 value 85.180139
iter 60 value 82.631052
final value 82.624739
converged
Fitting Repeat 5
# weights: 103
initial value 103.980257
iter 10 value 94.498582
iter 20 value 94.342965
iter 30 value 90.861087
iter 40 value 89.583549
iter 50 value 89.437725
iter 60 value 85.665513
iter 70 value 82.862750
iter 80 value 80.821321
iter 90 value 80.074487
iter 100 value 79.916951
final value 79.916951
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 102.303272
iter 10 value 94.687529
iter 20 value 94.330934
iter 30 value 93.163272
iter 40 value 84.025941
iter 50 value 82.797375
iter 60 value 82.614616
iter 70 value 81.089525
iter 80 value 80.140829
iter 90 value 79.961843
iter 100 value 79.659294
final value 79.659294
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.630950
iter 10 value 94.487984
iter 20 value 92.417277
iter 30 value 85.357847
iter 40 value 81.629261
iter 50 value 80.700331
iter 60 value 79.841761
iter 70 value 79.164909
iter 80 value 79.063953
iter 90 value 78.808589
iter 100 value 78.701074
final value 78.701074
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.218725
iter 10 value 94.407286
iter 20 value 86.198931
iter 30 value 83.114703
iter 40 value 82.638226
iter 50 value 80.251789
iter 60 value 79.793555
iter 70 value 79.531734
iter 80 value 79.364563
iter 90 value 78.729897
iter 100 value 78.147368
final value 78.147368
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.021974
iter 10 value 94.954802
iter 20 value 94.487361
iter 30 value 94.289117
iter 40 value 86.564060
iter 50 value 83.735692
iter 60 value 82.626079
iter 70 value 82.069995
iter 80 value 81.830290
iter 90 value 80.138952
iter 100 value 79.322410
final value 79.322410
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 109.338818
iter 10 value 94.113473
iter 20 value 87.876688
iter 30 value 84.950445
iter 40 value 84.502368
iter 50 value 83.984164
iter 60 value 82.072794
iter 70 value 79.269232
iter 80 value 79.040616
iter 90 value 78.865549
iter 100 value 78.758805
final value 78.758805
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 136.988336
iter 10 value 94.385429
iter 20 value 86.155019
iter 30 value 82.329916
iter 40 value 80.531958
iter 50 value 79.985766
iter 60 value 79.823799
iter 70 value 79.703311
iter 80 value 79.471284
iter 90 value 79.281773
iter 100 value 78.596608
final value 78.596608
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.052846
iter 10 value 93.274917
iter 20 value 86.720776
iter 30 value 85.314492
iter 40 value 82.674805
iter 50 value 80.660738
iter 60 value 79.107705
iter 70 value 78.068906
iter 80 value 77.636033
iter 90 value 77.358659
iter 100 value 77.134735
final value 77.134735
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.129831
iter 10 value 95.670396
iter 20 value 89.811845
iter 30 value 84.978440
iter 40 value 81.474870
iter 50 value 79.821789
iter 60 value 78.688571
iter 70 value 78.547755
iter 80 value 78.346262
iter 90 value 77.906845
iter 100 value 77.752956
final value 77.752956
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.576772
iter 10 value 94.643923
iter 20 value 88.135193
iter 30 value 86.623865
iter 40 value 84.970680
iter 50 value 83.378540
iter 60 value 79.462578
iter 70 value 78.536119
iter 80 value 78.236357
iter 90 value 78.148312
iter 100 value 78.078260
final value 78.078260
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.333623
iter 10 value 94.517838
iter 20 value 92.755779
iter 30 value 89.705271
iter 40 value 86.400314
iter 50 value 81.949887
iter 60 value 81.435161
iter 70 value 79.958579
iter 80 value 78.683118
iter 90 value 78.269191
iter 100 value 77.720789
final value 77.720789
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.712023
final value 94.485860
converged
Fitting Repeat 2
# weights: 103
initial value 96.552329
final value 94.485762
converged
