Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-08-12 12:07 -0400 (Tue, 12 Aug 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.2 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4818
palomino8Windows Server 2022 Datacenterx644.5.1 (2025-06-13 ucrt) -- "Great Square Root" 4553
lconwaymacOS 12.7.1 Montereyx86_644.5.1 (2025-06-13) -- "Great Square Root" 4595
kjohnson3macOS 13.7.1 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4537
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4535
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 987/2317HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.15.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-08-11 13:45 -0400 (Mon, 11 Aug 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: b0c624c
git_last_commit_date: 2025-04-15 12:38:30 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on palomino8

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.15.0
Command: F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.22-bioc\R\library --no-vignettes --timings HPiP_1.15.0.tar.gz
StartedAt: 2025-08-12 03:14:24 -0400 (Tue, 12 Aug 2025)
EndedAt: 2025-08-12 03:20:45 -0400 (Tue, 12 Aug 2025)
EllapsedTime: 380.6 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.22-bioc\R\library --no-vignettes --timings HPiP_1.15.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck'
* using R version 4.5.1 (2025-06-13 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.15.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
FSmethod      35.50   2.18   37.71
var_imp       35.67   1.31   36.98
corr_plot     34.85   1.79   36.66
pred_ensembel 14.42   0.31   13.17
enrichfindP    0.64   0.10   12.89
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'F:/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.22-bioc/R/library'
* installing *source* package 'HPiP' ...
** this is package 'HPiP' version '1.15.0'
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.5.1 (2025-06-13 ucrt) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 94.715978 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.208159 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.780771 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.907695 
final  value 93.582418 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.992185 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.942583 
final  value 93.582418 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.296845 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.775498 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.783075 
final  value 93.582418 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.513354 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 107.688843 
final  value 93.582418 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.247359 
final  value 93.582418 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.532439 
iter  10 value 91.418208
iter  20 value 86.452646
iter  30 value 84.050725
iter  40 value 83.195698
iter  50 value 82.440014
final  value 82.420887 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.682477 
iter  10 value 85.017021
iter  20 value 84.752741
iter  30 value 84.747755
iter  40 value 84.745410
final  value 84.745344 
converged
Fitting Repeat 5 

# weights:  507
initial  value 107.999785 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.893664 
iter  10 value 94.270817
iter  20 value 94.062230
iter  30 value 94.015577
iter  40 value 87.922633
iter  50 value 87.206928
iter  60 value 84.291503
iter  70 value 82.882225
iter  80 value 81.953012
iter  90 value 81.806085
iter 100 value 81.790556
final  value 81.790556 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 103.109956 
iter  10 value 93.753532
iter  20 value 92.109500
iter  30 value 86.843537
iter  40 value 82.269967
iter  50 value 82.073299
iter  60 value 82.046116
iter  70 value 82.034316
iter  80 value 81.898948
iter  90 value 81.760100
iter 100 value 81.724830
final  value 81.724830 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 103.197861 
iter  10 value 93.999078
iter  20 value 93.378022
iter  30 value 93.331644
iter  40 value 89.336056
iter  50 value 87.391944
iter  60 value 86.789160
iter  70 value 86.645249
iter  80 value 86.578464
iter  90 value 85.047070
iter 100 value 84.782471
final  value 84.782471 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 96.995150 
iter  10 value 92.743567
iter  20 value 87.372103
iter  30 value 85.310411
iter  40 value 85.019067
iter  50 value 84.948034
iter  60 value 84.770370
final  value 84.770104 
converged
Fitting Repeat 5 

# weights:  103
initial  value 113.557428 
iter  10 value 93.903946
iter  20 value 87.110598
iter  30 value 85.294997
iter  40 value 84.807809
iter  50 value 84.770424
final  value 84.770104 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.871816 
iter  10 value 94.055338
iter  20 value 90.363213
iter  30 value 85.642105
iter  40 value 84.310831
iter  50 value 84.204345
iter  60 value 83.989263
iter  70 value 83.842562
iter  80 value 82.652777
iter  90 value 81.533641
iter 100 value 80.769958
final  value 80.769958 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 110.637375 
iter  10 value 93.765772
iter  20 value 90.371437
iter  30 value 86.655476
iter  40 value 84.795817
iter  50 value 83.239381
iter  60 value 82.553011
iter  70 value 82.109545
iter  80 value 82.017118
iter  90 value 81.619832
iter 100 value 81.244715
final  value 81.244715 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.081660 
iter  10 value 94.059365
iter  20 value 93.980450
iter  30 value 92.793359
iter  40 value 83.982362
iter  50 value 83.096192
iter  60 value 82.362664
iter  70 value 81.445895
iter  80 value 81.276884
iter  90 value 80.908408
iter 100 value 80.204016
final  value 80.204016 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.773084 
iter  10 value 92.414808
iter  20 value 88.666336
iter  30 value 84.696140
iter  40 value 82.065998
iter  50 value 81.234009
iter  60 value 80.902817
iter  70 value 80.642172
iter  80 value 80.573408
iter  90 value 80.510076
iter 100 value 80.474843
final  value 80.474843 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.528695 
iter  10 value 93.849068
iter  20 value 90.499244
iter  30 value 85.822044
iter  40 value 84.708270
iter  50 value 83.468578
iter  60 value 82.859027
iter  70 value 82.000568
iter  80 value 80.682128
iter  90 value 80.197497
iter 100 value 80.053240
final  value 80.053240 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.553250 
iter  10 value 93.735619
iter  20 value 93.633938
iter  30 value 86.938362
iter  40 value 85.034702
iter  50 value 81.867164
iter  60 value 81.089693
iter  70 value 80.339269
iter  80 value 79.992949
iter  90 value 79.830027
iter 100 value 79.782194
final  value 79.782194 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.825131 
iter  10 value 94.464270
iter  20 value 93.703652
iter  30 value 93.390294
iter  40 value 86.093494
iter  50 value 84.795457
iter  60 value 84.665650
iter  70 value 84.418557
iter  80 value 82.425118
iter  90 value 81.237644
iter 100 value 81.002818
final  value 81.002818 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.161847 
iter  10 value 93.455792
iter  20 value 92.339775
iter  30 value 91.958900
iter  40 value 86.335223
iter  50 value 85.628382
iter  60 value 85.029686
iter  70 value 84.651180
iter  80 value 83.937818
iter  90 value 83.225487
iter 100 value 81.799857
final  value 81.799857 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 123.117384 
iter  10 value 95.659501
iter  20 value 89.081698
iter  30 value 85.560351
iter  40 value 84.836751
iter  50 value 84.586027
iter  60 value 84.298646
iter  70 value 82.910698
iter  80 value 82.544108
iter  90 value 82.253891
iter 100 value 81.779475
final  value 81.779475 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.427481 
iter  10 value 93.879279
iter  20 value 89.131484
iter  30 value 86.890037
iter  40 value 85.727595
iter  50 value 83.804019
iter  60 value 82.721051
iter  70 value 82.161549
iter  80 value 81.951910
iter  90 value 81.769216
iter 100 value 81.619075
final  value 81.619075 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.277207 
final  value 94.054322 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.223032 
final  value 94.054697 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.635219 
iter  10 value 85.615587
iter  20 value 84.888958
iter  30 value 84.877248
iter  40 value 84.876823
final  value 84.875958 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.327706 
final  value 94.056247 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.036402 
iter  10 value 93.765297
iter  20 value 93.584540
iter  30 value 93.583518
final  value 93.582774 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.040034 
iter  10 value 94.057979
iter  20 value 94.053040
iter  30 value 91.738915
iter  40 value 87.400798
iter  50 value 87.095753
iter  60 value 87.056084
iter  70 value 87.055019
iter  80 value 85.295867
iter  90 value 85.287374
iter 100 value 85.097125
final  value 85.097125 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 93.444800 
iter  10 value 92.548241
iter  20 value 85.532683
iter  30 value 84.954244
iter  40 value 84.272929
iter  50 value 84.234903
iter  60 value 84.231472
final  value 84.230911 
converged
Fitting Repeat 3 

