Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-06-19 12:04 -0400 (Thu, 19 Jun 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.2 LTS) | x86_64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4810 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.5.0 (2025-04-11 ucrt) -- "How About a Twenty-Six" | 4548 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.0 Patched (2025-04-21 r88169) -- "How About a Twenty-Six" | 4528 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4493 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 984/2309 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-06-18 19:41:01 -0400 (Wed, 18 Jun 2025) |
EndedAt: 2025-06-18 19:44:07 -0400 (Wed, 18 Jun 2025) |
EllapsedTime: 186.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’ * using R version 4.5.0 Patched (2025-04-21 r88169) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 16.0.0 (clang-1600.0.26.6) GNU Fortran (GCC) 14.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.15.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 17.852 0.743 18.657 FSmethod 17.602 0.717 18.556 corr_plot 17.090 0.666 17.951 pred_ensembel 5.870 0.104 5.372 enrichfindP 0.166 0.030 7.609 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.0 Patched (2025-04-21 r88169) -- "How About a Twenty-Six" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.490005 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.099878 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 100.377824 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.321301 final value 93.912644 converged Fitting Repeat 5 # weights: 103 initial value 100.511807 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 101.467407 iter 10 value 94.038228 iter 20 value 93.482994 iter 30 value 93.347284 iter 40 value 93.346723 iter 40 value 93.346723 iter 40 value 93.346723 final value 93.346723 converged Fitting Repeat 2 # weights: 305 initial value 106.195680 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 100.856135 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 108.932913 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.789599 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 101.453847 iter 10 value 91.454444 iter 20 value 89.169176 iter 30 value 87.343823 iter 40 value 87.328211 iter 50 value 87.234161 final value 87.231837 converged Fitting Repeat 2 # weights: 507 initial value 111.261919 iter 10 value 94.038197 iter 20 value 93.983373 final value 93.902381 converged Fitting Repeat 3 # weights: 507 initial value 105.523792 iter 10 value 91.579982 final value 89.759214 converged Fitting Repeat 4 # weights: 507 initial value 103.447991 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 101.495553 final value 94.052911 converged Fitting Repeat 1 # weights: 103 initial value 97.016975 iter 10 value 93.944992 iter 20 value 87.528205 iter 30 value 85.614023 iter 40 value 85.328565 iter 50 value 84.399761 iter 60 value 84.206584 iter 70 value 84.025387 iter 80 value 83.849662 final value 83.846596 converged Fitting Repeat 2 # weights: 103 initial value 99.457468 iter 10 value 94.087775 iter 20 value 93.751552 iter 30 value 89.848101 iter 40 value 85.890611 iter 50 value 85.303631 iter 60 value 84.970041 iter 70 value 83.556289 iter 80 value 83.500990 iter 90 value 83.487338 final value 83.487231 converged Fitting Repeat 3 # weights: 103 initial value 102.695913 iter 10 value 94.059581 iter 20 value 93.578708 iter 30 value 85.874423 iter 40 value 85.101803 iter 50 value 83.977156 iter 60 value 82.229240 iter 70 value 81.642894 iter 80 value 81.154596 iter 90 value 80.783068 iter 100 value 80.775085 final value 80.775085 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.621719 iter 10 value 97.139441 iter 20 value 94.032007 iter 30 value 88.750725 iter 40 value 88.259452 iter 50 value 85.011514 iter 60 value 84.298512 iter 70 value 84.158427 iter 80 value 84.079518 iter 90 value 83.789604 iter 100 value 83.531165 final value 83.531165 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 112.614540 iter 10 value 93.979475 iter 20 value 93.625466 iter 30 value 88.112153 iter 40 value 85.569831 iter 50 value 84.198739 iter 60 value 83.642855 iter 70 value 83.552238 iter 80 value 83.513788 final value 83.513591 converged Fitting Repeat 1 # weights: 305 initial value 105.357063 iter 10 value 94.978944 iter 20 value 90.440949 iter 30 value 89.570139 iter 40 value 89.240508 iter 50 value 84.361931 iter 60 value 83.308788 iter 70 value 83.012819 iter 80 value 80.740897 iter 90 value 80.141306 iter 100 value 79.848372 final value 79.848372 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.591038 iter 10 value 94.016093 iter 20 value 89.475492 iter 30 value 87.496100 iter 40 value 84.177529 iter 50 value 81.723270 iter 60 value 80.847430 iter 70 value 80.450340 iter 80 value 80.138268 iter 90 value 79.932002 iter 100 value 79.813390 final value 79.813390 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.363463 iter 10 value 94.115262 iter 20 value 86.625145 iter 30 value 84.874641 iter 40 value 83.990547 iter 50 value 83.381959 iter 60 value 83.333791 iter 70 value 83.289734 iter 80 value 83.269565 iter 90 value 83.150196 iter 100 value 81.935411 final value 81.935411 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.743098 iter 10 value 93.790941 iter 20 value 93.695591 iter 30 value 89.288319 iter 40 value 84.201535 iter 50 value 82.981320 iter 60 value 82.094210 iter 70 value 80.637621 iter 80 value 80.561964 iter 90 value 80.549921 iter 100 value 80.510045 final value 80.510045 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 123.007238 iter 10 value 94.766338 iter 20 value 93.982677 iter 30 value 88.740743 iter 40 value 85.436818 iter 50 value 84.643164 iter 60 value 83.829416 iter 70 value 82.184203 iter 80 value 81.272576 iter 90 value 81.127242 iter 100 value 80.900031 final value 80.900031 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.326349 iter 10 value 94.164113 iter 20 value 92.641521 iter 30 value 89.742384 iter 40 value 87.289264 iter 50 value 87.037746 iter 60 value 86.749006 iter 70 value 83.934094 iter 80 value 81.158648 iter 90 value 80.641793 iter 100 value 80.221055 final value 80.221055 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.953290 iter 10 value 94.428566 iter 20 value 91.396225 iter 30 value 86.119501 iter 40 