Fitting Repeat 3
# weights: 103
initial value 98.000124
final value 94.485918
converged
Fitting Repeat 4
# weights: 103
initial value 95.164039
iter 10 value 94.177927
final value 94.167580
converged
Fitting Repeat 5
# weights: 103
initial value 99.432036
final value 94.486034
converged
Fitting Repeat 1
# weights: 305
initial value 109.277903
iter 10 value 94.489570
iter 20 value 94.478840
iter 30 value 93.849501
iter 40 value 85.248546
iter 50 value 84.594704
iter 60 value 84.588208
iter 70 value 84.222272
iter 80 value 84.218604
iter 90 value 79.107185
iter 100 value 78.502774
final value 78.502774
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.003864
iter 10 value 92.418621
iter 20 value 92.380958
iter 30 value 81.715054
iter 40 value 81.629839
iter 50 value 81.159374
iter 60 value 81.156314
iter 70 value 81.156185
final value 81.156184
converged
Fitting Repeat 3
# weights: 305
initial value 99.515174
iter 10 value 94.466549
iter 20 value 94.432908
iter 30 value 90.267122
iter 40 value 85.399323
iter 50 value 85.293787
iter 60 value 83.439970
iter 70 value 82.793379
iter 80 value 82.790994
final value 82.790905
converged
Fitting Repeat 4
# weights: 305
initial value 103.113559
iter 10 value 94.488868
iter 20 value 94.337942
iter 30 value 87.697228
iter 40 value 82.999077
iter 50 value 82.650915
final value 82.650816
converged
Fitting Repeat 5
# weights: 305
initial value 106.402091
iter 10 value 94.489323
iter 20 value 94.484642
iter 30 value 94.254621
iter 30 value 94.254621
iter 30 value 94.254621
final value 94.254621
converged
Fitting Repeat 1
# weights: 507
initial value 123.827600
iter 10 value 94.344437
iter 20 value 85.761724
iter 30 value 85.454564
iter 40 value 85.279915
iter 50 value 82.432169
iter 60 value 80.419207
iter 70 value 80.409839
iter 80 value 80.385620
iter 90 value 80.212215
iter 100 value 79.945101
final value 79.945101
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.444988
iter 10 value 94.078095
iter 20 value 94.019620
final value 94.018390
converged
Fitting Repeat 3
# weights: 507
initial value 97.767367
iter 10 value 94.051656
iter 20 value 93.773510
iter 30 value 93.767300
iter 40 value 93.764516
iter 50 value 93.763476
iter 60 value 92.014747
iter 70 value 87.280455
iter 80 value 86.985455
iter 90 value 86.835055
iter 100 value 86.810202
final value 86.810202
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.996548
iter 10 value 94.492965
iter 20 value 94.477124
final value 94.165958
converged
Fitting Repeat 5
# weights: 507
initial value 116.358679
iter 10 value 94.283788
iter 20 value 93.875293
iter 30 value 82.993539
iter 40 value 82.769252
iter 50 value 82.755117
iter 60 value 80.757606
iter 70 value 80.609246
iter 80 value 80.606879
iter 90 value 80.603437
iter 100 value 80.603104
final value 80.603104
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.144380
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.997239
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.398564
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 105.893747
final value 94.484137
converged
Fitting Repeat 5
# weights: 103
initial value 95.107579
final value 94.466823
converged
Fitting Repeat 1
# weights: 305
initial value 95.501843
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 98.054413
iter 10 value 94.484405
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 98.206745
final value 94.466823
converged
Fitting Repeat 4
# weights: 305
initial value 103.521485
final value 94.466823
converged
Fitting Repeat 5
# weights: 305
initial value 95.170776
final value 94.484137
converged
Fitting Repeat 1
# weights: 507
initial value 97.540116
iter 10 value 93.861035
final value 93.851932
converged
Fitting Repeat 2
# weights: 507
initial value 94.980300
iter 10 value 86.893524
iter 20 value 85.912989
final value 85.912179
