| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2025-11-28 11:38 -0500 (Fri, 28 Nov 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4866 |
| lconway | macOS 12.7.6 Monterey | x86_64 | R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences" | 4614 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" | 4571 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 994/2328 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.1 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | WARNINGS | |||||||||
| lconway | macOS 12.7.6 Monterey / x86_64 | OK | OK | WARNINGS | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | WARNINGS | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.1 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz |
| StartedAt: 2025-11-28 02:14:35 -0500 (Fri, 28 Nov 2025) |
| EndedAt: 2025-11-28 02:20:36 -0500 (Fri, 28 Nov 2025) |
| EllapsedTime: 361.3 seconds |
| RetCode: 0 |
| Status: WARNINGS |
| CheckDir: HPiP.Rcheck |
| Warnings: 1 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-10-21 r88958)
* using platform: x86_64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
Code: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
FALSE, filename = "plots.pdf")
Docs: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
TRUE, filename = "plots.pdf")
Mismatches in argument default values:
Name: 'plots' Code: FALSE Docs: TRUE
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 36.870 1.816 40.911
corr_plot 35.517 1.756 37.681
var_imp 35.089 1.792 37.390
pred_ensembel 13.979 0.465 12.536
enrichfindP 0.529 0.081 9.469
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 WARNING, 2 NOTEs
See
‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.1’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 97.052493
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 99.298375
final value 94.052911
converged
Fitting Repeat 3
# weights: 103
initial value 99.399243
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 100.286264
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 95.579454
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 108.269645
final value 94.008696
converged
Fitting Repeat 2
# weights: 305
initial value 112.278455
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 101.449142
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 105.638558
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 99.788863
final value 93.900000
converged
Fitting Repeat 1
# weights: 507
initial value 95.227798
iter 10 value 94.008707
final value 94.008696
converged
Fitting Repeat 2
# weights: 507
initial value 109.490885
iter 10 value 94.000000
iter 10 value 94.000000
iter 10 value 94.000000
final value 94.000000
converged
Fitting Repeat 3
# weights: 507
initial value 100.487416
iter 10 value 93.942966
iter 20 value 93.937253
final value 93.937249
converged
Fitting Repeat 4
# weights: 507
initial value 95.524369
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 95.012882
final value 94.008696
converged
Fitting Repeat 1
# weights: 103
initial value 96.127398
iter 10 value 94.053903
iter 20 value 94.024062
iter 30 value 93.883418
iter 40 value 91.683335
iter 50 value 90.788040
iter 60 value 84.839662
iter 70 value 83.185422
iter 80 value 82.899318
iter 90 value 82.281355
iter 100 value 82.196021
final value 82.196021
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.934789
iter 10 value 94.056119
iter 20 value 89.411601
iter 30 value 83.682413
iter 40 value 83.192498
iter 50 value 82.744282
iter 60 value 82.580485
iter 70 value 82.546432
iter 80 value 82.002498
iter 90 value 81.665804
iter 100 value 80.797665
final value 80.797665
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.438187
iter 10 value 94.064547
iter 20 value 94.049266
iter 30 value 91.371703
iter 40 value 86.749959
iter 50 value 85.653103
iter 60 value 85.620169
iter 70 value 84.857193
iter 80 value 84.641924
final value 84.640447
converged
Fitting Repeat 4
# weights: 103
initial value 102.997975
iter 10 value 94.057221
iter 10 value 94.057220
iter 20 value 94.001699
iter 30 value 88.612264
iter 40 value 86.011999
iter 50 value 84.915819
iter 60 value 84.659559
iter 70 value 84.640448
iter 70 value 84.640447
iter 70 value 84.640447
final value 84.640447
converged
Fitting Repeat 5
