Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-08-12 12:07 -0400 (Tue, 12 Aug 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.2 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4818 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.5.1 (2025-06-13 ucrt) -- "Great Square Root" | 4553 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4595 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4537 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4535 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 987/2317 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.22-bioc\R\library --no-vignettes --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-08-12 03:14:24 -0400 (Tue, 12 Aug 2025) |
EndedAt: 2025-08-12 03:20:45 -0400 (Tue, 12 Aug 2025) |
EllapsedTime: 380.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.22-bioc\R\library --no-vignettes --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck' * using R version 4.5.1 (2025-06-13 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.15.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 35.50 2.18 37.71 var_imp 35.67 1.31 36.98 corr_plot 34.85 1.79 36.66 pred_ensembel 14.42 0.31 13.17 enrichfindP 0.64 0.10 12.89 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'F:/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.22-bioc/R/library' * installing *source* package 'HPiP' ... ** this is package 'HPiP' version '1.15.0' ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 (2025-06-13 ucrt) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 94.715978 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 104.208159 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.780771 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.907695 final value 93.582418 converged Fitting Repeat 5 # weights: 103 initial value 94.992185 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.942583 final value 93.582418 converged Fitting Repeat 2 # weights: 305 initial value 97.296845 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 102.775498 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 101.783075 final value 93.582418 converged Fitting Repeat 5 # weights: 305 initial value 98.513354 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 107.688843 final value 93.582418 converged Fitting Repeat 2 # weights: 507 initial value 95.247359 final value 93.582418 converged Fitting Repeat 3 # weights: 507 initial value 100.532439 iter 10 value 91.418208 iter 20 value 86.452646 iter 30 value 84.050725 iter 40 value 83.195698 iter 50 value 82.440014 final value 82.420887 converged Fitting Repeat 4 # weights: 507 initial value 101.682477 iter 10 value 85.017021 iter 20 value 84.752741 iter 30 value 84.747755 iter 40 value 84.745410 final value 84.745344 converged Fitting Repeat 5 # weights: 507 initial value 107.999785 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 98.893664 iter 10 value 94.270817 iter 20 value 94.062230 iter 30 value 94.015577 iter 40 value 87.922633 iter 50 value 87.206928 iter 60 value 84.291503 iter 70 value 82.882225 iter 80 value 81.953012 iter 90 value 81.806085 iter 100 value 81.790556 final value 81.790556 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 103.109956 iter 10 value 93.753532 iter 20 value 92.109500 iter 30 value 86.843537 iter 40 value 82.269967 iter 50 value 82.073299 iter 60 value 82.046116 iter 70 value 82.034316 iter 80 value 81.898948 iter 90 value 81.760100 iter 100 value 81.724830 final value 81.724830 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.197861 iter 10 value 93.999078 iter 20 value 93.378022 iter 30 value 93.331644 iter 40 value 89.336056 iter 50 value 87.391944 iter 60 value 86.789160 iter 70 value 86.645249 iter 80 value 86.578464 iter 90 value 85.047070 iter 100 value 84.782471 final value 84.782471 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.995150 iter 10 value 92.743567 iter 20 value 87.372103 iter 30 value 85.310411 iter 40 value 85.019067 iter 50 value 84.948034 iter 60 value 84.770370 final value 84.770104 converged Fitting Repeat 5 # weights: 103 initial value 113.557428 iter 10 value 93.903946 iter 20 value 87.110598 iter 30 value 85.294997 iter 40 value 84.807809 iter 50 value 84.770424 final value 84.770104 converged Fitting Repeat 1 # weights: 305 initial value 105.871816 iter 10 value 94.055338 iter 20 value 90.363213 iter 30 value 85.642105 iter 40 value 84.310831 iter 50 value 84.204345 iter 60 value 83.989263 iter 70 value 83.842562 iter 80 value 82.652777 iter 90 value 81.533641 iter 100 value 80.769958 final value 80.769958 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.637375 iter 10 value 93.765772 iter 20 value 90.371437 iter 30 value 86.655476 iter 40 value 84.795817 iter 50 value 83.239381 iter 60 value 82.553011 iter 70 value 82.109545 iter 80 value 82.017118 iter 90 value 81.619832 iter 100 value 81.244715 final value 81.244715 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.081660 iter 10 value 94.059365 iter 20 value 93.980450 iter 30 value 92.793359 iter 40 value 83.982362 iter 50 value 83.096192 iter 60 value 82.362664 iter 70 value 81.445895 iter 80 value 81.276884 iter 90 value 80.908408 iter 100 value 80.204016 final value 80.204016 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.773084 iter 10 value 92.414808 iter 20 value 88.666336 iter 30 value 84.696140 iter 40 value 82.065998 iter 50 value 81.234009 iter 60 value 80.902817 iter 70 value 80.642172 iter 80 value 80.573408 iter 90 value 80.510076 iter 100 value 80.474843 final value 80.474843 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.528695 iter 10 value 93.849068 iter 20 value 90.499244 iter 30 value 85.822044 iter 40 value 84.708270 iter 50 value 83.468578 iter 60 value 82.859027 iter 70 value 82.000568 iter 80 value 80.682128 iter 90 value 80.197497 iter 100 value 80.053240 final value 80.053240 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.553250 iter 10 value 93.735619 iter 20 value 93.633938 iter 30 value 86.938362 iter 40 value 85.034702 iter 50 value 81.867164 iter 60 value 81.089693 iter 70 value 80.339269 iter 