| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2026-01-21 11:35 -0500 (Wed, 21 Jan 2026).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" | 4805 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" | 4539 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 1001/2343 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.2 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.2 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.2.tar.gz |
| StartedAt: 2026-01-20 20:18:23 -0500 (Tue, 20 Jan 2026) |
| EndedAt: 2026-01-20 20:21:47 -0500 (Tue, 20 Jan 2026) |
| EllapsedTime: 204.5 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.2.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 19.069 0.958 20.677
var_imp 18.975 1.050 21.117
corr_plot 18.808 1.017 20.782
pred_ensembel 6.540 0.155 6.719
enrichfindP 0.196 0.037 10.849
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.2’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 95.576189
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.349777
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.113083
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 100.324662
iter 10 value 93.226533
final value 93.226191
converged
Fitting Repeat 5
# weights: 103
initial value 95.134702
final value 93.836066
converged
Fitting Repeat 1
# weights: 305
initial value 117.489599
final value 93.836066
converged
Fitting Repeat 2
# weights: 305
initial value 111.270193
iter 10 value 93.036810
iter 20 value 92.463633
final value 92.463573
converged
Fitting Repeat 3
# weights: 305
initial value 129.896768
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 103.461682
final value 93.836066
converged
Fitting Repeat 5
# weights: 305
initial value 114.543534
iter 10 value 94.052910
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 100.659831
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 110.261388
final value 93.836066
converged
Fitting Repeat 3
# weights: 507
initial value 108.970646
iter 10 value 93.836078
final value 93.836066
converged
Fitting Repeat 4
# weights: 507
initial value 98.409764
iter 10 value 92.892738
iter 10 value 92.892737
iter 10 value 92.892737
final value 92.892737
converged
Fitting Repeat 5
# weights: 507
initial value 115.396320
final value 93.356725
converged
Fitting Repeat 1
# weights: 103
initial value 111.197566
iter 10 value 94.043971
iter 20 value 93.439447
iter 30 value 93.303172
iter 40 value 88.327883
iter 50 value 86.465923
iter 60 value 83.110161
iter 70 value 82.366405
iter 80 value 82.138892
final value 82.138806
converged
Fitting Repeat 2
# weights: 103
initial value 101.659011
iter 10 value 94.056635
iter 20 value 93.950352
iter 30 value 93.375901
iter 40 value 93.316869
iter 50 value 93.307476
iter 60 value 93.301420
iter 70 value 91.391750
iter 80 value 88.156352
iter 90 value 87.384052
iter 100 value 82.967789
final value 82.967789
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 103.466114
iter 10 value 94.055901
iter 20 value 93.641262
iter 30 value 91.711142
iter 40 value 81.375027
iter 50 value 80.995013
iter 60 value 80.698452
iter 70 value 79.312685
iter 80 value 78.977852
iter 90 value 78.864155
iter 100 value 78.730170
final value 78.730170
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.222238
iter 10 value 94.149862
iter 20 value 89.893524
iter 30 value 83.500036
iter 40 value 82.883722
iter 50 value 82.262987
iter 60 value 81.617471
final value 81.608310
converged
Fitting Repeat 5
# weights: 103
initial value 96.057498
iter 10 value 94.128540
iter 20 value 88.969011
iter 30 value 88.386378
iter 40 value 85.433845
iter 50 value 84.972418
iter 60 value 81.004484
iter 70 value 79.257713
iter 80 value 78.694038
iter 90 value 78.521719
iter 100 value 78.426634
final value 78.426634
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 108.534317
iter 10 value 93.905581
iter 20 value 92.207578
iter 30 value 89.665247
iter 40 value 87.370314
iter 50 value 84.332398
iter 60 value 79.987416
iter 70 value 79.441949
iter 80 value 78.257303
iter 90 value 76.966913
iter 100 value 76.742003
final value 76.742003
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.082632
iter 10 value 94.132369
iter 20 value 93.662615
iter 30 value 93.451732
iter 40 value 92.887924
iter 50 value 92.384437
iter 60 value 85.081121
iter 70 value 82.149281
iter 80 value 79.470703
iter 90 value 78.623800
iter 100 value 78.103725
final value 78.103725
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.162874
iter 10 value 93.749054
iter 20 value 86.703190
iter 30 value 82.753618
iter 40 value 82.454744
iter 50 value 81.998262
iter 60 value 81.877623
iter 70 value 81.825263
iter 80 value 81.646373
iter 90 value 79.702488
iter 100 value 78.435556
final value 78.435556
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.791996
iter 10 value 94.054816
iter 20 value 93.340251
iter 30 value 84.052881
iter 40 value 82.005886
iter 50 value 80.845188
iter 60 value 78.848724
iter 70 value 77.631222
iter 80 value 77.354104
iter 90 value 76.973290
iter 100 value 76.753504
final value 76.753504
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.968769
iter 10 value 94.195132
iter 20 value 90.084441
iter 30 value 86.214072
iter 40 value 85.062585
iter 50 value 83.280945
iter 60 value 82.903610
iter 70 value 82.454563
iter 80 value 82.272590
iter 90 value 82.013593
iter 100 value 80.832369
final value 80.832369
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.540235
iter 10 value 87.290710
iter 20 value 86.252567
iter 30 value 82.919268
iter 40 value 81.598432
iter 50 value 80.299273
iter 60 value 80.103862
iter 70 value 79.135290
iter 80 value 78.770271
iter 90 value 78.449977
iter 100 value 78.270227
final value 78.270227
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 117.716599
iter 10 value 94.242370
iter 20 value 85.039992
iter 30 value 84.069577
iter 40 value 83.428834
iter 50 value 82.659051
iter 60 value 78.783067
iter 70 value 77.956458
iter 80 value 77.846375
iter 90 value 77.452056
iter 100 value 77.087337
final value 77.087337