# weights: 103
initial value 106.946374
iter 10 value 93.956382
iter 20 value 92.310838
iter 30 value 87.310502
iter 40 value 85.616346
iter 50 value 84.376879
iter 60 value 83.798739
iter 70 value 83.467391
iter 80 value 83.435641
final value 83.435637
converged
Fitting Repeat 1
# weights: 305
initial value 144.026789
iter 10 value 94.386086
iter 20 value 94.071710
iter 30 value 93.795448
iter 40 value 87.246018
iter 50 value 86.198016
iter 60 value 85.754574
iter 70 value 84.328694
iter 80 value 82.006970
iter 90 value 80.905797
iter 100 value 80.477246
final value 80.477246
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 98.724716
iter 10 value 92.732989
iter 20 value 85.785780
iter 30 value 83.235943
iter 40 value 82.619271
iter 50 value 81.283007
iter 60 value 80.476529
iter 70 value 80.373527
iter 80 value 80.268248
iter 90 value 79.829176
iter 100 value 79.698943
final value 79.698943
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.965572
iter 10 value 94.140987
iter 20 value 87.916079
iter 30 value 87.400254
iter 40 value 87.099330
iter 50 value 85.674590
iter 60 value 83.076170
iter 70 value 81.992859
iter 80 value 81.566192
iter 90 value 81.121851
iter 100 value 81.064898
final value 81.064898
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.628451
iter 10 value 94.089145
iter 20 value 93.818349
iter 30 value 93.131672
iter 40 value 87.989165
iter 50 value 86.788411
iter 60 value 85.924507
iter 70 value 85.433948
iter 80 value 84.314590
iter 90 value 83.105359
iter 100 value 80.629569
final value 80.629569
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.229045
iter 10 value 95.358005
iter 20 value 94.601251
iter 30 value 85.935382
iter 40 value 84.343065
iter 50 value 83.712150
iter 60 value 83.047267
iter 70 value 82.689891
iter 80 value 82.561505
iter 90 value 82.300050
iter 100 value 80.713785
final value 80.713785
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.548976
iter 10 value 94.186472
iter 20 value 87.174762
iter 30 value 85.735191
iter 40 value 85.067118
iter 50 value 84.491837
iter 60 value 83.055534
iter 70 value 82.758782
iter 80 value 82.528516
iter 90 value 81.579596
iter 100 value 80.865218
final value 80.865218
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.492614
iter 10 value 94.167915
iter 20 value 93.700846
iter 30 value 91.147107
iter 40 value 86.611588
iter 50 value 85.343990
iter 60 value 82.761942
iter 70 value 80.907327
iter 80 value 80.623421
iter 90 value 80.406832
iter 100 value 80.394268
final value 80.394268
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.584708
iter 10 value 94.094493
iter 20 value 93.895140
iter 30 value 86.735391
iter 40 value 85.612671
iter 50 value 84.604933
iter 60 value 83.167052
iter 70 value 81.175396
iter 80 value 80.416434
iter 90 value 79.367794
iter 100 value 78.984687
final value 78.984687
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.443565
iter 10 value 94.494110
iter 20 value 88.938565
iter 30 value 86.666463
iter 40 value 84.323300
iter 50 value 82.619924
iter 60 value 81.998071
iter 70 value 81.534221
iter 80 value 79.941150
iter 90 value 79.341946
iter 100 value 79.189261
final value 79.189261
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 120.915849
iter 10 value 94.087905
iter 20 value 94.014152
iter 30 value 86.970784
iter 40 value 84.637173
iter 50 value 84.315113
iter 60 value 83.441374
iter 70 value 81.201579
iter 80 value 80.260622
iter 90 value 80.183159
iter 100 value 79.957286
final value 79.957286
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.667649
final value 94.054451
converged
Fitting Repeat 2
# weights: 103
initial value 100.637153
final value 94.054517
converged
Fitting Repeat 3
# weights: 103
initial value 96.544541
iter 10 value 94.012991
final value 94.012086
converged
Fitting Repeat 4
# weights: 103
initial value 95.055760
final value 94.054502
converged
Fitting Repeat 5
# weights: 103
initial value 94.869153
iter 10 value 92.709801
iter 20 value 87.763995
iter 30 value 84.226198
iter 40 value 83.674423
iter 50 value 83.554406
iter 60 value 83.506566
final value 83.506414
converged
Fitting Repeat 1
# weights: 305
initial value 109.043875
iter 10 value 93.668784
iter 20 value 93.653837
iter 30 value 93.651838
iter 40 value 93.651260
iter 50 value 93.567996
