| Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-20 12:06 -0500 (Wed, 20 Nov 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4481 |
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4479 |
| palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4359 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4539 |
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
| palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.12.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
| StartedAt: 2024-11-19 23:03:06 -0500 (Tue, 19 Nov 2024) |
| EndedAt: 2024-11-19 23:14:54 -0500 (Tue, 19 Nov 2024) |
| EllapsedTime: 708.4 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: x86_64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib:
cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES'
OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Unknown package ‘ftrCOOL’ in Rd xrefs
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 27.391 1.471 28.964
corr_plot 25.584 1.317 26.963
FSmethod 24.642 1.205 25.894
pred_ensembel 10.188 0.332 9.077
enrichfindP 0.339 0.051 39.727
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 100.817365
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.854401
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 95.794342
final value 94.473118
converged
Fitting Repeat 4
# weights: 103
initial value 99.184686
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 101.343745
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 102.916740
iter 10 value 92.881201
iter 20 value 85.487413
iter 30 value 85.485293
final value 85.485236
converged
Fitting Repeat 2
# weights: 305
initial value 104.136550
iter 10 value 90.874861
iter 20 value 86.954316
final value 86.952568
converged
Fitting Repeat 3
# weights: 305
initial value 103.720695
iter 10 value 93.979306
iter 20 value 93.055902
iter 30 value 89.358234
final value 89.356077
converged
Fitting Repeat 4
# weights: 305
initial value 100.770454
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 107.513055
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 122.458179
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 97.381366
final value 94.354396
converged
Fitting Repeat 3
# weights: 507
initial value 99.920935
iter 10 value 93.213986
iter 10 value 93.213985
iter 10 value 93.213985
final value 93.213985
converged
Fitting Repeat 4
# weights: 507
initial value 106.110500
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 95.169551
iter 10 value 93.895308
final value 93.895098
converged
Fitting Repeat 1
# weights: 103
initial value 97.577971
iter 10 value 94.447413
iter 20 value 89.727637
iter 30 value 88.983518
iter 40 value 88.737229
iter 50 value 85.629459
iter 60 value 85.213470
iter 70 value 85.107712
iter 80 value 84.966869
final value 84.964852
converged
Fitting Repeat 2
# weights: 103
initial value 97.326995
iter 10 value 94.490438
iter 20 value 94.318990
iter 30 value 88.822350
iter 40 value 83.718786
iter 50 value 81.611431
iter 60 value 80.661239
iter 70 value 79.917557
iter 80 value 79.722936
iter 90 value 79.450332
final value 79.442736
converged
Fitting Repeat 3
# weights: 103
initial value 98.971636
iter 10 value 94.482942
iter 20 value 94.334852
iter 30 value 89.871942
iter 40 value 87.866293
iter 50 value 85.550688
iter 60 value 82.839575
iter 70 value 80.959663
iter 80 value 80.536236
iter 90 value 80.305480
iter 100 value 80.248967
final value 80.248967
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 106.123280
iter 10 value 94.490116
iter 20 value 94.233006
iter 30 value 88.135435
iter 40 value 86.768652
iter 50 value 86.258208
iter 60 value 85.829580
iter 70 value 83.714843
iter 80 value 83.428343
iter 90 value 80.719884
iter 100 value 80.275459
final value 80.275459
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 106.417092
iter 10 value 94.401760
iter 20 value 93.972455
iter 30 value 93.967292
iter 40 value 93.960828
iter 50 value 93.717076
iter 60 value 90.895649
iter 70 value 88.125586
iter 80 value 84.789713
iter 90 value 84.053003
iter 100 value 83.318938
final value 83.318938
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 106.215052
iter 10 value 94.241569
iter 20 value 89.665587
iter 30 value 86.834190
iter 40 value 84.878328
iter 50 value 83.919879
iter 60 value 83.531562
iter 70 value 83.184273
iter 80 value 82.765742
iter 90 value 81.718432
iter 100 value 79.525612
final value 79.525612
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 121.510236
iter 10 value 94.428134
iter 20 value 88.606069
iter 30 value 83.177017
iter 40 value 83.026123
iter 50 value 80.610516
iter 60 value 80.168078
iter 70 value 79.855332
iter 80 value 79.576788
iter 90 value 79.187416
iter 100 value 78.860856
final value 78.860856
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.398380
iter 10 value 93.497537
iter 20 value 86.106530
iter 30 value 84.733907
iter 40 value 84.408358
iter 50 value 84.254227
iter 60 value 83.049434
iter 70 value 80.041884
iter 80 value 79.060231
iter 90 value 78.785985
iter 100 value 78.666684
final value 78.666684
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.268184
iter 10 value 94.479757
iter 20 value 93.612455
iter 30 value 90.082146
iter 40 value 83.612390
iter 50 value 81.442409
iter 60 value 79.726936
iter 70 value 78.731727
iter 80 value 78.140866
iter 90 value 77.884479
iter 100 value 77.733957
final value 77.733957
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.677601
iter 10 value 94.347726
iter 20 value 93.985164
iter 30 value 93.967252
iter 40 value 93.929985
iter 50 value 91.247483
iter 60 value 88.471623
iter 70 value 87.355833
iter 80 value 85.227209
iter 90 value 84.596220
iter 100 value 83.432307
final value 83.432307
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.666097
iter 10 value 94.229991
iter 20 value 91.992502
iter 30 value 88.046419
iter 40 value 87.129923
iter 50 value 86.595565
iter 60 value 85.072348
iter 70 value 81.319136
iter 80 value 79.462618
iter 90 value 79.106509
iter 100 value 78.319465
final value 78.319465
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.993381
iter 10 value 94.546351
iter 20 value 94.468630
iter 30 value 94.013118
iter 40 value 93.213992
iter 50 value 85.623197
iter 60 value 84.521186
iter 70 value 83.679314
iter 80 value 81.643017
iter 90 value 80.080413
iter 100 value 79.022680
final value 79.022680
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.899827