# weights:  305
initial  value 115.132164 
iter  10 value 94.057693
iter  20 value 94.044425
iter  30 value 89.110232
iter  40 value 84.092206
iter  50 value 82.817990
iter  60 value 82.651503
iter  70 value 80.504753
iter  80 value 79.781357
iter  90 value 79.477539
iter 100 value 79.288890
final  value 79.288890 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 103.905681 
iter  10 value 94.057534
iter  20 value 93.988382
iter  30 value 84.550869
iter  40 value 84.073598
iter  50 value 83.737868
iter  60 value 83.481194
iter  70 value 83.480351
iter  80 value 83.471027
iter  90 value 83.298382
iter 100 value 82.916281
final  value 82.916281 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.861935 
iter  10 value 93.587765
iter  20 value 93.583548
iter  30 value 92.642593
iter  40 value 85.236493
iter  50 value 84.941157
iter  60 value 84.940172
iter  70 value 84.939297
iter  80 value 84.929760
iter  90 value 84.926702
iter 100 value 84.592851
final  value 84.592851 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.585884 
iter  10 value 91.400745
iter  20 value 90.822148
iter  30 value 90.673234
iter  40 value 90.670289
iter  50 value 90.571594
iter  60 value 90.571092
iter  70 value 90.546511
iter  80 value 90.482314
iter  90 value 90.458517
iter 100 value 90.445258
final  value 90.445258 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.793703 
iter  10 value 93.997016
iter  20 value 93.880187
final  value 93.583241 
converged
Fitting Repeat 3 

# weights:  507
initial  value 126.093108 
iter  10 value 93.590682
iter  20 value 93.582326
iter  30 value 87.452659
iter  40 value 85.282089
iter  50 value 85.026581
iter  60 value 82.449709
iter  70 value 81.994643
iter  80 value 81.028968
iter  90 value 80.453406
iter 100 value 79.688215
final  value 79.688215 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 136.946137 
iter  10 value 93.819561
iter  20 value 93.808556
iter  30 value 93.510386
iter  40 value 87.232683
iter  50 value 83.396882
iter  60 value 80.625514
iter  70 value 79.854638
iter  80 value 79.475300
iter  90 value 79.339726
iter 100 value 79.321974
final  value 79.321974 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 96.958305 
iter  10 value 93.590556
iter  20 value 93.353719
iter  30 value 86.854625
iter  40 value 86.834582
iter  50 value 86.813333
iter  60 value 86.669081
final  value 86.668905 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.327162 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.843518 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.467830 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.929032 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.348145 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.620090 
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.315854 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 108.282671 
final  value 94.038251 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.051679 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 102.332342 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.623606 
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  507
initial  value 110.028613 
iter  10 value 94.133469
iter  20 value 94.052923
final  value 94.052911 
converged
Fitting Repeat 3 

# weights:  507
initial  value 121.037753 
final  value 94.038251 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.769041 
final  value 94.052911 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.544412 
iter  10 value 92.312669
iter  20 value 83.323120
iter  30 value 82.982264
iter  40 value 82.979157
iter  40 value 82.979157
iter  40 value 82.979157
final  value 82.979157 
converged
Fitting Repeat 1 