80 value 79.992949 iter 90 value 79.830027 iter 100 value 79.782194 final value 79.782194 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.825131 iter 10 value 94.464270 iter 20 value 93.703652 iter 30 value 93.390294 iter 40 value 86.093494 iter 50 value 84.795457 iter 60 value 84.665650 iter 70 value 84.418557 iter 80 value 82.425118 iter 90 value 81.237644 iter 100 value 81.002818 final value 81.002818 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.161847 iter 10 value 93.455792 iter 20 value 92.339775 iter 30 value 91.958900 iter 40 value 86.335223 iter 50 value 85.628382 iter 60 value 85.029686 iter 70 value 84.651180 iter 80 value 83.937818 iter 90 value 83.225487 iter 100 value 81.799857 final value 81.799857 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.117384 iter 10 value 95.659501 iter 20 value 89.081698 iter 30 value 85.560351 iter 40 value 84.836751 iter 50 value 84.586027 iter 60 value 84.298646 iter 70 value 82.910698 iter 80 value 82.544108 iter 90 value 82.253891 iter 100 value 81.779475 final value 81.779475 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.427481 iter 10 value 93.879279 iter 20 value 89.131484 iter 30 value 86.890037 iter 40 value 85.727595 iter 50 value 83.804019 iter 60 value 82.721051 iter 70 value 82.161549 iter 80 value 81.951910 iter 90 value 81.769216 iter 100 value 81.619075 final value 81.619075 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.277207 final value 94.054322 converged Fitting Repeat 2 # weights: 103 initial value 104.223032 final value 94.054697 converged Fitting Repeat 3 # weights: 103 initial value 97.635219 iter 10 value 85.615587 iter 20 value 84.888958 iter 30 value 84.877248 iter 40 value 84.876823 final value 84.875958 converged Fitting Repeat 4 # weights: 103 initial value 99.327706 final value 94.056247 converged Fitting Repeat 5 # weights: 103 initial value 96.036402 iter 10 value 93.765297 iter 20 value 93.584540 iter 30 value 93.583518 final value 93.582774 converged Fitting Repeat 1 # weights: 305 initial value 102.040034 iter 10 value 94.057979 iter 20 value 94.053040 iter 30 value 91.738915 iter 40 value 87.400798 iter 50 value 87.095753 iter 60 value 87.056084 iter 70 value 87.055019 iter 80 value 85.295867 iter 90 value 85.287374 iter 100 value 85.097125 final value 85.097125 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 93.444800 iter 10 value 92.548241 iter 20 value 85.532683 iter 30 value 84.954244 iter 40 value 84.272929 iter 50 value 84.234903 iter 60 value 84.231472 final value 84.230911 converged Fitting Repeat 3 # weights: 305 initial value 115.132164 iter 10 value 94.057693 iter 20 value 94.044425 iter 30 value 89.110232 iter 40 value 84.092206 iter 50 value 82.817990 iter 60 value 82.651503 iter 70 value 80.504753 iter 80 value 79.781357 iter 90 value 79.477539 iter 100 value 79.288890 final value 79.288890 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.905681 iter 10 value 94.057534 iter 20 value 93.988382 iter 30 value 84.550869 iter 40 value 84.073598 iter 50 value 83.737868 iter 60 value 83.481194 iter 70 value 83.480351 iter 80 value 83.471027 iter 90 value 83.298382 iter 100 value 82.916281 final value 82.916281 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.861935 iter 10 value 93.587765 iter 20 value 93.583548 iter 30 value 92.642593 iter 40 value 85.236493 iter 50 value 84.941157 iter 60 value 84.940172 iter 70 value 84.939297 iter 80 value 84.929760 iter 90 value 84.926702 iter 100 value 84.592851 final value 84.592851 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.585884 iter 10 value 91.400745 iter 20 value 90.822148 iter 30 value 90.673234 iter 40 value 90.670289 iter 50 value 90.571594 iter 60 value 90.571092 iter 70 value 90.546511 iter 80 value 90.482314 iter 90 value 90.458517 iter 100 value 90.445258 final value 90.445258 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.793703 iter 10 value 93.997016 iter 20 value 93.880187 final value 93.583241 converged Fitting Repeat 3 # weights: 507 initial value 126.093108 iter 10 value 93.590682 iter 20 value 93.582326 iter 30 value 87.452659 iter 40 value 85.282089 iter 50 value 85.026581 iter 60 value 82.449709 iter 70 value 81.994643 iter 80 value 81.028968 iter 90 value 80.453406 iter 100 value 79.688215 final value 79.688215 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 136.946137 iter 10 value 93.819561 iter 20 value 93.808556 iter 30 value 93.510386 iter 40 value 87.232683 iter 50 value 83.396882 iter 60 value 80.625514 iter 70 value 79.854638 iter 80 value 79.475300 iter 90 value 79.339726 iter 100 value 79.321974 final value 79.321974 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.958305 iter 10 value 93.590556 iter 20 value 93.353719 iter 30 value 86.854625 iter 40 value 86.834582 iter 50 value 86.813333 iter 60 value 86.669081 final value 86.668905 converged Fitting Repeat 1 # weights: 103 initial value 103.327162 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.843518 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.467830 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.929032 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.348145 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 105.620090 final value 94.038251 converged Fitting Repeat 2 # weights: 305 initial value 96.315854 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 108.282671 final value 94.038251 converged Fitting Repeat 4 # weights: 305 initial value 102.051679 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 102.332342 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.623606 final value 94.038251 converged Fitting Repeat 2 # weights: 507 initial value 110.028613 iter 10 value 94.133469 iter 20 value 94.052923 final value 94.052911 converged Fitting Repeat 3 # weights: 507 initial value 121.037753 final value 94.038251 converged Fitting Repeat 4 # weights: 507 initial value 99.769041 final value 94.052911 converged Fitting Repeat 5 # weights: 507 initial value 96.544412 iter 10 value 92.312669 iter 20 value 83.323120 iter 30 value 82.982264 iter 40 value 82.979157 iter 40 value 