| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2025-11-28 11:39 -0500 (Fri, 28 Nov 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4866 |
| lconway | macOS 12.7.6 Monterey | x86_64 | R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences" | 4614 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" | 4571 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 994/2328 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.1 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | WARNINGS | |||||||||
| lconway | macOS 12.7.6 Monterey / x86_64 | OK | OK | WARNINGS | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | WARNINGS | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.1 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz |
| StartedAt: 2025-11-27 20:33:07 -0500 (Thu, 27 Nov 2025) |
| EndedAt: 2025-11-27 20:36:42 -0500 (Thu, 27 Nov 2025) |
| EllapsedTime: 215.0 seconds |
| RetCode: 0 |
| Status: WARNINGS |
| CheckDir: HPiP.Rcheck |
| Warnings: 1 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
Code: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
FALSE, filename = "plots.pdf")
Docs: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
TRUE, filename = "plots.pdf")
Mismatches in argument default values:
Name: 'plots' Code: FALSE Docs: TRUE
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
corr_plot 19.048 1.016 21.964
FSmethod 19.057 0.932 21.207
var_imp 18.534 0.963 21.099
pred_ensembel 6.691 0.108 6.598
enrichfindP 0.194 0.039 12.094
getFASTA 0.038 0.007 5.790
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 WARNING, 2 NOTEs
See
‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.1’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 102.946652
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 106.686207
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.588228
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 96.569432
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 93.656250
iter 10 value 90.475234
iter 20 value 88.532856
iter 30 value 87.629828
iter 40 value 87.366866
iter 50 value 87.270678
final value 87.270480
converged
Fitting Repeat 1
# weights: 305
initial value 96.316560
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 97.227217
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 109.794037
final value 93.890110
converged
Fitting Repeat 4
# weights: 305
initial value 101.441172
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 104.860871
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 103.095007
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 96.850611
iter 10 value 93.701380
iter 20 value 93.538180
iter 30 value 93.535690
final value 93.535679
converged
Fitting Repeat 3
# weights: 507
initial value 103.025844
iter 10 value 93.627491
final value 93.627345
converged
Fitting Repeat 4
# weights: 507
initial value 100.679814
iter 10 value 92.339619
iter 20 value 91.493218
iter 30 value 91.442859
final value 91.439287
converged
Fitting Repeat 5
# weights: 507
initial value 126.036835
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 97.352748
iter 10 value 94.056983
iter 20 value 91.851535
iter 30 value 86.437552
iter 40 value 86.298787
iter 50 value 84.761499
iter 60 value 84.247544
iter 70 value 83.273028
iter 80 value 83.166363
iter 90 value 83.078987
final value 83.071722
converged
Fitting Repeat 2
# weights: 103
initial value 111.379104
iter 10 value 93.967523
iter 20 value 88.174669
iter 30 value 87.505182
iter 40 value 87.336438
iter 50 value 86.886967
iter 60 value 86.701083
iter 70 value 84.814587
iter 80 value 84.596216
iter 90 value 84.595199
iter 90 value 84.595199
iter 90 value 84.595199
final value 84.595199
converged
Fitting Repeat 3
# weights: 103
initial value 99.938709
iter 10 value 94.056749
iter 20 value 89.816259
iter 30 value 88.320196
iter 40 value 85.476471
iter 50 value 85.200694
iter 60 value 84.739396
iter 70 value 84.640077
iter 80 value 84.595446
final value 84.595199
converged
Fitting Repeat 4
# weights: 103
initial value 101.726715
iter 10 value 94.056665
iter 20 value 93.895840
iter 30 value 93.891252
iter 40 value 93.889875
iter 50 value 93.468849
iter 60 value 90.465767
iter 70 value 89.936226
iter 80 value 88.291388
iter 90 value 85.964390
iter 100 value 84.937836
final value 84.937836
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 103.023286
iter 10 value 94.057809
iter 20 value 93.932687
iter 30 value 92.052026
iter 40 value 89.465469
iter 50 value 87.332877
iter 60 value 87.218573
iter 70 value 87.037202
iter 80 value 84.840935
iter 90 value 84.598103
final value 84.595199
converged
Fitting Repeat 1
# weights: 305
initial value 102.170637
iter 10 value 93.162870
iter 20 value 88.090481
iter 30 value 85.567264
iter 40 value 84.705057
iter 50 value 84.345927
iter 60 value 83.372381
iter 70 value 83.074330
iter 80 value 82.519645
iter 90 value 81.895666
iter 100 value 81.696074
final value 81.696074
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 116.148366
iter 10 value 94.015602
iter 20 value 87.797264
iter 30 value 86.923743
iter 40 value 86.107337
iter 50 value 84.240403
iter 60 value 82.404592
iter 70 value 82.049275
iter 80 value 81.753611
iter 90 value 81.681943
iter 100 value 81.612377
final value 81.612377
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.280726
iter 10 value 94.057554
iter 20 value 88.131964
iter 30 value 86.104631
iter 40 value 83.336614
iter 50 value 82.255598
iter 60 value 81.883678
iter 70 value 81.709459
iter 80 value 81.624001
iter 90 value 81.597410
iter 100 value 81.481609
final value 81.481609
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 108.701267
iter 10 value 94.050291
iter 20 value 92.316603
iter 30 value 87.500128
iter 40 value 85.959906
iter 50 value 84.884024
iter 60 value 84.337508
iter 70 value 83.559449
iter 80 value 83.371338
iter 90 value 83.068740
iter 100 value 82.872905
final value 82.872905
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.467570
iter 10 value 93.980061
iter 20 value 93.910841
iter 30 value 87.579522
iter 40 value 85.286777
iter 50 value 84.634475
iter 60 value 84.219336
iter 70 value 82.745510
iter 80 value 81.970630
iter 90 value 81.925122
iter 100 value 81.823192
final value 81.823192
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.041760
iter 10 value 98.638569
iter 20 value 89.060588
iter 30 value 83.978026
iter 40 value 83.305261
iter 50 value 82.785383
iter 60 value 82.029846
iter 70 value 81.829641
iter 80 value 81.666649
iter 90 value 81.487770
iter 100 value 81.432508
final value 81.432508