# weights:  103
initial  value 109.051208 
iter  10 value 94.144568
iter  20 value 94.052734
iter  30 value 93.965458
iter  40 value 93.522977
iter  50 value 85.424374
iter  60 value 84.210942
iter  70 value 83.988412
iter  80 value 83.314589
iter  90 value 82.494422
iter 100 value 82.270643
final  value 82.270643 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 106.269675 
iter  10 value 93.981950
iter  20 value 91.931913
iter  30 value 86.647924
iter  40 value 85.233636
iter  50 value 84.221773
iter  60 value 83.801716
iter  70 value 83.543853
iter  80 value 83.341673
iter  90 value 81.886281
iter 100 value 81.203550
final  value 81.203550 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 102.118531 
iter  10 value 94.032029
iter  20 value 86.793463
iter  30 value 85.552008
iter  40 value 85.045992
iter  50 value 84.580964
iter  60 value 84.334178
iter  70 value 83.208406
iter  80 value 82.399868
iter  90 value 82.370338
final  value 82.370301 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.397102 
iter  10 value 89.680152
iter  20 value 85.756420
iter  30 value 85.018714
iter  40 value 83.713171
iter  50 value 83.259901
iter  60 value 82.754331
iter  70 value 82.721166
final  value 82.721163 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.026939 
iter  10 value 92.246678
iter  20 value 86.526814
iter  30 value 85.123646
iter  40 value 84.587028
iter  50 value 83.494639
iter  60 value 82.845624
iter  70 value 82.370390
final  value 82.370301 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.231529 
iter  10 value 94.067084
iter  20 value 93.119587
iter  30 value 85.180768
iter  40 value 84.144431
iter  50 value 81.659128
iter  60 value 81.249903
iter  70 value 80.388819
iter  80 value 79.945105
iter  90 value 79.914073
iter 100 value 79.907486
final  value 79.907486 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 107.852310 
iter  10 value 95.557924
iter  20 value 94.090124
iter  30 value 91.329762
iter  40 value 85.245562
iter  50 value 83.755445
iter  60 value 81.072605
iter  70 value 80.867898
iter  80 value 80.003031
iter  90 value 79.580531
iter 100 value 79.363226
final  value 79.363226 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.562346 
iter  10 value 94.331135
iter  20 value 94.055157
iter  30 value 89.161678
iter  40 value 88.556043
iter  50 value 88.116414
iter  60 value 86.836748
iter  70 value 83.876680
iter  80 value 83.504342
iter  90 value 82.949606
iter 100 value 81.192279
final  value 81.192279 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.572510 
iter  10 value 94.045777
iter  20 value 85.708103
iter  30 value 84.258296
iter  40 value 83.790626
iter  50 value 83.647452
iter  60 value 82.936457
iter  70 value 80.778291
iter  80 value 79.748521
iter  90 value 79.692237
iter 100 value 79.645244
final  value 79.645244 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 108.916654 
iter  10 value 95.554830
iter  20 value 86.636573
iter  30 value 84.961033
iter  40 value 82.636437
iter  50 value 81.851825
iter  60 value 81.615858
iter  70 value 81.282805
iter  80 value 81.169417
iter  90 value 81.166832
iter 100 value 81.144181
final  value 81.144181 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.866093 
iter  10 value 93.823760
iter  20 value 87.533763
iter  30 value 85.563236
iter  40 value 82.784755
iter  50 value 81.229511
iter  60 value 80.478689
iter  70 value 79.832106
iter  80 value 79.588493
iter  90 value 79.294463
iter 100 value 79.074806
final  value 79.074806 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.331134 
iter  10 value 89.755239
iter  20 value 85.766796
iter  30 value 85.108966
iter  40 value 84.483411
iter  50 value 83.394347
iter  60 value 82.957676
iter  70 value 82.605054
iter  80 value 81.772097
iter  90 value 80.976155
iter 100 value 80.405276
final  value 80.405276 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.532594 
iter  10 value 94.357524
iter  20 value 91.372171
iter  30 value 84.899207
iter  40 value 83.352601
iter  50 value 83.194262
iter  60 value 81.637847
iter  70 value 80.690792
iter  80 value 79.986431
iter  90 value 79.646258
iter 100 value 79.273971
final  value 79.273971 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 102.659448 
iter  10 value 94.181089
iter  20 value 86.819024
iter  30 value 84.437380
iter  40 value 83.317984
iter  50 value 82.200538
iter  60 value 81.459213
iter  70 value 80.930842
iter  80 value 80.811424
iter  90 value 80.297805
iter 100 value 79.920474
final  value 79.920474 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 111.123992 
iter  10 value 93.402146
iter  20 value 91.361565
iter  30 value 85.603140
iter  40 value 84.272918
iter  50 value 83.891065
iter  60 value 83.350902
iter  70 value 82.858067
iter  80 value 81.578902
iter  90 value 80.361279
iter 100 value 79.820792
final  value 79.820792 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.723724 
final  value 94.054510 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.064131 
final  value 94.054368 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.312969 
iter  10 value 94.054548
iter  20 value 94.052695
iter  30 value 93.625098
iter  40 value 91.054194
iter  50 value 91.011148
final  value 91.010656 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.488711 
final  value 94.054357 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.925099 
iter  10 value 93.429036
iter  20 value 93.373502
iter  30 value 85.565081
iter  40 value 85.379970
iter  50 value 85.378203
final  value 85.378163 
converged
Fitting Repeat 1 

# weights:  305
initial  value 113.478846 
iter  10 value 94.042197
iter  20 value 90.054909
iter  30 value 86.900272
iter  30 value 86.900272
iter  30 value 86.900272
final  value 86.900272 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.509389 
iter  10 value 94.057426
iter  20 value 93.957653
iter  30 value 86.331446
iter  40 value 85.335471
iter  50 value 84.957563
final  value 84.951297 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.796205 
iter  10 value 94.057728
final  value 94.053073 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.896888 
iter  10 value 94.043468
iter  20 value 93.835522
iter  30 value 89.421663
iter  40 value 88.654915
iter  50 value 88.544667
iter  60 value 88.439606
iter  70 value 88.278763
iter  80 value 88.277287
iter  90 value 88.231021
iter 100 value 83.667234
final  value 83.667234 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.509466 
iter  10 value 94.057180
iter  20 value 93.616035
final  value 93.372543 
converged
Fitting Repeat 1 