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.348612
iter 10 value 91.763997
iter 20 value 86.574273
iter 30 value 85.014120
iter 40 value 84.471240
iter 50 value 84.177304
iter 60 value 84.119076
iter 70 value 83.050170
iter 80 value 81.103469
iter 90 value 79.340521
iter 100 value 78.089462
final value 78.089462
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.322181
iter 10 value 94.675257
iter 20 value 90.144701
iter 30 value 83.026365
iter 40 value 80.226189
iter 50 value 79.027075
iter 60 value 78.106252
iter 70 value 77.698193
iter 80 value 77.590390
iter 90 value 77.473363
iter 100 value 77.197938
final value 77.197938
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.745645
iter 10 value 94.094622
iter 20 value 93.086117
iter 30 value 87.222769
iter 40 value 81.727961
iter 50 value 79.633853
iter 60 value 78.401735
iter 70 value 77.822696
iter 80 value 77.716779
iter 90 value 77.348442
iter 100 value 77.062615
final value 77.062615
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.900415
iter 10 value 94.054660
iter 20 value 94.052920
final value 94.052914
converged
Fitting Repeat 2
# weights: 103
initial value 98.386445
final value 94.054504
converged
Fitting Repeat 3
# weights: 103
initial value 103.994780
iter 10 value 94.054777
iter 20 value 94.052918
iter 20 value 94.052917
iter 20 value 94.052917
final value 94.052917
converged
Fitting Repeat 4
# weights: 103
initial value 104.699255
final value 94.054928
converged
Fitting Repeat 5
# weights: 103
initial value 94.445026
final value 94.054505
converged
Fitting Repeat 1
# weights: 305
initial value 97.437596
iter 10 value 93.840840
iter 20 value 93.762996
iter 30 value 92.419663
iter 40 value 90.170232
iter 50 value 90.170060
iter 60 value 90.169851
final value 90.169307
converged
Fitting Repeat 2
# weights: 305
initial value 97.371157
iter 10 value 93.840965
iter 20 value 93.361995
final value 93.357227
converged
Fitting Repeat 3
# weights: 305
initial value 95.165104
iter 10 value 93.841155
iter 20 value 93.420201
final value 93.357582
converged
Fitting Repeat 4
# weights: 305
initial value 95.127214
iter 10 value 94.057457
iter 20 value 94.052927
final value 94.052920
converged
Fitting Repeat 5
# weights: 305
initial value 98.434600
iter 10 value 93.841473
iter 20 value 93.837381
iter 30 value 93.827423
iter 40 value 93.535628
iter 50 value 89.299052
iter 60 value 81.130003
iter 70 value 77.898870
iter 80 value 77.811332
iter 90 value 77.809889
iter 100 value 77.809429
final value 77.809429
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 114.769041
iter 10 value 93.612401
iter 20 value 93.605493
final value 93.605377
converged
Fitting Repeat 2
# weights: 507
initial value 120.810040
iter 10 value 93.844632
iter 20 value 93.840698
iter 30 value 93.837133
iter 40 value 93.724909
iter 50 value 86.585889
iter 60 value 79.996982
iter 70 value 77.388990
iter 80 value 76.971722
iter 90 value 75.985184
iter 100 value 75.487390
final value 75.487390
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 98.665066
iter 10 value 93.966343
iter 20 value 93.844326
iter 30 value 90.314364
iter 40 value 83.560040
iter 50 value 83.031798
iter 60 value 82.870259
iter 70 value 82.859991
final value 82.859987
converged
Fitting Repeat 4
# weights: 507
initial value 110.604029
iter 10 value 94.060428
iter 20 value 93.063392
iter 30 value 83.259765
iter 40 value 81.937905
iter 50 value 81.932198
iter 60 value 81.913463
iter 70 value 81.720502
iter 80 value 81.364572
iter 90 value 81.276261
iter 100 value 81.257533
final value 81.257533
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 99.467335
iter 10 value 92.725261
iter 20 value 91.377905
iter 30 value 91.088065
iter 40 value 91.066721
final value 90.954376
converged
Fitting Repeat 1
# weights: 103
initial value 96.217937
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 95.130885
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 108.508571
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.444645
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.689698
final value 94.483810
converged
Fitting Repeat 1
# weights: 305
initial value 95.328914
final value 94.354396
converged
Fitting Repeat 2
# weights: 305
initial value 109.511937
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 96.687591
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 98.923009
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 102.383277
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 109.881478
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 111.095165
iter 10 value 94.338497
final value 94.308192
converged
Fitting Repeat 3
# weights: 507
initial value 98.035255
final value 94.354396
converged
Fitting Repeat 4
# weights: 507
initial value 97.855652
final value 94.195714
converged
Fitting Repeat 5
# weights: 507
initial value 95.064378
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 107.394836
iter 10 value 94.490493
iter 20 value 90.541493
iter 30 value 87.666484
iter 40 value 87.167507
iter 50 value 86.243557
iter 60 value 85.950494
iter 70 value 85.948103
iter 80 value 85.945528
final value 85.945525
converged
Fitting Repeat 2
# weights: 103
initial value 103.498020
iter 10 value 94.284651
iter 20 value 91.143925
iter 30 value 86.093963
iter 40 value 85.848455
iter 50 value 84.632091
iter 60 value 84.085326
iter 70 value 83.551101
iter 80 value 83.300246
iter 90 value 83.096799
final value 83.096485
converged
Fitting Repeat 3
# weights: 103
initial value 98.310632
iter 10 value 94.479853
iter 20 value 94.381941
iter 30 value 93.923125
iter 40 value 91.890575
iter 50 value 91.135379
iter 60 value 86.973590
iter 70 value 85.929282
iter 80 value 85.516899
iter 90 value 85.114027
iter 100 value 85.064159
final value 85.064159
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 105.651564
iter 10 value 94.480305
iter 20 value 92.111797
iter 30 value 91.470251
iter 40 value 87.753898
iter 50 value 87.240724
iter 60 value 86.408974
iter 70 value 86.196978
iter 80 value 86.058677
iter 90 value 85.606346
iter 100 value 85.365126
final value 85.365126