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 113.213591
iter 10 value 91.368006
iter 20 value 88.239424
iter 30 value 85.021155
iter 40 value 84.645475
iter 50 value 84.409788
iter 60 value 84.315007
iter 70 value 84.283419
iter 80 value 84.266814
iter 90 value 84.178305
iter 100 value 83.231664
final value 83.231664
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.649952
iter 10 value 94.192720
iter 20 value 90.571393
iter 30 value 90.009918
iter 40 value 84.308346
iter 50 value 83.907837
iter 60 value 83.786979
iter 70 value 82.431348
iter 80 value 81.737964
iter 90 value 81.655064
iter 100 value 81.601852
final value 81.601852
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.995303
iter 10 value 93.937912
iter 20 value 90.610599
iter 30 value 85.318792
iter 40 value 83.755973
iter 50 value 82.395159
iter 60 value 82.065016
iter 70 value 81.954063
iter 80 value 81.905999
iter 90 value 81.820501
iter 100 value 81.786089
final value 81.786089
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.615472
iter 10 value 95.201022
iter 20 value 90.140527
iter 30 value 84.164140
iter 40 value 82.351313
iter 50 value 82.105791
iter 60 value 82.024857
iter 70 value 81.996270
iter 80 value 81.909566
iter 90 value 81.752145
iter 100 value 81.609957
final value 81.609957
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.295957
final value 94.054533
converged
Fitting Repeat 2
# weights: 103
initial value 105.168348
iter 10 value 93.837502
iter 20 value 93.837159
iter 30 value 93.836550
final value 93.836157
converged
Fitting Repeat 3
# weights: 103
initial value 94.604844
final value 93.837623
converged
Fitting Repeat 4
# weights: 103
initial value 97.521642
final value 93.837659
converged
Fitting Repeat 5
# weights: 103
initial value 94.909155
final value 94.054299
converged
Fitting Repeat 1
# weights: 305
initial value 119.950766
iter 10 value 93.887825
iter 20 value 93.071245
iter 30 value 91.889074
iter 40 value 86.163870
iter 50 value 86.136096
iter 60 value 85.688150
iter 70 value 85.687026
iter 80 value 85.686697
iter 90 value 85.686139
iter 100 value 85.666920
final value 85.666920
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.195671
iter 10 value 94.056509
iter 20 value 93.930253
iter 30 value 86.860068
iter 40 value 84.660058
iter 50 value 84.092482
iter 60 value 82.144501
iter 70 value 82.075985
iter 80 value 82.070707
iter 90 value 82.069904
iter 100 value 82.066588
final value 82.066588
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.757551
iter 10 value 94.057315
iter 20 value 94.033606
iter 30 value 93.536746
iter 40 value 89.902428
iter 50 value 88.485398
iter 60 value 87.497859
iter 70 value 85.174766
iter 80 value 83.506246
iter 90 value 81.813081
iter 100 value 81.653919
final value 81.653919
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.787774
iter 10 value 90.486731
iter 20 value 89.777839
iter 30 value 89.541587
iter 40 value 87.420298
iter 50 value 84.620546
iter 60 value 84.050849
iter 70 value 82.945884
iter 80 value 82.302941
iter 90 value 82.287476
final value 82.287474
converged
Fitting Repeat 5
# weights: 305
initial value 94.647999
iter 10 value 93.943507
iter 20 value 93.875422
iter 30 value 93.873161
iter 40 value 93.310760
iter 50 value 93.033326
iter 60 value 93.030653
iter 70 value 91.747726
iter 80 value 85.579026
iter 90 value 85.559206
iter 100 value 85.558091
final value 85.558091
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 94.993946
iter 10 value 94.060811
iter 20 value 94.052562
iter 30 value 93.836955
iter 40 value 88.746527
iter 50 value 85.291132
iter 60 value 85.289992
iter 70 value 85.164058
iter 80 value 85.149925
final value 85.149862
converged
Fitting Repeat 2
# weights: 507
initial value 98.191729
iter 10 value 94.061038
iter 20 value 94.042045
iter 30 value 86.342533
iter 40 value 83.729799
iter 50 value 83.727881
iter 60 value 83.718375
iter 70 value 83.717643
iter 80 value 83.716186
iter 90 value 83.174448
iter 100 value 83.157718
final value 83.157718
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 99.455049
iter 10 value 94.060612
iter 20 value 88.900159
iter 30 value 85.881878
iter 40 value 85.879884
iter 50 value 84.138489
iter 60 value 81.206514
iter 70 value 80.925674
final value 80.925576
converged
Fitting Repeat 4
# weights: 507
initial value 94.670455
iter 10 value 94.060889
iter 20 value 93.943203
iter 30 value 86.762158
iter 40 value 86.338943
iter 50 value 86.291717
final value 86.291055
converged
Fitting Repeat 5
# weights: 507
initial value 102.292591
iter 10 value 88.801781
iter 20 value 85.668312
iter 30 value 85.395854
iter 40 value 85.391098
iter 40 value 85.391098
final value 85.391098
converged
Fitting Repeat 1
# weights: 103
initial value 99.242755
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 94.820257
final value 94.144481
converged
Fitting Repeat 3
# weights: 103
initial value 104.776406
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 109.065938
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 100.078792
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 101.236371
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 121.676305
iter 10 value 94.484211
iter 10 value 94.484211
iter 10 value 94.484211
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 105.235950
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 94.643639
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 105.546000
iter 10 value 94.484215
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 98.788719
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 95.894679
iter 10 value 93.676934
iter 20 value 93.641069
final value 93.640744
converged
Fitting Repeat 3
# weights: 507
initial value 102.271852
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 104.066574
iter 10 value 93.424564
iter 20 value 93.330997
iter 20 value 93.330997
iter 20 value 93.330997
final value 93.330997
converged
Fitting Repeat 5
# weights: 507
initial value 99.016343
iter 10 value 90.021266
iter 20 value 86.766926
iter 30 value 86.433422
iter 40 value 85.293482
iter 50 value 84.735829
iter 60 value 84.726526
iter 70 value 84.726135
final value 84.726131
converged
Fitting Repeat 1
# weights: 103
initial value 97.818022
iter 10 value 94.486700
iter 20 value 93.932146
iter 30 value 93.695501
iter 40 value 93.681796
iter 50 value 92.812046
iter 60 value 89.822253
iter 70 value 88.998055
iter 80 value 85.835893
iter 90 value 85.297667
iter 100 value 84.743812
final value 84.743812
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.050095