iter 10 value 94.661494
iter 20 value 90.757931
iter 30 value 81.621201
iter 40 value 80.846468
iter 50 value 79.757426
iter 60 value 79.413280
iter 70 value 79.081795
iter 80 value 78.859010
iter 90 value 78.770293
iter 100 value 78.403859
final value 78.403859
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.333188
iter 10 value 94.292299
iter 20 value 90.278516
iter 30 value 85.473065
iter 40 value 84.207265
iter 50 value 83.548842
iter 60 value 83.355017
iter 70 value 83.039223
iter 80 value 82.799561
iter 90 value 82.450599
iter 100 value 80.014561
final value 80.014561
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 119.356494
iter 10 value 92.823624
iter 20 value 85.070964
iter 30 value 84.200437
iter 40 value 82.438144
iter 50 value 82.003010
iter 60 value 81.412048
iter 70 value 80.963499
iter 80 value 79.823785
iter 90 value 79.247295
iter 100 value 78.359184
final value 78.359184
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.679501
final value 94.485809
converged
Fitting Repeat 2
# weights: 103
initial value 99.656371
iter 10 value 94.355773
iter 20 value 94.355565
iter 30 value 94.355011
final value 94.354554
converged
Fitting Repeat 3
# weights: 103
initial value 97.924988
final value 94.485669
converged
Fitting Repeat 4
# weights: 103
initial value 97.018191
final value 94.485884
converged
Fitting Repeat 5
# weights: 103
initial value 107.361009
final value 94.485771
converged
Fitting Repeat 1
# weights: 305
initial value 104.294974
iter 10 value 94.488939
iter 20 value 94.478560
iter 30 value 93.912094
iter 40 value 93.912059
iter 40 value 93.912059
iter 40 value 93.912059
final value 93.912059
converged
Fitting Repeat 2
# weights: 305
initial value 96.784758
iter 10 value 94.359336
iter 20 value 94.354527
iter 30 value 94.354405
iter 40 value 92.923484
iter 50 value 82.103901
iter 60 value 82.102616
iter 70 value 79.376783
iter 80 value 78.829136
iter 90 value 78.828321
iter 100 value 78.827969
final value 78.827969
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 98.689631
iter 10 value 94.488768
iter 20 value 87.270782
iter 30 value 85.544308
iter 40 value 85.527677
iter 50 value 85.526360
iter 60 value 82.827880
iter 70 value 82.332818
iter 80 value 82.317394
iter 90 value 81.492959
final value 81.390105
converged
Fitting Repeat 4
# weights: 305
initial value 100.015989
iter 10 value 94.488720
iter 20 value 94.482101
iter 30 value 83.919471
iter 40 value 83.028793
iter 50 value 83.027967
iter 60 value 82.443926
iter 70 value 82.443882
iter 70 value 82.443881
iter 70 value 82.443881
final value 82.443881
converged
Fitting Repeat 5
# weights: 305
initial value 99.906033
iter 10 value 94.487775
iter 20 value 94.472772
iter 30 value 85.053198
iter 40 value 85.046829
iter 50 value 85.041184
iter 60 value 84.477713
iter 70 value 84.463366
iter 80 value 84.444535
iter 90 value 84.231952
final value 84.230752
converged
Fitting Repeat 1
# weights: 507
initial value 103.073374
iter 10 value 94.492561
iter 20 value 94.475999
iter 30 value 85.285371
iter 40 value 84.044728
iter 50 value 82.509629
iter 60 value 81.027665
iter 70 value 81.021972
iter 80 value 80.445623
iter 90 value 79.867547
iter 100 value 79.801170
final value 79.801170
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 119.109365
iter 10 value 94.362491
iter 20 value 93.970497
iter 30 value 92.792139
iter 40 value 85.701924
iter 50 value 85.689425
iter 60 value 85.689251
final value 85.689232
converged
Fitting Repeat 3
# weights: 507
initial value 98.843430
iter 10 value 94.362406
iter 20 value 93.147321
iter 30 value 85.274063
iter 40 value 85.251875
final value 85.251800
converged
Fitting Repeat 4
# weights: 507
initial value 101.144096
iter 10 value 94.363152
iter 20 value 94.356244
iter 30 value 94.323305
iter 40 value 87.121946
iter 50 value 87.119269
iter 60 value 87.119019
iter 70 value 87.118756
iter 80 value 83.530676
iter 90 value 83.512560
iter 100 value 82.760029
final value 82.760029
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.177915
iter 10 value 94.492246
iter 20 value 93.706590
iter 30 value 90.353101
iter 40 value 89.760153
iter 50 value 86.508717
iter 60 value 86.493107
iter 70 value 86.492886
final value 86.492866
converged
Fitting Repeat 1
# weights: 103
initial value 101.712721
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 94.100694
final value 94.053065
converged
Fitting Repeat 3
# weights: 103
initial value 102.948152
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 99.050920
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.177439
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 109.316517
iter 10 value 91.718019
iter 20 value 91.570712
final value 91.489323
converged
Fitting Repeat 2
# weights: 305
initial value 95.507599
iter 10 value 90.836366
iter 20 value 90.809719
iter 30 value 90.809663
final value 90.809637
converged
Fitting Repeat 3
# weights: 305
initial value 101.406569
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 99.446916
iter 10 value 90.427494
iter 20 value 88.447124
iter 30 value 87.841400
iter 40 value 87.562802
final value 87.528305
converged
Fitting Repeat 5
# weights: 305
initial value 101.276517
iter 10 value 92.287392
iter 20 value 92.281087
final value 92.281082
converged
Fitting Repeat 1
# weights: 507
initial value 112.648403
iter 10 value 91.822956
iter 20 value 91.444115
iter 30 value 91.439936
final value 91.439926
converged
Fitting Repeat 2
# weights: 507
initial value 134.354373
iter 10 value 93.265885
iter 20 value 92.362727
iter 30 value 92.031985
iter 40 value 92.029801
final value 92.029797
converged
Fitting Repeat 3
# weights: 507
initial value 108.767932
iter 10 value 86.453343
iter 20 value 83.334216
iter 30 value 83.322415
final value 83.322348
converged
Fitting Repeat 4
# weights: 507
initial value 95.673262
iter 10 value 92.551681
iter 20 value 92.037366
iter 30 value 92.019988
final value 92.019964
converged
Fitting Repeat 5
# weights: 507
initial value 101.191728
iter 10 value 92.575693
final value 92.563128
converged
Fitting Repeat 1
# weights: 103
initial value 103.221011
iter 10 value 93.598036
iter 20 value 92.102339
iter 30 value 84.175442
iter 40 value 83.032892
iter 50 value 81.992697
iter 60 value 80.537413
iter 70 value 80.114883
iter 80 value 80.108773
final value 80.108771
converged
Fitting Repeat 2
# weights: 103
initial value 99.992128
iter 10 value 90.945664