# weights:  507
initial  value 117.700609 
iter  10 value 94.062304
iter  20 value 94.051608
iter  30 value 85.883511
iter  40 value 83.881879
iter  50 value 83.868664
iter  60 value 83.593590
iter  70 value 83.292078
final  value 83.290406 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.079137 
iter  10 value 94.047058
iter  20 value 94.045825
iter  30 value 94.034895
iter  40 value 90.557129
iter  50 value 90.448350
iter  60 value 84.383687
iter  70 value 82.355820
iter  80 value 82.007778
iter  90 value 81.970940
final  value 81.970629 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.554269 
iter  10 value 93.714582
iter  20 value 92.836580
iter  30 value 87.844211
iter  40 value 87.829554
iter  50 value 86.108966
iter  60 value 85.882232
iter  70 value 85.342850
iter  80 value 83.891833
iter  90 value 81.180053
iter 100 value 81.067935
final  value 81.067935 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 97.047041 
iter  10 value 92.212498
iter  20 value 91.482809
iter  30 value 91.439271
iter  40 value 91.396276
final  value 91.396069 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.749311 
iter  10 value 94.059989
iter  20 value 88.959179
iter  30 value 86.900566
final  value 86.900555 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.591186 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.647089 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.403405 
iter  10 value 94.442543
final  value 94.442073 
converged
Fitting Repeat 4 

# weights:  103
initial  value 119.759732 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.741934 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.200881 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.047996 
iter  10 value 94.482480
final  value 94.482478 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.025562 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.771609 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 108.889167 
iter  10 value 94.291299
iter  10 value 94.291299
iter  10 value 94.291299
final  value 94.291299 
converged
Fitting Repeat 1 

# weights:  507
initial  value 124.414148 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.908432 
final  value 94.467391 
converged
Fitting Repeat 3 

# weights:  507
initial  value 105.721491 
final  value 94.482149 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.351445 
iter  10 value 94.467392
iter  10 value 94.467391
iter  10 value 94.467391
final  value 94.467391 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.303998 
iter  10 value 94.468210
final  value 94.467391 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.916254 
iter  10 value 94.480378
iter  20 value 91.726997
iter  30 value 86.399114
iter  40 value 83.609980
iter  50 value 83.032119
iter  60 value 82.490063
iter  70 value 82.280016
iter  80 value 81.590099
iter  90 value 81.533821
iter  90 value 81.533821
final  value 81.533821 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.589241 
iter  10 value 94.492913
iter  20 value 94.265304
iter  30 value 93.250213
iter  40 value 91.766029
iter  50 value 86.705684
iter  60 value 83.959804
iter  70 value 83.745948
iter  80 value 83.565080
final  value 83.564308 
converged
Fitting Repeat 3 

# weights:  103
initial  value 108.432915 
iter  10 value 94.288734
iter  20 value 89.629464
iter  30 value 86.805023
iter  40 value 86.187190
iter  50 value 83.878330
iter  60 value 83.419397
iter  70 value 83.353561
final  value 83.353379 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.076655 
iter  10 value 93.333495
iter  20 value 86.376674
iter  30 value 84.604750
iter  40 value 84.434941
iter  50 value 84.395437
iter  60 value 83.734647
iter  70 value 83.617537
final  value 83.610812 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.833957 
iter  10 value 94.523362
iter  20 value 93.889356
iter  30 value 92.779197
iter  40 value 87.671786
iter  50 value 87.513232
iter  60 value 87.455451
iter  70 value 86.817118
iter  80 value 84.669584
iter  90 value 83.468059
iter 100 value 83.414373
final  value 83.414373 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 101.930690 
iter  10 value 94.797154
iter  20 value 93.191823
iter  30 value 89.585378
iter  40 value 87.589578
iter  50 value 87.267744
iter  60 value 84.889350
iter  70 value 83.269203
iter  80 value 82.234920
iter  90 value 81.436648
iter 100 value 80.716970
final  value 80.716970 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 115.529185 
iter  10 value 95.333678
iter  20 value 85.853573
iter  30 value 84.228939
iter  40 value 84.044020
iter  50 value 82.081676
iter  60 value 81.737236
iter  70 value 81.211125
iter  80 value 80.229245
iter  90 value 79.755272
iter 100 value 79.700957
final  value 79.700957 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.396171 
iter  10 value 93.027125
iter  20 value 86.536793
iter  30 value 85.918141
iter  40 value 85.242058
iter  50 value 83.465355
iter  60 value 82.913613
iter  70 value 82.106707
iter  80 value 81.824013
iter  90 value 81.740727
iter 100 value 81.685333
final  value 81.685333 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.911360 
iter  10 value 94.594987
iter  20 value 90.805340
iter  30 value 86.548625
iter  40 value 84.651204
iter  50 value 83.490808
iter  60 value 83.296225
iter  70 value 83.277659
iter  80 value 82.978090
iter  90 value 82.191934
iter 100 value 81.751933
final  value 81.751933 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.210429 
iter  10 value 94.435907
iter  20 value 86.067156
iter  30 value 84.674823
iter  40 value 84.137291
iter  50 value 83.898118
iter  60 value 83.307646
iter  70 value 82.109409
iter  80 value 82.000331
iter  90 value 81.934221
iter 100 value 81.892918
final  value 81.892918 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 119.920355 
iter  10 value 95.297999
iter  20 value 89.050864
iter  30 value 86.450923
iter  40 value 85.471081
iter  50 value 84.142876
iter  60 value 83.538311
iter  70 value 81.303388
iter  80 value 80.510712
iter  90 value 80.189212
iter 100 value 79.817830
final  value 79.817830 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.077248 
iter  10 value 98.200133
iter  20 value 86.954908
iter  30 value 84.536188
iter  40 value 80.817096
iter  50 value 80.225166
iter  60 value 80.107878
iter  70 value 79.555706
iter  80 value 79.177369
iter  90 value 79.068679
iter 100 value 79.050331
final  value 79.050331 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 140.320851 
iter  10 value 94.920941
iter  20 value 92.260663
iter  30 value 87.276237
iter  40 value 86.137412
iter  50 value 85.639470
iter  60 value 85.387792
iter  70 value 83.742760
iter  80 value 82.637166
iter  90 value 82.471601
iter 100 value 82.379799
final  value 82.379799 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.412531 
iter  10 value 94.745934
iter  20 value 94.447304
iter  30 value 85.614417
iter  40 value 83.939801
iter  50 value 83.354955
iter  60 value 81.157789
iter  70 value 80.304716
iter  80 value 79.970284
iter  90 value 79.798255
iter 100 value 79.606602
final  value 79.606602 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 116.365989 
iter  10 value 88.466028
iter  20 value 86.334377
iter  30 value 84.367445
iter  40 value 82.281920
iter  50 value 80.268066
iter  60 value 80.061699
iter  70 value 79.989352
iter  80 value 79.887838
iter  90 value 79.834512
iter 100 value 79.661681
final  value 79.661681 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 104.875448 
final  value 94.486005 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.185426 
iter  10 value 94.485922
final  value 94.484492 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.197218 
final  value 94.485870 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.625899 
final  value 94.485867 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.924749 
final  value 94.485766 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.020885 
iter  10 value 94.488970
iter  20 value 94.484462
iter  30 value 94.383627
iter  40 value 92.211154
iter  50 value 92.185791
iter  60 value 90.096158
iter  70 value 89.890245
iter  80 value 89.885427
final  value 89.883189 
converged
Fitting Repeat 2 