converged
Fitting Repeat 3
# weights: 507
initial value 98.901257
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 101.500112
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 101.380346
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 97.456519
iter 10 value 94.495121
iter 20 value 88.994675
iter 30 value 84.682170
iter 40 value 84.443061
iter 50 value 83.684721
iter 60 value 83.611510
final value 83.611508
converged
Fitting Repeat 2
# weights: 103
initial value 98.620368
iter 10 value 94.348881
iter 20 value 91.848437
iter 30 value 88.054461
iter 40 value 84.027703
iter 50 value 82.491264
iter 60 value 82.219823
iter 70 value 81.353442
iter 80 value 80.975769
iter 90 value 80.511240
iter 100 value 80.259933
final value 80.259933
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.158711
iter 10 value 94.339325
iter 20 value 87.390473
iter 30 value 84.528193
iter 40 value 83.159203
iter 50 value 82.050494
iter 60 value 81.743240
iter 70 value 81.660146
iter 80 value 81.650401
final value 81.650233
converged
Fitting Repeat 4
# weights: 103
initial value 101.900063
iter 10 value 94.484747
iter 20 value 87.234429
iter 30 value 84.263011
iter 40 value 83.198301
iter 50 value 82.491100
iter 60 value 81.836896
iter 70 value 81.768852
iter 80 value 81.638857
iter 90 value 81.283755
iter 100 value 80.546226
final value 80.546226
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.458920
iter 10 value 94.269310
iter 20 value 86.987894
iter 30 value 85.335811
iter 40 value 84.662910
iter 50 value 83.413886
iter 60 value 82.832302
iter 70 value 82.814553
iter 80 value 82.773329
iter 90 value 82.696229
iter 100 value 82.569256
final value 82.569256
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 102.136233
iter 10 value 94.380581
iter 20 value 90.364444
iter 30 value 86.090745
iter 40 value 82.538109
iter 50 value 81.367295
iter 60 value 80.969296
iter 70 value 80.820240
iter 80 value 80.173727
iter 90 value 79.828189
iter 100 value 79.443863
final value 79.443863
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 120.858363
iter 10 value 94.798125
iter 20 value 94.497491
iter 30 value 93.596172
iter 40 value 84.698348
iter 50 value 83.080597
iter 60 value 82.047270
iter 70 value 79.787317
iter 80 value 79.312589
iter 90 value 79.053234
iter 100 value 78.835011
final value 78.835011
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.284783
iter 10 value 94.251577
iter 20 value 83.463543
iter 30 value 82.688671
iter 40 value 82.510837
iter 50 value 80.952499
iter 60 value 79.434336
iter 70 value 79.128447
iter 80 value 78.779848
iter 90 value 78.585599
iter 100 value 78.543395
final value 78.543395
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.794189
iter 10 value 94.401729
iter 20 value 93.393237
iter 30 value 87.382956
iter 40 value 82.342563
iter 50 value 79.820549
iter 60 value 78.881861
iter 70 value 78.726669
iter 80 value 78.566182
iter 90 value 78.467991
iter 100 value 78.455603
final value 78.455603
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 112.972701
iter 10 value 94.484954
iter 20 value 90.075032
iter 30 value 87.342008
iter 40 value 80.904715
iter 50 value 79.634033
iter 60 value 79.109963
iter 70 value 78.955073
iter 80 value 78.900118
iter 90 value 78.872213
iter 100 value 78.870324
final value 78.870324
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.860902
iter 10 value 91.997061
iter 20 value 86.557532
iter 30 value 84.265656
iter 40 value 83.566683
iter 50 value 83.111433
iter 60 value 81.820917
iter 70 value 81.154940
iter 80 value 80.748761
iter 90 value 80.683312
iter 100 value 79.431851
final value 79.431851
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.353198
iter 10 value 95.860843
iter 20 value 92.130600
iter 30 value 85.608585
iter 40 value 84.211930
iter 50 value 83.163040