iter 20 value 84.526622
iter 30 value 83.892368
iter 40 value 82.240458
iter 50 value 81.894885
iter 60 value 81.886722
final value 81.886545
converged
Fitting Repeat 3
# weights: 103
initial value 96.123623
iter 10 value 94.056665
iter 20 value 93.414797
iter 30 value 93.029391
iter 40 value 89.917220
iter 50 value 84.142918
iter 60 value 82.777183
iter 70 value 81.331168
iter 80 value 81.147919
iter 90 value 80.128463
iter 100 value 79.990988
final value 79.990988
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.966390
iter 10 value 94.319188
iter 20 value 94.044390
iter 30 value 93.326855
iter 40 value 92.875796
iter 50 value 90.440565
iter 60 value 84.215759
iter 70 value 83.277330
iter 80 value 80.762238
iter 90 value 80.321276
iter 100 value 80.116344
final value 80.116344
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 104.315702
iter 10 value 94.051596
iter 20 value 92.688919
iter 30 value 84.491467
iter 40 value 82.986118
iter 50 value 81.105696
iter 60 value 80.897573
iter 70 value 80.425531
iter 80 value 80.111959
iter 90 value 80.108771
iter 90 value 80.108771
iter 90 value 80.108771
final value 80.108771
converged
Fitting Repeat 1
# weights: 305
initial value 118.213961
iter 10 value 94.888235
iter 20 value 93.393170
iter 30 value 92.748098
iter 40 value 92.679456
iter 50 value 85.747271
iter 60 value 84.228049
iter 70 value 82.241694
iter 80 value 81.355372
iter 90 value 80.340475
iter 100 value 79.826448
final value 79.826448
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.308315
iter 10 value 93.922128
iter 20 value 85.987807
iter 30 value 85.155839
iter 40 value 83.577221
iter 50 value 82.630885
iter 60 value 82.007845
iter 70 value 81.009549
iter 80 value 80.805846
iter 90 value 80.439009
iter 100 value 79.982378
final value 79.982378
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 117.203405
iter 10 value 90.613105
iter 20 value 81.807978
iter 30 value 81.449055
iter 40 value 81.265772
iter 50 value 81.226099
iter 60 value 81.209430
iter 70 value 80.924347
iter 80 value 79.381080
iter 90 value 78.649006
iter 100 value 78.275578
final value 78.275578
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.406649
iter 10 value 93.674175
iter 20 value 88.948352
iter 30 value 83.983788
iter 40 value 81.763805
iter 50 value 80.145846
iter 60 value 79.858208
iter 70 value 79.721981
iter 80 value 79.505520
iter 90 value 79.064506
iter 100 value 78.657353
final value 78.657353
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.651390
iter 10 value 93.115248
iter 20 value 86.250244
iter 30 value 83.258397
iter 40 value 82.827928
iter 50 value 82.549953
iter 60 value 82.423542
iter 70 value 81.899219
iter 80 value 80.383626
iter 90 value 79.705757
iter 100 value 79.544433
final value 79.544433
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 114.254482
iter 10 value 93.589277
iter 20 value 90.850626
iter 30 value 88.343150
iter 40 value 87.567133
iter 50 value 84.981716
iter 60 value 80.416773
iter 70 value 79.067981
iter 80 value 78.478724
iter 90 value 78.294080
iter 100 value 78.240152
final value 78.240152
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 120.991990
iter 10 value 93.276479
iter 20 value 88.624447
iter 30 value 84.762735
iter 40 value 81.623059
iter 50 value 79.641361
iter 60 value 78.988162
iter 70 value 78.753411
iter 80 value 78.476266
iter 90 value 78.331217
iter 100 value 78.269577
final value 78.269577
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 122.677690
iter 10 value 94.490102
iter 20 value 84.362482
iter 30 value 83.642044
iter 40 value 82.381491
iter 50 value 81.562019
iter 60 value 81.202851
iter 70 value 80.933380
iter 80 value 80.845949
iter 90 value 80.809413
iter 100 value 80.694225
final value 80.694225
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.935170
iter 10 value 93.080920
iter 20 value 92.586773
iter 30 value 91.483977
iter 40 value 88.238249
iter 50 value 84.271112
iter 60 value 80.954837
iter 70 value 80.309349
iter 80 value 80.014111
iter 90 value 79.501361
iter 100 value 79.242824
final value 79.242824
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 115.332800
iter 10 value 93.984404
iter 20 value 85.044807
iter 30 value 83.421507
iter 40 value 82.832320
iter 50 value 82.038531
iter 60 value 80.132486
iter 70 value 78.794627
iter 80 value 78.512393
iter 90 value 78.471090
iter 100 value 78.373637
final value 78.373637
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 107.523648
final value 94.054491
converged
Fitting Repeat 2
# weights: 103
initial value 97.706302
final value 94.054567
converged
Fitting Repeat 3
# weights: 103
initial value 99.924214
final value 94.054554
converged
Fitting Repeat 4
# weights: 103
initial value 99.187602
iter 10 value 94.047098
final value 94.023972
converged
Fitting Repeat 5
# weights: 103
initial value 96.853199
iter 10 value 94.054908
iter 20 value 93.979081
iter 30 value 92.273568
iter 40 value 92.038094
final value 92.034823
converged
Fitting Repeat 1
# weights: 305
initial value 96.968725
iter 10 value 94.057620
iter 20 value 94.052492
iter 30 value 92.362650
iter 40 value 92.344381
iter 50 value 90.046260
iter 60 value 89.102537
iter 70 value 89.094079
iter 80 value 89.015409
iter 90 value 88.954172
final value 88.953508
converged
Fitting Repeat 2
# weights: 305
initial value 96.594163
iter 10 value 94.058070
iter 20 value 93.884383
iter 30 value 88.247912
iter 40 value 85.589814
iter 50 value 84.701462
final value 84.699300
converged
Fitting Repeat 3
# weights: 305
initial value 97.970921
iter 10 value 94.078081
iter 20 value 93.728559
iter 30 value 89.982331
iter 40 value 89.941624
iter 50 value 89.296745
iter 60 value 88.651954
iter 70 value 88.622042
iter 80 value 88.614983
iter 90 value 88.610197
iter 100 value 88.119370
final value 88.119370
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.368007
iter 10 value 92.298101
iter 20 value 92.292078
iter 30 value 85.326542
iter 40 value 81.514139
iter 50 value 81.481479
iter 60 value 81.480930
iter 70 value 81.480559
final value 81.479488
converged
Fitting Repeat 5
# weights: 305
initial value 95.682546
iter 10 value 92.296114
iter 20 value 92.292348
iter 30 value 92.288463
iter 40 value 92.063443
iter 50 value 87.817343
iter 60 value 86.402843
iter 70 value 85.128925
iter 80 value 82.218123
iter 90 value 77.140635
iter 100 value 76.908541
final value 76.908541