value 84.118960 iter 50 value 81.491557 iter 60 value 81.199600 iter 70 value 80.988661 iter 80 value 80.423855 iter 90 value 79.595704 iter 100 value 79.520554 final value 79.520554 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.218522 iter 10 value 97.067123 iter 20 value 92.942414 iter 30 value 91.050974 iter 40 value 90.721108 iter 50 value 90.523428 iter 60 value 90.206341 iter 70 value 87.006760 iter 80 value 82.511889 iter 90 value 82.319441 iter 100 value 82.148147 final value 82.148147 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.828643 iter 10 value 94.018138 iter 20 value 93.567316 iter 30 value 87.055471 iter 40 value 84.821056 iter 50 value 83.523830 iter 60 value 82.407687 iter 70 value 81.941480 iter 80 value 81.494211 iter 90 value 81.211241 iter 100 value 81.066939 final value 81.066939 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.151912 iter 10 value 94.251274 iter 20 value 91.354722 iter 30 value 91.019094 iter 40 value 82.808401 iter 50 value 81.066376 iter 60 value 80.418397 iter 70 value 80.342500 iter 80 value 80.164651 iter 90 value 79.867669 iter 100 value 79.371362 final value 79.371362 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.027052 final value 94.054663 converged Fitting Repeat 2 # weights: 103 initial value 96.670245 final value 94.054263 converged Fitting Repeat 3 # weights: 103 initial value 97.546421 iter 10 value 91.818303 iter 20 value 91.376496 iter 30 value 91.329729 iter 40 value 91.329607 iter 50 value 91.328271 final value 91.328085 converged Fitting Repeat 4 # weights: 103 initial value 100.876305 iter 10 value 94.040614 iter 20 value 94.039069 iter 30 value 85.825872 iter 40 value 84.444864 final value 84.444794 converged Fitting Repeat 5 # weights: 103 initial value 97.572135 final value 94.039946 converged Fitting Repeat 1 # weights: 305 initial value 99.720247 iter 10 value 94.058119 iter 20 value 93.849708 iter 30 value 87.380011 iter 40 value 84.999937 iter 50 value 83.992224 iter 60 value 83.468955 iter 70 value 83.465628 iter 80 value 83.183214 iter 90 value 82.495957 iter 100 value 82.211440 final value 82.211440 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.722913 iter 10 value 87.909500 iter 20 value 87.115083 iter 30 value 87.092778 iter 40 value 86.633202 iter 50 value 86.615273 iter 60 value 86.614994 final value 86.614826 converged Fitting Repeat 3 # weights: 305 initial value 123.595829 iter 10 value 94.058019 iter 20 value 94.053220 iter 30 value 93.681499 iter 40 value 93.328940 iter 50 value 86.443003 iter 60 value 83.652891 iter 70 value 83.112223 iter 80 value 83.110840 final value 83.110659 converged Fitting Repeat 4 # weights: 305 initial value 100.302519 iter 10 value 92.188638 iter 20 value 91.546936 iter 30 value 90.824112 iter 40 value 90.821813 iter 50 value 90.492339 iter 60 value 90.460551 iter 70 value 90.459880 iter 80 value 90.006171 iter 90 value 89.993963 final value 89.993716 converged Fitting Repeat 5 # weights: 305 initial value 111.228465 iter 10 value 94.043242 iter 20 value 92.580227 iter 30 value 84.753341 iter 40 value 81.395542 iter 50 value 80.331606 iter 60 value 78.904332 iter 70 value 78.608602 iter 80 value 78.557177 iter 90 value 78.483037 final value 78.479064 converged Fitting Repeat 1 # weights: 507 initial value 100.020935 iter 10 value 92.441192 iter 20 value 89.152202 iter 30 value 86.868374 iter 40 value 86.865602 iter 50 value 86.863926 iter 60 value 86.862789 iter 70 value 86.858929 final value 86.858461 converged Fitting Repeat 2 # weights: 507 initial value 94.655840 iter 10 value 94.058887 iter 20 value 92.103431 iter 30 value 83.337178 iter 40 value 83.325014 iter 50 value 82.982884 iter 60 value 82.758097 iter 70 value 81.146553 iter 80 value 79.157339 iter 90 value 78.894081 iter 100 value 78.843950 final value 78.843950 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.852609 iter 10 value 93.336626 iter 20 value 93.332499 iter 30 value 93.324754 iter 40 value 84.331507 iter 50 value 83.833325 iter 60 value 83.773406 final value 83.773305 converged Fitting Repeat 4 # weights: 507 initial value 100.053531 iter 10 value 92.598407 iter 20 value 88.664602 iter 30 value 88.380813 iter 40 value 88.377532 iter 50 value 88.376984 iter 60 value 88.373248 iter 70 value 88.362759 iter 80 value 88.341889 iter 90 value 88.340860 iter 100 value 88.339648 final value 88.339648 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.089350 iter 10 value 93.913242 iter 20 value 93.909006 iter 30 value 91.074568 iter 40 value 89.559470 iter 50 value 84.521479 iter 60 value 81.513236 final value 81.480964 converged Fitting Repeat 1 # weights: 103 initial value 97.553320 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.104007 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.328117 final value 94.144482 converged Fitting Repeat 4 # weights: 103 initial value 105.576175 final value 94.449438 converged Fitting Repeat 5 # weights: 103 initial value 97.349732 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 113.795012 final value 94.387430 converged Fitting Repeat 2 # weights: 305 initial value 112.276216 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 110.852244 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 104.448973 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 105.150520 iter 10 value 94.132646 final value 94.132576 converged Fitting Repeat 1 # weights: 507 initial value 116.083140 iter 10 value 94.354205 iter 20 value 94.144570 final value 94.144483 converged Fitting Repeat 2 # weights: 507 initial value 106.088139 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 101.380945 iter 10 value 94.484288 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 99.815872 iter 10 value 94.354441 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 98.707201 final value 94.144481 converged Fitting Repeat 1 # weights: 103 initial value 99.555938 iter 10 value 94.486504 iter 20 value 94.197722 iter 30 value 90.862737 iter 40 value 86.942821 iter 50 value 86.414123 iter 60 value 84.963140 iter 70 value 84.502512 iter 80 value 84.198582 iter 90 value 84.010776 iter 100 value 83.800065 final value 83.800065 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.810356 iter 10 value 94.486498 iter 20 value 94.404731 iter 30 value 93.856606 iter 40 value 93.311407 iter 50 value 90.268594 