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 103.888742
iter 10 value 93.840239
iter 20 value 86.904920
iter 30 value 86.231020
iter 40 value 86.031193
iter 50 value 85.792168
iter 60 value 85.371083
iter 70 value 84.976543
iter 80 value 84.905767
final value 84.904573
converged
Fitting Repeat 1
# weights: 305
initial value 107.205581
iter 10 value 94.486629
iter 20 value 87.142206
iter 30 value 86.756446
iter 40 value 86.672916
iter 50 value 86.342276
iter 60 value 86.291396
iter 70 value 86.022106
iter 80 value 85.578368
iter 90 value 84.929491
iter 100 value 83.699434
final value 83.699434
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 119.159512
iter 10 value 94.579665
iter 20 value 92.555205
iter 30 value 88.909848
iter 40 value 88.183461
iter 50 value 87.278548
iter 60 value 87.009438
iter 70 value 85.262689
iter 80 value 83.568089
iter 90 value 82.791307
iter 100 value 82.478684
final value 82.478684
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.764685
iter 10 value 94.500679
iter 20 value 94.383398
iter 30 value 94.088447
iter 40 value 93.279021
iter 50 value 89.515309
iter 60 value 89.095483
iter 70 value 87.163663
iter 80 value 86.041087
iter 90 value 85.902346
iter 100 value 85.775405
final value 85.775405
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.418630
iter 10 value 94.425903
iter 20 value 88.906129
iter 30 value 87.414775
iter 40 value 87.109913
iter 50 value 86.580320
iter 60 value 85.724434
iter 70 value 84.872930
iter 80 value 83.940132
iter 90 value 82.878877
iter 100 value 82.314885
final value 82.314885
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.958758
iter 10 value 94.349188
iter 20 value 87.860428
iter 30 value 86.532935
iter 40 value 86.295040
iter 50 value 86.211564
iter 60 value 85.562311
iter 70 value 85.265069
iter 80 value 85.204934
iter 90 value 85.062248
iter 100 value 84.204623
final value 84.204623
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.454013
iter 10 value 92.740190
iter 20 value 86.965996
iter 30 value 85.130240
iter 40 value 82.739381
iter 50 value 82.138416
iter 60 value 81.962121
iter 70 value 81.793065
iter 80 value 81.754306
iter 90 value 81.732822
iter 100 value 81.709757
final value 81.709757
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 116.961481
iter 10 value 94.653201
iter 20 value 90.459302
iter 30 value 88.923308
iter 40 value 85.711322
iter 50 value 83.573495
iter 60 value 83.051346
iter 70 value 82.481590
iter 80 value 82.036857
iter 90 value 81.956794
iter 100 value 81.883830
final value 81.883830
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.681473
iter 10 value 94.489907
iter 20 value 87.757001
iter 30 value 85.608401
iter 40 value 83.990045
iter 50 value 83.149459
iter 60 value 82.646013
iter 70 value 82.448471
iter 80 value 82.317324
iter 90 value 82.275308
iter 100 value 82.235504
final value 82.235504
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.853417
iter 10 value 94.587490
iter 20 value 90.097875
iter 30 value 88.594202
iter 40 value 85.405925
iter 50 value 84.256126
iter 60 value 82.936310
iter 70 value 82.185796
iter 80 value 82.025078
iter 90 value 81.747477
iter 100 value 81.744760
final value 81.744760
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.491470
iter 10 value 94.933240
iter 20 value 94.473884
iter 30 value 93.382881
iter 40 value 89.682906
iter 50 value 85.570138
iter 60 value 83.364656
iter 70 value 82.717847
iter 80 value 82.618143
iter 90 value 82.319966
iter 100 value 82.010530
final value 82.010530
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.897954
final value 94.485750
converged
Fitting Repeat 2
# weights: 103
initial value 99.271150
final value 94.485643
converged
Fitting Repeat 3
# weights: 103
initial value 99.011798
final value 94.486222
converged
Fitting Repeat 4
# weights: 103
initial value 95.026222
final value 94.485805
converged
Fitting Repeat 5
# weights: 103
initial value 111.325037
iter 10 value 94.485721
final value 94.484214
converged
Fitting Repeat 1
# weights: 305
initial value 94.160528
iter 10 value 88.391168
iter 20 value 88.293371
iter 30 value 88.292827
iter 40 value 88.291234
iter 50 value 88.290008
iter 60 value 88.289485
iter 70 value 87.970229
final value 87.970034
converged
Fitting Repeat 2
# weights: 305
initial value 96.259233
iter 10 value 94.486306
iter 20 value 93.095236
iter 30 value 91.946567
iter 40 value 91.932446
iter 50 value 91.932051
iter 60 value 91.931167
iter 70 value 90.522258
iter 80 value 90.521189
final value 90.521100
converged
Fitting Repeat 3
# weights: 305
initial value 93.491481
iter 10 value 87.130724
iter 20 value 85.646064
final value 85.623350
converged
Fitting Repeat 4
# weights: 305
initial value 103.569950
iter 10 value 94.489248
iter 20 value 91.295344
iter 30 value 84.546934
iter 40 value 84.516703
iter 40 value 84.516703
final value 84.516703
converged
Fitting Repeat 5
# weights: 305
initial value 105.635897
iter 10 value 94.488662
iter 20 value 93.753001
iter 30 value 93.671330
iter 40 value 93.202696
final value 93.190377
converged
Fitting Repeat 1
# weights: 507
initial value 106.458676
iter 10 value 94.366393
iter 20 value 94.312984
iter 30 value 94.303454
final value 94.289799
converged
Fitting Repeat 2
# weights: 507
initial value 98.424302
iter 10 value 94.488964
iter 20 value 94.355915
iter 30 value 86.067270
iter 40 value 85.456021
iter 50 value 81.922361
iter 60 value 81.832381
iter 70 value 81.831986
final value 81.831601
converged
Fitting Repeat 3
# weights: 507
initial value 101.961281
iter 10 value 94.362676
iter 20 value 93.755688
iter 30 value 88.185790
iter 40 value 83.428224
iter 50 value 82.174447
iter 60 value 82.113198
iter 70 value 82.112534
iter 70 value 82.112533
final value 82.112533
converged
Fitting Repeat 4
# weights: 507
initial value 105.335996
iter 10 value 94.451324
iter 20 value 94.402024
iter 30 value 90.222970
iter 40 value 86.517939
iter 50 value 85.805818
iter 60 value 85.735066
final value 85.733437
converged
Fitting Repeat 5
# weights: 507
initial value 111.586325