# weights:  305
initial  value 110.015935 
iter  10 value 94.434063
iter  20 value 93.574143
iter  30 value 85.526071
iter  40 value 85.522567
iter  50 value 85.476818
iter  60 value 84.739389
iter  70 value 84.622927
final  value 84.622895 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.542499 
iter  10 value 94.472323
iter  20 value 94.467583
iter  30 value 86.817421
final  value 86.509760 
converged
Fitting Repeat 4 

# weights:  305
initial  value 107.014867 
iter  10 value 94.489579
iter  20 value 94.484643
iter  30 value 87.264563
iter  40 value 85.039894
iter  50 value 84.919555
iter  60 value 84.919465
final  value 84.918549 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.051387 
iter  10 value 94.489195
iter  20 value 94.484169
iter  30 value 84.168960
iter  40 value 82.317007
iter  50 value 82.315938
final  value 82.315931 
converged
Fitting Repeat 1 

# weights:  507
initial  value 126.090895 
iter  10 value 94.477048
iter  20 value 94.472080
iter  30 value 94.262859
iter  40 value 93.378939
iter  50 value 85.457587
iter  60 value 85.139064
iter  70 value 85.135322
iter  80 value 85.134957
iter  90 value 84.359112
iter 100 value 82.728500
final  value 82.728500 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 95.049472 
iter  10 value 94.449860
iter  20 value 94.397892
iter  30 value 86.943294
iter  40 value 86.728697
iter  50 value 86.658026
iter  60 value 84.989387
iter  70 value 84.850800
iter  80 value 84.403380
iter  90 value 80.687150
iter 100 value 79.553083
final  value 79.553083 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 101.514030 
iter  10 value 94.491787
iter  20 value 94.086439
iter  30 value 88.593011
iter  40 value 84.000522
iter  50 value 83.747051
iter  60 value 83.499740
final  value 83.498072 
converged
Fitting Repeat 4 

# weights:  507
initial  value 94.773710 
iter  10 value 94.096919
iter  20 value 94.089349
final  value 94.089277 
converged
Fitting Repeat 5 

# weights:  507
initial  value 109.367581 
iter  10 value 94.476335
iter  20 value 94.470918
iter  30 value 94.469384
iter  40 value 94.221229
iter  50 value 83.627042
iter  60 value 81.024530
iter  70 value 79.194898
iter  80 value 77.971127
iter  90 value 77.711757
iter 100 value 77.691790
final  value 77.691790 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 106.248960 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.785787 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.150457 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.867826 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.166576 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.351223 
final  value 93.772973 
converged
Fitting Repeat 2 

# weights:  305
initial  value 100.570683 
iter  10 value 93.772973
iter  10 value 93.772973
iter  10 value 93.772973
final  value 93.772973 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.141434 
iter  10 value 93.772976
final  value 93.772973 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.549681 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.895334 
iter  10 value 94.313012
iter  20 value 93.438628
final  value 93.291715 
converged
Fitting Repeat 1 

# weights:  507
initial  value 93.772209 
iter  10 value 83.398502
final  value 83.377495 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.314286 
iter  10 value 93.690645
final  value 93.690592 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.066791 
final  value 94.052435 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.769993 
final  value 94.484206 
converged
Fitting Repeat 5 