82.979157 iter 40 value 82.979157 final value 82.979157 converged Fitting Repeat 1 # weights: 103 initial value 109.051208 iter 10 value 94.144568 iter 20 value 94.052734 iter 30 value 93.965458 iter 40 value 93.522977 iter 50 value 85.424374 iter 60 value 84.210942 iter 70 value 83.988412 iter 80 value 83.314589 iter 90 value 82.494422 iter 100 value 82.270643 final value 82.270643 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 106.269675 iter 10 value 93.981950 iter 20 value 91.931913 iter 30 value 86.647924 iter 40 value 85.233636 iter 50 value 84.221773 iter 60 value 83.801716 iter 70 value 83.543853 iter 80 value 83.341673 iter 90 value 81.886281 iter 100 value 81.203550 final value 81.203550 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.118531 iter 10 value 94.032029 iter 20 value 86.793463 iter 30 value 85.552008 iter 40 value 85.045992 iter 50 value 84.580964 iter 60 value 84.334178 iter 70 value 83.208406 iter 80 value 82.399868 iter 90 value 82.370338 final value 82.370301 converged Fitting Repeat 4 # weights: 103 initial value 96.397102 iter 10 value 89.680152 iter 20 value 85.756420 iter 30 value 85.018714 iter 40 value 83.713171 iter 50 value 83.259901 iter 60 value 82.754331 iter 70 value 82.721166 final value 82.721163 converged Fitting Repeat 5 # weights: 103 initial value 98.026939 iter 10 value 92.246678 iter 20 value 86.526814 iter 30 value 85.123646 iter 40 value 84.587028 iter 50 value 83.494639 iter 60 value 82.845624 iter 70 value 82.370390 final value 82.370301 converged Fitting Repeat 1 # weights: 305 initial value 106.231529 iter 10 value 94.067084 iter 20 value 93.119587 iter 30 value 85.180768 iter 40 value 84.144431 iter 50 value 81.659128 iter 60 value 81.249903 iter 70 value 80.388819 iter 80 value 79.945105 iter 90 value 79.914073 iter 100 value 79.907486 final value 79.907486 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.852310 iter 10 value 95.557924 iter 20 value 94.090124 iter 30 value 91.329762 iter 40 value 85.245562 iter 50 value 83.755445 iter 60 value 81.072605 iter 70 value 80.867898 iter 80 value 80.003031 iter 90 value 79.580531 iter 100 value 79.363226 final value 79.363226 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.562346 iter 10 value 94.331135 iter 20 value 94.055157 iter 30 value 89.161678 iter 40 value 88.556043 iter 50 value 88.116414 iter 60 value 86.836748 iter 70 value 83.876680 iter 80 value 83.504342 iter 90 value 82.949606 iter 100 value 81.192279 final value 81.192279 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.572510 iter 10 value 94.045777 iter 20 value 85.708103 iter 30 value 84.258296 iter 40 value 83.790626 iter 50 value 83.647452 iter 60 value 82.936457 iter 70 value 80.778291 iter 80 value 79.748521 iter 90 value 79.692237 iter 100 value 79.645244 final value 79.645244 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.916654 iter 10 value 95.554830 iter 20 value 86.636573 iter 30 value 84.961033 iter 40 value 82.636437 iter 50 value 81.851825 iter 60 value 81.615858 iter 70 value 81.282805 iter 80 value 81.169417 iter 90 value 81.166832 iter 100 value 81.144181 final value 81.144181 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.866093 iter 10 value 93.823760 iter 20 value 87.533763 iter 30 value 85.563236 iter 40 value 82.784755 iter 50 value 81.229511 iter 60 value 80.478689 iter 70 value 79.832106 iter 80 value 79.588493 iter 90 value 79.294463 iter 100 value 79.074806 final value 79.074806 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.331134 iter 10 value 89.755239 iter 20 value 85.766796 iter 30 value 85.108966 iter 40 value 84.483411 iter 50 value 83.394347 iter 60 value 82.957676 iter 70 value 82.605054 iter 80 value 81.772097 iter 90 value 80.976155 iter 100 value 80.405276 final value 80.405276 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.532594 iter 10 value 94.357524 iter 20 value 91.372171 iter 30 value 84.899207 iter 40 value 83.352601 iter 50 value 83.194262 iter 60 value 81.637847 iter 70 value 80.690792 iter 80 value 79.986431 iter 90 value 79.646258 iter 100 value 79.273971 final value 79.273971 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.659448 iter 10 value 94.181089 iter 20 value 86.819024 iter 30 value 84.437380 iter 40 value 83.317984 iter 50 value 82.200538 iter 60 value 81.459213 iter 70 value 80.930842 iter 80 value 80.811424 iter 90 value 80.297805 iter 100 value 79.920474 final value 79.920474 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.123992 iter 10 value 93.402146 iter 20 value 91.361565 iter 30 value 85.603140 iter 40 value 84.272918 iter 50 value 83.891065 iter 60 value 83.350902 iter 70 value 82.858067 iter 80 value 81.578902 iter 90 value 80.361279 iter 100 value 79.820792 final value 79.820792 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.723724 final value 94.054510 converged Fitting Repeat 2 # weights: 103 initial value 97.064131 final value 94.054368 converged Fitting Repeat 3 # weights: 103 initial value 100.312969 iter 10 value 94.054548 iter 20 value 94.052695 iter 30 value 93.625098 iter 40 value 91.054194 iter 50 value 91.011148 final value 91.010656 converged Fitting Repeat 4 # weights: 103 initial value 101.488711 final value 94.054357 converged Fitting Repeat 5 # weights: 103 initial value 99.925099 iter 10 value 93.429036 iter 20 value 93.373502 iter 30 value 85.565081 iter 40 value 85.379970 iter 50 value 85.378203 final value 85.378163 converged Fitting Repeat 1 # weights: 305 initial value 113.478846 iter 10 value 94.042197 iter 20 value 90.054909 iter 30 value 86.900272 iter 30 value 86.900272 iter 30 value 86.900272 final value 86.900272 converged Fitting Repeat 2 # weights: 305 initial value 99.509389 iter 10 value 94.057426 iter 20 value 93.957653 iter 30 value 86.331446 iter 40 value 85.335471 iter 50 value 84.957563 final value 84.951297 converged Fitting Repeat 3 # weights: 305 initial value 95.796205 iter 10 value 94.057728 final value 94.053073 converged Fitting Repeat 4 # weights: 305 initial value 99.896888 iter 10 value 94.043468 iter 20 value 93.835522 iter 30 value 89.421663 iter 40 value 