iter 10 value 94.492457
iter 20 value 94.443182
final value 94.354746
converged
Fitting Repeat 1
# weights: 103
initial value 100.813808
final value 94.026542
converged
Fitting Repeat 2
# weights: 103
initial value 104.123490
final value 94.448052
converged
Fitting Repeat 3
# weights: 103
initial value 99.381957
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.147476
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 105.104923
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 96.514046
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 103.499741
final value 94.026542
converged
Fitting Repeat 3
# weights: 305
initial value 104.319707
final value 94.026542
converged
Fitting Repeat 4
# weights: 305
initial value 108.000852
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 105.011756
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 114.054090
iter 10 value 94.026542
iter 10 value 94.026542
iter 10 value 94.026542
final value 94.026542
converged
Fitting Repeat 2
# weights: 507
initial value 96.092226
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 130.876283
iter 10 value 94.026967
final value 94.026542
converged
Fitting Repeat 4
# weights: 507
initial value 112.600978
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 104.602397
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 100.488535
iter 10 value 94.452524
iter 20 value 94.261895
iter 30 value 89.193588
iter 40 value 86.351426
iter 50 value 84.942647
iter 60 value 84.355222
iter 70 value 84.158062
iter 80 value 84.129846
final value 84.129840
converged
Fitting Repeat 2
# weights: 103
initial value 98.329721
iter 10 value 89.492889
iter 20 value 89.062174
iter 30 value 88.916750
iter 40 value 86.466464
iter 50 value 85.659591
iter 60 value 85.125773
iter 70 value 84.894919
final value 84.894898
converged
Fitting Repeat 3
# weights: 103
initial value 104.230730
iter 10 value 94.007798
iter 20 value 92.007614
iter 30 value 88.784796
iter 40 value 88.020492
iter 50 value 87.741600
iter 60 value 83.808077
iter 70 value 82.352142
iter 80 value 82.320496
final value 82.320447
converged
Fitting Repeat 4
# weights: 103
initial value 117.205548
iter 10 value 94.467507
iter 20 value 93.588049
iter 30 value 93.150226
iter 40 value 92.892195
iter 50 value 92.887963
iter 60 value 92.879712
iter 70 value 89.325130
iter 80 value 85.983243
iter 90 value 85.265415
iter 100 value 84.563223
final value 84.563223
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 101.753271
iter 10 value 94.475690
iter 20 value 93.921000
iter 30 value 93.714159
iter 40 value 93.663696
iter 50 value 93.362557
iter 60 value 89.063898
iter 70 value 88.517678
iter 80 value 88.041741
iter 90 value 85.353191
iter 100 value 84.127948
final value 84.127948
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 114.647991
iter 10 value 93.371940
iter 20 value 88.044021
iter 30 value 85.937573
iter 40 value 85.554363
iter 50 value 85.022477
iter 60 value 82.837707
iter 70 value 82.096655
iter 80 value 81.983812
iter 90 value 81.259947
iter 100 value 80.934547
final value 80.934547
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 134.889287
iter 10 value 95.345446
iter 20 value 91.402070
iter 30 value 88.893204
iter 40 value 88.495467
iter 50 value 86.011623
iter 60 value 85.223491
iter 70 value 84.308734
iter 80 value 84.073847
iter 90 value 84.013355
iter 100 value 83.367625
final value 83.367625
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.942004
iter 10 value 94.857868
iter 20 value 91.071399
iter 30 value 87.855207
iter 40 value 86.432397
iter 50 value 86.079584
iter 60 value 85.226608
iter 70 value 84.758738
iter 80 value 84.697580
iter 90 value 84.197479
iter 100 value 81.738444
final value 81.738444
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 117.279086
iter 10 value 94.456041
iter 20 value 93.076413
iter 30 value 86.352715
iter 40 value 85.290427
iter 50 value 84.766241
iter 60 value 84.755279
iter 70 value 84.727355
iter 80 value 84.496054
iter 90 value 83.873220
iter 100 value 83.239076
final value 83.239076
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.076418
iter 10 value 94.890125
iter 20 value 92.686967
iter 30 value 88.204194
iter 40 value 86.256589
iter 50 value 85.564083
iter 60 value 82.952096
iter 70 value 82.371403
iter 80 value 81.930578
iter 90 value 81.217115
iter 100 value 81.127503
final value 81.127503
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.594580
iter 10 value 94.659135
iter 20 value 94.354232
iter 30 value 93.674449
iter 40 value 92.110700
iter 50 value 88.008220
iter 60 value 86.091397
iter 70 value 83.864343
iter 80 value 82.973461
iter 90 value 81.798056
iter 100 value 80.860915
final value 80.860915
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 116.012152
iter 10 value 95.069962
iter 20 value 93.414115
iter 30 value 89.241691
iter 40 value 85.482904
iter 50 value 85.068571
iter 60 value 83.323616
iter 70 value 81.617319
iter 80 value 81.358279
iter 90 value 81.188598
iter 100 value 81.099088
final value 81.099088
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.927424
iter 10 value 94.569355
iter 20 value 87.586018
iter 30 value 85.879271
iter 40 value 84.045328
iter 50 value 83.681390
iter 60 value 82.760086
iter 70 value 82.487038
iter 80 value 82.269628
iter 90 value 82.079218
iter 100 value 81.965860
final value 81.965860
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.347234
iter 10 value 95.422756
iter 20 value 85.851874
iter 30 value 85.446917
iter 40 value 83.801744
iter 50 value 82.915926
iter 60 value 81.798938
iter 70 value 81.432217
iter 80 value 81.023038
iter 90 value 80.947189
iter 100 value 80.927423
final value 80.927423
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.584281
iter 10 value 94.576992
iter 20 value 93.507232
iter 30 value 90.729686
iter 40 value 86.221032
iter 50 value 83.996134
iter 60 value 83.228488
iter 70 value 82.178019
iter 80 value 81.798330
iter 90 value 81.275471
iter 100 value 81.056842
final value 81.056842
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.121532