iter 60 value 88.451987 iter 70 value 86.623361 iter 80 value 85.517605 iter 90 value 85.352722 iter 100 value 85.146408 final value 85.146408 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.501026 iter 10 value 94.436697 iter 20 value 93.660907 iter 30 value 92.932825 iter 40 value 92.801943 iter 50 value 92.727117 iter 60 value 92.582879 iter 70 value 85.932745 iter 80 value 85.354391 iter 90 value 84.808260 iter 100 value 84.326507 final value 84.326507 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.097324 iter 10 value 94.506794 iter 20 value 93.052739 iter 30 value 90.657492 iter 40 value 86.892359 iter 50 value 85.927370 iter 60 value 85.600782 iter 70 value 84.934176 iter 80 value 84.284617 iter 90 value 84.019191 iter 100 value 83.812565 final value 83.812565 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 117.387830 iter 10 value 94.404723 iter 20 value 92.825541 iter 30 value 92.684002 iter 40 value 92.666087 final value 92.666082 converged Fitting Repeat 1 # weights: 305 initial value 111.256736 iter 10 value 94.453476 iter 20 value 90.817427 iter 30 value 87.079860 iter 40 value 86.413519 iter 50 value 86.072508 iter 60 value 85.782219 iter 70 value 85.589514 iter 80 value 85.414405 iter 90 value 84.277295 iter 100 value 82.795359 final value 82.795359 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.992886 iter 10 value 94.883481 iter 20 value 94.533781 iter 30 value 91.907021 iter 40 value 86.565450 iter 50 value 86.506795 iter 60 value 86.178443 iter 70 value 83.612458 iter 80 value 83.299162 iter 90 value 83.057522 iter 100 value 82.890497 final value 82.890497 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.782435 iter 10 value 94.548846 iter 20 value 94.413530 iter 30 value 91.815660 iter 40 value 87.288659 iter 50 value 85.653117 iter 60 value 84.289930 iter 70 value 83.232026 iter 80 value 82.834381 iter 90 value 82.758652 iter 100 value 82.545212 final value 82.545212 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 120.781918 iter 10 value 94.488979 iter 20 value 91.238342 iter 30 value 88.537950 iter 40 value 87.497354 iter 50 value 86.767989 iter 60 value 85.864584 iter 70 value 85.449027 iter 80 value 85.230489 iter 90 value 84.445415 iter 100 value 83.465382 final value 83.465382 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.013659 iter 10 value 94.237676 iter 20 value 87.954143 iter 30 value 86.275980 iter 40 value 85.635355 iter 50 value 85.311377 iter 60 value 84.628335 iter 70 value 84.347960 iter 80 value 83.878810 iter 90 value 83.394594 iter 100 value 82.887552 final value 82.887552 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.692807 iter 10 value 95.220030 iter 20 value 94.089830 iter 30 value 88.441652 iter 40 value 87.672340 iter 50 value 85.204387 iter 60 value 83.991666 iter 70 value 83.447895 iter 80 value 83.019296 iter 90 value 82.806322 iter 100 value 82.225371 final value 82.225371 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.280989 iter 10 value 94.490044 iter 20 value 94.297609 iter 30 value 93.087164 iter 40 value 89.395862 iter 50 value 86.714164 iter 60 value 85.824290 iter 70 value 84.198289 iter 80 value 83.137187 iter 90 value 82.712272 iter 100 value 82.156728 final value 82.156728 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.375623 iter 10 value 94.080093 iter 20 value 87.721414 iter 30 value 87.388753 iter 40 value 87.284352 iter 50 value 85.890748 iter 60 value 84.519286 iter 70 value 83.654180 iter 80 value 82.587609 iter 90 value 82.058625 iter 100 value 81.771751 final value 81.771751 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.307197 iter 10 value 94.582831 iter 20 value 94.360806 iter 30 value 92.747576 iter 40 value 87.606742 iter 50 value 85.153379 iter 60 value 84.280941 iter 70 value 83.222844 iter 80 value 82.710149 iter 90 value 82.641321 iter 100 value 82.362279 final value 82.362279 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.376238 iter 10 value 94.406539 iter 20 value 93.338411 iter 30 value 89.106696 iter 40 value 85.641163 iter 50 value 85.020782 iter 60 value 83.847850 iter 70 value 82.726478 iter 80 value 82.522133 iter 90 value 82.295115 iter 100 value 82.089504 final value 82.089504 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.726468 final value 94.485918 converged Fitting Repeat 2 # weights: 103 initial value 98.708391 final value 94.485693 converged Fitting Repeat 3 # weights: 103 initial value 98.070916 final value 94.485985 converged Fitting Repeat 4 # weights: 103 initial value 95.193177 iter 10 value 94.485733 iter 20 value 94.484247 iter 30 value 94.366117 iter 40 value 93.298721 iter 50 value 93.089517 iter 60 value 87.603515 iter 70 value 87.290438 iter 80 value 86.475227 iter 90 value 86.460736 iter 100 value 86.457148 final value 86.457148 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.312686 final value 94.485767 converged Fitting Repeat 1 # weights: 305 initial value 109.102440 iter 10 value 94.488937 iter 20 value 94.484304 final value 94.484220 converged Fitting Repeat 2 # weights: 305 initial value 103.221353 iter 10 value 94.149796 iter 20 value 94.101640 iter 30 value 94.096211 iter 40 value 90.396670 iter 50 value 85.755038 iter 60 value 85.753775 final value 85.753226 converged Fitting Repeat 3 # weights: 305 initial value 106.480359 iter 10 value 94.359057 iter 20 value 94.355483 final value 94.354718 converged Fitting Repeat 4 # weights: 305 initial value 116.418688 iter 10 value 94.358879 iter 20 value 94.163330 iter 30 value 90.641527 final value 88.422163 converged Fitting Repeat 5 # weights: 305 initial value 94.973667 iter 10 value 94.454528 iter 20 value 94.449083 iter 30 value 93.984342 iter 40 value 92.510556 iter 50 value 92.370314 iter 60 value 92.299229 final value 92.299225 converged Fitting Repeat 1 # weights: 507 initial value 131.006160 iter 10 value 94.491411 iter 20 value 94.429594 iter 30 value 91.348183 iter 40 value 90.983385 iter 50 value 90.981857 iter 60 value 90.881347 iter 70 value 90.878645 iter 80 value 90.330083 iter 90 value 85.392628 iter 100 value 85.162305 final value 85.162305 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.334134 iter 10 value 94.495714 iter 20 value 94.459218 iter 30 value 92.544791 iter 40 value 90.623861 iter 50 value 90.614119 iter 60 value 90.367768 iter 70 value 90.323859 