# weights:  507
initial  value 116.563475 
iter  10 value 93.773155
final  value 93.772973 
converged
Fitting Repeat 1 

# weights:  103
initial  value 108.304927 
iter  10 value 94.494185
iter  20 value 93.987011
iter  30 value 85.342652
iter  40 value 84.442959
iter  50 value 84.255274
iter  60 value 83.959071
iter  70 value 83.917573
final  value 83.917300 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.878439 
iter  10 value 94.406691
iter  20 value 84.268623
iter  30 value 83.809159
iter  40 value 83.706909
iter  50 value 83.704160
iter  50 value 83.704159
iter  50 value 83.704159
final  value 83.704159 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.626584 
iter  10 value 90.461698
iter  20 value 85.153139
iter  30 value 83.578376
iter  40 value 83.120989
iter  50 value 83.012611
iter  60 value 82.954287
final  value 82.954182 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.727258 
iter  10 value 94.284506
iter  20 value 84.948822
iter  30 value 84.227095
iter  40 value 83.944321
iter  50 value 83.917995
final  value 83.917300 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.948659 
iter  10 value 94.487752
iter  20 value 93.184412
iter  30 value 93.135361
iter  40 value 93.091068
iter  50 value 92.061779
iter  60 value 88.284256
iter  70 value 87.987686
iter  80 value 86.349179
iter  90 value 83.397032
iter 100 value 82.237828
final  value 82.237828 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 111.779483 
iter  10 value 94.491830
iter  20 value 92.117253
iter  30 value 87.134644
iter  40 value 86.281443
iter  50 value 82.830908
iter  60 value 80.279036
iter  70 value 79.971917
iter  80 value 79.596637
iter  90 value 79.551078
iter 100 value 79.413619
final  value 79.413619 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 108.361188 
iter  10 value 96.305002
iter  20 value 91.419414
iter  30 value 87.461031
iter  40 value 84.115125
iter  50 value 82.029927
iter  60 value 81.854566
iter  70 value 81.256912
iter  80 value 81.084507
iter  90 value 80.977954
iter 100 value 80.956919
final  value 80.956919 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.886921 
iter  10 value 94.354839
iter  20 value 93.620359
iter  30 value 88.945047
iter  40 value 84.881931
iter  50 value 83.501461
iter  60 value 82.959955
iter  70 value 82.664244
iter  80 value 82.566730
iter  90 value 82.473211
iter 100 value 82.390249
final  value 82.390249 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 107.787236 
iter  10 value 95.139357
iter  20 value 90.276803
iter  30 value 86.773785
iter  40 value 85.840699
iter  50 value 85.612021
iter  60 value 85.100085
iter  70 value 82.376054
iter  80 value 80.816786
iter  90 value 80.127260
iter 100 value 79.670388
final  value 79.670388 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 118.960872 
iter  10 value 94.497155
iter  20 value 93.484840
iter  30 value 86.892695
iter  40 value 86.337312
iter  50 value 83.095585
iter  60 value 80.596075
iter  70 value 79.886415
iter  80 value 79.735585
iter  90 value 79.600851
iter 100 value 79.511681
final  value 79.511681 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.913353 
iter  10 value 93.871062
iter  20 value 91.070686
iter  30 value 89.720040
iter  40 value 89.072171
iter  50 value 84.489747
iter  60 value 81.553156
iter  70 value 80.284228
iter  80 value 80.046475
iter  90 value 79.976838
iter 100 value 79.693992
final  value 79.693992 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 119.547230 
iter  10 value 93.899820
iter  20 value 86.411217
iter  30 value 84.964727
iter  40 value 83.840086
iter  50 value 81.476292
iter  60 value 81.215789
iter  70 value 80.887604
iter  80 value 80.545857
iter  90 value 80.102378
iter 100 value 79.932537
final  value 79.932537 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 119.905468 
iter  10 value 95.472714
iter  20 value 94.368149
iter  30 value 84.811287
iter  40 value 83.890895
iter  50 value 81.758054
iter  60 value 80.755660
iter  70 value 80.600583
iter  80 value 80.508480
iter  90 value 80.013707
iter 100 value 79.618630
final  value 79.618630 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 116.266576 
iter  10 value 93.408241
iter  20 value 84.874489
iter  30 value 82.852391
iter  40 value 82.418996
iter  50 value 82.218364
iter  60 value 81.945161
iter  70 value 81.382524
iter  80 value 80.799700
iter  90 value 79.771752
iter 100 value 79.619912
final  value 79.619912 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.019508 
iter  10 value 94.549599
iter  20 value 92.547053
iter  30 value 91.951332
iter  40 value 90.128573
iter  50 value 83.383339
iter  60 value 82.899275
iter  70 value 81.092545
iter  80 value 80.366999
iter  90 value 80.133821
iter 100 value 80.019776
final  value 80.019776 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 105.191351 
iter  10 value 92.999693
iter  20 value 92.999065
iter  20 value 92.999065
final  value 92.999065 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.653998 
final  value 94.485856 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.487336 
final  value 94.485931 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.203232 
iter  10 value 94.485979
final  value 94.484223 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.848997 
final  value 94.486148 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.246960 
iter  10 value 94.489086
iter  20 value 94.484235
iter  30 value 93.417706
final  value 93.417705 
converged
Fitting Repeat 2 

# weights:  305
initial  value 112.791335 
iter  10 value 94.057391
iter  20 value 92.620954
iter  30 value 84.289240
iter  40 value 82.776496
iter  50 value 82.070421
iter  60 value 81.866607
iter  70 value 81.831792
iter  80 value 81.831257
final  value 81.830636 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.384020 
iter  10 value 94.489115
iter  20 value 94.410904
iter  30 value 92.997659
iter  30 value 92.997658
iter  30 value 92.997658
final  value 92.997658 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.495786 
iter  10 value 93.778454
iter  20 value 93.294793
iter  30 value 92.997691
iter  40 value 92.872932
final  value 92.870208 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.676407 
iter  10 value 93.778084
iter  20 value 93.761527
iter  30 value 92.946236
iter  40 value 82.275062
iter  50 value 80.517048
iter  60 value 80.108127
iter  70 value 79.802528
iter  80 value 79.756638
iter  90 value 79.750619
final  value 79.750614 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.328753 
iter  10 value 93.782066
iter  20 value 93.778642
iter  30 value 93.774310
iter  30 value 93.774310
iter  30 value 93.774310
final  value 93.774310 
converged
Fitting Repeat 2 