iter 10 value 94.028678
iter 20 value 94.027210
iter 30 value 93.593782
iter 40 value 88.466547
iter 50 value 84.102390
iter 60 value 83.682643
iter 70 value 83.492227
iter 80 value 83.423816
final value 83.423584
converged
Fitting Repeat 2
# weights: 103
initial value 99.907207
final value 94.499434
converged
Fitting Repeat 3
# weights: 103
initial value 99.802833
iter 10 value 94.028345
iter 20 value 93.323336
final value 93.320528
converged
Fitting Repeat 4
# weights: 103
initial value 97.562611
iter 10 value 94.485840
final value 94.484470
converged
Fitting Repeat 5
# weights: 103
initial value 99.295527
iter 10 value 94.486086
iter 20 value 94.484285
final value 94.484216
converged
Fitting Repeat 1
# weights: 305
initial value 105.294188
iter 10 value 94.489247
iter 20 value 94.484224
iter 30 value 93.558131
iter 40 value 89.476677
iter 50 value 88.561085
iter 60 value 88.518625
iter 70 value 88.160437
iter 80 value 88.149255
final value 88.148682
converged
Fitting Repeat 2
# weights: 305
initial value 104.958627
iter 10 value 94.488794
iter 20 value 91.860540
iter 30 value 86.144150
final value 86.144113
converged
Fitting Repeat 3
# weights: 305
initial value 102.760507
iter 10 value 94.432359
iter 20 value 94.006074
iter 30 value 94.003315
iter 40 value 93.926328
iter 40 value 93.926327
iter 50 value 86.607413
iter 60 value 84.564704
iter 70 value 84.056881
final value 84.046944
converged
Fitting Repeat 4
# weights: 305
initial value 96.589050
iter 10 value 94.031916
iter 20 value 93.213110
iter 30 value 92.868217
iter 40 value 92.261303
iter 50 value 85.655614
iter 60 value 84.509088
iter 70 value 82.564545
iter 80 value 82.533295
iter 90 value 82.532696
iter 90 value 82.532696
iter 90 value 82.532696
final value 82.532696
converged
Fitting Repeat 5
# weights: 305
initial value 97.988228
iter 10 value 94.487830
iter 20 value 94.328874
iter 30 value 93.696442
iter 40 value 93.321003
final value 93.320604
converged
Fitting Repeat 1
# weights: 507
initial value 102.411101
iter 10 value 93.350536
iter 20 value 89.909545
iter 30 value 84.294343
iter 40 value 82.601331
iter 50 value 82.551740
iter 60 value 82.550136
iter 60 value 82.550136
final value 82.550136
converged
Fitting Repeat 2
# weights: 507
initial value 114.913633
iter 10 value 94.456299
iter 20 value 94.033914
iter 30 value 94.028494
iter 40 value 89.755913
iter 50 value 86.219306
iter 60 value 85.497454
iter 70 value 85.018961
final value 84.990783
converged
Fitting Repeat 3
# weights: 507
initial value 102.526354
iter 10 value 94.020297
iter 20 value 93.673161
iter 30 value 93.671736
iter 40 value 93.666732
iter 50 value 88.909110
iter 60 value 87.079402
iter 70 value 85.749817
iter 80 value 85.672727
iter 90 value 84.870805
iter 100 value 84.855705
final value 84.855705
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 101.494977
iter 10 value 89.984876
iter 20 value 84.970785
iter 30 value 84.287944
iter 40 value 83.252675
iter 50 value 81.249608
iter 60 value 81.036083
iter 70 value 81.024653
iter 80 value 81.022426
final value 81.020343
converged
Fitting Repeat 5
# weights: 507
initial value 100.698338
iter 10 value 94.491778
iter 20 value 94.433007
iter 30 value 92.646426
iter 40 value 92.642306
iter 50 value 92.638094
iter 60 value 92.557734
iter 70 value 89.025972
iter 80 value 84.159433
iter 90 value 83.246211
iter 100 value 83.219594
final value 83.219594
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.816756
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 97.298911
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.806052
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 106.885554
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 101.145139
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 98.976809
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 101.171407
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 112.755678
final value 94.052911
converged
Fitting Repeat 4
# weights: 305
initial value 106.011386
final value 94.008696
converged
Fitting Repeat 5
# weights: 305
initial value 104.831271
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 132.661535
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 104.097972
iter 10 value 93.950928
final value 93.810010
converged
Fitting Repeat 3
# weights: 507
initial value 104.703097
final value 94.008696
converged
Fitting Repeat 4
# weights: 507
initial value 117.336369
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 123.011307
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 100.488930
iter 10 value 93.953694
iter 20 value 93.472614
iter 30 value 90.105218
iter 40 value 84.735958
iter 50 value 83.298355
iter 60 value 82.700982
iter 70 value 82.592123
iter 80 value 82.555759
final value 82.555513
converged
Fitting Repeat 2
# weights: 103
initial value 98.170560
iter 10 value 93.778067
iter 20 value 93.444055
iter 30 value 90.752094
iter 40 value 86.809685
iter 50 value 83.368004
iter 60 value 82.337311
iter 70 value 82.124692
iter 80 value 82.102632
final value 82.102624
converged
Fitting Repeat 3
# weights: 103
initial value 97.396119
iter 10 value 93.982757
iter 20 value 93.448753
iter 30 value 87.214877
iter 40 value 86.458047
iter 50 value 84.024834
iter 60 value 83.493445
iter 70 value 82.500761
iter 80 value 82.198656
iter 90 value 82.132836
iter 100 value 82.110090
final value 82.110090
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 114.520063
iter 10 value 93.566502
iter 20 value 83.957050
iter 30 value 83.608209
iter 40 value 83.145698
iter 50 value 82.607637
iter 60 value 82.557566
final value 82.555514
converged
Fitting Repeat 5
# weights: 103
initial value 97.702920
iter 10 value 94.055380
iter 20 value 90.621530
iter 30 value 84.449821
iter 40 value 84.221486
iter 50 value 82.748246
iter 60 value 82.679173
iter 70 value 82.664719
iter 80 value 82.651883
iter 90 value 82.556318
final value 82.555513
converged
Fitting Repeat 1
# weights: 305
initial value 106.216573
iter 10 value 94.184020
iter 20 value 91.420422
iter 30 value 86.109862
iter 40 value 84.275806