iter 10 value 95.477900
iter 20 value 94.487880
iter 30 value 93.775543
iter 40 value 93.722075
iter 50 value 93.321989
iter 60 value 87.312764
iter 70 value 85.485491
iter 80 value 84.786954
iter 90 value 84.614820
iter 100 value 84.481260
final value 84.481260
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.873764
iter 10 value 94.489513
iter 20 value 94.474797
iter 30 value 94.234546
iter 40 value 94.215971
iter 50 value 93.310125
iter 60 value 90.043484
iter 70 value 87.023393
iter 80 value 86.250387
iter 90 value 83.894309
iter 100 value 83.818428
final value 83.818428
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 98.467331
iter 10 value 94.482586
iter 20 value 93.803620
iter 30 value 93.686928
iter 40 value 93.685816
iter 50 value 93.613868
iter 60 value 86.046905
iter 70 value 84.492952
iter 80 value 84.360428
final value 84.360399
converged
Fitting Repeat 5
# weights: 103
initial value 102.889057
iter 10 value 88.272385
iter 20 value 84.450299
iter 30 value 83.964727
iter 40 value 83.179918
iter 50 value 82.891181
iter 60 value 82.762323
iter 70 value 82.698293
final value 82.698002
converged
Fitting Repeat 1
# weights: 305
initial value 118.911338
iter 10 value 94.201328
iter 20 value 94.122726
iter 30 value 88.703926
iter 40 value 86.100878
iter 50 value 83.633583
iter 60 value 82.856990
iter 70 value 82.744068
iter 80 value 82.508125
iter 90 value 82.260576
iter 100 value 82.060516
final value 82.060516
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.013140
iter 10 value 94.270931
iter 20 value 86.168013
iter 30 value 85.022519
iter 40 value 84.766964
iter 50 value 84.042972
iter 60 value 83.406803
iter 70 value 82.856623
iter 80 value 82.452976
iter 90 value 82.384171
iter 100 value 82.355189
final value 82.355189
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.950937
iter 10 value 94.509102
iter 20 value 93.700400
iter 30 value 85.192103
iter 40 value 84.919081
iter 50 value 84.357178
iter 60 value 83.801285
iter 70 value 83.374639
iter 80 value 83.192010
iter 90 value 82.683553
iter 100 value 82.379844
final value 82.379844
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 123.387747
iter 10 value 94.462532
iter 20 value 87.617367
iter 30 value 85.902688
iter 40 value 84.234288
iter 50 value 83.289546
iter 60 value 82.316515
iter 70 value 81.944185
iter 80 value 81.874930
iter 90 value 81.700591
iter 100 value 81.616034
final value 81.616034
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 111.394969
iter 10 value 94.935052
iter 20 value 91.405219
iter 30 value 86.554404
iter 40 value 86.119826
iter 50 value 85.732330
iter 60 value 85.584828
iter 70 value 84.948545
iter 80 value 84.552480
iter 90 value 83.547215
iter 100 value 83.322084
final value 83.322084
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.977453
iter 10 value 93.664304
iter 20 value 85.616299
iter 30 value 84.822509
iter 40 value 83.155375
iter 50 value 82.508638
iter 60 value 82.283424
iter 70 value 82.080483
iter 80 value 81.846583
iter 90 value 81.777745
iter 100 value 81.654964
final value 81.654964
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 117.006478
iter 10 value 94.613333
iter 20 value 94.074392
iter 30 value 85.891921
iter 40 value 85.203426
iter 50 value 84.961612
iter 60 value 83.763138
iter 70 value 82.517419
iter 80 value 81.834599
iter 90 value 81.597185
iter 100 value 81.553618
final value 81.553618
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.376759
iter 10 value 94.900860
iter 20 value 92.937381
iter 30 value 84.313236
iter 40 value 83.449603
iter 50 value 82.809635
iter 60 value 82.637499
iter 70 value 82.428603
iter 80 value 81.819095
iter 90 value 81.668264
iter 100 value 81.553109
final value 81.553109
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.536982
iter 10 value 94.510015
iter 20 value 93.790254
iter 30 value 93.713511
iter 40 value 91.742968
iter 50 value 83.979354
iter 60 value 83.053875
iter 70 value 82.623165
iter 80 value 82.551743
iter 90 value 82.321748
iter 100 value 82.061334
final value 82.061334
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.686670
iter 10 value 94.526202
iter 20 value 94.331540
iter 30 value 93.724849
iter 40 value 87.735462
iter 50 value 86.587295
iter 60 value 85.784754
iter 70 value 83.537867
iter 80 value 82.437161
iter 90 value 81.927652
iter 100 value 81.552330
final value 81.552330
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.443870
iter 10 value 94.485974
iter 20 value 94.103830
final value 94.027717
converged
Fitting Repeat 2
# weights: 103
initial value 103.889171
final value 94.485734
converged
Fitting Repeat 3
# weights: 103
initial value 107.142018
final value 94.485836
converged
Fitting Repeat 4
# weights: 103
initial value 108.155111
final value 94.485852
converged
Fitting Repeat 5
# weights: 103
initial value 96.671936
final value 94.485836
converged
Fitting Repeat 1
# weights: 305
initial value 101.288785
iter 10 value 94.031870
iter 20 value 94.027087
iter 30 value 93.660196
iter 40 value 93.647894
iter 50 value 92.399148
iter 60 value 85.697161
iter 70 value 83.563299
iter 80 value 82.992282
iter 90 value 82.837563
iter 100 value 82.684634
final value 82.684634
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.941732
iter 10 value 94.499208
iter 20 value 94.340715
iter 30 value 94.036796
iter 40 value 93.916939
iter 50 value 93.556161
iter 60 value 93.549998
iter 70 value 93.486784
iter 80 value 93.476606
iter 90 value 84.757828
iter 100 value 82.900908
final value 82.900908
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.873266
iter 10 value 93.645849
iter 20 value 93.641259
iter 30 value 93.570488
iter 40 value 85.007692
iter 50 value 83.681952
iter 60 value 83.679436
iter 70 value 83.524126
iter 80 value 82.931830
iter 90 value 80.677411
iter 100 value 80.167806
final value 80.167806
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.310761
iter 10 value 94.488736
iter 20 value 94.484331
iter 30 value 86.528405
final value 86.334653
converged
Fitting Repeat 5
# weights: 305
initial value 96.257221
iter 10 value 94.488504
iter 20 value 92.382495
iter 30 value 86.985516
iter 40 value 85.047286
iter 50 value 84.125987
iter 60 value 84.113428
iter 70 value 84.112238
iter 80 value 84.010613
iter 90 value 82.450862
iter 100 value 82.397729
final value 82.397729
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 96.229127
iter 10 value 94.485810
iter 20 value 93.467213
iter 30 value 86.174039
iter 40 value 85.660498
iter 50 value 84.243586
iter 60 value 84.203786
iter 70 value 84.101254