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 94.411272
iter 10 value 90.661850
iter 20 value 90.369316
iter 30 value 90.367217
iter 40 value 90.332239
iter 50 value 86.502928
iter 60 value 86.299872
iter 70 value 86.293038
iter 80 value 86.291508
iter 90 value 86.160301
iter 100 value 84.736358
final value 84.736358
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.720411
iter 10 value 92.297210
iter 20 value 92.293618
iter 30 value 92.100465
iter 40 value 92.038121
iter 50 value 92.036777
final value 92.035076
converged
Fitting Repeat 3
# weights: 507
initial value 109.795680
iter 10 value 92.514932
iter 20 value 92.300428
iter 30 value 92.295590
iter 40 value 91.998605
iter 50 value 90.068840
iter 60 value 79.783683
iter 70 value 78.500989
iter 80 value 77.011190
iter 90 value 76.821239
iter 100 value 76.799697
final value 76.799697
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 109.076857
iter 10 value 92.300823
iter 20 value 92.294730
iter 30 value 91.973928
iter 40 value 91.589009
iter 50 value 81.900272
iter 60 value 81.681728
iter 70 value 81.660449
iter 80 value 81.575754
iter 90 value 81.574178
iter 100 value 81.569416
final value 81.569416
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 99.860286
iter 10 value 94.060854
iter 20 value 93.967839
iter 30 value 81.633130
iter 40 value 80.800206
iter 50 value 80.468458
iter 60 value 80.448500
iter 70 value 80.365208
iter 80 value 80.337791
iter 90 value 80.254834
iter 100 value 80.041409
final value 80.041409
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.198532
final value 94.466823
converged
Fitting Repeat 2
# weights: 103
initial value 106.859285
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 100.359178
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.775572
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 94.631477
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 100.948332
final value 94.088889
converged
Fitting Repeat 2
# weights: 305
initial value 95.582650
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 103.010790
final value 94.466823
converged
Fitting Repeat 4
# weights: 305
initial value 94.897120
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 95.165500
final value 94.466823
converged
Fitting Repeat 1
# weights: 507
initial value 95.403470
final value 93.903448
converged
Fitting Repeat 2
# weights: 507
initial value 97.562355
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 104.860825
final value 94.466823
converged
Fitting Repeat 4
# weights: 507
initial value 100.378075
iter 10 value 94.484496
iter 20 value 94.465271
iter 30 value 94.294443
final value 94.242065
converged
Fitting Repeat 5
# weights: 507
initial value 109.515874
final value 94.466822
converged
Fitting Repeat 1
# weights: 103
initial value 98.826871
iter 10 value 94.440448
iter 20 value 94.162539
iter 30 value 89.272877
iter 40 value 88.144434
iter 50 value 87.580357
final value 87.572789
converged
Fitting Repeat 2
# weights: 103
initial value 98.302420
iter 10 value 94.485548
iter 20 value 92.023275
iter 30 value 87.612834
iter 40 value 86.641599
iter 50 value 86.383513
iter 60 value 85.723109
iter 70 value 85.629624
iter 80 value 85.609241
iter 90 value 85.514213
iter 100 value 85.460025
final value 85.460025
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.968656
iter 10 value 93.382237
iter 20 value 87.678741
iter 30 value 87.507880
iter 40 value 86.876273
iter 50 value 86.364143
iter 60 value 86.113370
iter 70 value 86.047901
iter 80 value 85.986758
final value 85.985119
converged
Fitting Repeat 4
# weights: 103
initial value 97.238565
iter 10 value 94.488694
iter 20 value 92.055850
iter 30 value 88.282149
iter 40 value 86.798625
iter 50 value 86.555118
iter 60 value 85.897819
iter 70 value 85.103242
iter 80 value 84.517754
iter 90 value 84.317455
final value 84.315001
converged
Fitting Repeat 5
# weights: 103
initial value 101.186639
iter 10 value 90.416785
iter 20 value 87.823381
iter 30 value 87.444114
iter 40 value 86.626884
iter 50 value 85.382251
iter 60 value 84.893545
iter 70 value 84.255351
iter 80 value 84.169131
iter 90 value 84.140089
final value 84.129548
converged
Fitting Repeat 1
# weights: 305
initial value 104.047210
iter 10 value 94.513191
iter 20 value 93.494416
iter 30 value 92.703680
iter 40 value 91.209901
iter 50 value 90.196052
iter 60 value 84.782213
iter 70 value 84.293594
iter 80 value 83.828088
iter 90 value 83.597098
iter 100 value 83.372603
final value 83.372603
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 130.919394
iter 10 value 94.455988
iter 20 value 89.845296
iter 30 value 88.007840
iter 40 value 87.320136
iter 50 value 86.642595
iter 60 value 84.876512
iter 70 value 84.478291
iter 80 value 84.074724
iter 90 value 83.805158
iter 100 value 83.667789
final value 83.667789
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.813031
iter 10 value 94.126969
iter 20 value 89.358760
iter 30 value 86.494448
iter 40 value 86.332731
iter 50 value 86.195260
iter 60 value 85.771002
iter 70 value 85.413522
iter 80 value 85.062277
iter 90 value 84.872614
iter 100 value 84.334570
final value 84.334570
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.083866
iter 10 value 94.875599
iter 20 value 94.496443
iter 30 value 94.420952
iter 40 value 93.068322
iter 50 value 89.886179
iter 60 value 87.893010
iter 70 value 86.099228
iter 80 value 84.249240
iter 90 value 83.659256
iter 100 value 83.591316
final value 83.591316
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.746949
iter 10 value 92.685106
iter 20 value 91.178508
iter 30 value 87.842982
iter 40 value 86.563393
iter 50 value 85.509906
iter 60 value 84.028354
iter 70 value 83.296698
iter 80 value 83.225215
iter 90 value 83.054882
iter 100 value 82.857356
final value 82.857356
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.797484
iter 10 value 94.981113
iter 20 value 92.927514
iter 30 value 87.986050
iter 40 value 85.873207
iter 50 value 84.345364
iter 60 value 84.172370
iter 70 value 83.823294
iter 80 value 83.085219
iter 90 value 82.870299
iter 100 value 82.622771
final value 82.622771
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.028837
iter 10 value 94.697144
iter 20 value 89.189874
iter 30 value 86.653761
iter 40 value 85.780605
iter 50 value 85.349694
iter 60 value 85.117976
iter 70 value 84.477364
iter 80 value 83.960527
iter 90 value 83.655393
iter 100 value 83.455618
final value 83.455618