iter 60 value 93.539235
iter 70 value 90.460594
iter 80 value 88.526351
iter 90 value 88.436263
iter 100 value 87.543064
final value 87.543064
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 98.345013
iter 10 value 94.016825
iter 20 value 94.012252
final value 94.011781
converged
Fitting Repeat 3
# weights: 305
initial value 98.721498
iter 10 value 94.057045
iter 20 value 87.068007
iter 30 value 86.889834
final value 86.889501
converged
Fitting Repeat 4
# weights: 305
initial value 106.555891
iter 10 value 94.058011
iter 20 value 93.691391
iter 30 value 87.072021
iter 40 value 85.679185
iter 50 value 83.526772
iter 60 value 83.519718
iter 70 value 83.238036
iter 80 value 81.302180
iter 90 value 80.600237
iter 100 value 79.442537
final value 79.442537
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.843010
iter 10 value 93.974589
iter 20 value 93.969800
iter 30 value 93.969291
iter 40 value 93.878577
iter 50 value 86.906730
iter 60 value 86.278523
iter 70 value 85.724871
iter 80 value 84.803493
iter 90 value 84.762838
iter 100 value 84.761336
final value 84.761336
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 122.159159
iter 10 value 94.060953
iter 20 value 94.045319
iter 30 value 90.292085
iter 40 value 83.948522
iter 50 value 81.130040
iter 60 value 79.752652
iter 70 value 79.733124
iter 80 value 79.730377
iter 90 value 79.727160
iter 100 value 79.522275
final value 79.522275
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 98.549755
iter 10 value 94.061032
iter 20 value 94.042240
iter 30 value 88.130102
final value 86.796574
converged
Fitting Repeat 3
# weights: 507
initial value 118.083688
iter 10 value 93.527513
iter 20 value 92.602205
iter 30 value 92.600212
iter 40 value 92.599159
iter 50 value 92.596164
iter 60 value 92.595301
iter 70 value 92.594475
iter 80 value 92.564496
iter 90 value 91.746103
iter 100 value 83.950704
final value 83.950704
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.083491
iter 10 value 94.016648
iter 20 value 94.008078
iter 30 value 92.622772
iter 40 value 92.502680
final value 92.498519
converged
Fitting Repeat 5
# weights: 507
initial value 97.098475
iter 10 value 93.856844
iter 20 value 93.803314
iter 30 value 93.800089
iter 40 value 92.568376
iter 50 value 92.435393
iter 60 value 92.434314
final value 92.434069
converged
Fitting Repeat 1
# weights: 103
initial value 99.814977
final value 94.354396
converged
Fitting Repeat 2
# weights: 103
initial value 100.128086
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.710057
final value 94.354396
converged
Fitting Repeat 4
# weights: 103
initial value 105.758982
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.340864
final value 94.354396
converged
Fitting Repeat 1
# weights: 305
initial value 97.298707
final value 91.651099
converged
Fitting Repeat 2
# weights: 305
initial value 115.517406
iter 10 value 94.147191
final value 94.147184
converged
Fitting Repeat 3
# weights: 305
initial value 96.000701
final value 94.484210
converged
Fitting Repeat 4
# weights: 305
initial value 101.177965
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 110.558898
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 111.814397
iter 10 value 91.651293
final value 91.651099
converged
Fitting Repeat 2
# weights: 507
initial value 126.543880
iter 10 value 93.830744
final value 93.818219
converged
Fitting Repeat 3
# weights: 507
initial value 129.091202
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 97.436207
iter 10 value 94.147732
final value 94.144480
converged
Fitting Repeat 5
# weights: 507
initial value 108.040571
iter 10 value 94.016464
iter 20 value 93.653396
iter 30 value 93.652152
final value 93.652150
converged
Fitting Repeat 1
# weights: 103
initial value 100.290920
iter 10 value 94.486490
iter 20 value 93.749645
iter 30 value 93.727955
iter 40 value 93.723129
iter 50 value 93.722303
iter 60 value 93.721933
iter 70 value 93.721319
iter 80 value 93.333743
iter 90 value 87.905608
iter 100 value 87.643212
final value 87.643212
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.915201
iter 10 value 94.488545
iter 20 value 93.729236
iter 30 value 93.600887
iter 40 value 89.927994
iter 50 value 89.420133
iter 60 value 88.115041
iter 70 value 87.825585
iter 80 value 82.134730