iter 50 value 82.390142
iter 60 value 82.180005
iter 70 value 81.993870
iter 80 value 80.576477
iter 90 value 80.259613
iter 100 value 80.173932
final value 80.173932
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.419072
iter 10 value 93.457372
iter 20 value 89.381260
iter 30 value 87.471921
iter 40 value 85.934554
iter 50 value 82.510038
iter 60 value 80.944600
iter 70 value 80.570954
iter 80 value 80.331763
iter 90 value 80.092113
iter 100 value 79.687102
final value 79.687102
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.004451
iter 10 value 93.995044
iter 20 value 87.225151
iter 30 value 84.003265
iter 40 value 83.197573
iter 50 value 82.740873
iter 60 value 82.703102
iter 70 value 82.375759
iter 80 value 81.370217
iter 90 value 80.695544
iter 100 value 80.065846
final value 80.065846
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.873317
iter 10 value 93.636628
iter 20 value 84.628714
iter 30 value 84.154481
iter 40 value 82.848493
iter 50 value 81.614700
iter 60 value 81.103889
iter 70 value 80.386589
iter 80 value 80.150830
iter 90 value 80.097906
iter 100 value 79.969783
final value 79.969783
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 120.959080
iter 10 value 94.508516
iter 20 value 87.128676
iter 30 value 82.653002
iter 40 value 82.534451
iter 50 value 81.837732
iter 60 value 80.678100
iter 70 value 80.245828
iter 80 value 80.149011
iter 90 value 80.059810
iter 100 value 80.041547
final value 80.041547
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.299779
iter 10 value 93.781946
iter 20 value 85.809882
iter 30 value 83.141204
iter 40 value 81.123370
iter 50 value 80.528282
iter 60 value 80.321472
iter 70 value 80.251392
iter 80 value 80.001029
iter 90 value 79.956750
iter 100 value 79.858685
final value 79.858685
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.018912
iter 10 value 89.610635
iter 20 value 86.948969
iter 30 value 86.260755
iter 40 value 84.862187
iter 50 value 82.217447
iter 60 value 81.487012
iter 70 value 81.253276
iter 80 value 81.154919
iter 90 value 80.924435
iter 100 value 80.891290
final value 80.891290
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.813182
iter 10 value 93.958487
iter 20 value 87.304348
iter 30 value 85.661704
iter 40 value 82.847583
iter 50 value 82.172324
iter 60 value 81.873675
iter 70 value 81.615205
iter 80 value 80.826160
iter 90 value 79.903877
iter 100 value 79.603254
final value 79.603254
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.711944
iter 10 value 93.959162
iter 20 value 87.423195
iter 30 value 85.415493
iter 40 value 82.347097
iter 50 value 81.915652
iter 60 value 81.596101
iter 70 value 81.122641
iter 80 value 80.408266
iter 90 value 80.210292
iter 100 value 80.120306
final value 80.120306
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 127.793179
iter 10 value 94.452641
iter 20 value 94.032754
iter 30 value 93.196933
iter 40 value 84.135890
iter 50 value 83.933330
iter 60 value 82.847912
iter 70 value 80.839659
iter 80 value 80.629942
iter 90 value 80.432068
iter 100 value 80.153515
final value 80.153515
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.884642
final value 94.054561
converged
Fitting Repeat 2
# weights: 103
initial value 96.760753
iter 10 value 94.054321
iter 20 value 94.049791
iter 30 value 94.009093
final value 94.008785
converged
Fitting Repeat 3
# weights: 103
initial value 94.805139
iter 10 value 93.970629
iter 20 value 93.808556
iter 30 value 93.806395
final value 93.805796
converged
Fitting Repeat 4
# weights: 103
initial value 96.066895
final value 94.054677
converged
Fitting Repeat 5
# weights: 103
initial value 109.504048
final value 94.054314
converged
Fitting Repeat 1
# weights: 305
initial value 95.478907
iter 10 value 94.057937
iter 20 value 93.050975
iter 30 value 83.304302
iter 40 value 83.225899
iter 50 value 83.218995
final value 83.218758
converged
Fitting Repeat 2
# weights: 305
initial value 97.479658
iter 10 value 94.057345
iter 20 value 94.052906
iter 30 value 93.773977
iter 40 value 82.885801
iter 50 value 82.883802
iter 60 value 82.877909
iter 70 value 82.873815
iter 80 value 82.873504
iter 90 value 82.873323
iter 100 value 82.872473
final value 82.872473
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.248070
iter 10 value 94.058063
iter 20 value 94.053562
iter 30 value 93.808362
iter 40 value 93.805533
iter 50 value 93.753909
final value 93.753610
converged
Fitting Repeat 4
# weights: 305
initial value 103.506337
iter 10 value 94.057683
iter 20 value 94.052964
final value 94.052951
converged
Fitting Repeat 5
# weights: 305
initial value 106.120394
iter 10 value 94.055383
iter 20 value 94.047502
iter 30 value 94.013857
iter 40 value 94.009649
iter 50 value 93.964189
iter 60 value 93.963221
final value 93.963165
converged
Fitting Repeat 1
# weights: 507
initial value 97.765589
iter 10 value 93.647766
iter 20 value 93.644354
iter 30 value 93.641346
iter 40 value 93.638252
iter 50 value 93.609717
iter 60 value 93.608942
iter 70 value 93.608075
iter 80 value 93.607225
iter 90 value 92.719773
iter 100 value 90.300017
final value 90.300017
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 91.683268
iter 10 value 86.407010
iter 20 value 85.985321
iter 30 value 85.979637
iter 40 value 85.906945
final value 85.906774
converged
Fitting Repeat 3
# weights: 507
initial value 122.824864
iter 10 value 94.061203
iter 20 value 94.053269
iter 30 value 83.240491
final value 83.236379
converged
Fitting Repeat 4
# weights: 507
initial value 94.999970
iter 10 value 94.059413
iter 20 value 84.175752
iter 30 value 82.266872
iter 40 value 80.003124
iter 50 value 78.875208
iter 60 value 78.775782
iter 70 value 78.772435
iter 80 value 78.678523
iter 90 value 78.470162
iter 100 value 78.239690
final value 78.239690
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.565202
iter 10 value 94.060965
iter 20 value 94.049386
iter 30 value 93.805320
iter 40 value 93.805052
final value 93.805044
converged
Fitting Repeat 1
# weights: 103
initial value 98.568229
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.403834