88.654915 iter 50 value 88.544667 iter 60 value 88.439606 iter 70 value 88.278763 iter 80 value 88.277287 iter 90 value 88.231021 iter 100 value 83.667234 final value 83.667234 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.509466 iter 10 value 94.057180 iter 20 value 93.616035 final value 93.372543 converged Fitting Repeat 1 # weights: 507 initial value 117.700609 iter 10 value 94.062304 iter 20 value 94.051608 iter 30 value 85.883511 iter 40 value 83.881879 iter 50 value 83.868664 iter 60 value 83.593590 iter 70 value 83.292078 final value 83.290406 converged Fitting Repeat 2 # weights: 507 initial value 95.079137 iter 10 value 94.047058 iter 20 value 94.045825 iter 30 value 94.034895 iter 40 value 90.557129 iter 50 value 90.448350 iter 60 value 84.383687 iter 70 value 82.355820 iter 80 value 82.007778 iter 90 value 81.970940 final value 81.970629 converged Fitting Repeat 3 # weights: 507 initial value 100.554269 iter 10 value 93.714582 iter 20 value 92.836580 iter 30 value 87.844211 iter 40 value 87.829554 iter 50 value 86.108966 iter 60 value 85.882232 iter 70 value 85.342850 iter 80 value 83.891833 iter 90 value 81.180053 iter 100 value 81.067935 final value 81.067935 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.047041 iter 10 value 92.212498 iter 20 value 91.482809 iter 30 value 91.439271 iter 40 value 91.396276 final value 91.396069 converged Fitting Repeat 5 # weights: 507 initial value 105.749311 iter 10 value 94.059989 iter 20 value 88.959179 iter 30 value 86.900566 final value 86.900555 converged Fitting Repeat 1 # weights: 103 initial value 96.591186 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.647089 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.403405 iter 10 value 94.442543 final value 94.442073 converged Fitting Repeat 4 # weights: 103 initial value 119.759732 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.741934 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.200881 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.047996 iter 10 value 94.482480 final value 94.482478 converged Fitting Repeat 3 # weights: 305 initial value 101.025562 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 104.771609 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 108.889167 iter 10 value 94.291299 iter 10 value 94.291299 iter 10 value 94.291299 final value 94.291299 converged Fitting Repeat 1 # weights: 507 initial value 124.414148 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 96.908432 final value 94.467391 converged Fitting Repeat 3 # weights: 507 initial value 105.721491 final value 94.482149 converged Fitting Repeat 4 # weights: 507 initial value 97.351445 iter 10 value 94.467392 iter 10 value 94.467391 iter 10 value 94.467391 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 99.303998 iter 10 value 94.468210 final value 94.467391 converged Fitting Repeat 1 # weights: 103 initial value 97.916254 iter 10 value 94.480378 iter 20 value 91.726997 iter 30 value 86.399114 iter 40 value 83.609980 iter 50 value 83.032119 iter 60 value 82.490063 iter 70 value 82.280016 iter 80 value 81.590099 iter 90 value 81.533821 iter 90 value 81.533821 final value 81.533821 converged Fitting Repeat 2 # weights: 103 initial value 104.589241 iter 10 value 94.492913 iter 20 value 94.265304 iter 30 value 93.250213 iter 40 value 91.766029 iter 50 value 86.705684 iter 60 value 83.959804 iter 70 value 83.745948 iter 80 value 83.565080 final value 83.564308 converged Fitting Repeat 3 # weights: 103 initial value 108.432915 iter 10 value 94.288734 iter 20 value 89.629464 iter 30 value 86.805023 iter 40 value 86.187190 iter 50 value 83.878330 iter 60 value 83.419397 iter 70 value 83.353561 final value 83.353379 converged Fitting Repeat 4 # weights: 103 initial value 99.076655 iter 10 value 93.333495 iter 20 value 86.376674 iter 30 value 84.604750 iter 40 value 84.434941 iter 50 value 84.395437 iter 60 value 83.734647 iter 70 value 83.617537 final value 83.610812 converged Fitting Repeat 5 # weights: 103 initial value 96.833957 iter 10 value 94.523362 iter 20 value 93.889356 iter 30 value 92.779197 iter 40 value 87.671786 iter 50 value 87.513232 iter 60 value 87.455451 iter 70 value 86.817118 iter 80 value 84.669584 iter 90 value 83.468059 iter 100 value 83.414373 final value 83.414373 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.930690 iter 10 value 94.797154 iter 20 value 93.191823 iter 30 value 89.585378 iter 40 value 87.589578 iter 50 value 87.267744 iter 60 value 84.889350 iter 70 value 83.269203 iter 80 value 82.234920 iter 90 value 81.436648 iter 100 value 80.716970 final value 80.716970 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 115.529185 iter 10 value 95.333678 iter 20 value 85.853573 iter 30 value 84.228939 iter 40 value 84.044020 iter 50 value 82.081676 iter 60 value 81.737236 iter 70 value 81.211125 iter 80 value 80.229245 iter 90 value 79.755272 iter 100 value 79.700957 final value 79.700957 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.396171 iter 10 value 93.027125 iter 20 value 86.536793 iter 30 value 85.918141 iter 40 value 85.242058 iter 50 value 83.465355 iter 60 value 82.913613 iter 70 value 82.106707 iter 80 value 81.824013 iter 90 value 81.740727 iter 100 value 81.685333 final value 81.685333 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.911360 iter 10 value 94.594987 iter 20 value 90.805340 iter 30 value 86.548625 iter 40 value 84.651204 iter 50 value 83.490808 iter 60 value 83.296225 iter 70 value 83.277659 iter 80 value 82.978090 iter 90 value 82.191934 iter 100 value 81.751933 final value 81.751933 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.210429 iter 10 value 94.435907 iter 20 value 86.067156 iter 30 value 84.674823 iter 40 value 84.137291 iter 50 value 83.898118 iter 60 value 83.307646 iter 70 value 82.109409 iter 80 value 82.000331 iter 90 value 81.934221 iter 100 value 81.892918 final value 81.892918 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.920355 iter 10 value 95.297999 iter 20 value 89.050864 iter 30 value 86.450923 iter 40 value 85.471081 iter 50 value 84.142876 iter 60 value 