iter 60 value 80.731232
iter 70 value 79.620192
iter 80 value 78.943167
iter 90 value 78.633112
iter 100 value 78.530938
final value 78.530938
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.147149
iter 10 value 94.479662
iter 20 value 84.320826
iter 30 value 83.372175
iter 40 value 83.137499
iter 50 value 82.397642
iter 60 value 82.210782
iter 70 value 82.145434
iter 80 value 81.706163
iter 90 value 80.628458
iter 100 value 80.382660
final value 80.382660
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.385952
iter 10 value 94.452101
iter 20 value 93.887504
iter 30 value 87.071274
iter 40 value 84.070659
iter 50 value 83.395379
iter 60 value 83.151382
iter 70 value 82.548349
iter 80 value 81.793453
iter 90 value 80.870908
iter 100 value 80.109714
final value 80.109714
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 121.738968
iter 10 value 94.515645
iter 20 value 94.461278
iter 30 value 92.212965
iter 40 value 91.513022
iter 50 value 83.851040
iter 60 value 81.285280
iter 70 value 81.003940
iter 80 value 80.692112
iter 90 value 80.601360
iter 100 value 80.558041
final value 80.558041
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.601202
iter 10 value 94.468530
iter 20 value 94.466861
iter 30 value 94.448984
iter 40 value 90.563019
iter 50 value 90.255603
iter 60 value 90.243355
final value 90.243153
converged
Fitting Repeat 2
# weights: 103
initial value 102.195409
iter 10 value 94.485853
iter 20 value 94.484068
iter 30 value 94.440715
iter 40 value 91.819890
iter 50 value 91.807948
iter 60 value 91.148331
iter 70 value 91.146163
final value 91.144803
converged
Fitting Repeat 3
# weights: 103
initial value 95.105197
final value 94.430557
converged
Fitting Repeat 4
# weights: 103
initial value 96.266574
final value 94.486004
converged
Fitting Repeat 5
# weights: 103
initial value 108.963690
final value 94.486147
converged
Fitting Repeat 1
# weights: 305
initial value 99.483122
iter 10 value 94.488628
iter 20 value 94.483534
iter 30 value 82.406995
iter 40 value 81.391634
iter 50 value 81.273402
iter 60 value 81.272778
final value 81.272776
converged
Fitting Repeat 2
# weights: 305
initial value 97.392481
iter 10 value 94.471956
iter 20 value 94.467248
iter 30 value 93.938694
iter 40 value 91.673883
iter 50 value 91.365463
iter 60 value 91.310327
iter 70 value 91.306355
iter 80 value 91.300763
iter 90 value 84.110673
iter 100 value 83.763221
final value 83.763221
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 95.555084
iter 10 value 94.488457
iter 20 value 93.931631
iter 30 value 82.317041
iter 40 value 81.636244
iter 50 value 81.593284
iter 60 value 80.852302
iter 70 value 80.849832
iter 80 value 80.847623
iter 90 value 80.843704
iter 100 value 80.462413
final value 80.462413
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 116.506813
iter 10 value 94.488944
iter 20 value 94.209854
iter 30 value 92.707216
iter 40 value 92.607188
iter 50 value 92.606993
iter 60 value 92.605415
iter 70 value 92.387471
iter 80 value 91.928486
iter 90 value 91.927619
iter 100 value 91.884154
final value 91.884154
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 108.275764
iter 10 value 94.481412
iter 20 value 93.144918
iter 30 value 87.534902
iter 40 value 83.502143
iter 50 value 83.276794
iter 60 value 82.145250
iter 70 value 82.056842
final value 82.036940
converged
Fitting Repeat 1
# weights: 507
initial value 102.188644
iter 10 value 94.492523
iter 20 value 94.484844
iter 30 value 84.549124
final value 83.983390
converged
Fitting Repeat 2
# weights: 507
initial value 100.344794
iter 10 value 94.437109
iter 20 value 87.126699
iter 30 value 86.960779
iter 40 value 85.817247
iter 50 value 85.146177
final value 85.146145
converged
Fitting Repeat 3
# weights: 507
initial value 95.234372
iter 10 value 94.475151
iter 20 value 94.470401