iter 80 value 83.939497
iter 80 value 83.939496
final value 83.939496
converged
Fitting Repeat 2
# weights: 507
initial value 106.338877
iter 10 value 94.035796
iter 20 value 93.876702
iter 30 value 93.550529
iter 40 value 93.550083
final value 93.550046
converged
Fitting Repeat 3
# weights: 507
initial value 101.540465
iter 10 value 94.034922
iter 20 value 93.678451
iter 30 value 93.575945
iter 40 value 91.879567
iter 50 value 85.211675
final value 83.893904
converged
Fitting Repeat 4
# weights: 507
initial value 116.368427
iter 10 value 94.452197
iter 20 value 94.451321
iter 30 value 86.794718
iter 40 value 84.403501
iter 50 value 84.402885
iter 60 value 84.396710
iter 70 value 84.312811
iter 80 value 84.095834
iter 90 value 84.094167
iter 100 value 84.093840
final value 84.093840
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 102.030536
iter 10 value 93.649918
iter 20 value 93.642246
iter 30 value 93.122658
iter 40 value 85.857170
iter 50 value 84.493941
iter 60 value 83.582675
iter 70 value 82.547812
iter 80 value 82.337167
iter 90 value 82.237887
iter 100 value 82.095546
final value 82.095546
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.367016
iter 10 value 94.275362
iter 10 value 94.275362
iter 10 value 94.275362
final value 94.275362
converged
Fitting Repeat 2
# weights: 103
initial value 101.127121
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.802192
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.290960
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 99.234296
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 102.912495
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 97.481885
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 94.859455
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 103.068686
iter 10 value 94.275363
iter 10 value 94.275362
iter 10 value 94.275362
final value 94.275362
converged
Fitting Repeat 5
# weights: 305
initial value 98.310158
final value 94.443182
converged
Fitting Repeat 1
# weights: 507
initial value 98.051048
iter 10 value 93.659629
final value 93.659477
converged
Fitting Repeat 2
# weights: 507
initial value 100.102063
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 104.411017
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 111.319132
iter 10 value 93.776473
iter 20 value 93.659570
final value 93.659475
converged
Fitting Repeat 5
# weights: 507
initial value 105.094143
iter 10 value 93.009293
iter 20 value 92.419016
iter 30 value 92.307155
iter 40 value 92.305864
iter 40 value 92.305863
iter 40 value 92.305863
final value 92.305863
converged
Fitting Repeat 1
# weights: 103
initial value 100.467445
iter 10 value 94.424717
iter 20 value 88.598786
iter 30 value 85.261217
iter 40 value 84.927334
iter 50 value 84.675751
iter 60 value 84.674875
final value 84.674868
converged
Fitting Repeat 2
# weights: 103
initial value 106.422527
iter 10 value 94.490299
iter 20 value 94.248168
iter 30 value 93.681695
iter 40 value 92.883462
iter 50 value 90.476205
iter 60 value 86.173862
iter 70 value 85.265969
iter 80 value 84.811330
final value 84.790174
converged
Fitting Repeat 3
# weights: 103
initial value 100.176828
iter 10 value 94.142705
iter 20 value 91.434023
iter 30 value 87.194836
iter 40 value 85.789039
iter 50 value 83.954287
iter 60 value 83.195452
iter 70 value 82.942152
iter 80 value 82.439403
iter 90 value 81.954138
final value 81.947133
converged
Fitting Repeat 4
# weights: 103
initial value 100.927370
iter 10 value 94.486222
iter 20 value 94.332029
iter 30 value 93.698883
iter 40 value 93.673546
iter 50 value 92.749880
iter 60 value 88.421168
iter 70 value 88.397309
iter 80 value 88.304755
iter 90 value 87.538994
iter 100 value 84.576807
final value 84.576807
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 100.170046
iter 10 value 94.488701
iter 20 value 93.927412
iter 30 value 93.864163
iter 40 value 93.726287
iter 50 value 89.618201
iter 60 value 88.589168
iter 70 value 88.517719
iter 80 value 88.404793
iter 90 value 85.037226
iter 100 value 84.865663
final value 84.865663
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 108.629241
iter 10 value 94.832780
iter 20 value 94.495440
iter 30 value 93.669798
iter 40 value 93.440459
iter 50 value 93.393684
iter 60 value 90.611933
iter 70 value 85.139365
iter 80 value 82.312775
iter 90 value 81.398813
iter 100 value 80.597753
final value 80.597753
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.192362
iter 10 value 94.748340
iter 20 value 94.156465
iter 30 value 94.096895
iter 40 value 89.035095
iter 50 value 85.487969
iter 60 value 82.370879
iter 70 value 81.504283
iter 80 value 81.397867
iter 90 value 81.362297
iter 100 value 81.281401
final value 81.281401
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.431179
iter 10 value 93.610391
iter 20 value 87.738491
iter 30 value 84.484850
iter 40 value 83.126122
iter 50 value 82.100662
iter 60 value 81.901638
iter 70 value 81.824191
iter 80 value 81.775312
iter 90 value 81.583266
iter 100 value 80.362186
final value 80.362186
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.864201
iter 10 value 94.332457
iter 20 value 86.963900
iter 30 value 81.825302
iter 40 value 81.491952
iter 50 value 81.259464
iter 60 value 81.129078
iter 70 value 80.906466
iter 80 value 80.872958
iter 90 value 80.644341
iter 100 value 80.542275
final value 80.542275
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.757402
iter 10 value 94.597786
iter 20 value 88.178022
iter 30 value 85.888652
iter 40 value 84.145983
iter 50 value 82.484728
iter 60 value 80.996125
iter 70 value 80.833138
iter 80 value 80.594105
iter 90 value 80.475211
iter 100 value 80.438291
final value 80.438291
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 119.486763
iter 10 value 94.382142
iter 20 value 87.110438
iter 30 value 85.404149
iter 40 value 84.286557
iter 50 value 83.077642
iter 60 value 82.930369
iter 70 value 82.759923
iter 80 value 82.669389
iter 90 value 82.521455
iter 100 value 82.184316
final value 82.184316
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 117.212798
iter 10 value 94.487288
iter 20 value 89.123170
iter 30 value 84.582775
iter 40 value 82.687720
iter 50 value 81.680746
iter 60 value 81.524848
iter 70 value 81.100305
iter 80 value 80.759787
iter 90 value 80.553096
iter 100 value 80.478043
final value 80.478043
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.428599
iter 10 value 93.831349
iter 20 value 86.587813
iter 30 value 85.204048
iter 40 value 84.408916
iter 50 value 82.730644
iter 60 value 80.910081