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.197320
iter 10 value 94.442153
iter 20 value 93.028524
iter 30 value 87.888126
iter 40 value 87.598551
iter 50 value 87.132403
iter 60 value 85.410449
iter 70 value 84.578615
iter 80 value 83.564947
iter 90 value 83.287472
iter 100 value 83.100584
final value 83.100584
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 136.014429
iter 10 value 95.037222
iter 20 value 94.071925
iter 30 value 88.621057
iter 40 value 88.138496
iter 50 value 85.993453
iter 60 value 85.127535
iter 70 value 84.154989
iter 80 value 83.602859
iter 90 value 83.277148
iter 100 value 82.814434
final value 82.814434
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 136.192807
iter 10 value 94.510941
iter 20 value 92.341834
iter 30 value 89.913047
iter 40 value 86.809047
iter 50 value 85.041061
iter 60 value 83.186012
iter 70 value 83.074829
iter 80 value 82.979885
iter 90 value 82.956066
iter 100 value 82.907849
final value 82.907849
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.583718
final value 94.485754
converged
Fitting Repeat 2
# weights: 103
initial value 95.034091
final value 94.485743
converged
Fitting Repeat 3
# weights: 103
initial value 111.161417
final value 94.485796
converged
Fitting Repeat 4
# weights: 103
initial value 95.608508
iter 10 value 94.005297
iter 20 value 93.949402
iter 30 value 93.573162
iter 40 value 93.571040
final value 93.565965
converged
Fitting Repeat 5
# weights: 103
initial value 95.664599
final value 94.485950
converged
Fitting Repeat 1
# weights: 305
initial value 105.476148
iter 10 value 94.569938
iter 20 value 91.083546
iter 30 value 89.396122
iter 40 value 89.374042
iter 50 value 89.373212
iter 60 value 87.396866
iter 70 value 87.231687
iter 80 value 86.569738
iter 90 value 86.206873
iter 100 value 86.176838
final value 86.176838
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.878492
iter 10 value 88.437244
iter 20 value 87.358683
iter 30 value 87.356442
iter 40 value 87.337013
iter 50 value 87.336581
iter 60 value 87.265677
iter 70 value 87.166000
iter 80 value 87.156892
iter 90 value 87.147565
iter 100 value 87.147439
final value 87.147439
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 119.234258
iter 10 value 94.472345
iter 20 value 94.467269
iter 30 value 94.292815
final value 94.089661
converged
Fitting Repeat 4
# weights: 305
initial value 100.425097
iter 10 value 94.101615
iter 20 value 94.083006
iter 30 value 94.082079
iter 40 value 94.080645
iter 50 value 94.080512
iter 60 value 93.169937
iter 70 value 87.281380
iter 80 value 86.575749
iter 90 value 86.514868
iter 100 value 86.513832
final value 86.513832
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 95.118659
iter 10 value 94.489545
iter 20 value 94.210885
iter 30 value 92.446314
iter 40 value 90.149429
iter 50 value 85.243960
iter 60 value 84.911748
iter 70 value 84.910728
iter 80 value 84.909067
iter 90 value 84.907388
iter 100 value 84.907098
final value 84.907098
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.772726
iter 10 value 94.473626
iter 20 value 94.461333
iter 30 value 89.521274
iter 40 value 87.688809
iter 50 value 86.037063
iter 60 value 84.987505
iter 70 value 84.588229
iter 80 value 84.433890
iter 90 value 83.819317
iter 100 value 82.667338
final value 82.667338
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 95.111247
iter 10 value 94.489946
iter 20 value 94.418366
iter 30 value 91.214447
iter 40 value 88.676776
iter 50 value 86.188856
iter 60 value 85.972172
iter 70 value 85.968883
iter 80 value 85.964166
iter 90 value 85.963751
iter 100 value 85.963283
final value 85.963283
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 96.662831
iter 10 value 94.475041
iter 20 value 94.469579
iter 30 value 94.279037
iter 40 value 94.080616
iter 50 value 93.731466
iter 60 value 87.039658
iter 70 value 85.783045
final value 85.780640
converged
Fitting Repeat 4
# weights: 507
initial value 110.967905
iter 10 value 93.061572
iter 20 value 92.940405
iter 30 value 92.937264
iter 40 value 92.936827
iter 50 value 92.933232
iter 60 value 92.931273
iter 70 value 92.931240
iter 80 value 92.930822
iter 90 value 92.779734
iter 100 value 90.495310
final value 90.495310
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 97.931402
iter 10 value 94.475725
iter 20 value 94.468023
final value 94.467280
converged
Fitting Repeat 1
# weights: 103
initial value 97.629239
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.965530
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.058124
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 95.749342
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 100.147398
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 112.979618
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 97.930401
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 96.983842
final value 94.032967
converged
Fitting Repeat 4
# weights: 305
initial value 104.784615
iter 10 value 94.053153
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 96.076584
final value 94.032967
converged
Fitting Repeat 1
# weights: 507
initial value 96.646825
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 106.909398
iter 10 value 93.549676
iter 20 value 93.429487
iter 20 value 93.429487
iter 20 value 93.429487
final value 93.429487
converged
Fitting Repeat 3
# weights: 507
initial value 99.312594
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 114.409221
final value 94.032967
converged
Fitting Repeat 5
# weights: 507
initial value 109.695087
final value 94.032967
converged
Fitting Repeat 1
# weights: 103
initial value 98.384410
iter 10 value 94.046579
iter 20 value 85.839413
iter 30 value 84.950243
iter 40 value 84.869040
iter 50 value 84.737257
iter 60 value 84.338190
iter 70 value 84.108225
final value 84.103953
converged
Fitting Repeat 2
# weights: 103
initial value 107.657291
iter 10 value 93.975565
iter 20 value 87.713634
iter 30 value 84.238684
iter 40 value 81.945763
iter 50 value 81.299104
iter 60 value 79.805773
iter 70 value 79.017515
iter 80 value 78.998490
final value 78.991188
converged
Fitting Repeat 3
# weights: 103
initial value 116.929067
iter 10 value 94.048292
iter 20 value 93.703151
iter 30 value 85.233055
iter 40 value 82.089165
iter 50 value 80.998944
iter 60 value 80.513421
iter 70 value 80.506879
iter 80 value 79.810336
iter 90 value 79.658722
final value 79.658689
converged
Fitting Repeat 4