iter 80 value 90.255124 iter 90 value 90.218312 iter 100 value 89.521352 final value 89.521352 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.770929 iter 10 value 93.352894 iter 20 value 92.977014 iter 30 value 91.271533 iter 40 value 90.157859 iter 50 value 90.099309 iter 60 value 88.961797 iter 70 value 88.894893 iter 80 value 88.890094 iter 90 value 88.888616 iter 100 value 87.920201 final value 87.920201 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.123484 iter 10 value 89.221073 iter 20 value 86.900072 iter 30 value 86.863259 iter 40 value 86.584327 iter 50 value 86.239435 iter 60 value 86.238484 iter 70 value 86.211554 iter 80 value 86.153409 iter 90 value 86.152905 iter 100 value 86.152790 final value 86.152790 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.139405 iter 10 value 94.457106 iter 20 value 93.489212 iter 30 value 93.485226 iter 40 value 92.607400 iter 50 value 92.607050 iter 60 value 92.604131 final value 92.534520 converged Fitting Repeat 1 # weights: 103 initial value 98.352201 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.770389 iter 10 value 93.294329 iter 20 value 92.321991 iter 30 value 91.182959 iter 40 value 90.161522 iter 50 value 90.104234 iter 60 value 90.081006 final value 90.069606 converged Fitting Repeat 3 # weights: 103 initial value 97.458809 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.041226 final value 94.484210 converged Fitting Repeat 5 # weights: 103 initial value 97.455836 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 107.073528 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 108.029393 final value 94.484210 converged Fitting Repeat 3 # weights: 305 initial value 95.462917 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.725769 iter 10 value 92.287414 iter 20 value 92.281087 final value 92.281082 converged Fitting Repeat 5 # weights: 305 initial value 96.067859 iter 10 value 94.179774 final value 94.179348 converged Fitting Repeat 1 # weights: 507 initial value 101.862619 iter 10 value 92.292466 iter 20 value 92.281092 final value 92.281082 converged Fitting Repeat 2 # weights: 507 initial value 96.433359 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 103.516255 iter 10 value 91.868606 iter 20 value 91.865306 iter 30 value 91.864642 iter 30 value 91.864642 iter 30 value 91.864642 final value 91.864642 converged Fitting Repeat 4 # weights: 507 initial value 99.797379 iter 10 value 92.292155 iter 20 value 92.281091 final value 92.281082 converged Fitting Repeat 5 # weights: 507 initial value 106.745745 iter 10 value 90.560678 iter 20 value 88.022110 iter 30 value 88.019416 iter 40 value 86.215892 iter 50 value 85.020201 final value 85.019364 converged Fitting Repeat 1 # weights: 103 initial value 108.607303 iter 10 value 94.481149 iter 20 value 93.877468 iter 30 value 92.843266 iter 40 value 92.347093 iter 50 value 83.844920 iter 60 value 83.437966 iter 70 value 81.902034 iter 80 value 79.902986 iter 90 value 79.398041 iter 100 value 79.320367 final value 79.320367 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.188784 iter 10 value 94.387906 iter 20 value 92.660730 iter 30 value 92.612396 iter 40 value 92.545534 iter 50 value 92.042309 iter 60 value 86.421002 iter 70 value 85.786071 iter 80 value 84.043552 iter 90 value 83.001682 iter 100 value 81.237513 final value 81.237513 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.097364 iter 10 value 94.342206 iter 20 value 91.973468 iter 30 value 87.660605 iter 40 value 86.115383 iter 50 value 85.267333 iter 60 value 81.558486 iter 70 value 81.338450 iter 80 value 81.102808 iter 90 value 79.850368 iter 100 value 79.390671 final value 79.390671 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.512214 iter 10 value 86.314419 iter 20 value 85.868698 iter 30 value 85.577750 final value 85.573764 converged Fitting Repeat 5 # weights: 103 initial value 101.917579 iter 10 value 94.397986 iter 20 value 93.052445 iter 30 value 93.023087 iter 40 value 92.702540 iter 50 value 86.788366 iter 60 value 86.527867 iter 70 value 86.518095 iter 80 value 85.470766 iter 90 value 83.649948 iter 100 value 82.612245 final value 82.612245 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.092291 iter 10 value 94.493812 iter 20 value 93.095034 iter 30 value 92.530284 iter 40 value 86.043467 iter 50 value 82.783759 iter 60 value 80.438459 iter 70 value 79.785190 iter 80 value 79.552418 iter 90 value 79.301059 iter 100 value 79.205853 final value 79.205853 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 116.874498 iter 10 value 93.851766 iter 20 value 92.980484 iter 30 value 92.500312 iter 40 value 92.392352 iter 50 value 84.741584 iter 60 value 83.328806 iter 70 value 80.464631 iter 80 value 78.664506 iter 90 value 77.927280 iter 100 value 77.650121 final value 77.650121 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.819142 iter 10 value 95.227394 iter 20 value 93.824073 iter 30 value 92.689502 iter 40 value 91.799032 iter 50 value 87.637810 iter 60 value 86.771518 iter 70 value 85.861484 iter 80 value 84.383881 iter 90 value 81.128246 iter 100 value 78.927023 final value 78.927023 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.824352 iter 10 value 94.257411 iter 20 value 92.447835 iter 30 value 92.069403 iter 40 value 84.502490 iter 50 value 83.287067 iter 60 value 79.730512 iter 70 value 78.357774 iter 80 value 78.104157 iter 90 value 77.873909 iter 100 value 77.845376 final value 77.845376 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.788402 iter 10 value 92.973667 iter 20 value 85.234416 iter 30 value 81.435538 iter 40 value 80.416778 iter 50 value 79.129065 iter 60 value 78.593971 iter 70 value 78.041085 iter 80 value 77.729651 iter 90 value 77.626512 iter 100 value 77.540405 final value 77.540405 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.013050 iter 10 value 94.661437 iter 20 value 93.013516 iter 30 value 92.850571 iter 40 value 92.151440 iter 50 value 89.481223 iter 60 value 82.717993 iter 70 value 80.829309 iter 80 value 79.312092 iter 90 value 79.161896 iter 100 value 78.769482 final value 78.769482 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.301392 iter 10 value 94.366300 iter 20 value 93.274869 iter 30 value 92.335551 iter 40 value 91.882483 iter 50 value 87.441754 iter 60 value 85.457427 iter 70 value 84.850072 iter 80 value 81.948622 