iter 90 value 81.299969
iter 100 value 79.547951
final value 79.547951
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 102.905582
iter 10 value 94.490550
iter 20 value 94.403840
iter 30 value 94.382572
iter 40 value 94.370895
iter 50 value 94.041183
iter 60 value 93.835103
iter 70 value 93.727597
iter 80 value 86.945328
iter 90 value 85.425978
iter 100 value 84.217295
final value 84.217295
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 98.793142
iter 10 value 92.623235
iter 20 value 83.660708
iter 30 value 82.221728
iter 40 value 82.079871
iter 50 value 80.959484
iter 60 value 80.448968
iter 70 value 79.683555
iter 80 value 79.454331
final value 79.454292
converged
Fitting Repeat 5
# weights: 103
initial value 97.524192
iter 10 value 89.090315
iter 20 value 84.629155
iter 30 value 84.210450
iter 40 value 83.589100
iter 50 value 83.171734
iter 60 value 83.162745
final value 83.162356
converged
Fitting Repeat 1
# weights: 305
initial value 103.338583
iter 10 value 89.119981
iter 20 value 87.278260
iter 30 value 86.724344
iter 40 value 82.786888
iter 50 value 81.275969
iter 60 value 80.187751
iter 70 value 79.370942
iter 80 value 78.874015
iter 90 value 78.804879
iter 100 value 78.427355
final value 78.427355
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.911808
iter 10 value 94.763572
iter 20 value 94.524188
iter 30 value 92.706875
iter 40 value 88.264925
iter 50 value 84.031783
iter 60 value 81.692257
iter 70 value 80.112627
iter 80 value 79.530187
iter 90 value 79.225684
iter 100 value 79.073821
final value 79.073821
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 116.125502
iter 10 value 89.511161
iter 20 value 86.709349
iter 30 value 84.626347
iter 40 value 82.861989
iter 50 value 82.705485
iter 60 value 81.592980
iter 70 value 81.299881
iter 80 value 80.405239
iter 90 value 79.857452
iter 100 value 79.738289
final value 79.738289
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 114.097948
iter 10 value 94.480633
iter 20 value 88.509074
iter 30 value 84.316687
iter 40 value 84.090727
iter 50 value 83.382391
iter 60 value 80.896771
iter 70 value 79.805395
iter 80 value 79.569907
iter 90 value 79.276939
iter 100 value 79.264358
final value 79.264358
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.260081
iter 10 value 94.420023
iter 20 value 85.498471
iter 30 value 82.230902
iter 40 value 81.274267
iter 50 value 80.764237
iter 60 value 79.827089
iter 70 value 79.564202
iter 80 value 79.223161
iter 90 value 78.457820
iter 100 value 77.968347
final value 77.968347
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.872133
iter 10 value 94.286675
iter 20 value 85.216556
iter 30 value 82.461945
iter 40 value 80.513917
iter 50 value 80.169410
iter 60 value 79.910919
iter 70 value 78.518108
iter 80 value 78.190385
iter 90 value 78.157980
iter 100 value 78.080731
final value 78.080731
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.377825
iter 10 value 96.353538
iter 20 value 90.206976
iter 30 value 83.526481
iter 40 value 81.470854
iter 50 value 79.567634
iter 60 value 79.104717
iter 70 value 78.849062
iter 80 value 78.734720
iter 90 value 78.633214
iter 100 value 78.579379
final value 78.579379
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 126.860801
iter 10 value 94.477377
iter 20 value 93.745262
iter 30 value 91.539100
iter 40 value 85.947047
iter 50 value 82.068352
iter 60 value 81.317761
iter 70 value 80.862228
iter 80 value 79.887378
iter 90 value 79.357688
iter 100 value 79.112701
final value 79.112701
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.093318
iter 10 value 94.739065
iter 20 value 93.194578
iter 30 value 88.519579
iter 40 value 87.645624
iter 50 value 87.414106
iter 60 value 82.371707
iter 70 value 81.844171
iter 80 value 81.574781
iter 90 value 80.581967
iter 100 value 79.215257
final value 79.215257
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.324335
iter 10 value 94.304890
iter 20 value 90.081385
iter 30 value 87.986917
iter 40 value 84.630756
iter 50 value 83.489885
iter 60 value 83.056980
iter 70 value 82.659354
iter 80 value 82.354656
iter 90 value 80.237358
iter 100 value 79.883054
final value 79.883054
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.009324
final value 94.486084
converged
Fitting Repeat 2