iter 70 value 80.301950
iter 80 value 80.239177
iter 90 value 80.185303
iter 100 value 80.176354
final value 80.176354
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.486433
iter 10 value 94.472760
iter 20 value 93.280770
iter 30 value 90.822484
iter 40 value 87.553368
iter 50 value 84.613353
iter 60 value 81.634652
iter 70 value 81.188447
iter 80 value 80.848682
iter 90 value 80.735314
iter 100 value 80.674181
final value 80.674181
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.500843
iter 10 value 94.486782
iter 20 value 93.153703
iter 30 value 90.162738
iter 40 value 85.114047
iter 50 value 84.179346
iter 60 value 83.521368
iter 70 value 82.650525
iter 80 value 82.206894
iter 90 value 82.087756
iter 100 value 81.283818
final value 81.283818
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 106.525621
final value 94.485880
converged
Fitting Repeat 2
# weights: 103
initial value 98.198565
final value 94.485868
converged
Fitting Repeat 3
# weights: 103
initial value 102.293639
final value 94.485993
converged
Fitting Repeat 4
# weights: 103
initial value 101.915782
final value 94.485834
converged
Fitting Repeat 5
# weights: 103
initial value 103.740524
final value 94.485745
converged
Fitting Repeat 1
# weights: 305
initial value 106.627692
iter 10 value 94.488879
iter 20 value 89.458512
iter 30 value 87.499523
iter 40 value 87.499276
iter 50 value 85.104583
iter 60 value 84.668773
iter 70 value 84.668252
iter 80 value 84.646599
iter 90 value 84.630846
iter 90 value 84.630846
iter 90 value 84.630846
final value 84.630846
converged
Fitting Repeat 2
# weights: 305
initial value 115.260504
iter 10 value 94.280457
iter 20 value 91.019566
final value 88.815175
converged
Fitting Repeat 3
# weights: 305
initial value 119.108564
iter 10 value 94.489844
iter 20 value 94.474926
iter 30 value 93.663396
iter 40 value 93.637834
final value 93.637766
converged
Fitting Repeat 4
# weights: 305
initial value 109.671897
iter 10 value 94.280524
iter 20 value 94.226665
iter 30 value 93.517233
iter 40 value 93.455033
final value 93.454741
converged
Fitting Repeat 5
# weights: 305
initial value 99.210043
iter 10 value 94.488580
iter 20 value 94.279483
iter 30 value 94.277093
iter 40 value 94.220474
iter 50 value 91.109247
iter 60 value 88.875534
final value 88.873080
converged
Fitting Repeat 1
# weights: 507
initial value 109.590352
iter 10 value 93.012493
iter 20 value 91.907138
iter 30 value 91.337553
iter 40 value 84.715903
iter 50 value 84.710439
iter 60 value 84.330717
iter 70 value 83.022838
iter 80 value 80.717869
iter 90 value 80.154452
iter 100 value 80.150629
final value 80.150629
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.029779
iter 10 value 94.363393
iter 20 value 94.360918
iter 30 value 93.694477
iter 40 value 87.244211
iter 50 value 84.714076
iter 60 value 83.990786
iter 70 value 82.539968
iter 80 value 80.386423
iter 90 value 79.154837
iter 100 value 79.092125
final value 79.092125
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 115.992060
iter 10 value 94.493085
iter 20 value 93.991938
iter 30 value 93.455171
final value 93.454710
converged
Fitting Repeat 4
# weights: 507
initial value 110.451844
iter 10 value 94.283581
iter 20 value 94.034630
iter 30 value 86.134702
final value 85.985221
converged
Fitting Repeat 5
# weights: 507
initial value 101.333177
iter 10 value 91.266816
iter 20 value 90.591038
iter 30 value 88.431784
iter 40 value 86.085010
iter 50 value 84.713706
iter 60 value 83.432110
iter 70 value 83.212314
iter 80 value 83.210605
iter 90 value 83.204593
iter 100 value 81.896622
final value 81.896622
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.651079
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 97.481493
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.467580
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 99.905274
iter 10 value 93.870449
iter 20 value 83.963652
iter 30 value 83.926767
iter 40 value 83.917963
iter 50 value 83.916941
iter 60 value 80.819317
iter 70 value 80.788402
final value 80.780000
converged
Fitting Repeat 5
# weights: 103
initial value 101.719493
final value 94.032967
converged
Fitting Repeat 1
# weights: 305
initial value 98.726641
iter 10 value 91.749430
iter 20 value 91.662487
iter 30 value 90.505453
iter 40 value 88.993594
iter 50 value 88.982655
final value 88.982418
converged
Fitting Repeat 2
# weights: 305
initial value 101.056226
final value 94.032967
converged
Fitting Repeat 3
# weights: 305
initial value 105.560694
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 99.814141
iter 10 value 93.124191
iter 20 value 90.579615
final value 90.577303
converged
Fitting Repeat 5
# weights: 305
initial value 107.080055
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 99.694125
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 102.594158
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 130.248633
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 103.353024
final value 94.052911
converged
Fitting Repeat 5
# weights: 507
initial value 131.430007
iter 10 value 93.641989
iter 20 value 93.305104
final value 93.299758
converged
Fitting Repeat 1
# weights: 103
initial value 103.597237
iter 10 value 93.980691
iter 20 value 88.646353
iter 30 value 85.135846
iter 40 value 84.752623
iter 50 value 82.231533
iter 60 value 81.968746
iter 70 value 81.891523
iter 80 value 81.839250
iter 90 value 81.820473
final value 81.820470
converged
Fitting Repeat 2
# weights: 103
initial value 99.430649
iter 10 value 93.871359
iter 20 value 87.381137
iter 30 value 82.206244
iter 40 value 82.036867
iter 50 value 79.809292
iter 60 value 79.065959
final value 79.043730
converged
Fitting Repeat 3
# weights: 103
initial value 105.943204
iter 10 value 94.032282
iter 20 value 92.705574
iter 30 value 87.058875
iter 40 value 84.855341
iter 50 value 82.766174
iter 60 value 82.181589
iter 70 value 82.083434
iter 80 value 82.064628
iter 90 value 82.000110
iter 100 value 81.864489
final value 81.864489
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.913754
iter 10 value 93.735776
iter 20 value 89.997709
iter 30 value 88.622114
iter 40 value 79.515400
iter 50 value 77.597066
iter 60 value 77.261574
iter 70 value 77.014964
iter 80 value 76.952040
iter 90 value 76.949216
final value 76.947948
converged
Fitting Repeat 5
# weights: 103
initial value 104.021200
iter 10 value 92.635003
iter 20 value 82.884217
iter 30 value 82.125280
iter 40 value 81.919650
iter 50 value 81.877766
iter 60 value 81.828126
iter 70 value 81.820482
final value 81.820471
converged
Fitting Repeat 1