iter 90 value 79.475442 iter 100 value 77.759823 final value 77.759823 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 129.421184 iter 10 value 94.487124 iter 20 value 90.845808 iter 30 value 84.623407 iter 40 value 81.710272 iter 50 value 81.508468 iter 60 value 81.356350 iter 70 value 81.248384 iter 80 value 80.788195 iter 90 value 79.686344 iter 100 value 78.961980 final value 78.961980 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.163937 iter 10 value 94.072566 iter 20 value 88.850172 iter 30 value 84.785514 iter 40 value 81.987658 iter 50 value 80.465874 iter 60 value 79.171125 iter 70 value 78.504832 iter 80 value 78.233343 iter 90 value 77.755899 iter 100 value 77.662449 final value 77.662449 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.077952 iter 10 value 94.217573 iter 20 value 92.302509 iter 30 value 87.444815 iter 40 value 84.723255 iter 50 value 81.471304 iter 60 value 79.212276 iter 70 value 78.561754 iter 80 value 78.034490 iter 90 value 77.831017 iter 100 value 77.745387 final value 77.745387 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.079876 final value 94.485638 converged Fitting Repeat 2 # weights: 103 initial value 97.447465 final value 94.485882 converged Fitting Repeat 3 # weights: 103 initial value 100.588138 iter 10 value 93.475517 iter 20 value 92.340528 iter 30 value 91.988075 iter 40 value 91.764075 iter 50 value 91.669572 iter 50 value 91.669571 iter 50 value 91.669571 final value 91.669571 converged Fitting Repeat 4 # weights: 103 initial value 96.487931 final value 94.485989 converged Fitting Repeat 5 # weights: 103 initial value 97.607881 final value 94.485701 converged Fitting Repeat 1 # weights: 305 initial value 102.983686 iter 10 value 94.488098 iter 20 value 94.229715 iter 30 value 92.293226 iter 40 value 92.292357 iter 50 value 92.145220 iter 60 value 86.670801 iter 70 value 84.584720 iter 80 value 84.340415 iter 90 value 84.189667 iter 100 value 84.043561 final value 84.043561 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.596530 iter 10 value 92.378111 iter 20 value 92.297585 iter 30 value 91.888723 iter 40 value 91.876996 iter 50 value 91.875249 final value 91.875152 converged Fitting Repeat 3 # weights: 305 initial value 106.039655 iter 10 value 93.789199 iter 20 value 93.786628 iter 30 value 90.169524 iter 40 value 85.722238 iter 50 value 85.660938 final value 85.659268 converged Fitting Repeat 4 # weights: 305 initial value 98.319247 iter 10 value 94.315591 iter 20 value 93.788771 iter 30 value 93.784754 iter 40 value 93.575528 iter 50 value 90.481241 iter 60 value 90.479660 iter 70 value 87.596858 iter 80 value 86.641940 iter 90 value 86.639640 iter 100 value 84.879907 final value 84.879907 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.498979 iter 10 value 94.492680 iter 20 value 94.469508 iter 30 value 92.289619 iter 40 value 92.288423 iter 50 value 92.182741 iter 60 value 86.068517 iter 70 value 85.973044 iter 80 value 85.972732 iter 90 value 85.972440 iter 100 value 85.972406 final value 85.972406 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.317728 iter 10 value 92.313720 iter 20 value 92.294308 iter 30 value 92.243314 iter 40 value 92.236661 iter 50 value 91.757681 iter 60 value 88.671317 iter 70 value 80.413362 iter 80 value 77.472450 iter 90 value 77.172313 iter 100 value 77.115167 final value 77.115167 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.004799 iter 10 value 83.795005 iter 20 value 83.358958 iter 30 value 83.314878 iter 40 value 83.313959 iter 50 value 83.308799 iter 60 value 83.305556 iter 70 value 82.836536 iter 80 value 81.823710 iter 90 value 79.470911 iter 100 value 77.869053 final value 77.869053 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.348754 iter 10 value 92.295403 iter 20 value 92.292183 iter 30 value 91.797311 iter 40 value 91.684542 iter 50 value 91.657492 final value 91.654788 converged Fitting Repeat 4 # weights: 507 initial value 112.662104 iter 10 value 92.307879 iter 20 value 92.294325 iter 30 value 92.290364 iter 40 value 92.284973 iter 50 value 91.514918 iter 60 value 90.102080 iter 70 value 82.943965 iter 80 value 78.453063 iter 90 value 78.099918 iter 100 value 78.011173 final value 78.011173 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.329583 iter 10 value 92.332263 iter 20 value 92.306728 iter 30 value 92.299214 iter 40 value 92.123087 iter 50 value 90.995587 iter 60 value 82.491909 iter 70 value 79.854755 iter 80 value 78.132270 iter 90 value 78.094222 iter 100 value 78.088329 final value 78.088329 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.996338 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.317233 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.004112 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.401876 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.661465 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 92.233828 iter 10 value 85.889659 final value 85.889610 converged Fitting Repeat 2 # weights: 305 initial value 94.519998 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 112.291531 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 101.775553 iter 10 value 92.636058 iter 20 value 85.968836 final value 85.951718 converged Fitting Repeat 5 # weights: 305 initial value 100.270187 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.423237 final value 94.315789 converged Fitting Repeat 2 # weights: 507 initial value 99.311925 iter 10 value 92.678657 iter 20 value 91.609035 iter 30 value 91.597908 iter 40 value 91.597734 iter 40 value 91.597734 iter 40 value 91.597734 final value 91.597734 converged Fitting Repeat 3 # weights: 507 initial value 109.738869 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 100.499070 iter 10 value 94.466838 final value 94.466829 converged Fitting Repeat 5 # weights: 507 initial value 107.696682 iter 10 value 94.452876 iter 10 value 94.452875 iter 10 value 94.452875 final value 94.452875 converged Fitting Repeat 1 # weights: 103 initial value 98.994700 iter 10 value 94.464569 iter 20 value 94.213840 iter 30 value 91.321029 iter 40 value 87.110272 iter 50 value 85.034494 iter 60 value 84.760729 iter 70 value 84.314722 iter 80 value 84.282970 iter 90 value 84.275956 final value 84.275953 converged Fitting Repeat 2 # weights: 103 initial value 108.633271 iter 10 value 94.486688 iter 