# weights: 103
initial value 100.961574
iter 10 value 94.485984
final value 94.484406
converged
Fitting Repeat 3
# weights: 103
initial value 98.475507
final value 94.485938
converged
Fitting Repeat 4
# weights: 103
initial value 95.981824
final value 94.485897
converged
Fitting Repeat 5
# weights: 103
initial value 102.303918
iter 10 value 94.485914
iter 20 value 94.484227
iter 30 value 91.665053
iter 40 value 91.655467
iter 50 value 91.652912
iter 60 value 82.528034
iter 70 value 82.354286
iter 80 value 82.338415
iter 90 value 82.331561
final value 82.331526
converged
Fitting Repeat 1
# weights: 305
initial value 117.266682
iter 10 value 94.489464
iter 20 value 94.455475
iter 30 value 92.300750
iter 40 value 84.744629
iter 50 value 81.287406
final value 81.227555
converged
Fitting Repeat 2
# weights: 305
initial value 103.181398
iter 10 value 94.487496
iter 20 value 94.359883
iter 30 value 92.430235
iter 40 value 85.955063
final value 85.955017
converged
Fitting Repeat 3
# weights: 305
initial value 97.172883
iter 10 value 94.152174
iter 20 value 93.342867
iter 30 value 91.654865
iter 40 value 86.041331
iter 50 value 81.828508
iter 60 value 81.767124
iter 70 value 81.755377
iter 80 value 81.754821
final value 81.753832
converged
Fitting Repeat 4
# weights: 305
initial value 105.485950
iter 10 value 85.821315
iter 20 value 85.368486
iter 30 value 84.861637
iter 40 value 84.821975
iter 50 value 84.754926
iter 60 value 84.752814
iter 70 value 84.750801
iter 80 value 83.312787
iter 90 value 83.310973
iter 100 value 82.983234
final value 82.983234
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.749590
iter 10 value 94.490424
iter 20 value 94.485229
iter 20 value 94.485229
iter 20 value 94.485229
final value 94.485229
converged
Fitting Repeat 1
# weights: 507
initial value 135.707477
iter 10 value 94.492533
iter 20 value 94.456871
iter 30 value 86.149060
iter 40 value 85.960384
iter 50 value 85.959489
iter 60 value 82.363548
iter 70 value 82.360712
iter 80 value 82.323042
iter 90 value 79.851727
iter 100 value 78.193471
final value 78.193471
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.231624
iter 10 value 94.492205
iter 20 value 94.482641
iter 30 value 85.786154
iter 40 value 81.757597
iter 50 value 81.738315
iter 60 value 81.737429
iter 70 value 81.556996
iter 80 value 80.932592
iter 90 value 80.881510
iter 100 value 80.878536
final value 80.878536
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.713733
iter 10 value 93.667838
iter 20 value 93.653611
iter 30 value 93.652346
final value 93.652078
converged
Fitting Repeat 4
# weights: 507
initial value 109.133471
iter 10 value 93.361044
iter 20 value 91.268534
iter 30 value 91.074148
iter 40 value 90.907373
iter 50 value 90.905644
iter 60 value 85.003349
iter 70 value 81.831495
iter 80 value 81.830625
iter 90 value 81.762418
iter 100 value 81.762127
final value 81.762127
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 95.987565
iter 10 value 84.592356
iter 20 value 82.359129
iter 30 value 82.334907
iter 40 value 80.964761
iter 50 value 80.282169
iter 60 value 80.012117
iter 70 value 80.010609
iter 80 value 80.004689
iter 90 value 79.939474
iter 100 value 79.939100
final value 79.939100
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.374636
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 97.942628
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 102.256425
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 95.973368
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.697915
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 101.702934
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 103.551776
iter 10 value 93.729814
iter 10 value 93.729814
iter 10 value 93.729814
final value 93.729814
converged
Fitting Repeat 3
# weights: 305
initial value 96.618326
final value 94.008695
converged
Fitting Repeat 4
# weights: 305
initial value 98.980852
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 107.488614
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 105.269968
final value 94.008696
converged
Fitting Repeat 2
# weights: 507
initial value 104.273629
final value 93.962011
converged
Fitting Repeat 3
# weights: 507
initial value 108.500508
final value 94.008696
converged
Fitting Repeat 4
# weights: 507
initial value 98.579054