83.538311 iter 70 value 81.303388 iter 80 value 80.510712 iter 90 value 80.189212 iter 100 value 79.817830 final value 79.817830 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.077248 iter 10 value 98.200133 iter 20 value 86.954908 iter 30 value 84.536188 iter 40 value 80.817096 iter 50 value 80.225166 iter 60 value 80.107878 iter 70 value 79.555706 iter 80 value 79.177369 iter 90 value 79.068679 iter 100 value 79.050331 final value 79.050331 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 140.320851 iter 10 value 94.920941 iter 20 value 92.260663 iter 30 value 87.276237 iter 40 value 86.137412 iter 50 value 85.639470 iter 60 value 85.387792 iter 70 value 83.742760 iter 80 value 82.637166 iter 90 value 82.471601 iter 100 value 82.379799 final value 82.379799 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.412531 iter 10 value 94.745934 iter 20 value 94.447304 iter 30 value 85.614417 iter 40 value 83.939801 iter 50 value 83.354955 iter 60 value 81.157789 iter 70 value 80.304716 iter 80 value 79.970284 iter 90 value 79.798255 iter 100 value 79.606602 final value 79.606602 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.365989 iter 10 value 88.466028 iter 20 value 86.334377 iter 30 value 84.367445 iter 40 value 82.281920 iter 50 value 80.268066 iter 60 value 80.061699 iter 70 value 79.989352 iter 80 value 79.887838 iter 90 value 79.834512 iter 100 value 79.661681 final value 79.661681 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.875448 final value 94.486005 converged Fitting Repeat 2 # weights: 103 initial value 96.185426 iter 10 value 94.485922 final value 94.484492 converged Fitting Repeat 3 # weights: 103 initial value 106.197218 final value 94.485870 converged Fitting Repeat 4 # weights: 103 initial value 95.625899 final value 94.485867 converged Fitting Repeat 5 # weights: 103 initial value 100.924749 final value 94.485766 converged Fitting Repeat 1 # weights: 305 initial value 110.020885 iter 10 value 94.488970 iter 20 value 94.484462 iter 30 value 94.383627 iter 40 value 92.211154 iter 50 value 92.185791 iter 60 value 90.096158 iter 70 value 89.890245 iter 80 value 89.885427 final value 89.883189 converged Fitting Repeat 2 # weights: 305 initial value 110.015935 iter 10 value 94.434063 iter 20 value 93.574143 iter 30 value 85.526071 iter 40 value 85.522567 iter 50 value 85.476818 iter 60 value 84.739389 iter 70 value 84.622927 final value 84.622895 converged Fitting Repeat 3 # weights: 305 initial value 102.542499 iter 10 value 94.472323 iter 20 value 94.467583 iter 30 value 86.817421 final value 86.509760 converged Fitting Repeat 4 # weights: 305 initial value 107.014867 iter 10 value 94.489579 iter 20 value 94.484643 iter 30 value 87.264563 iter 40 value 85.039894 iter 50 value 84.919555 iter 60 value 84.919465 final value 84.918549 converged Fitting Repeat 5 # weights: 305 initial value 100.051387 iter 10 value 94.489195 iter 20 value 94.484169 iter 30 value 84.168960 iter 40 value 82.317007 iter 50 value 82.315938 final value 82.315931 converged Fitting Repeat 1 # weights: 507 initial value 126.090895 iter 10 value 94.477048 iter 20 value 94.472080 iter 30 value 94.262859 iter 40 value 93.378939 iter 50 value 85.457587 iter 60 value 85.139064 iter 70 value 85.135322 iter 80 value 85.134957 iter 90 value 84.359112 iter 100 value 82.728500 final value 82.728500 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.049472 iter 10 value 94.449860 iter 20 value 94.397892 iter 30 value 86.943294 iter 40 value 86.728697 iter 50 value 86.658026 iter 60 value 84.989387 iter 70 value 84.850800 iter 80 value 84.403380 iter 90 value 80.687150 iter 100 value 79.553083 final value 79.553083 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.514030 iter 10 value 94.491787 iter 20 value 94.086439 iter 30 value 88.593011 iter 40 value 84.000522 iter 50 value 83.747051 iter 60 value 83.499740 final value 83.498072 converged Fitting Repeat 4 # weights: 507 initial value 94.773710 iter 10 value 94.096919 iter 20 value 94.089349 final value 94.089277 converged Fitting Repeat 5 # weights: 507 initial value 109.367581 iter 10 value 94.476335 iter 20 value 94.470918 iter 30 value 94.469384 iter 40 value 94.221229 iter 50 value 83.627042 iter 60 value 81.024530 iter 70 value 79.194898 iter 80 value 77.971127 iter 90 value 77.711757 iter 100 value 77.691790 final value 77.691790 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.248960 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.785787 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.150457 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.867826 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.166576 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.351223 final value 93.772973 converged Fitting Repeat 2 # weights: 305 initial value 100.570683 iter 10 value 93.772973 iter 10 value 93.772973 iter 10 value 93.772973 final value 93.772973 converged Fitting Repeat 3 # weights: 305 initial value 106.141434 iter 10 value 93.772976 final value 93.772973 converged Fitting Repeat 4 # weights: 305 initial value 96.549681 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 101.895334 iter 10 value 94.313012 iter 20 value 93.438628 final value 93.291715 converged Fitting Repeat 1 # weights: 507 initial value 93.772209 iter 10 value 83.398502 final value 83.377495 converged Fitting Repeat 2 # weights: 507 initial value 96.314286 iter 10 value 93.690645 final value 93.690592 converged Fitting Repeat 3 # weights: 507 initial value 104.066791 final value 94.052435 converged Fitting Repeat 4 # weights: 507 initial value 105.769993 final value 94.484206 converged Fitting Repeat 5 # weights: 507 initial value 116.563475 iter 10 value 93.773155 final value 93.772973 converged Fitting Repeat 1 # weights: 103 initial value 108.304927 iter 10 value 94.494185 iter 20 value 93.987011 iter 30 value 85.342652 iter 40 value 84.442959 iter 50 value 84.255274 iter 60 value 83.959071 iter 70 value 83.917573 final value 83.917300 converged Fitting Repeat 2 # weights: 103 initial value 100.878439 iter 10 value 94.406691 iter 20 value 84.268623 