20 value 94.230386 iter 30 value 89.125676 iter 40 value 85.690116 iter 50 value 84.435215 iter 60 value 84.371130 iter 70 value 84.335421 iter 80 value 84.281643 iter 90 value 84.275990 final value 84.275953 converged Fitting Repeat 3 # weights: 103 initial value 101.633876 iter 10 value 94.502144 iter 20 value 94.483752 iter 30 value 94.291184 iter 40 value 94.212566 iter 50 value 94.165677 iter 60 value 94.074463 iter 70 value 94.052979 iter 80 value 90.516603 iter 90 value 85.065944 iter 100 value 83.126855 final value 83.126855 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.299831 iter 10 value 94.487917 iter 20 value 94.456830 iter 30 value 91.677005 iter 40 value 88.392696 iter 50 value 87.642824 iter 60 value 86.942887 iter 70 value 86.406731 iter 80 value 86.356507 final value 86.355854 converged Fitting Repeat 5 # weights: 103 initial value 106.187778 iter 10 value 94.469264 iter 20 value 91.604438 iter 30 value 90.261543 iter 40 value 90.023304 iter 50 value 85.461353 iter 60 value 84.866727 iter 70 value 82.497033 iter 80 value 80.863633 iter 90 value 80.789342 iter 100 value 80.670936 final value 80.670936 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.694431 iter 10 value 95.413342 iter 20 value 94.371562 iter 30 value 91.695049 iter 40 value 86.489236 iter 50 value 86.316409 iter 60 value 86.133005 iter 70 value 86.002299 iter 80 value 84.629960 iter 90 value 83.387819 iter 100 value 83.118072 final value 83.118072 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.759658 iter 10 value 95.967549 iter 20 value 92.875288 iter 30 value 88.450938 iter 40 value 87.334540 iter 50 value 85.939289 iter 60 value 85.824411 iter 70 value 83.729746 iter 80 value 81.547843 iter 90 value 80.837647 iter 100 value 80.676473 final value 80.676473 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.897045 iter 10 value 94.470825 iter 20 value 93.656560 iter 30 value 91.688319 iter 40 value 91.032442 iter 50 value 90.959433 iter 60 value 90.531447 iter 70 value 81.680270 iter 80 value 81.507574 iter 90 value 81.199744 iter 100 value 80.339261 final value 80.339261 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.394032 iter 10 value 94.344987 iter 20 value 90.628692 iter 30 value 86.946195 iter 40 value 84.098534 iter 50 value 82.917539 iter 60 value 82.804020 iter 70 value 82.465294 iter 80 value 81.934042 iter 90 value 81.063404 iter 100 value 80.848334 final value 80.848334 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.199141 iter 10 value 94.596034 iter 20 value 94.102395 iter 30 value 90.875711 iter 40 value 89.297394 iter 50 value 83.927336 iter 60 value 83.110390 iter 70 value 82.802269 iter 80 value 82.765049 iter 90 value 80.495624 iter 100 value 80.272174 final value 80.272174 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.975190 iter 10 value 94.417408 iter 20 value 88.799168 iter 30 value 87.724240 iter 40 value 86.439327 iter 50 value 84.151554 iter 60 value 81.297885 iter 70 value 80.759861 iter 80 value 79.478505 iter 90 value 78.971274 iter 100 value 78.938103 final value 78.938103 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.774720 iter 10 value 94.529226 iter 20 value 93.606226 iter 30 value 86.427860 iter 40 value 82.752705 iter 50 value 80.539316 iter 60 value 79.346681 iter 70 value 78.703793 iter 80 value 78.347930 iter 90 value 78.207591 iter 100 value 78.159704 final value 78.159704 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.154021 iter 10 value 94.683711 iter 20 value 93.939923 iter 30 value 90.363906 iter 40 value 89.218445 iter 50 value 86.624663 iter 60 value 82.827155 iter 70 value 81.802822 iter 80 value 80.828098 iter 90 value 80.049404 iter 100 value 79.052228 final value 79.052228 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.024827 iter 10 value 94.579050 iter 20 value 94.446325 iter 30 value 86.082171 iter 40 value 83.257816 iter 50 value 82.934701 iter 60 value 82.775028 iter 70 value 80.408775 iter 80 value 79.827688 iter 90 value 79.293046 iter 100 value 78.840010 final value 78.840010 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.237463 iter 10 value 94.816624 iter 20 value 90.455434 iter 30 value 87.452274 iter 40 value 87.033494 iter 50 value 85.063178 iter 60 value 80.301898 iter 70 value 79.465955 iter 80 value 79.069187 iter 90 value 78.413620 iter 100 value 78.006142 final value 78.006142 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.118903 final value 94.485709 converged Fitting Repeat 2 # weights: 103 initial value 99.838962 final value 94.486071 converged Fitting Repeat 3 # weights: 103 initial value 98.357544 iter 10 value 91.240013 iter 20 value 91.211605 final value 91.211531 converged Fitting Repeat 4 # weights: 103 initial value 97.332770 final value 94.486043 converged Fitting Repeat 5 # weights: 103 initial value 97.678561 final value 94.485644 converged Fitting Repeat 1 # weights: 305 initial value 101.267798 iter 10 value 94.149644 iter 20 value 93.666797 iter 30 value 85.296023 final value 84.008135 converged Fitting Repeat 2 # weights: 305 initial value 96.689400 iter 10 value 94.489391 iter 20 value 94.484258 iter 30 value 94.475001 iter 40 value 93.998311 iter 50 value 93.993061 iter 60 value 93.992970 iter 60 value 93.992970 iter 60 value 93.992970 final value 93.992970 converged Fitting Repeat 3 # weights: 305 initial value 106.584146 iter 10 value 94.471876 iter 20 value 94.321068 iter 30 value 94.062423 iter 40 value 94.051094 final value 94.050995 converged Fitting Repeat 4 # weights: 305 initial value 94.764044 iter 10 value 93.725339 iter 20 value 93.080591 iter 30 value 92.211392 iter 40 value 92.210115 final value 92.210099 converged Fitting Repeat 5 # weights: 305 initial value 110.063041 iter 10 value 88.988976 iter 20 value 87.778068 iter 30 value 87.615384 iter 40 value 86.211340 final value 85.891622 converged Fitting Repeat 1 # weights: 507 initial value 98.676393 iter 10 value 93.686029 iter 20 value 92.600635 iter 30 value 92.306375 iter 40 value 92.301981 final value 92.301845 converged Fitting Repeat 2 # weights: 507 initial value 99.782370 iter 10 value 93.784150 iter 20 value 93.657351 iter 30 value 86.667884 iter 40 value 86.610563 iter 50 value 86.609136 iter 60 value 86.608967 iter 70 value 86.607565 iter 80 value 86.373308 iter 90 value 86.277885 iter 100 value 85.794260 final