iter 30 value 94.466980
iter 40 value 94.138188
iter 50 value 84.133069
iter 60 value 82.203999
iter 70 value 82.195471
final value 82.195326
converged
Fitting Repeat 4
# weights: 507
initial value 107.198495
iter 10 value 94.439421
iter 20 value 93.649014
iter 30 value 93.642061
iter 40 value 93.639470
iter 50 value 93.638144
iter 60 value 86.388249
iter 70 value 84.158089
iter 80 value 84.080987
iter 90 value 84.080104
iter 100 value 84.078600
final value 84.078600
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 96.763920
iter 10 value 94.475177
iter 20 value 91.659453
iter 30 value 91.655521
iter 40 value 91.643685
iter 50 value 91.502040
iter 60 value 90.908218
iter 70 value 90.816192
iter 80 value 90.801604
iter 90 value 90.270253
iter 100 value 90.176957
final value 90.176957
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 131.490033
iter 10 value 118.801237
iter 20 value 110.448014
iter 30 value 104.421986
iter 40 value 102.856241
iter 50 value 102.486906
iter 60 value 101.810208
iter 70 value 101.560248
iter 80 value 100.913724
iter 90 value 100.773908
iter 100 value 100.726228
final value 100.726228
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 128.183025
iter 10 value 120.471022
iter 20 value 117.623163
iter 30 value 108.307935
iter 40 value 107.392715
iter 50 value 107.298289
iter 60 value 105.717495
iter 70 value 104.797927
iter 80 value 103.325610
iter 90 value 101.199460
iter 100 value 100.532128
final value 100.532128
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 126.886641
iter 10 value 118.058679
iter 20 value 117.342239
iter 30 value 109.390970
iter 40 value 106.395509
iter 50 value 105.747197
iter 60 value 103.506239
iter 70 value 101.686398
iter 80 value 101.448508
iter 90 value 101.302630
iter 100 value 101.106358
final value 101.106358
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 142.969529
iter 10 value 117.931132
iter 20 value 116.952106
iter 30 value 109.105095
iter 40 value 107.321465
iter 50 value 103.298108
iter 60 value 103.100424
iter 70 value 101.980615
iter 80 value 101.679454
iter 90 value 101.467761
iter 100 value 101.176732
final value 101.176732
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 127.230264
iter 10 value 117.726156
iter 20 value 107.399090
iter 30 value 105.895983
iter 40 value 105.627968
iter 50 value 103.599421
iter 60 value 102.356921
iter 70 value 101.942970
iter 80 value 101.176400
iter 90 value 101.054879
iter 100 value 100.992626
final value 100.992626
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Wed Nov 20 04:30:26 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
30.925 0.777 44.218
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 25.711 | 0.272 | 25.989 | |
| FreqInteractors | 0.157 | 0.012 | 0.169 | |
| calculateAAC | 0.016 | 0.015 | 0.031 | |
| calculateAutocor | 0.221 | 0.028 | 0.250 | |
| calculateCTDC | 0.055 | 0.000 | 0.055 | |
| calculateCTDD | 0.378 | 0.000 | 0.382 | |
| calculateCTDT | 0.131 | 0.000 | 0.131 | |
| calculateCTriad | 0.240 | 0.020 | 0.261 | |
| calculateDC | 0.063 | 0.002 | 0.065 | |
| calculateF | 0.220 | 0.006 | 0.226 | |
| calculateKSAAP | 0.067 | 0.002 | 0.069 | |
| calculateQD_Sm | 1.215 | 0.029 | 1.280 | |
| calculateTC | 1.311 | 0.041 | 1.355 | |
| calculateTC_Sm | 0.202 | 0.002 | 0.205 | |
| corr_plot | 24.653 | 0.125 | 24.950 | |
| enrichfindP | 0.321 | 0.040 | 14.086 | |
| enrichfind_hp | 0.052 | 0.003 | 1.218 | |
| enrichplot | 0.252 | 0.002 | 0.255 | |
| filter_missing_values | 0.000 | 0.000 | 0.001 | |
| getFASTA | 0.186 | 0.012 | 3.589 | |
| getHPI | 0.000 | 0.001 | 0.000 | |
| get_negativePPI | 0.001 | 0.000 | 0.001 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.001 | 0.000 | 0.001 | |
| plotPPI | 0.045 | 0.000 | 0.045 | |
| pred_ensembel | 9.448 | 0.181 | 8.649 | |
| var_imp | 26.097 | 0.422 | 26.531 | |