# weights: 305
initial value 108.816913
iter 10 value 93.297548
iter 20 value 81.808214
iter 30 value 80.421621
iter 40 value 78.288777
iter 50 value 77.545881
iter 60 value 76.501207
iter 70 value 76.261611
iter 80 value 76.078785
iter 90 value 76.073123
final value 76.073103
converged
Fitting Repeat 2
# weights: 305
initial value 116.668031
iter 10 value 93.986145
iter 20 value 92.657256
iter 30 value 89.475192
iter 40 value 83.286546
iter 50 value 80.508471
iter 60 value 79.846827
iter 70 value 78.691769
iter 80 value 77.751997
iter 90 value 76.748643
iter 100 value 76.578733
final value 76.578733
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.713723
iter 10 value 93.991464
iter 20 value 93.565584
iter 30 value 86.042257
iter 40 value 82.757446
iter 50 value 82.442447
iter 60 value 82.241257
iter 70 value 81.975312
iter 80 value 81.826912
iter 90 value 81.409338
iter 100 value 79.398244
final value 79.398244
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.675005
iter 10 value 94.083056
iter 20 value 93.784732
iter 30 value 82.530384
iter 40 value 82.117824
iter 50 value 81.767569
iter 60 value 80.863480
iter 70 value 78.608262
iter 80 value 77.410763
iter 90 value 76.210829
iter 100 value 75.611079
final value 75.611079
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 112.937966
iter 10 value 88.922477
iter 20 value 82.851919
iter 30 value 81.899613
iter 40 value 80.249507
iter 50 value 79.235082
iter 60 value 78.593814
iter 70 value 78.440956
iter 80 value 77.963682
iter 90 value 77.490844
iter 100 value 77.381332
final value 77.381332
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.039834
iter 10 value 93.892125
iter 20 value 86.736134
iter 30 value 83.177688
iter 40 value 77.336046
iter 50 value 76.567214
iter 60 value 76.322870
iter 70 value 75.951589
iter 80 value 75.813375
iter 90 value 75.599450
iter 100 value 75.425425
final value 75.425425
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.000719
iter 10 value 92.744624
iter 20 value 82.745462
iter 30 value 81.061783
iter 40 value 78.900569
iter 50 value 78.692285
iter 60 value 78.221851
iter 70 value 76.923615
iter 80 value 76.328656
iter 90 value 76.225424
iter 100 value 76.161154
final value 76.161154
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.159872
iter 10 value 93.780111
iter 20 value 89.295002
iter 30 value 85.453534
iter 40 value 82.816737
iter 50 value 82.565778
iter 60 value 82.070961
iter 70 value 78.287735
iter 80 value 77.721382
iter 90 value 77.369727
iter 100 value 77.238031
final value 77.238031
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 118.079848
iter 10 value 96.353718
iter 20 value 94.202577
iter 30 value 93.810784
iter 40 value 92.913054
iter 50 value 86.946157
iter 60 value 85.024515
iter 70 value 83.263032
iter 80 value 81.946237
iter 90 value 79.272843
iter 100 value 78.636785
final value 78.636785
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.171372
iter 10 value 93.994750
iter 20 value 84.566011
iter 30 value 82.297878
iter 40 value 82.008605
iter 50 value 80.584940
iter 60 value 78.982521
iter 70 value 77.306562
iter 80 value 76.747237
iter 90 value 76.172029
iter 100 value 76.089203
final value 76.089203
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.743719
final value 94.054572
converged
Fitting Repeat 2
# weights: 103
initial value 103.462176
iter 10 value 93.606380
iter 20 value 93.596237
iter 30 value 93.539644
iter 40 value 93.078735
iter 50 value 83.461145
iter 60 value 83.453941
final value 83.453892
converged
Fitting Repeat 3
# weights: 103
initial value 100.654663
final value 94.054564
converged
Fitting Repeat 4
# weights: 103
initial value 99.158654
iter 10 value 89.871921
iter 20 value 84.833002
iter 30 value 84.780787
final value 84.780557
converged
Fitting Repeat 5
# weights: 103
initial value 104.109870
final value 94.054665
converged
Fitting Repeat 1
# weights: 305
initial value 108.131119
iter 10 value 93.362947
iter 20 value 89.063538
iter 30 value 89.056882
iter 40 value 89.039846
iter 50 value 89.039399
iter 60 value 89.037181
iter 70 value 89.033656
iter 80 value 89.033341
iter 90 value 89.033236
final value 89.032675
converged
Fitting Repeat 2
# weights: 305
initial value 103.898734
iter 10 value 94.057321
iter 20 value 93.940397
iter 30 value 92.153837
iter 40 value 91.390717
iter 50 value 91.114136
iter 60 value 91.109170
iter 70 value 89.620103
iter 80 value 89.619523
final value 89.619336
converged
Fitting Repeat 3
# weights: 305
initial value 109.449699
iter 10 value 94.057143
iter 20 value 93.655919
iter 30 value 93.650468
final value 93.650410
converged
Fitting Repeat 4
# weights: 305
initial value 109.563449
iter 10 value 85.850961
iter 20 value 83.387522
iter 30 value 83.386743
iter 40 value 83.196917
iter 50 value 83.140038
iter 60 value 83.138833
iter 70 value 83.137926
iter 80 value 83.135912
iter 90 value 79.496054
iter 100 value 78.494508
final value 78.494508
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 97.156171
iter 10 value 93.306112
iter 20 value 93.305024
iter 30 value 93.298549
iter 40 value 88.511519
iter 50 value 83.313225
iter 60 value 83.252083
iter 70 value 83.251286
iter 80 value 83.250033
iter 90 value 83.140198
iter 100 value 81.254463
final value 81.254463
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 115.680082
iter 10 value 94.062037
iter 20 value 94.053284
iter 30 value 93.711602
iter 40 value 93.705642
iter 50 value 93.705402
iter 60 value 93.705272
iter 70 value 93.610903
iter 80 value 93.536485
final value 93.536483
converged
Fitting Repeat 2
# weights: 507
initial value 94.456656
iter 10 value 85.836673
iter 20 value 81.804981
iter 30 value 81.653636
iter 40 value 81.649344
iter 50 value 81.645906
iter 60 value 81.644629
iter 70 value 81.250548
iter 80 value 80.984750
iter 90 value 79.896030
iter 100 value 79.666058
final value 79.666058
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.372795
iter 10 value 94.058564
iter 20 value 94.023610
iter 30 value 86.297400
iter 40 value 84.587085
iter 50 value 83.872713
iter 60 value 83.540277
iter 70 value 78.771401
iter 80 value 78.008281
iter 90 value 78.007746
iter 100 value 77.792159
final value 77.792159
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 94.150617
iter 10 value 94.057352
iter 20 value 94.013576
iter 30 value 93.604713
final value 93.595324
converged
Fitting Repeat 5
# weights: 507
initial value 102.786112
iter 10 value 94.060720
iter 20 value 93.737232
iter 30 value 84.171827
iter 40 value 84.126277
iter 50 value 84.125365