value 85.794260 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.780402 iter 10 value 94.492391 iter 20 value 94.457944 iter 30 value 85.106374 iter 40 value 83.165007 final value 83.164975 converged Fitting Repeat 4 # weights: 507 initial value 104.495925 iter 10 value 94.492349 iter 20 value 94.484013 iter 30 value 91.767655 iter 40 value 83.894062 iter 50 value 81.745770 iter 60 value 81.079673 iter 70 value 80.741410 iter 80 value 79.694524 iter 90 value 78.903213 iter 100 value 77.601250 final value 77.601250 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.811194 iter 10 value 94.474344 iter 20 value 94.468131 iter 30 value 94.467907 iter 40 value 93.969424 iter 50 value 84.077131 iter 60 value 84.014030 iter 70 value 83.738078 iter 80 value 78.826286 iter 90 value 78.588789 iter 100 value 77.876613 final value 77.876613 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.519520 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.114283 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.483315 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 103.707326 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.188958 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.581135 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 114.570238 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 101.169291 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 106.090197 final value 94.052448 converged Fitting Repeat 5 # weights: 305 initial value 101.918518 iter 10 value 94.052911 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 100.459562 iter 10 value 94.038255 final value 94.038250 converged Fitting Repeat 2 # weights: 507 initial value 124.936365 iter 10 value 94.038251 iter 10 value 94.038251 iter 10 value 94.038251 final value 94.038251 converged Fitting Repeat 3 # weights: 507 initial value 94.732093 final value 94.038251 converged Fitting Repeat 4 # weights: 507 initial value 115.598090 iter 10 value 94.038253 final value 94.038251 converged Fitting Repeat 5 # weights: 507 initial value 100.140388 iter 10 value 91.725914 iter 20 value 91.450384 final value 91.448719 converged Fitting Repeat 1 # weights: 103 initial value 108.523770 iter 10 value 94.019331 iter 20 value 85.376204 iter 30 value 82.785722 iter 40 value 82.660032 iter 50 value 82.614533 iter 60 value 82.290166 iter 70 value 81.946680 iter 80 value 81.912227 final value 81.912218 converged Fitting Repeat 2 # weights: 103 initial value 96.222727 iter 10 value 93.461048 iter 20 value 83.825792 iter 30 value 83.479651 iter 40 value 82.571831 iter 50 value 82.085401 iter 60 value 82.058207 iter 70 value 82.023601 iter 80 value 81.941429 final value 81.932199 converged Fitting Repeat 3 # weights: 103 initial value 102.543044 iter 10 value 94.056589 iter 20 value 93.069371 iter 30 value 91.789285 iter 40 value 85.190358 iter 50 value 83.908576 iter 60 value 81.669860 iter 70 value 80.938031 iter 80 value 80.623464 iter 90 value 80.353079 iter 100 value 80.330798 final value 80.330798 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 107.573178 iter 10 value 93.763467 iter 20 value 89.220119 iter 30 value 83.818291 iter 40 value 82.904279 iter 50 value 82.682975 iter 60 value 82.170203 iter 70 value 81.932260 final value 81.932199 converged Fitting Repeat 5 # weights: 103 initial value 99.052770 iter 10 value 89.692197 iter 20 value 88.209104 iter 30 value 86.627548 iter 40 value 86.144981 iter 50 value 84.787240 iter 60 value 82.832647 iter 70 value 82.136694 iter 80 value 81.785323 iter 90 value 81.506972 final value 81.494191 converged Fitting Repeat 1 # weights: 305 initial value 105.405223 iter 10 value 94.071711 iter 20 value 91.708658 iter 30 value 86.814928 iter 40 value 82.330116 iter 50 value 80.275276 iter 60 value 79.488274 iter 70 value 79.218069 iter 80 value 78.850619 iter 90 value 78.782777 iter 100 value 78.767944 final value 78.767944 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.897882 iter 10 value 93.902151 iter 20 value 86.872162 iter 30 value 83.869581 iter 40 value 82.214547 iter 50 value 81.850435 iter 60 value 80.770113 iter 70 value 80.477023 iter 80 value 80.315480 iter 90 value 80.250002 iter 100 value 80.127355 final value 80.127355 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.221451 iter 10 value 94.047665 iter 20 value 86.394474 iter 30 value 82.942153 iter 40 value 80.632473 iter 50 value 80.220571 iter 60 value 80.143581 iter 70 value 80.028789 iter 80 value 79.785742 iter 90 value 79.624165 iter 100 value 79.553745 final value 79.553745 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.562612 iter 10 value 94.013938 iter 20 value 90.793592 iter 30 value 86.796436 iter 40 value 85.601635 iter 50 value 85.255034 iter 60 value 84.955152 iter 70 value 83.741496 iter 80 value 82.023869 iter 90 value 79.752445 iter 100 value 78.854774 final value 78.854774 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.889853 iter 10 value 94.106387 iter 20 value 91.914246 iter 30 value 91.299138 iter 40 value 84.890139 iter 50 value 80.634559 iter 60 value 79.158854 iter 70 value 78.847780 iter 80 value 78.782884 iter 90 value 78.709930 iter 100 value 78.590294 final value 78.590294 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.924286 iter 10 value 97.129019 iter 20 value 94.016677 iter 30 value 84.833705 iter 40 value 83.710709 iter 50 value 83.445861 iter 60 value 82.627460 iter 70 value 82.220629 iter 80 value 81.881789 iter 90 value 80.917496 iter 100 value 79.639673 final value 79.639673 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.874729 iter 10 value 95.201535 iter 20 value 91.313026 iter 30 value 88.777469 iter 40 value 83.273618 iter 50 value 81.259901 iter 60 value 79.285376 iter 70 value 78.918067 iter 80 value 78.804097 iter 90 value 78.636800 iter 100 value 78.474730 final value 78.474730 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.695894 iter 10 value 93.257398 iter 20 value 83.648574 iter 30 value 81.627823 iter 40 value 79.991241 iter 50 value 79.202542 iter 60 value 78.696449 iter 70 value 78.349523 iter 80 value 78.053607 iter 90 value 77.980288 iter 100 value 77.819790 final value 77.819790 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.021259 iter 10 value 92.239643 iter 20 value 91.885139 iter 30 value 90.904650 iter 40 value 87.368861 iter 50 value 