# weights: 103
initial value 101.130798
iter 10 value 94.054373
iter 20 value 85.365018
iter 30 value 84.812876
iter 40 value 84.773279
iter 50 value 84.689982
iter 60 value 84.147190
final value 84.103953
converged
Fitting Repeat 5
# weights: 103
initial value 109.196324
iter 10 value 94.054923
iter 20 value 93.933552
iter 30 value 93.675690
iter 40 value 90.052227
iter 50 value 87.194860
iter 60 value 86.370331
iter 70 value 85.531991
iter 80 value 81.016892
iter 90 value 79.920975
iter 100 value 79.041553
final value 79.041553
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 103.864253
iter 10 value 94.239459
iter 20 value 94.007703
iter 30 value 89.221261
iter 40 value 85.008520
iter 50 value 84.769324
iter 60 value 84.037740
iter 70 value 81.591305
iter 80 value 78.957431
iter 90 value 78.291765
iter 100 value 77.840916
final value 77.840916
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.710062
iter 10 value 92.947975
iter 20 value 87.772150
iter 30 value 85.344049
iter 40 value 81.658299
iter 50 value 81.428109
final value 81.426042
converged
Fitting Repeat 3
# weights: 305
initial value 101.622558
iter 10 value 93.411198
iter 20 value 87.221427
iter 30 value 85.577805
iter 40 value 85.071062
iter 50 value 84.020649
iter 60 value 80.712119
iter 70 value 80.300216
iter 80 value 79.206265
iter 90 value 78.291237
iter 100 value 77.415023
final value 77.415023
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.527303
iter 10 value 93.994262
iter 20 value 87.342922
iter 30 value 84.740170
iter 40 value 84.276979
iter 50 value 84.029561
iter 60 value 84.005005
iter 70 value 83.823471
iter 80 value 82.125368
iter 90 value 78.691111
iter 100 value 78.032051
final value 78.032051
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.066775
iter 10 value 93.938805
iter 20 value 88.596005
iter 30 value 85.490369
iter 40 value 84.327294
iter 50 value 81.658863
iter 60 value 80.807616
iter 70 value 80.223869
iter 80 value 79.929280
iter 90 value 79.881250
iter 100 value 79.519586
final value 79.519586
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.197861
iter 10 value 94.347257
iter 20 value 86.966612
iter 30 value 84.886782
iter 40 value 83.012899
iter 50 value 80.765928
iter 60 value 80.198729
iter 70 value 79.146086
iter 80 value 78.528992
iter 90 value 78.261258
iter 100 value 77.551327
final value 77.551327
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.814279
iter 10 value 94.058970
iter 20 value 93.121826
iter 30 value 85.649856
iter 40 value 82.850303
iter 50 value 80.035043
iter 60 value 79.729987
iter 70 value 79.121516
iter 80 value 78.304975
iter 90 value 77.654799
iter 100 value 77.536789
final value 77.536789
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.642422
iter 10 value 94.094825
iter 20 value 93.692365
iter 30 value 92.460683
iter 40 value 91.555344
iter 50 value 86.903521
iter 60 value 81.846307
iter 70 value 80.475408
iter 80 value 79.917013
iter 90 value 79.549466
iter 100 value 79.417718
final value 79.417718
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.677813
iter 10 value 95.356384
iter 20 value 94.404966
iter 30 value 94.192166
iter 40 value 86.238926
iter 50 value 84.399590
iter 60 value 80.622101
iter 70 value 78.677645
iter 80 value 78.102200
iter 90 value 77.756572
iter 100 value 77.321165
final value 77.321165
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.320028
iter 10 value 94.250520
iter 20 value 91.358914
iter 30 value 86.571597
iter 40 value 84.590001
iter 50 value 79.565403
iter 60 value 78.953101
iter 70 value 77.901782
iter 80 value 77.345573
iter 90 value 77.122055
iter 100 value 76.960422
final value 76.960422
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.622200
final value 94.054627
converged
Fitting Repeat 2
# weights: 103
initial value 98.736929
iter 10 value 94.034494
iter 20 value 90.281694
iter 30 value 89.320197
iter 40 value 89.316784
iter 50 value 88.367120
iter 60 value 87.758656
iter 70 value 84.463475
iter 80 value 81.791015
iter 90 value 81.639154
iter 100 value 81.632989
final value 81.632989
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 102.963902
iter 10 value 94.034735
iter 20 value 93.920639
iter 30 value 83.574871
iter 40 value 83.562469
iter 50 value 83.453992
iter 60 value 83.453090
iter 70 value 83.450974
iter 80 value 83.450678
iter 90 value 83.450593
final value 83.450589
converged
Fitting Repeat 4
# weights: 103
initial value 98.051274
final value 94.054410
converged
Fitting Repeat 5
# weights: 103
initial value 111.758627
iter 10 value 94.054821
iter 20 value 94.052922
iter 20 value 94.052922
iter 20 value 94.052921
final value 94.052921
converged
Fitting Repeat 1
# weights: 305
initial value 98.815244
iter 10 value 93.506382
iter 20 value 92.757173
iter 30 value 92.755338
iter 30 value 92.755338
final value 92.755338
converged
Fitting Repeat 2
# weights: 305
initial value 111.514247
iter 10 value 94.037614
iter 20 value 94.034557
final value 94.033822
converged
Fitting Repeat 3
# weights: 305
initial value 118.303094
iter 10 value 94.057398
iter 20 value 94.044675
iter 30 value 87.958069
iter 40 value 85.830643
iter 50 value 85.370775
final value 85.370752
converged
Fitting Repeat 4
# weights: 305
initial value 95.203997
iter 10 value 94.057288
iter 20 value 94.053034
final value 94.052745
converged
Fitting Repeat 5
# weights: 305
initial value 95.186274
iter 10 value 94.057802
iter 20 value 94.052923
final value 94.052921
converged
Fitting Repeat 1
# weights: 507
initial value 112.845630
iter 10 value 94.060182
iter 20 value 87.834263
iter 30 value 82.426775
iter 40 value 82.173607
iter 50 value 81.673576
iter 60 value 81.392419
iter 70 value 80.945389
iter 80 value 79.963105
iter 90 value 79.333784
iter 100 value 77.834429
final value 77.834429
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.295163
iter 10 value 93.888362
iter 20 value 93.882050
iter 30 value 93.876886
iter 40 value 87.031807
iter 50 value 83.158002
iter 60 value 83.147837
iter 70 value 83.145666
iter 80 value 82.596526
iter 90 value 81.746906
iter 100 value 81.742368
final value 81.742368
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.858711
iter 10 value 94.049731
iter 20 value 93.771745
iter 30 value 83.578065
iter 40 value 83.568090
iter 50 value 83.453370
iter 60 value 83.451413
iter 70 value 83.274163
iter 80 value 79.483920
iter 90 value 77.009433
iter 100 value 75.883992