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 95.261373
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 99.524981
iter 10 value 93.947312
iter 10 value 93.947312
iter 10 value 93.947312
final value 93.947312
converged
Fitting Repeat 5
# weights: 103
initial value 94.574727
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 103.652927
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 97.573488
final value 94.467391
converged
Fitting Repeat 3
# weights: 305
initial value 97.382187
iter 10 value 94.269759
iter 20 value 87.613704
iter 30 value 87.298273
final value 87.298269
converged
Fitting Repeat 4
# weights: 305
initial value 99.482365
iter 10 value 94.267949
final value 93.879755
converged
Fitting Repeat 5
# weights: 305
initial value 100.010113
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 99.860274
iter 10 value 94.113372
final value 94.113276
converged
Fitting Repeat 2
# weights: 507
initial value 124.426553
iter 10 value 94.484211
iter 10 value 94.484211
iter 10 value 94.484211
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 100.329471
iter 10 value 94.350886
iter 20 value 85.516009
iter 30 value 85.503385
iter 40 value 85.503175
final value 85.503170
converged
Fitting Repeat 4
# weights: 507
initial value 98.742069
iter 10 value 94.219352
iter 20 value 94.113303
final value 94.113277
converged
Fitting Repeat 5
# weights: 507
initial value 103.989589
iter 10 value 94.424858
iter 20 value 94.154289
final value 94.154286
converged
Fitting Repeat 1
# weights: 103
initial value 97.052272
iter 10 value 94.431441
iter 20 value 94.249443
iter 30 value 88.571334
iter 40 value 87.632903
iter 50 value 87.327629
iter 60 value 84.415771
iter 70 value 83.526525
iter 80 value 83.175330
iter 90 value 82.836258
iter 100 value 82.752473
final value 82.752473
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 101.264891
iter 10 value 94.346718
iter 20 value 90.854975
iter 30 value 88.116084
iter 40 value 85.270400
iter 50 value 84.654915
iter 60 value 83.907684
iter 70 value 83.737823
iter 80 value 83.566680
iter 90 value 83.442520
iter 100 value 83.430789
final value 83.430789
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 106.180259
iter 10 value 93.960289
iter 20 value 85.864089
iter 30 value 85.308790
iter 40 value 85.009483
iter 50 value 84.779125
iter 60 value 84.450461
final value 84.446395
converged
Fitting Repeat 4
# weights: 103
initial value 104.517020
iter 10 value 94.495374
iter 20 value 94.466014
iter 30 value 91.247479
iter 40 value 87.257335
iter 50 value 86.395282
iter 60 value 86.251355
iter 70 value 84.888195
iter 80 value 84.318181
iter 90 value 84.290698
iter 100 value 84.272737
final value 84.272737
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 95.965567
iter 10 value 94.488629
iter 20 value 93.806758
iter 30 value 88.575262
iter 40 value 87.616884
iter 50 value 84.760151
iter 60 value 83.080036
iter 70 value 82.869705
iter 80 value 82.723588
iter 90 value 82.704115
iter 90 value 82.704115
iter 90 value 82.704115
final value 82.704115
converged
Fitting Repeat 1
# weights: 305
initial value 115.357925
iter 10 value 94.955421
iter 20 value 94.284436
iter 30 value 87.169717
iter 40 value 87.027022
iter 50 value 86.465737
iter 60 value 83.481313
iter 70 value 82.896322
iter 80 value 82.778046
iter 90 value 82.771998
iter 100 value 82.484320
final value 82.484320
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 117.350204
iter 10 value 94.466370
iter 20 value 92.988551
iter 30 value 88.116236
iter 40 value 86.259270
iter 50 value 85.026823
iter 60 value 83.734737
iter 70 value 82.750626
iter 80 value 81.706112
iter 90 value 81.632363
iter 100 value 81.510647
final value 81.510647
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 115.252106
iter 10 value 94.568763
iter 20 value 93.796512
iter 30 value 92.644534
iter 40 value 92.204856
iter 50 value 85.332427
iter 60 value 83.911410
iter 70 value 83.821306
iter 80 value 83.749969
iter 90 value 83.651337
iter 100 value 83.407997
final value 83.407997
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.386674
iter 10 value 93.496536
iter 20 value 92.972647
iter 30 value 91.338769
iter 40 value 86.235174
iter 50 value 83.958337
iter 60 value 83.823545
iter 70 value 83.543375
iter 80 value 83.407404
iter 90 value 83.145164
iter 100 value 82.873734
final value 82.873734
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.052868
iter 10 value 94.514649
iter 20 value 94.210574
iter 30 value 87.300095
iter 40 value 85.324185
iter 50 value 84.054710
iter 60 value 83.610058
iter 70 value 82.417177
iter 80 value 82.172149
iter 90 value 81.884757
iter 100 value 81.689537
final value 81.689537
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.008907
iter 10 value 94.822670
iter 20 value 94.357793
iter 30 value 92.988638
iter 40 value 88.949587
iter 50 value 84.231769
iter 60 value 83.912903
iter 70 value 83.225817
iter 80 value 82.287646
iter 90 value 81.465148
iter 100 value 81.210345
final value 81.210345
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 132.647256
iter 10 value 94.475814
iter 20 value 89.397794
iter 30 value 88.505542
iter 40 value 85.579728
iter 50 value 84.937926
iter 60 value 84.215022
iter 70 value 83.427460
iter 80 value 83.138024
iter 90 value 81.761255
iter 100 value 81.323624
final value 81.323624
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 124.091737
iter 10 value 94.065249
iter 20 value 86.706641
iter 30 value 86.207437
iter 40 value 84.490685
iter 50 value 83.326379
iter 60 value 82.816690
iter 70 value 82.703265
iter 80 value 82.331538
iter 90 value 82.037483
iter 100 value 81.951072
final value 81.951072
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.782997
iter 10 value 94.464947
iter 20 value 91.109205
iter 30 value 84.217036
iter 40 value 83.882933
iter 50 value 83.035843
iter 60 value 82.365487
iter 70 value 81.849159
iter 80 value 81.773261
iter 90 value 81.754959
iter 100 value 81.716724
final value 81.716724
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.605612