iter 30 value 83.809159 iter 40 value 83.706909 iter 50 value 83.704160 iter 50 value 83.704159 iter 50 value 83.704159 final value 83.704159 converged Fitting Repeat 3 # weights: 103 initial value 96.626584 iter 10 value 90.461698 iter 20 value 85.153139 iter 30 value 83.578376 iter 40 value 83.120989 iter 50 value 83.012611 iter 60 value 82.954287 final value 82.954182 converged Fitting Repeat 4 # weights: 103 initial value 106.727258 iter 10 value 94.284506 iter 20 value 84.948822 iter 30 value 84.227095 iter 40 value 83.944321 iter 50 value 83.917995 final value 83.917300 converged Fitting Repeat 5 # weights: 103 initial value 98.948659 iter 10 value 94.487752 iter 20 value 93.184412 iter 30 value 93.135361 iter 40 value 93.091068 iter 50 value 92.061779 iter 60 value 88.284256 iter 70 value 87.987686 iter 80 value 86.349179 iter 90 value 83.397032 iter 100 value 82.237828 final value 82.237828 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 111.779483 iter 10 value 94.491830 iter 20 value 92.117253 iter 30 value 87.134644 iter 40 value 86.281443 iter 50 value 82.830908 iter 60 value 80.279036 iter 70 value 79.971917 iter 80 value 79.596637 iter 90 value 79.551078 iter 100 value 79.413619 final value 79.413619 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.361188 iter 10 value 96.305002 iter 20 value 91.419414 iter 30 value 87.461031 iter 40 value 84.115125 iter 50 value 82.029927 iter 60 value 81.854566 iter 70 value 81.256912 iter 80 value 81.084507 iter 90 value 80.977954 iter 100 value 80.956919 final value 80.956919 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.886921 iter 10 value 94.354839 iter 20 value 93.620359 iter 30 value 88.945047 iter 40 value 84.881931 iter 50 value 83.501461 iter 60 value 82.959955 iter 70 value 82.664244 iter 80 value 82.566730 iter 90 value 82.473211 iter 100 value 82.390249 final value 82.390249 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.787236 iter 10 value 95.139357 iter 20 value 90.276803 iter 30 value 86.773785 iter 40 value 85.840699 iter 50 value 85.612021 iter 60 value 85.100085 iter 70 value 82.376054 iter 80 value 80.816786 iter 90 value 80.127260 iter 100 value 79.670388 final value 79.670388 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.960872 iter 10 value 94.497155 iter 20 value 93.484840 iter 30 value 86.892695 iter 40 value 86.337312 iter 50 value 83.095585 iter 60 value 80.596075 iter 70 value 79.886415 iter 80 value 79.735585 iter 90 value 79.600851 iter 100 value 79.511681 final value 79.511681 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.913353 iter 10 value 93.871062 iter 20 value 91.070686 iter 30 value 89.720040 iter 40 value 89.072171 iter 50 value 84.489747 iter 60 value 81.553156 iter 70 value 80.284228 iter 80 value 80.046475 iter 90 value 79.976838 iter 100 value 79.693992 final value 79.693992 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.547230 iter 10 value 93.899820 iter 20 value 86.411217 iter 30 value 84.964727 iter 40 value 83.840086 iter 50 value 81.476292 iter 60 value 81.215789 iter 70 value 80.887604 iter 80 value 80.545857 iter 90 value 80.102378 iter 100 value 79.932537 final value 79.932537 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.905468 iter 10 value 95.472714 iter 20 value 94.368149 iter 30 value 84.811287 iter 40 value 83.890895 iter 50 value 81.758054 iter 60 value 80.755660 iter 70 value 80.600583 iter 80 value 80.508480 iter 90 value 80.013707 iter 100 value 79.618630 final value 79.618630 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.266576 iter 10 value 93.408241 iter 20 value 84.874489 iter 30 value 82.852391 iter 40 value 82.418996 iter 50 value 82.218364 iter 60 value 81.945161 iter 70 value 81.382524 iter 80 value 80.799700 iter 90 value 79.771752 iter 100 value 79.619912 final value 79.619912 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.019508 iter 10 value 94.549599 iter 20 value 92.547053 iter 30 value 91.951332 iter 40 value 90.128573 iter 50 value 83.383339 iter 60 value 82.899275 iter 70 value 81.092545 iter 80 value 80.366999 iter 90 value 80.133821 iter 100 value 80.019776 final value 80.019776 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.191351 iter 10 value 92.999693 iter 20 value 92.999065 iter 20 value 92.999065 final value 92.999065 converged Fitting Repeat 2 # weights: 103 initial value 94.653998 final value 94.485856 converged Fitting Repeat 3 # weights: 103 initial value 101.487336 final value 94.485931 converged Fitting Repeat 4 # weights: 103 initial value 98.203232 iter 10 value 94.485979 final value 94.484223 converged Fitting Repeat 5 # weights: 103 initial value 96.848997 final value 94.486148 converged Fitting Repeat 1 # weights: 305 initial value 100.246960 iter 10 value 94.489086 iter 20 value 94.484235 iter 30 value 93.417706 final value 93.417705 converged Fitting Repeat 2 # weights: 305 initial value 112.791335 iter 10 value 94.057391 iter 20 value 92.620954 iter 30 value 84.289240 iter 40 value 82.776496 iter 50 value 82.070421 iter 60 value 81.866607 iter 70 value 81.831792 iter 80 value 81.831257 final value 81.830636 converged Fitting Repeat 3 # weights: 305 initial value 106.384020 iter 10 value 94.489115 iter 20 value 94.410904 iter 30 value 92.997659 iter 30 value 92.997658 iter 30 value 92.997658 final value 92.997658 converged Fitting Repeat 4 # weights: 305 initial value 96.495786 iter 10 value 93.778454 iter 20 value 93.294793 iter 30 value 92.997691 iter 40 value 92.872932 final value 92.870208 converged Fitting Repeat 5 # weights: 305 initial value 95.676407 iter 10 value 93.778084 iter 20 value 93.761527 iter 30 value 92.946236 iter 40 value 82.275062 iter 50 value 80.517048 iter 60 value 80.108127 iter 70 value 79.802528 iter 80 value 79.756638 iter 90 value 79.750619 final value 79.750614 converged Fitting Repeat 1 # weights: 507 initial value 97.328753 iter 10 value 93.782066 iter 20 value 93.778642 iter 30 value 93.774310 iter 30 value 93.774310 iter 30 value 93.774310 final value 93.774310 converged Fitting Repeat 2 # weights: 507 initial value 112.243458 iter 10 value 94.492366 