final value 75.883992
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.179371
iter 10 value 94.025528
iter 20 value 93.959677
iter 30 value 88.050521
iter 40 value 82.163847
iter 50 value 81.628161
iter 60 value 81.621101
final value 81.621075
converged
Fitting Repeat 5
# weights: 507
initial value 110.291723
iter 10 value 93.754666
iter 20 value 92.248103
iter 30 value 92.239020
iter 40 value 92.236187
iter 50 value 92.233772
iter 60 value 92.233159
iter 70 value 92.231254
iter 80 value 92.230679
iter 90 value 92.230146
iter 100 value 92.039763
final value 92.039763
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.061234
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 106.438865
final value 94.467391
converged
Fitting Repeat 3
# weights: 103
initial value 98.867267
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 105.277530
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.146898
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 101.040292
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 126.863810
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 111.337877
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 103.234700
final value 94.322897
converged
Fitting Repeat 5
# weights: 305
initial value 110.451790
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 104.212583
iter 10 value 92.228782
final value 92.227947
converged
Fitting Repeat 2
# weights: 507
initial value 96.697879
final value 94.484210
converged
Fitting Repeat 3
# weights: 507
initial value 96.659852
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 98.616495
iter 10 value 93.580112
iter 20 value 90.346132
iter 30 value 90.345747
final value 90.345709
converged
Fitting Repeat 5
# weights: 507
initial value 130.142728
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 98.686074
iter 10 value 94.454911
iter 20 value 90.153269
iter 30 value 86.307293
iter 40 value 85.174117
iter 50 value 84.319325
iter 60 value 83.704058
iter 70 value 83.680728
iter 80 value 83.543058
iter 90 value 83.473523
final value 83.473238
converged
Fitting Repeat 2
# weights: 103
initial value 104.133412
iter 10 value 94.458511
iter 20 value 92.403612
iter 30 value 91.222668
iter 40 value 86.929811
iter 50 value 84.847100
iter 60 value 84.212650
iter 70 value 82.791654
iter 80 value 82.152925
iter 90 value 81.997552
final value 81.989783
converged
Fitting Repeat 3
# weights: 103
initial value 103.929654
iter 10 value 94.488590
iter 20 value 94.440839
iter 30 value 86.143575
iter 40 value 85.310247
iter 50 value 84.471189
iter 60 value 84.291913
iter 70 value 83.841620
iter 80 value 83.484606
iter 90 value 83.473247
final value 83.473239
converged
Fitting Repeat 4
# weights: 103
initial value 101.497705
iter 10 value 94.488432
iter 20 value 94.177503
iter 30 value 89.400043
iter 40 value 88.121113
iter 50 value 87.983546
iter 60 value 87.682343
iter 70 value 86.727389
iter 80 value 85.444609
iter 90 value 83.338376
iter 100 value 83.151344
final value 83.151344
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 105.492450
iter 10 value 94.422394
iter 20 value 86.320247
iter 30 value 85.592578
iter 40 value 84.097933
iter 50 value 83.744204
iter 60 value 83.487641
final value 83.473238
converged
Fitting Repeat 1
# weights: 305
initial value 108.420197
iter 10 value 94.489480
iter 20 value 87.037293
iter 30 value 86.513689
iter 40 value 85.925066
iter 50 value 82.610814
iter 60 value 81.461091
iter 70 value 80.990623
iter 80 value 80.803368
iter 90 value 80.668427
iter 100 value 80.594803
final value 80.594803
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.813058
iter 10 value 94.538623
iter 20 value 92.621303
iter 30 value 86.173271
iter 40 value 84.547260
iter 50 value 82.679645
iter 60 value 82.240274
iter 70 value 81.814145
iter 80 value 81.386993
iter 90 value 81.211630
iter 100 value 81.138987
final value 81.138987
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 123.082007
iter 10 value 92.938163
iter 20 value 84.839355
iter 30 value 83.451897
iter 40 value 82.539504
iter 50 value 81.746025
iter 60 value 81.244994
iter 70 value 80.921307
iter 80 value 80.885998
iter 90 value 80.871192
iter 100 value 80.826336
final value 80.826336
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.717440
iter 10 value 87.903646
iter 20 value 84.447847
iter 30 value 84.196455
iter 40 value 82.618296
iter 50 value 81.505638
iter 60 value 80.950712
iter 70 value 80.850301
iter 80 value 80.799489
iter 90 value 80.726518
iter 100 value 80.594118
final value 80.594118
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.481853
iter 10 value 94.295132
iter 20 value 92.589278
iter 30 value 85.660616
iter 40 value 84.618338
iter 50 value 82.903871
iter 60 value 82.365647
iter 70 value 81.567970
iter 80 value 81.313339
iter 90 value 81.270393
iter 100 value 81.102862
final value 81.102862
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.646434
iter 10 value 91.135174
iter 20 value 86.969230
iter 30 value 82.467328
iter 40 value 81.965556
iter 50 value 81.492811
iter 60 value 81.256400
iter 70 value 81.090421
iter 80 value 80.956658
iter 90 value 80.786729
iter 100 value 80.710946
final value 80.710946
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 110.732630
iter 10 value 94.508716
iter 20 value 92.814921
iter 30 value 85.705633
iter 40 value 84.939590
iter 50 value 83.900279
iter 60 value 83.350132
iter 70 value 82.582633
iter 80 value 82.303121
iter 90 value 82.026128
iter 100 value 81.514478
final value 81.514478
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.532705
iter 10 value 95.172350
iter 20 value 93.323749
iter 30 value 91.241412
iter 40 value 90.986470
iter 50 value 84.285425
iter 60 value 83.417316
iter 70 value 83.114354
iter 80 value 82.636138
iter 90 value 82.084652
iter 100 value 81.514585
final value 81.514585
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 137.379674
iter 10 value 94.551608
iter 20 value 87.235619
iter 30 value 86.199025
iter 40 value 84.932293
iter 50 value 82.043565
iter 60 value 81.380881
iter 70 value 81.047218
iter 80 value 80.892174
iter 90 value 80.705264
iter 100 value 80.620957
final value 80.620957
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.682830
iter 10 value 94.620413
iter 20 value 87.406833
iter 30 value 85.723633
iter 40 value 83.540860
iter 50 value 83.032297
iter 60 value 82.842498
iter 70 value 82.785438
iter 80 value 82.421289