# weights:  507
initial  value 112.243458 
iter  10 value 94.492366
iter  20 value 94.446425
iter  30 value 93.005690
iter  40 value 92.914548
iter  50 value 92.864261
iter  60 value 92.862105
iter  70 value 92.806792
iter  80 value 92.787266
iter  90 value 92.786708
iter 100 value 92.786015
final  value 92.786015 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.043090 
iter  10 value 94.492071
iter  20 value 90.250250
iter  30 value 86.945865
iter  40 value 86.643767
iter  50 value 84.646129
iter  60 value 81.135671
iter  70 value 80.137491
iter  80 value 79.683415
iter  90 value 79.585862
iter 100 value 79.585436
final  value 79.585436 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 111.834214 
iter  10 value 94.492269
iter  20 value 94.420800
final  value 93.417606 
converged
Fitting Repeat 5 

# weights:  507
initial  value 131.538479 
iter  10 value 93.508544
iter  20 value 92.236383
iter  30 value 92.196701
iter  40 value 92.123955
final  value 92.123140 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.259884 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.422929 
final  value 94.214007 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.551105 
final  value 94.354396 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.492454 
iter  10 value 94.002999
iter  10 value 94.002999
iter  10 value 94.002999
final  value 94.002999 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.031142 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.374043 
iter  10 value 94.145902
final  value 94.144481 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.303736 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.335170 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 106.311912 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 108.701408 
final  value 94.354395 
converged
Fitting Repeat 1 

# weights:  507
initial  value 109.895050 
iter  10 value 94.323805
final  value 94.270000 
converged
Fitting Repeat 2 

# weights:  507
initial  value 116.719958 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.658283 
iter  10 value 91.469344
final  value 91.467949 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.505190 
final  value 94.354396 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.927732 
iter  10 value 93.464299
final  value 93.464287 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.030304 
iter  10 value 93.328007
iter  20 value 93.149060
iter  30 value 88.783088
iter  40 value 84.454657
iter  50 value 83.387757
iter  60 value 83.002811
iter  70 value 82.898767
iter  80 value 82.836595
final  value 82.831752 
converged
Fitting Repeat 2 

# weights:  103
initial  value 111.799496 
iter  10 value 92.902092
iter  20 value 86.521641
iter  30 value 86.403882
iter  40 value 86.298290
iter  50 value 86.061340
iter  60 value 86.029899
final  value 86.025235 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.093083 
iter  10 value 94.412944
iter  20 value 91.689705
iter  30 value 88.893736
iter  40 value 87.196401
iter  50 value 86.157787
iter  60 value 83.542309
iter  70 value 82.794879
iter  80 value 82.766429
final  value 82.752775 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.103884 
iter  10 value 94.488548
iter  20 value 91.492355
iter  30 value 90.023575
iter  40 value 88.402287
iter  50 value 86.355104
iter  60 value 86.271778
iter  70 value 86.038173
iter  80 value 86.025240
final  value 86.025235 
converged
Fitting Repeat 5 

# weights:  103
initial  value 108.571796 
iter  10 value 94.427090
iter  20 value 88.238308
iter  30 value 86.499658
iter  40 value 86.095111
iter  50 value 86.038588
iter  60 value 86.025235
iter  60 value 86.025235
iter  60 value 86.025235
final  value 86.025235 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.069422 
iter  10 value 94.545424
iter  20 value 94.370567
iter  30 value 91.112669
iter  40 value 85.420587
iter  50 value 82.690868
iter  60 value 82.350211
iter  70 value 81.987698
iter  80 value 81.671212
iter  90 value 81.635088
iter 100 value 81.576367
final  value 81.576367 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.196662 
iter  10 value 94.699792
iter  20 value 94.148480
iter  30 value 94.006838
iter  40 value 90.209129
iter  50 value 87.328127
iter  60 value 86.128360
iter  70 value 86.066192
iter  80 value 84.904984
iter  90 value 84.744654
iter 100 value 84.639711
final  value 84.639711 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 111.299554 
iter  10 value 94.104349
iter  20 value 88.118786
iter  30 value 87.018481
iter  40 value 86.442681
iter  50 value 85.772491
iter  60 value 85.644262
iter  70 value 85.589350
iter  80 value 85.111700
iter  90 value 84.524894
iter 100 value 81.923585
final  value 81.923585 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.342912 
iter  10 value 94.502199
iter  20 value 91.570900
iter  30 value 90.247070
iter  40 value 88.754762
iter  50 value 87.189520
iter  60 value 86.064421
iter  70 value 83.864725
iter  80 value 82.587036
iter  90 value 82.387527
iter 100 value 82.002988
final  value 82.002988 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 107.042035 
iter  10 value 94.521740
iter  20 value 93.201977
iter  30 value 90.630565
iter  40 value 85.929804
iter  50 value 83.776215
iter  60 value 83.201743
iter  70 value 83.082426
iter  80 value 83.000198
iter  90 value 82.987534
iter 100 value 82.889561
final  value 82.889561 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.860441 
iter  10 value 94.760197
iter  20 value 87.634366
iter  30 value 87.086565
iter  40 value 84.858682
iter  50 value 82.641382
iter  60 value 82.433176
iter  70 value 82.080959
iter  80 value 81.630667
iter  90 value 81.492783
iter 100 value 81.478222
final  value 81.478222 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 124.967652 
iter  10 value 97.533148
iter  20 value 88.171854
iter  30 value 84.897742
iter  40 value 84.064014
iter  50 value 83.351127
iter  60 value 82.444007
iter  70 value 81.874081
iter  80 value 81.489747
iter  90 value 81.387665
iter 100 value 81.292268
final  value 81.292268 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 109.243938 
iter  10 value 94.924136
iter  20 value 85.460804
iter  30 value 84.949173
iter  40 value 84.233814
iter  50 value 83.095116
iter  60 value 82.829412
iter  70 value 82.077165
iter  80 value 81.968945
iter  90 value 81.935722
iter 100 value 81.914164
final  value 81.914164 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 135.099481 
iter  10 value 96.406194
iter  20 value 94.418768
iter  30 value 88.682877
iter  40 value 87.263800
iter  50 value 83.317650
iter  60 value 82.117457
iter  70 value 81.922249
iter  80 value 81.797495
iter  90 value 81.507022
iter 100 value 81.258779
final  value 81.258779 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.215144 
iter  10 value 90.230701
iter  20 value 87.523807
iter  30 value 85.081513
iter  40 value 83.705799
iter  50 value 83.248017
iter  60 value 82.532017
iter  70 value 82.149279
iter  80 value 81.970818
iter  90 value 81.799660
iter 100 value 81.753475
final  value 81.753475 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.279583 
final  value 94.485822 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.540766 
final  value 94.485901 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.913263 
final  value 94.485940 
converged
Fitting Repeat 4 