iter 20 value 94.446425 iter 30 value 93.005690 iter 40 value 92.914548 iter 50 value 92.864261 iter 60 value 92.862105 iter 70 value 92.806792 iter 80 value 92.787266 iter 90 value 92.786708 iter 100 value 92.786015 final value 92.786015 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.043090 iter 10 value 94.492071 iter 20 value 90.250250 iter 30 value 86.945865 iter 40 value 86.643767 iter 50 value 84.646129 iter 60 value 81.135671 iter 70 value 80.137491 iter 80 value 79.683415 iter 90 value 79.585862 iter 100 value 79.585436 final value 79.585436 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.834214 iter 10 value 94.492269 iter 20 value 94.420800 final value 93.417606 converged Fitting Repeat 5 # weights: 507 initial value 131.538479 iter 10 value 93.508544 iter 20 value 92.236383 iter 30 value 92.196701 iter 40 value 92.123955 final value 92.123140 converged Fitting Repeat 1 # weights: 103 initial value 95.259884 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.422929 final value 94.214007 converged Fitting Repeat 3 # weights: 103 initial value 96.551105 final value 94.354396 converged Fitting Repeat 4 # weights: 103 initial value 102.492454 iter 10 value 94.002999 iter 10 value 94.002999 iter 10 value 94.002999 final value 94.002999 converged Fitting Repeat 5 # weights: 103 initial value 95.031142 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 105.374043 iter 10 value 94.145902 final value 94.144481 converged Fitting Repeat 2 # weights: 305 initial value 97.303736 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 102.335170 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 106.311912 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 108.701408 final value 94.354395 converged Fitting Repeat 1 # weights: 507 initial value 109.895050 iter 10 value 94.323805 final value 94.270000 converged Fitting Repeat 2 # weights: 507 initial value 116.719958 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.658283 iter 10 value 91.469344 final value 91.467949 converged Fitting Repeat 4 # weights: 507 initial value 98.505190 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 105.927732 iter 10 value 93.464299 final value 93.464287 converged Fitting Repeat 1 # weights: 103 initial value 98.030304 iter 10 value 93.328007 iter 20 value 93.149060 iter 30 value 88.783088 iter 40 value 84.454657 iter 50 value 83.387757 iter 60 value 83.002811 iter 70 value 82.898767 iter 80 value 82.836595 final value 82.831752 converged Fitting Repeat 2 # weights: 103 initial value 111.799496 iter 10 value 92.902092 iter 20 value 86.521641 iter 30 value 86.403882 iter 40 value 86.298290 iter 50 value 86.061340 iter 60 value 86.029899 final value 86.025235 converged Fitting Repeat 3 # weights: 103 initial value 100.093083 iter 10 value 94.412944 iter 20 value 91.689705 iter 30 value 88.893736 iter 40 value 87.196401 iter 50 value 86.157787 iter 60 value 83.542309 iter 70 value 82.794879 iter 80 value 82.766429 final value 82.752775 converged Fitting Repeat 4 # weights: 103 initial value 98.103884 iter 10 value 94.488548 iter 20 value 91.492355 iter 30 value 90.023575 iter 40 value 88.402287 iter 50 value 86.355104 iter 60 value 86.271778 iter 70 value 86.038173 iter 80 value 86.025240 final value 86.025235 converged Fitting Repeat 5 # weights: 103 initial value 108.571796 iter 10 value 94.427090 iter 20 value 88.238308 iter 30 value 86.499658 iter 40 value 86.095111 iter 50 value 86.038588 iter 60 value 86.025235 iter 60 value 86.025235 iter 60 value 86.025235 final value 86.025235 converged Fitting Repeat 1 # weights: 305 initial value 106.069422 iter 10 value 94.545424 iter 20 value 94.370567 iter 30 value 91.112669 iter 40 value 85.420587 iter 50 value 82.690868 iter 60 value 82.350211 iter 70 value 81.987698 iter 80 value 81.671212 iter 90 value 81.635088 iter 100 value 81.576367 final value 81.576367 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.196662 iter 10 value 94.699792 iter 20 value 94.148480 iter 30 value 94.006838 iter 40 value 90.209129 iter 50 value 87.328127 iter 60 value 86.128360 iter 70 value 86.066192 iter 80 value 84.904984 iter 90 value 84.744654 iter 100 value 84.639711 final value 84.639711 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.299554 iter 10 value 94.104349 iter 20 value 88.118786 iter 30 value 87.018481 iter 40 value 86.442681 iter 50 value 85.772491 iter 60 value 85.644262 iter 70 value 85.589350 iter 80 value 85.111700 iter 90 value 84.524894 iter 100 value 81.923585 final value 81.923585 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.342912 iter 10 value 94.502199 iter 20 value 91.570900 iter 30 value 90.247070 iter 40 value 88.754762 iter 50 value 87.189520 iter 60 value 86.064421 iter 70 value 83.864725 iter 80 value 82.587036 iter 90 value 82.387527 iter 100 value 82.002988 final value 82.002988 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.042035 iter 10 value 94.521740 iter 20 value 93.201977 iter 30 value 90.630565 iter 40 value 85.929804 iter 50 value 83.776215 iter 60 value 83.201743 iter 70 value 83.082426 iter 80 value 83.000198 iter 90 value 82.987534 iter 100 value 82.889561 final value 82.889561 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.860441 iter 10 value 94.760197 iter 20 value 87.634366 iter 30 value 87.086565 iter 40 value 84.858682 iter 50 value 82.641382 iter 60 value 82.433176 iter 70 value 82.080959 iter 80 value 81.630667 iter 90 value 81.492783 iter 100 value 81.478222 final value 81.478222 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.967652 iter 10 value 97.533148 iter 20 value 88.171854 iter 30 value 84.897742 iter 40 value 84.064014 iter 50 value 83.351127 iter 60 value 82.444007 iter 70 value 81.874081 iter 80 value 81.489747 iter 90 value 81.387665 iter 100 value 81.292268 final value 81.292268 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.243938 iter 10 value 94.924136 iter 20 value 85.460804 iter 30 value 84.949173 iter 40 value 84.233814 iter 50 value 83.095116 iter 60 value 82.829412 iter 70 value 82.077165 iter 80 value 81.968945 iter 90 value 81.935722 iter 100 value 