iter 60 value 80.886569
iter 70 value 80.884672
iter 80 value 80.794332
iter 90 value 80.793496
final value 80.793415
converged
Fitting Repeat 1
# weights: 103
initial value 95.662009
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 98.862897
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 103.311645
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.817677
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 94.527767
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 110.800095
iter 10 value 88.541476
iter 20 value 88.377540
iter 30 value 87.154059
iter 40 value 87.153033
final value 87.153030
converged
Fitting Repeat 2
# weights: 305
initial value 95.532625
final value 94.467391
converged
Fitting Repeat 3
# weights: 305
initial value 108.371928
iter 10 value 92.253808
iter 20 value 83.907360
iter 30 value 83.716570
iter 40 value 83.658502
iter 50 value 83.621143
final value 83.621133
converged
Fitting Repeat 4
# weights: 305
initial value 96.915241
iter 10 value 92.265773
iter 20 value 92.207108
final value 92.206737
converged
Fitting Repeat 5
# weights: 305
initial value 114.614448
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 132.512253
iter 10 value 87.199229
iter 20 value 87.175413
final value 87.175325
converged
Fitting Repeat 2
# weights: 507
initial value 107.263987
iter 10 value 90.435742
iter 20 value 90.323391
iter 30 value 90.321534
final value 90.321457
converged
Fitting Repeat 3
# weights: 507
initial value 125.507799
iter 10 value 94.414817
final value 94.414729
converged
Fitting Repeat 4
# weights: 507
initial value 114.403020
iter 10 value 90.339987
iter 20 value 85.978764
iter 30 value 85.931267
iter 40 value 85.931101
final value 85.931098
converged
Fitting Repeat 5
# weights: 507
initial value 103.540025
iter 10 value 94.467380
iter 20 value 94.071194
final value 94.064368
converged
Fitting Repeat 1
# weights: 103
initial value 109.365888
iter 10 value 94.488562
iter 20 value 94.472741
iter 30 value 91.076244
iter 40 value 88.436786
iter 50 value 87.721875
iter 60 value 86.527993
iter 70 value 85.602523
iter 80 value 82.206715
iter 90 value 81.352685
iter 100 value 81.181670
final value 81.181670
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.455985
iter 10 value 94.134618
iter 20 value 92.421519
iter 30 value 91.756086
iter 40 value 85.185983
iter 50 value 82.648977
iter 60 value 81.269263
iter 70 value 81.211714
iter 80 value 81.181240
final value 81.181238
converged
Fitting Repeat 3
# weights: 103
initial value 97.787066
iter 10 value 94.488551
iter 20 value 94.382583
iter 30 value 87.511871
iter 40 value 86.535177
iter 50 value 84.746333
iter 60 value 84.217888
iter 70 value 84.172969
iter 80 value 83.463298
iter 90 value 83.424587
iter 100 value 83.422202
final value 83.422202
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.559510
iter 10 value 94.488626
iter 20 value 94.386397
iter 30 value 89.732599
iter 40 value 85.934102
iter 50 value 85.077832
iter 60 value 84.860559
iter 70 value 84.669180
iter 80 value 84.304740
iter 90 value 84.083304
final value 84.082229
converged
Fitting Repeat 5
# weights: 103
initial value 102.697445
iter 10 value 94.502737
iter 20 value 94.480812
iter 30 value 92.566236
iter 40 value 88.536184
iter 50 value 88.278760
iter 60 value 88.037298
iter 70 value 83.549773
iter 80 value 83.374932
iter 90 value 83.001991
iter 100 value 82.349005
final value 82.349005
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 111.511383
iter 10 value 94.466339
iter 20 value 88.798163
iter 30 value 85.368177
iter 40 value 84.708975
iter 50 value 84.489350
iter 60 value 83.987721
iter 70 value 83.221546
iter 80 value 83.126867
iter 90 value 83.113461
iter 100 value 82.984421
final value 82.984421
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 114.747891
iter 10 value 94.462391
iter 20 value 90.448629
iter 30 value 85.590682
iter 40 value 84.868923
iter 50 value 84.569088
iter 60 value 84.306182
iter 70 value 84.028039
iter 80 value 83.727585
iter 90 value 81.828347
iter 100 value 80.574133
final value 80.574133
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.645228
iter 10 value 94.339178
iter 20 value 93.507358
iter 30 value 90.631183
iter 40 value 84.193849
iter 50 value 82.348994
iter 60 value 81.835593
iter 70 value 81.031702
iter 80 value 80.539340
iter 90 value 79.977211
iter 100 value 79.788162
final value 79.788162
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.118732
iter 10 value 94.474180
iter 20 value 93.951854
iter 30 value 90.786334
iter 40 value 88.389005
iter 50 value 83.301131
iter 60 value 81.152295
iter 70 value 80.780430
iter 80 value 80.549341
iter 90 value 80.510830
iter 100 value 80.396271
final value 80.396271
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.355641
iter 10 value 94.710431
iter 20 value 94.227854
iter 30 value 87.009789
iter 40 value 83.478488
iter 50 value 81.125285
iter 60 value 80.706840
iter 70 value 80.422346
iter 80 value 80.144187
iter 90 value 80.111861
iter 100 value 80.063601
final value 80.063601
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 115.871154
iter 10 value 94.535163
iter 20 value 86.303407
iter 30 value 85.026436
iter 40 value 83.998126
iter 50 value 82.662781
iter 60 value 82.041363
iter 70 value 81.772929
iter 80 value 81.616576
iter 90 value 81.485372
iter 100 value 81.032076
final value 81.032076
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.987684
iter 10 value 94.499860
iter 20 value 94.324952
iter 30 value 88.336088
iter 40 value 86.727057
iter 50 value 86.208795
iter 60 value 83.768686
iter 70 value 83.369919
iter 80 value 83.161083
iter 90 value 83.057120
iter 100 value 82.664663
final value 82.664663
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.565309
iter 10 value 94.361458
iter 20 value 93.102543
iter 30 value 90.149497
iter 40 value 85.042764
iter 50 value 83.987458
iter 60 value 82.461111
iter 70 value 81.222355
iter 80 value 80.799722
iter 90 value 80.450642
iter 100 value 80.074046
final value 80.074046
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.573005
iter 10 value 93.403173
iter 20 value 90.670243
iter 30 value 84.734127
iter 40 value 83.181464
iter 50 value 81.544579
iter 60 value 80.826151
iter 70 value 80.184868
iter 80 value 79.665895
iter 90 value 79.474908
iter 100 value 79.402584
final value 79.402584
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.086831
iter 10 value 96.430598
iter 20 value 94.105748
iter 30 value 92.736480
iter 40 value 92.447785
iter 50 value 87.097742
iter 60 value 83.811203
iter 70 value 81.598633