final value 93.288889
converged
Fitting Repeat 5
# weights: 507
initial value 114.231326
final value 93.271094
converged
Fitting Repeat 1
# weights: 103
initial value 96.823741
iter 10 value 94.057133
iter 20 value 94.030395
iter 30 value 92.537930
iter 40 value 85.924847
iter 50 value 83.668382
iter 60 value 83.048096
iter 70 value 82.423750
iter 80 value 82.215055
iter 90 value 82.093227
iter 100 value 82.059526
final value 82.059526
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.339179
iter 10 value 94.026893
iter 20 value 93.586031
iter 30 value 84.305201
iter 40 value 83.354832
iter 50 value 82.303615
iter 60 value 82.098941
iter 70 value 81.865264
final value 81.847485
converged
Fitting Repeat 3
# weights: 103
initial value 102.409726
iter 10 value 93.997442
iter 20 value 83.513632
iter 30 value 82.181132
iter 40 value 82.074668
iter 50 value 81.332831
iter 60 value 81.090294
iter 70 value 81.035316
final value 81.021488
converged
Fitting Repeat 4
# weights: 103
initial value 100.715733
iter 10 value 94.016662
iter 20 value 92.253908
iter 30 value 83.763816
iter 40 value 82.445785
iter 50 value 82.149000
iter 60 value 81.882120
iter 70 value 81.847517
final value 81.847485
converged
Fitting Repeat 5
# weights: 103
initial value 101.239375
iter 10 value 89.352032
iter 20 value 86.848820
iter 30 value 83.041987
iter 40 value 82.456868
iter 50 value 81.356468
iter 60 value 81.272322
iter 70 value 81.182906
iter 80 value 81.075857
iter 90 value 81.008607
final value 81.008600
converged
Fitting Repeat 1
# weights: 305
initial value 106.324455
iter 10 value 94.065446
iter 20 value 93.878256
iter 30 value 84.731509
iter 40 value 82.427282
iter 50 value 82.251370
iter 60 value 82.085240
iter 70 value 81.323798
iter 80 value 80.879316
iter 90 value 79.306007
iter 100 value 79.102329
final value 79.102329
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.928024
iter 10 value 94.027817
iter 20 value 93.650624
iter 30 value 86.224909
iter 40 value 83.266686
iter 50 value 80.466625
iter 60 value 79.931236
iter 70 value 79.798189
iter 80 value 79.507669
iter 90 value 79.213312
iter 100 value 78.977391
final value 78.977391
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.411990
iter 10 value 94.338926
iter 20 value 94.128073
iter 30 value 93.696979
iter 40 value 82.575132
iter 50 value 82.241529
iter 60 value 82.097943
iter 70 value 81.506351
iter 80 value 80.776827
iter 90 value 79.501541
iter 100 value 79.444961
final value 79.444961
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.812121
iter 10 value 94.071485
iter 20 value 87.547095
iter 30 value 84.602825
iter 40 value 83.475246
iter 50 value 80.704114
iter 60 value 79.201434
iter 70 value 79.025936
iter 80 value 78.493119
iter 90 value 78.012446
iter 100 value 77.505192
final value 77.505192
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.765504
iter 10 value 94.056567
iter 20 value 93.223821
iter 30 value 86.205623
iter 40 value 85.769487
iter 50 value 81.321939
iter 60 value 80.865025
iter 70 value 80.076664
iter 80 value 79.502322
iter 90 value 79.017693
iter 100 value 78.884058
final value 78.884058
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.065248
iter 10 value 93.490633
iter 20 value 88.659657
iter 30 value 87.073846
iter 40 value 86.444485
iter 50 value 83.225242
iter 60 value 81.940849
iter 70 value 81.393451
iter 80 value 81.115007
iter 90 value 80.619610
iter 100 value 79.523929
final value 79.523929
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 136.544338
iter 10 value 94.337061
iter 20 value 88.881895
iter 30 value 85.996485
iter 40 value 84.885938
iter 50 value 83.426031
iter 60 value 80.270733
iter 70 value 79.928914
iter 80 value 79.542143
iter 90 value 79.290846
iter 100 value 79.007264
final value 79.007264
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.634298
iter 10 value 93.547417
iter 20 value 85.017481
iter 30 value 82.169482
iter 40 value 79.462446
iter 50 value 78.961079
iter 60 value 78.934176
iter 70 value 78.739164
iter 80 value 78.540175
iter 90 value 78.401163
iter 100 value 78.350178
final value 78.350178
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.095535
iter 10 value 95.211480
iter 20 value 94.056677
iter 30 value 93.863010
iter 40 value 85.198807