81.914164 final value 81.914164 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 135.099481 iter 10 value 96.406194 iter 20 value 94.418768 iter 30 value 88.682877 iter 40 value 87.263800 iter 50 value 83.317650 iter 60 value 82.117457 iter 70 value 81.922249 iter 80 value 81.797495 iter 90 value 81.507022 iter 100 value 81.258779 final value 81.258779 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.215144 iter 10 value 90.230701 iter 20 value 87.523807 iter 30 value 85.081513 iter 40 value 83.705799 iter 50 value 83.248017 iter 60 value 82.532017 iter 70 value 82.149279 iter 80 value 81.970818 iter 90 value 81.799660 iter 100 value 81.753475 final value 81.753475 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.279583 final value 94.485822 converged Fitting Repeat 2 # weights: 103 initial value 103.540766 final value 94.485901 converged Fitting Repeat 3 # weights: 103 initial value 95.913263 final value 94.485940 converged Fitting Repeat 4 # weights: 103 initial value 111.241678 iter 10 value 94.356191 iter 20 value 94.221460 iter 30 value 93.188815 final value 92.614379 converged Fitting Repeat 5 # weights: 103 initial value 96.168282 final value 94.485891 converged Fitting Repeat 1 # weights: 305 initial value 96.711160 iter 10 value 94.489215 iter 20 value 94.484235 iter 30 value 93.806970 iter 40 value 86.800741 iter 50 value 86.782234 iter 60 value 86.768926 iter 70 value 85.729454 iter 80 value 85.126704 iter 90 value 84.970848 iter 100 value 84.823860 final value 84.823860 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.168428 iter 10 value 94.489083 iter 20 value 94.232120 iter 30 value 87.215010 iter 40 value 85.723948 iter 50 value 84.154671 iter 60 value 84.152130 iter 70 value 84.119920 iter 80 value 84.117397 iter 90 value 82.962899 iter 100 value 82.460710 final value 82.460710 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.898803 iter 10 value 94.351948 iter 20 value 94.324742 iter 30 value 94.319045 iter 40 value 88.379519 iter 50 value 87.373578 iter 60 value 87.288516 iter 70 value 83.373791 iter 80 value 82.395407 iter 90 value 82.394733 iter 100 value 82.369994 final value 82.369994 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.766302 iter 10 value 94.488645 iter 20 value 91.690357 iter 30 value 87.843249 final value 87.796053 converged Fitting Repeat 5 # weights: 305 initial value 104.632052 iter 10 value 94.488687 iter 20 value 94.339586 final value 93.568324 converged Fitting Repeat 1 # weights: 507 initial value 106.572882 iter 10 value 93.123579 iter 20 value 92.800351 iter 30 value 92.732505 iter 40 value 92.698321 iter 50 value 92.615857 iter 60 value 92.357912 iter 70 value 92.088646 iter 80 value 86.918322 iter 90 value 85.658841 iter 100 value 85.017138 final value 85.017138 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.261330 iter 10 value 94.359427 iter 20 value 94.174265 iter 30 value 93.969221 iter 40 value 91.231944 iter 50 value 90.853375 iter 60 value 90.793725 iter 70 value 90.589772 iter 80 value 90.581201 iter 90 value 90.517915 iter 100 value 86.987762 final value 86.987762 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.828039 iter 10 value 94.491957 iter 20 value 94.251328 iter 30 value 88.874113 iter 40 value 88.768975 iter 50 value 87.812704 iter 60 value 87.791233 iter 70 value 84.888324 iter 80 value 84.887125 iter 90 value 84.883619 iter 100 value 84.498936 final value 84.498936 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 100.555095 iter 10 value 94.362060 iter 20 value 92.538885 iter 30 value 85.222868 iter 40 value 85.167920 final value 85.167763 converged Fitting Repeat 5 # weights: 507 initial value 99.431161 iter 10 value 94.492348 iter 20 value 93.265974 iter 30 value 91.464582 iter 30 value 91.464581 iter 30 value 91.464581 final value 91.464581 converged Fitting Repeat 1 # weights: 305 initial value 123.907565 iter 10 value 117.894969 final value 117.890430 converged Fitting Repeat 2 # weights: 305 initial value 121.289210 iter 10 value 117.748129 iter 20 value 108.028245 iter 30 value 106.365120 iter 40 value 106.260029 iter 50 value 105.918939 iter 60 value 105.918440 final value 105.913600 converged Fitting Repeat 3 # weights: 305 initial value 124.028598 iter 10 value 117.857291 iter 20 value 117.176693 iter 30 value 116.966635 iter 40 value 107.712858 iter 50 value 107.672942 iter 60 value 107.332017 iter 70 value 104.304555 iter 80 value 104.295189 iter 90 value 104.264777 iter 100 value 104.261042 final value 104.261042 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 120.953704 iter 10 value 110.759344 iter 20 value 108.421920 iter 30 value 106.844939 iter 40 value 106.833632 iter 50 value 106.830732 final value 106.828924 converged Fitting Repeat 5 # weights: 305 initial value 119.128017 iter 10 value 117.764213 iter 20 value 117.760542 iter 30 value 117.719323 iter 40 value 116.174723 iter 50 value 105.728041 iter 60 value 105.408114 iter 70 value 104.674121 iter 80 value 104.670639 final value 104.670267 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Aug 12 03:20:34 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 44.78 1.53 117.34
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 35.50 | 2.18 | 37.71 | |
FreqInteractors | 0.22 | 0.01 | 0.25 | |
calculateAAC | 0.06 | 0.00 | 0.06 | |
calculateAutocor | 0.47 | 0.11 | 0.58 | |
calculateCTDC | 0.08 | 0.00 | 0.08 | |
calculateCTDD | 0.74 | 0.05 | 0.78 | |
calculateCTDT | 0.38 | 0.01 | 0.40 | |
calculateCTriad | 0.43 | 0.02 | 0.45 | |
calculateDC | 0.13 | 0.00 | 0.12 | |
calculateF | 0.36 | 0.03 | 0.39 | |
calculateKSAAP | 0.14 | 0.00 | 0.14 | |
calculateQD_Sm | 2.05 | 0.19 | 2.24 | |
calculateTC | 1.73 | 0.09 | 1.83 | |
calculateTC_Sm | 0.37 | 0.02 | 0.40 | |
corr_plot | 34.85 | 1.79 | 36.66 | |
enrichfindP | 0.64 | 0.10 | 12.89 | |
enrichfind_hp | 0.06 | 0.03 | 1.05 | |
enrichplot | 0.44 | 0.00 | 0.43 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.02 | 0.03 | 2.08 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.08 | 0.00 | 0.08 | |
pred_ensembel | 14.42 | 0.31 | 13.17 | |
var_imp | 35.67 | 1.31 | 36.98 | |