# weights:  103
initial  value 111.241678 
iter  10 value 94.356191
iter  20 value 94.221460
iter  30 value 93.188815
final  value 92.614379 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.168282 
final  value 94.485891 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.711160 
iter  10 value 94.489215
iter  20 value 94.484235
iter  30 value 93.806970
iter  40 value 86.800741
iter  50 value 86.782234
iter  60 value 86.768926
iter  70 value 85.729454
iter  80 value 85.126704
iter  90 value 84.970848
iter 100 value 84.823860
final  value 84.823860 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 95.168428 
iter  10 value 94.489083
iter  20 value 94.232120
iter  30 value 87.215010
iter  40 value 85.723948
iter  50 value 84.154671
iter  60 value 84.152130
iter  70 value 84.119920
iter  80 value 84.117397
iter  90 value 82.962899
iter 100 value 82.460710
final  value 82.460710 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.898803 
iter  10 value 94.351948
iter  20 value 94.324742
iter  30 value 94.319045
iter  40 value 88.379519
iter  50 value 87.373578
iter  60 value 87.288516
iter  70 value 83.373791
iter  80 value 82.395407
iter  90 value 82.394733
iter 100 value 82.369994
final  value 82.369994 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 110.766302 
iter  10 value 94.488645
iter  20 value 91.690357
iter  30 value 87.843249
final  value 87.796053 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.632052 
iter  10 value 94.488687
iter  20 value 94.339586
final  value 93.568324 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.572882 
iter  10 value 93.123579
iter  20 value 92.800351
iter  30 value 92.732505
iter  40 value 92.698321
iter  50 value 92.615857
iter  60 value 92.357912
iter  70 value 92.088646
iter  80 value 86.918322
iter  90 value 85.658841
iter 100 value 85.017138
final  value 85.017138 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 96.261330 
iter  10 value 94.359427
iter  20 value 94.174265
iter  30 value 93.969221
iter  40 value 91.231944
iter  50 value 90.853375
iter  60 value 90.793725
iter  70 value 90.589772
iter  80 value 90.581201
iter  90 value 90.517915
iter 100 value 86.987762
final  value 86.987762 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 113.828039 
iter  10 value 94.491957
iter  20 value 94.251328
iter  30 value 88.874113
iter  40 value 88.768975
iter  50 value 87.812704
iter  60 value 87.791233
iter  70 value 84.888324
iter  80 value 84.887125
iter  90 value 84.883619
iter 100 value 84.498936
final  value 84.498936 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 100.555095 
iter  10 value 94.362060
iter  20 value 92.538885
iter  30 value 85.222868
iter  40 value 85.167920
final  value 85.167763 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.431161 
iter  10 value 94.492348
iter  20 value 93.265974
iter  30 value 91.464582
iter  30 value 91.464581
iter  30 value 91.464581
final  value 91.464581 
converged
Fitting Repeat 1 

# weights:  305
initial  value 123.907565 
iter  10 value 117.894969
final  value 117.890430 
converged
Fitting Repeat 2 

# weights:  305
initial  value 121.289210 
iter  10 value 117.748129
iter  20 value 108.028245
iter  30 value 106.365120
iter  40 value 106.260029
iter  50 value 105.918939
iter  60 value 105.918440
final  value 105.913600 
converged
Fitting Repeat 3 

# weights:  305
initial  value 124.028598 
iter  10 value 117.857291
iter  20 value 117.176693
iter  30 value 116.966635
iter  40 value 107.712858
iter  50 value 107.672942
iter  60 value 107.332017
iter  70 value 104.304555
iter  80 value 104.295189
iter  90 value 104.264777
iter 100 value 104.261042
final  value 104.261042 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 120.953704 
iter  10 value 110.759344
iter  20 value 108.421920
iter  30 value 106.844939
iter  40 value 106.833632
iter  50 value 106.830732
final  value 106.828924 
converged
Fitting Repeat 5 

# weights:  305
initial  value 119.128017 
iter  10 value 117.764213
iter  20 value 117.760542
iter  30 value 117.719323
iter  40 value 116.174723
iter  50 value 105.728041
iter  60 value 105.408114
iter  70 value 104.674121
iter  80 value 104.670639
final  value 104.670267 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Tue Aug 12 03:20:34 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  44.78    1.53  117.34 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod35.50 2.1837.71
FreqInteractors0.220.010.25
calculateAAC0.060.000.06
calculateAutocor0.470.110.58
calculateCTDC0.080.000.08
calculateCTDD0.740.050.78
calculateCTDT0.380.010.40
calculateCTriad0.430.020.45
calculateDC0.130.000.12
calculateF0.360.030.39
calculateKSAAP0.140.000.14
calculateQD_Sm2.050.192.24
calculateTC1.730.091.83
calculateTC_Sm0.370.020.40
corr_plot34.85 1.7936.66
enrichfindP 0.64 0.1012.89
enrichfind_hp0.060.031.05
enrichplot0.440.000.43
filter_missing_values000
getFASTA0.020.032.08
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.080.000.08
pred_ensembel14.42 0.3113.17
var_imp35.67 1.3136.98