iter 50 value 82.412540
iter 60 value 81.136226
iter 70 value 80.849252
iter 80 value 79.759797
iter 90 value 79.623736
iter 100 value 78.369745
final value 78.369745
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.047913
iter 10 value 95.666848
iter 20 value 85.776864
iter 30 value 84.035317
iter 40 value 82.768281
iter 50 value 81.440004
iter 60 value 80.161271
iter 70 value 78.887406
iter 80 value 78.394508
iter 90 value 77.886765
iter 100 value 77.406665
final value 77.406665
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.596118
final value 94.054326
converged
Fitting Repeat 2
# weights: 103
initial value 110.737072
final value 94.054414
converged
Fitting Repeat 3
# weights: 103
initial value 97.854964
iter 10 value 91.832271
iter 20 value 91.831925
final value 91.831922
converged
Fitting Repeat 4
# weights: 103
initial value 104.184719
iter 10 value 87.239483
iter 20 value 86.550493
iter 30 value 86.521179
iter 40 value 86.520300
iter 50 value 85.888488
iter 60 value 85.667790
final value 85.667778
converged
Fitting Repeat 5
# weights: 103
initial value 95.492047
final value 94.054404
converged
Fitting Repeat 1
# weights: 305
initial value 102.293992
iter 10 value 94.014119
iter 20 value 94.010238
iter 30 value 94.008803
iter 30 value 94.008803
iter 30 value 94.008803
final value 94.008803
converged
Fitting Repeat 2
# weights: 305
initial value 115.328646
iter 10 value 94.057979
iter 20 value 94.052787
iter 30 value 93.836464
iter 40 value 84.842694
iter 50 value 84.832057
iter 50 value 84.832057
iter 50 value 84.832057
final value 84.832057
converged
Fitting Repeat 3
# weights: 305
initial value 111.443955
iter 10 value 94.013576
iter 20 value 94.009261
final value 94.008820
converged
Fitting Repeat 4
# weights: 305
initial value 100.832255
iter 10 value 94.013948
iter 20 value 93.922782
iter 30 value 85.473313
iter 40 value 84.123536
iter 50 value 84.093652
final value 84.093430
converged
Fitting Repeat 5
# weights: 305
initial value 107.061028
iter 10 value 94.057026
iter 20 value 94.004326
iter 30 value 89.266096
iter 40 value 89.114442
iter 50 value 89.112604
iter 60 value 84.720260
iter 70 value 84.392961
iter 80 value 84.386974
iter 90 value 83.252175
iter 100 value 82.627088
final value 82.627088
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.760575
iter 10 value 93.945550
iter 20 value 92.706478
iter 30 value 92.275781
iter 40 value 92.271553
iter 50 value 92.270070
iter 60 value 92.102291
iter 70 value 92.096908
iter 80 value 90.394867
iter 90 value 90.362417
iter 100 value 90.362248
final value 90.362248
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.336479
iter 10 value 94.061258
iter 20 value 94.046725
iter 30 value 89.172690
iter 40 value 84.843520
final value 84.843404
converged
Fitting Repeat 3
# weights: 507
initial value 95.089140
iter 10 value 86.479641
iter 20 value 85.052518
iter 30 value 84.869962
iter 40 value 83.194528
iter 50 value 82.033517
iter 60 value 81.810347
iter 70 value 81.793254
iter 80 value 81.783667
final value 81.783665
converged
Fitting Repeat 4
# weights: 507
initial value 100.581488
iter 10 value 93.950176
iter 20 value 93.291831
iter 30 value 91.516374
iter 40 value 91.464570
iter 50 value 90.363112
iter 60 value 85.123674
iter 70 value 80.761629
iter 80 value 78.387817
iter 90 value 78.013799
iter 100 value 78.013090
final value 78.013090
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 102.557591
iter 10 value 92.657856
iter 20 value 91.839490
iter 30 value 91.783916
iter 40 value 91.586804
iter 50 value 90.884277
iter 60 value 90.710087
iter 70 value 90.699367
iter 80 value 90.696538
iter 90 value 88.016953
iter 100 value 81.762985
final value 81.762985
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.580385
final value 94.275362
converged
Fitting Repeat 2
# weights: 103
initial value 99.402782
iter 10 value 94.275363
final value 94.275362
converged
Fitting Repeat 3
# weights: 103
initial value 100.162729
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 106.960761
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.734184
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 102.407738
final value 94.477594
converged
Fitting Repeat 2
# weights: 305
initial value 112.625929
iter 10 value 94.059604
iter 20 value 92.959774