iter 90 value 82.090927
iter 100 value 81.780609
final value 81.780609
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.198878
final value 94.485911
converged
Fitting Repeat 2
# weights: 103
initial value 103.544465
final value 94.485686
converged
Fitting Repeat 3
# weights: 103
initial value 101.063025
final value 94.485743
converged
Fitting Repeat 4
# weights: 103
initial value 103.584294
final value 94.485727
converged
Fitting Repeat 5
# weights: 103
initial value 101.301099
final value 94.473950
converged
Fitting Repeat 1
# weights: 305
initial value 106.243247
iter 10 value 94.491506
iter 20 value 94.479956
iter 30 value 93.407439
iter 40 value 85.249014
iter 50 value 84.520777
iter 60 value 84.194383
iter 70 value 84.135278
iter 80 value 84.133456
iter 90 value 84.129820
iter 100 value 83.797628
final value 83.797628
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 95.221248
iter 10 value 94.488951
iter 20 value 94.478282
iter 30 value 86.751665
iter 40 value 83.070605
iter 50 value 82.600332
iter 60 value 82.094960
iter 70 value 82.052045
iter 80 value 82.049917
final value 82.049794
converged
Fitting Repeat 3
# weights: 305
initial value 96.602096
iter 10 value 94.488748
iter 20 value 94.326505
iter 30 value 88.189254
iter 40 value 87.850280
iter 50 value 86.392455
iter 60 value 85.283568
iter 70 value 85.279447
final value 85.279377
converged
Fitting Repeat 4
# weights: 305
initial value 97.921411
iter 10 value 94.472370
iter 20 value 94.468000
iter 30 value 90.525773
iter 40 value 85.211703
iter 50 value 85.165802
iter 60 value 85.164321
iter 70 value 85.164245
iter 70 value 85.164244
final value 85.164244
converged
Fitting Repeat 5
# weights: 305
initial value 103.029266
iter 10 value 94.489526
iter 20 value 94.258641
iter 30 value 84.603018
iter 40 value 84.600555
iter 50 value 84.545678
iter 60 value 84.540792
iter 70 value 84.536840
iter 80 value 84.532448
iter 90 value 83.956331
iter 100 value 83.812268
final value 83.812268
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.670362
iter 10 value 94.492368
iter 20 value 94.484106
iter 30 value 92.329121
iter 40 value 90.693492
iter 50 value 82.891043
iter 60 value 81.328142
iter 70 value 80.913059
final value 80.912864
converged
Fitting Repeat 2
# weights: 507
initial value 109.740570
iter 10 value 94.475517
iter 20 value 94.467620
iter 30 value 93.110351
iter 40 value 88.520227
iter 50 value 85.614577
iter 60 value 82.973898
iter 70 value 82.919181
iter 80 value 82.535342
iter 90 value 82.487849
iter 100 value 82.475344
final value 82.475344
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 100.024296
iter 10 value 94.450371
iter 20 value 94.439760
iter 30 value 92.352426
iter 40 value 90.987887
iter 50 value 90.967392
iter 60 value 81.668250
iter 70 value 81.444582
iter 80 value 81.444471
iter 90 value 81.444322
iter 100 value 81.335231
final value 81.335231
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 132.399497
iter 10 value 94.473578
iter 20 value 94.467867
iter 20 value 94.467866
iter 20 value 94.467866
final value 94.467866
converged
Fitting Repeat 5
# weights: 507
initial value 102.252727
iter 10 value 94.492882
iter 20 value 94.140496
iter 30 value 86.525384
iter 40 value 84.910083
iter 50 value 84.774540
iter 60 value 84.773005
iter 70 value 84.772685
iter 80 value 84.772625
iter 90 value 84.771685
iter 100 value 82.247197
final value 82.247197
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 128.045096
iter 10 value 119.318337
iter 20 value 112.517704
iter 30 value 107.111858
iter 40 value 106.886431
iter 50 value 105.170324
iter 60 value 103.493373
iter 70 value 101.738473
iter 80 value 101.053764
iter 90 value 100.715306
iter 100 value 100.623824
final value 100.623824
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 132.310609
iter 10 value 117.688807
iter 20 value 113.806933
iter 30 value 108.709086
iter 40 value 107.232142
iter 50 value 105.868755
iter 60 value 105.407471
iter 70 value 105.059853
iter 80 value 104.442289
iter 90 value 103.541601
iter 100 value 103.286352
final value 103.286352
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 134.149584
iter 10 value 118.084674
iter 20 value 116.443514
iter 30 value 109.539637
iter 40 value 105.915938
iter 50 value 105.625930
iter 60 value 105.285221
iter 70 value 104.587349
iter 80 value 103.368274
iter 90 value 102.394141
iter 100 value 101.877655
final value 101.877655
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 126.842323
iter 10 value 117.837858
iter 20 value 115.952294
iter 30 value 106.537026
iter 40 value 102.365941
iter 50 value 101.909274
iter 60 value 101.301356
iter 70 value 100.816051
iter 80 value 100.564026
iter 90 value 100.399059
iter 100 value 100.323839
final value 100.323839
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 134.974967
iter 10 value 118.182237
iter 20 value 117.505432
iter 30 value 109.700323
iter 40 value 108.798836
iter 50 value 108.608025
iter 60 value 104.858658
iter 70 value 104.431303
iter 80 value 103.898754
iter 90 value 102.308565
iter 100 value 101.997607
final value 101.997607
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Nov 19 23:14:47 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
32.545 1.276 50.595
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 24.642 | 1.205 | 25.894 | |
| FreqInteractors | 0.174 | 0.011 | 0.185 | |
| calculateAAC | 0.028 | 0.007 | 0.034 | |
| calculateAutocor | 0.281 | 0.056 | 0.338 | |
| calculateCTDC | 0.057 | 0.006 | 0.063 | |
| calculateCTDD | 0.419 | 0.017 | 0.438 | |
| calculateCTDT | 0.171 | 0.013 | 0.185 | |
| calculateCTriad | 0.302 | 0.023 | 0.325 | |
| calculateDC | 0.075 | 0.008 | 0.084 | |
| calculateF | 0.248 | 0.008 | 0.255 | |
| calculateKSAAP | 0.074 | 0.007 | 0.081 | |
| calculateQD_Sm | 1.316 | 0.111 | 1.431 | |
| calculateTC | 1.258 | 0.125 | 1.387 | |
| calculateTC_Sm | 0.192 | 0.012 | 0.205 | |
| corr_plot | 25.584 | 1.317 | 26.963 | |
| enrichfindP | 0.339 | 0.051 | 39.727 | |
| enrichfind_hp | 0.055 | 0.030 | 1.040 | |
| enrichplot | 0.282 | 0.009 | 0.292 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.050 | 0.008 | 3.758 | |
| getHPI | 0.000 | 0.001 | 0.001 | |
| get_negativePPI | 0.001 | 0.000 | 0.001 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.001 | 0.000 | 0.001 | |
| plotPPI | 0.056 | 0.005 | 0.062 | |
| pred_ensembel | 10.188 | 0.332 | 9.077 | |
| var_imp | 27.391 | 1.471 | 28.964 | |