iter 80 value 81.230255
iter 90 value 81.012301
iter 100 value 80.377538
final value 80.377538
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.567407
final value 94.485658
converged
Fitting Repeat 2
# weights: 103
initial value 103.365464
iter 10 value 94.485860
iter 20 value 94.220150
iter 30 value 89.482227
iter 40 value 89.197177
iter 50 value 89.193061
final value 89.192993
converged
Fitting Repeat 3
# weights: 103
initial value 95.560432
final value 94.485840
converged
Fitting Repeat 4
# weights: 103
initial value 99.863127
iter 10 value 94.485985
iter 20 value 94.484042
iter 30 value 89.273289
iter 40 value 84.197595
iter 50 value 84.193487
iter 60 value 83.463077
iter 60 value 83.463077
iter 60 value 83.463077
final value 83.463077
converged
Fitting Repeat 5
# weights: 103
initial value 105.657221
final value 94.485751
converged
Fitting Repeat 1
# weights: 305
initial value 94.770137
iter 10 value 94.472248
iter 20 value 94.470582
iter 30 value 94.469436
iter 40 value 91.856241
iter 50 value 84.453722
iter 60 value 82.404586
iter 70 value 80.227961
iter 80 value 80.219095
iter 90 value 79.728363
iter 100 value 79.481778
final value 79.481778
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 127.687515
iter 10 value 94.488996
iter 20 value 94.484590
iter 30 value 85.207954
iter 40 value 84.455074
iter 50 value 83.767744
iter 60 value 81.837808
iter 70 value 80.791041
iter 80 value 80.788832
iter 90 value 80.786665
iter 100 value 80.782175
final value 80.782175
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.827839
iter 10 value 94.378434
iter 20 value 94.373151
iter 30 value 94.287561
iter 40 value 93.811903
iter 50 value 93.782935
iter 60 value 93.781276
iter 70 value 93.760289
iter 80 value 93.527765
iter 90 value 90.166551
iter 100 value 81.987413
final value 81.987413
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.871005
iter 10 value 94.489719
iter 20 value 94.048618
iter 30 value 84.270363
iter 40 value 84.065263
iter 50 value 84.064281
iter 60 value 84.008613
final value 84.008448
converged
Fitting Repeat 5
# weights: 305
initial value 95.996752
iter 10 value 94.461605
iter 20 value 94.446928
iter 30 value 94.446702
iter 40 value 84.654912
iter 50 value 82.872765
iter 60 value 82.468502
iter 70 value 82.141150
final value 82.131569
converged
Fitting Repeat 1
# weights: 507
initial value 100.326427
iter 10 value 94.437138
iter 20 value 94.429753
final value 94.429589
converged
Fitting Repeat 2
# weights: 507
initial value 110.814602
iter 10 value 94.491995
iter 20 value 94.476180
iter 30 value 88.345322
iter 40 value 88.184691
iter 50 value 88.167183
iter 60 value 86.910013
iter 70 value 86.881263
iter 80 value 86.878476
iter 90 value 86.877155
iter 100 value 86.876251
final value 86.876251
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 99.711426
iter 10 value 94.097477
iter 20 value 94.058075
iter 30 value 94.027481
iter 40 value 84.437436
iter 50 value 81.660490
iter 60 value 81.528440
iter 70 value 81.526531
iter 80 value 81.521959
final value 81.521864
converged
Fitting Repeat 4
# weights: 507
initial value 96.054355
iter 10 value 93.037465
iter 20 value 92.296183
iter 30 value 92.289528
iter 40 value 92.287929
iter 50 value 92.174896
iter 60 value 91.741355
final value 91.741352
converged
Fitting Repeat 5
# weights: 507
initial value 115.488417
iter 10 value 94.476934
iter 20 value 94.474286
iter 30 value 94.473077
iter 40 value 94.406858
iter 50 value 86.221674
iter 60 value 84.001127
final value 83.935139
converged
Fitting Repeat 1
# weights: 305
initial value 133.121696
iter 10 value 118.429807
iter 20 value 112.828292
iter 30 value 111.577326
iter 40 value 105.058661
iter 50 value 103.268423
iter 60 value 102.975517
iter 70 value 102.256771
iter 80 value 102.039964
iter 90 value 101.964794
iter 100 value 101.941199
final value 101.941199
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 126.223273
iter 10 value 120.040964
iter 20 value 114.814023
iter 30 value 105.793830
iter 40 value 104.419076
iter 50 value 101.713160
iter 60 value 101.249304
iter 70 value 101.108997
iter 80 value 101.000495
iter 90 value 100.873879
iter 100 value 100.865742
final value 100.865742
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 125.120860
iter 10 value 117.771792
iter 20 value 113.294137
iter 30 value 108.843489
iter 40 value 108.605926
iter 50 value 108.303505
iter 60 value 108.131320
iter 70 value 105.459078
iter 80 value 103.452017
iter 90 value 102.197363
iter 100 value 101.617309
final value 101.617309
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 157.436332
iter 10 value 120.058299
iter 20 value 119.125909
iter 30 value 117.774193
iter 40 value 117.559223
iter 50 value 110.714560
iter 60 value 106.658467
iter 70 value 103.148994
iter 80 value 102.662234
iter 90 value 102.393244
iter 100 value 102.137127
final value 102.137127
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 126.658562
iter 10 value 116.553100
iter 20 value 108.963906
iter 30 value 107.052104
iter 40 value 105.892251
iter 50 value 105.501238
iter 60 value 104.988792
iter 70 value 104.409370
iter 80 value 104.291804
iter 90 value 103.481207
iter 100 value 103.218661
final value 103.218661
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Thu Nov 27 20:36:37 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
21.396 0.492 75.075
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 19.057 | 0.932 | 21.207 | |
| FreqInteractors | 0.161 | 0.011 | 0.177 | |
| calculateAAC | 0.014 | 0.003 | 0.017 | |
| calculateAutocor | 0.274 | 0.025 | 0.308 | |
| calculateCTDC | 0.037 | 0.004 | 0.042 | |
| calculateCTDD | 0.166 | 0.011 | 0.183 | |
| calculateCTDT | 0.056 | 0.005 | 0.069 | |
| calculateCTriad | 0.148 | 0.010 | 0.163 | |
| calculateDC | 0.034 | 0.004 | 0.041 | |
| calculateF | 0.109 | 0.009 | 0.120 | |
| calculateKSAAP | 0.034 | 0.006 | 0.041 | |
| calculateQD_Sm | 0.669 | 0.073 | 0.756 | |
| calculateTC | 0.711 | 0.070 | 0.804 | |
| calculateTC_Sm | 0.092 | 0.009 | 0.101 | |
| corr_plot | 19.048 | 1.016 | 21.964 | |
| enrichfindP | 0.194 | 0.039 | 12.094 | |
| enrichfind_hp | 0.016 | 0.002 | 1.126 | |
| enrichplot | 0.168 | 0.010 | 0.178 | |
| filter_missing_values | 0.001 | 0.000 | 0.000 | |
| getFASTA | 0.038 | 0.007 | 5.790 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0.001 | 0.000 | 0.000 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.000 | 0.000 | 0.002 | |
| plotPPI | 0.037 | 0.002 | 0.040 | |
| pred_ensembel | 6.691 | 0.108 | 6.598 | |
| var_imp | 18.534 | 0.963 | 21.099 | |