80.757639 iter 60 value 79.356869 iter 70 value 78.932502 iter 80 value 78.295219 iter 90 value 77.981721 iter 100 value 77.859491 final value 77.859491 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 102.183345 iter 10 value 85.929189 iter 20 value 83.768168 iter 30 value 80.902007 iter 40 value 80.008583 iter 50 value 79.458490 iter 60 value 78.874908 iter 70 value 78.492387 iter 80 value 78.403755 iter 90 value 78.174051 iter 100 value 78.124692 final value 78.124692 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.671605 final value 94.054548 converged Fitting Repeat 2 # weights: 103 initial value 97.329789 final value 94.054565 converged Fitting Repeat 3 # weights: 103 initial value 100.614683 iter 10 value 93.876519 final value 93.272914 converged Fitting Repeat 4 # weights: 103 initial value 98.408289 iter 10 value 94.051904 iter 20 value 91.584351 iter 30 value 91.255676 iter 40 value 91.253385 iter 50 value 91.252996 iter 60 value 91.252150 final value 91.252011 converged Fitting Repeat 5 # weights: 103 initial value 103.415104 final value 94.054547 converged Fitting Repeat 1 # weights: 305 initial value 96.016255 iter 10 value 88.417540 iter 20 value 84.121874 iter 30 value 84.087461 iter 40 value 84.083226 iter 50 value 79.736760 iter 60 value 79.131505 iter 70 value 79.073694 iter 80 value 79.072668 iter 90 value 79.072520 iter 100 value 78.350216 final value 78.350216 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.106331 iter 10 value 94.057686 iter 20 value 93.907199 iter 30 value 89.713260 iter 40 value 84.468295 iter 50 value 83.738251 iter 60 value 83.727920 iter 70 value 81.207367 iter 80 value 79.300453 iter 90 value 79.208941 iter 100 value 79.112742 final value 79.112742 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.647793 iter 10 value 93.904926 iter 20 value 93.871062 iter 30 value 93.791505 final value 93.789607 converged Fitting Repeat 4 # weights: 305 initial value 122.867320 iter 10 value 93.522606 iter 20 value 93.310450 iter 30 value 93.299145 iter 40 value 91.242501 iter 50 value 91.242325 iter 60 value 91.139315 iter 70 value 87.719539 iter 80 value 86.257123 iter 90 value 86.256933 iter 100 value 86.256004 final value 86.256004 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.326312 iter 10 value 94.056589 iter 20 value 93.318436 iter 30 value 85.290831 iter 40 value 82.236822 iter 50 value 82.143186 iter 60 value 82.140069 final value 82.139819 converged Fitting Repeat 1 # weights: 507 initial value 92.972587 iter 10 value 83.244206 iter 20 value 81.712181 iter 30 value 80.319522 iter 40 value 80.286128 iter 50 value 80.284562 final value 80.281614 converged Fitting Repeat 2 # weights: 507 initial value 105.305310 iter 10 value 93.908023 iter 20 value 89.035576 iter 30 value 85.103901 iter 40 value 84.723230 iter 50 value 82.557562 iter 60 value 82.557035 iter 70 value 82.550353 iter 80 value 82.544637 iter 90 value 82.543543 iter 100 value 81.906071 final value 81.906071 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.487385 iter 10 value 94.060756 iter 20 value 94.033658 iter 30 value 89.309811 iter 40 value 84.709416 iter 50 value 84.697864 iter 60 value 83.806198 iter 70 value 83.367404 iter 80 value 83.271077 iter 90 value 83.270787 final value 83.270590 converged Fitting Repeat 4 # weights: 507 initial value 106.145305 iter 10 value 94.061355 iter 20 value 94.053875 iter 30 value 93.816301 iter 40 value 88.106674 iter 50 value 87.346885 iter 60 value 87.336536 iter 70 value 87.335920 iter 80 value 87.335109 iter 90 value 87.334267 final value 87.333604 converged Fitting Repeat 5 # weights: 507 initial value 105.935574 iter 10 value 94.046507 iter 20 value 93.986505 iter 30 value 88.517584 iter 40 value 82.914445 iter 50 value 82.323387 iter 60 value 82.321234 iter 70 value 82.321091 iter 80 value 82.320566 iter 90 value 82.320147 iter 100 value 82.015348 final value 82.015348 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 127.210573 final value 117.874568 converged Fitting Repeat 2 # weights: 507 initial value 132.862548 iter 10 value 116.450581 iter 20 value 115.018542 iter 30 value 115.016314 iter 40 value 115.012091 iter 50 value 114.917756 iter 60 value 114.916503 final value 114.915918 converged Fitting Repeat 3 # weights: 507 initial value 127.460054 iter 10 value 117.896524 iter 20 value 117.680141 iter 30 value 107.033905 iter 40 value 107.011178 iter 50 value 107.010089 iter 60 value 106.909547 iter 70 value 106.757151 iter 80 value 106.648401 iter 90 value 106.624525 iter 100 value 106.344855 final value 106.344855 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 132.918906 iter 10 value 115.257430 iter 20 value 114.919427 iter 30 value 110.151285 iter 40 value 109.187871 iter 50 value 108.999415 iter 60 value 103.376774 iter 70 value 102.368579 iter 80 value 102.329875 iter 90 value 102.155074 iter 100 value 102.154079 final value 102.154079 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 118.600229 iter 10 value 117.748898 iter 20 value 117.731015 final value 117.731009 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Jun 18 19:44:04 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 18.817 0.429 74.725
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 17.602 | 0.717 | 18.556 | |
FreqInteractors | 0.075 | 0.004 | 0.078 | |
calculateAAC | 0.013 | 0.003 | 0.015 | |
calculateAutocor | 0.132 | 0.019 | 0.151 | |
calculateCTDC | 0.023 | 0.002 | 0.025 | |
calculateCTDD | 0.181 | 0.012 | 0.192 | |
calculateCTDT | 0.082 | 0.006 | 0.087 | |
calculateCTriad | 0.154 | 0.013 | 0.167 | |
calculateDC | 0.030 | 0.003 | 0.033 | |
calculateF | 0.091 | 0.003 | 0.093 | |
calculateKSAAP | 0.030 | 0.003 | 0.034 | |
calculateQD_Sm | 0.567 | 0.038 | 0.605 | |
calculateTC | 0.550 | 0.056 | 0.628 | |
calculateTC_Sm | 0.125 | 0.018 | 0.143 | |
corr_plot | 17.090 | 0.666 | 17.951 | |
enrichfindP | 0.166 | 0.030 | 7.609 | |
enrichfind_hp | 0.025 | 0.009 | 1.005 | |
enrichplot | 0.118 | 0.003 | 0.121 | |
filter_missing_values | 0.000 | 0.001 | 0.001 | |
getFASTA | 0.028 | 0.007 | 3.363 | |
getHPI | 0.001 | 0.000 | 0.000 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0.000 | 0.000 | 0.001 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.024 | 0.002 | 0.025 | |
pred_ensembel | 5.870 | 0.104 | 5.372 | |
var_imp | 17.852 | 0.743 | 18.657 | |