iter 10 value 91.453604
iter 20 value 85.812534
iter 30 value 83.923687
iter 40 value 82.904508
iter 50 value 82.594453
iter 60 value 81.820008
iter 70 value 81.567469
iter 80 value 81.108175
iter 90 value 80.931373
iter 100 value 80.793338
final value 80.793338
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 112.543713
final value 94.485917
converged
Fitting Repeat 2
# weights: 103
initial value 104.495453
final value 94.485833
converged
Fitting Repeat 3
# weights: 103
initial value 108.126301
final value 94.485830
converged
Fitting Repeat 4
# weights: 103
initial value 93.765067
iter 10 value 93.155492
iter 20 value 93.151684
iter 30 value 93.150998
iter 40 value 93.113857
iter 50 value 93.102043
final value 93.101937
converged
Fitting Repeat 5
# weights: 103
initial value 95.416046
final value 94.485920
converged
Fitting Repeat 1
# weights: 305
initial value 99.491535
iter 10 value 94.489309
iter 20 value 94.417817
iter 30 value 94.129109
iter 40 value 94.089176
final value 94.089088
converged
Fitting Repeat 2
# weights: 305
initial value 110.253365
iter 10 value 93.359769
iter 20 value 93.115141
iter 30 value 93.114525
iter 40 value 93.114162
iter 50 value 93.113807
iter 60 value 93.112603
iter 70 value 93.111410
iter 80 value 93.110495
iter 90 value 86.143816
iter 100 value 84.984828
final value 84.984828
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.397560
iter 10 value 94.489191
iter 20 value 94.417819
iter 30 value 90.562955
iter 40 value 87.597540
iter 50 value 87.460764
final value 87.459635
converged
Fitting Repeat 4
# weights: 305
initial value 101.054039
iter 10 value 94.488050
iter 20 value 94.333606
iter 30 value 88.602905
iter 40 value 86.626240
iter 50 value 86.547134
iter 60 value 86.543841
final value 86.543697
converged
Fitting Repeat 5
# weights: 305
initial value 120.717827
iter 10 value 94.557068
iter 20 value 88.901335
iter 30 value 88.892392
iter 40 value 88.887520
iter 50 value 88.680545
iter 60 value 83.514774
iter 70 value 82.378586
iter 80 value 81.909588
iter 90 value 81.660614
iter 100 value 81.591771
final value 81.591771
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 95.369682
iter 10 value 94.475467
iter 20 value 94.467483
iter 30 value 94.274451
iter 40 value 88.044705
iter 50 value 88.025212
iter 60 value 88.018634
iter 70 value 87.789655
iter 80 value 86.058625
iter 90 value 85.746965
iter 100 value 85.743365
final value 85.743365
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.510867
iter 10 value 94.434255
iter 20 value 88.773076
iter 30 value 88.724603
iter 40 value 88.722836
iter 50 value 87.404239
iter 60 value 85.888413
iter 70 value 85.668994
iter 80 value 84.856926
iter 90 value 82.736441
iter 100 value 81.836006
final value 81.836006
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 115.569746
iter 10 value 94.492251
iter 20 value 93.883038
iter 30 value 93.382692
iter 40 value 86.695160
iter 50 value 86.642223
iter 60 value 86.641040
iter 70 value 86.189455
iter 80 value 85.967494
iter 90 value 85.967339
iter 100 value 85.966360
final value 85.966360
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.350634
iter 10 value 94.491544
iter 20 value 86.301844
final value 86.055243
converged
Fitting Repeat 5
# weights: 507
initial value 102.593100
iter 10 value 93.920322
iter 20 value 93.914688
iter 30 value 86.401644
iter 40 value 85.221037
iter 50 value 85.153896
final value 85.153412
converged
Fitting Repeat 1
# weights: 305
initial value 131.298858
iter 10 value 117.763738
iter 20 value 117.420587
iter 30 value 107.577586
iter 40 value 105.117330
iter 50 value 103.447439
iter 60 value 102.619748
iter 70 value 102.474273
iter 80 value 102.469336
iter 90 value 102.184519
iter 100 value 101.702000
final value 101.702000
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 131.681906
iter 10 value 117.210640
iter 20 value 108.439074
iter 30 value 103.322488
iter 40 value 103.118305
iter 50 value 103.048549
iter 60 value 102.410740
iter 70 value 101.654694
final value 101.625245
converged
Fitting Repeat 3
# weights: 305
initial value 124.857470
iter 10 value 117.895160
iter 20 value 117.887473
final value 117.758855
converged
Fitting Repeat 4
# weights: 305
initial value 127.034569
iter 10 value 117.899278
iter 20 value 117.896073
iter 30 value 117.615757
iter 40 value 117.519488
iter 50 value 117.511826
iter 60 value 111.339081
iter 70 value 105.056711
final value 105.055392
converged
Fitting Repeat 5
# weights: 305
initial value 120.922443
iter 10 value 117.190128
iter 20 value 117.166821
iter 30 value 116.975813
iter 40 value 115.564135
iter 50 value 114.476158
iter 60 value 106.394772
iter 70 value 105.342269
iter 80 value 104.935916
iter 90 value 104.928943
final value 104.928931
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Jan 20 20:21:43 2026
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
19.787 0.455 72.052
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 19.069 | 0.958 | 20.677 | |
| FreqInteractors | 0.153 | 0.012 | 0.183 | |
| calculateAAC | 0.012 | 0.001 | 0.014 | |
| calculateAutocor | 0.125 | 0.023 | 0.242 | |
| calculateCTDC | 0.035 | 0.004 | 0.078 | |
| calculateCTDD | 0.163 | 0.010 | 0.274 | |
| calculateCTDT | 0.066 | 0.005 | 0.076 | |
| calculateCTriad | 0.167 | 0.010 | 0.188 | |
| calculateDC | 0.031 | 0.004 | 0.035 | |
| calculateF | 0.108 | 0.004 | 0.120 | |
| calculateKSAAP | 0.034 | 0.004 | 0.037 | |
| calculateQD_Sm | 0.878 | 0.077 | 1.036 | |
| calculateTC | 0.703 | 0.063 | 0.794 | |
| calculateTC_Sm | 0.102 | 0.011 | 0.117 | |
| corr_plot | 18.808 | 1.017 | 20.782 | |
| enrichfindP | 0.196 | 0.037 | 10.849 | |
| enrichfind_hp | 0.015 | 0.005 | 1.049 | |
| enrichplot | 0.165 | 0.007 | 0.181 | |
| filter_missing_values | 0.001 | 0.001 | 0.000 | |
| getFASTA | 0.029 | 0.006 | 3.110 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0.001 | 0.000 | 0.001 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.000 | 0.000 | 0.001 | |
| plotPPI | 0.037 | 0.001 | 0.039 | |
| pred_ensembel | 6.540 | 0.155 | 6.719 | |
| var_imp | 18.975 | 1.050 | 21.117 | |