iter 30 value 90.733066
iter 40 value 90.724292
iter 50 value 89.138355
iter 60 value 88.215583
iter 70 value 88.136174
iter 80 value 88.135437
final value 88.135435
converged
Fitting Repeat 3
# weights: 305
initial value 106.001138
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 99.359053
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 101.720216
final value 93.637385
converged
Fitting Repeat 1
# weights: 507
initial value 105.205943
iter 10 value 93.660267
final value 93.558233
converged
Fitting Repeat 2
# weights: 507
initial value 105.396027
iter 10 value 84.858174
iter 20 value 84.425460
iter 30 value 84.424647
iter 40 value 84.028183
final value 84.027007
converged
Fitting Repeat 3
# weights: 507
initial value 102.003089
final value 94.275362
converged
Fitting Repeat 4
# weights: 507
initial value 100.333203
iter 10 value 92.725857
iter 20 value 88.799584
iter 30 value 88.744636
iter 40 value 88.728690
final value 88.728592
converged
Fitting Repeat 5
# weights: 507
initial value 96.388066
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 104.199703
iter 10 value 94.488587
iter 20 value 92.745944
iter 30 value 88.699687
iter 40 value 87.963573
iter 50 value 87.008781
iter 60 value 86.567001
iter 70 value 86.265752
iter 80 value 86.099009
iter 90 value 84.147541
iter 100 value 83.349045
final value 83.349045
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.138008
iter 10 value 94.416864
iter 20 value 91.378788
iter 30 value 88.575190
iter 40 value 87.967642
iter 50 value 85.948929
iter 60 value 85.686461
iter 70 value 85.607794
iter 80 value 85.593605
final value 85.592439
converged
Fitting Repeat 3
# weights: 103
initial value 99.657496
iter 10 value 94.765782
iter 20 value 94.488541
iter 30 value 88.996485
iter 40 value 85.067958
iter 50 value 84.438199
iter 60 value 84.409362
iter 70 value 84.373680
iter 80 value 84.354593
final value 84.354589
converged
Fitting Repeat 4
# weights: 103
initial value 97.163969
iter 10 value 93.826799
iter 20 value 93.627918
iter 30 value 93.585155
iter 40 value 93.522361
iter 50 value 92.205214
iter 60 value 87.601158
iter 70 value 85.044087
iter 80 value 84.041806
iter 90 value 83.945716
iter 100 value 83.889314
final value 83.889314
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.929918
iter 10 value 94.470660
iter 20 value 93.726412
iter 30 value 93.551506
iter 40 value 91.385092
iter 50 value 88.163342
iter 60 value 84.623911
iter 70 value 84.089129
iter 80 value 83.432246
iter 90 value 83.201464
iter 100 value 83.143786
final value 83.143786
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.575489
iter 10 value 91.271188
iter 20 value 87.442848
iter 30 value 86.945269
iter 40 value 86.794962
iter 50 value 86.410449
iter 60 value 86.015333
iter 70 value 83.910071
iter 80 value 83.894082
iter 90 value 83.836647
iter 100 value 83.570780
final value 83.570780
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 126.535510
iter 10 value 94.356928
iter 20 value 87.732317
iter 30 value 86.883340
iter 40 value 84.846186
iter 50 value 83.744619
iter 60 value 83.136269
iter 70 value 82.814187
iter 80 value 82.118048
iter 90 value 81.758384
iter 100 value 81.675080
final value 81.675080
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 114.006455
iter 10 value 94.503661
iter 20 value 91.881962
iter 30 value 86.862930
iter 40 value 85.921423
iter 50 value 85.312339
iter 60 value 84.936138
iter 70 value 83.786389
iter 80 value 83.165083
iter 90 value 82.092427
iter 100 value 81.738249
final value 81.738249
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.921474
iter 10 value 94.460312
iter 20 value 93.672527
iter 30 value 92.249937
iter 40 value 87.646302
iter 50 value 83.645531
iter 60 value 83.209823
iter 70 value 82.244083
iter 80 value 81.613788
iter 90 value 81.437122
iter 100 value 81.228183
final value 81.228183
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.410983
iter 10 value 94.558278
iter 20 value 90.655073
iter 30 value 89.096605
iter 40 value 86.572091
iter 50 value 85.353811
iter 60 value 82.950048
iter 70 value 82.461968
iter 80 value 81.899987
iter 90 value 81.640296
iter 100 value 81.471982
final value 81.471982
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.788091
iter 10 value 94.015270
iter 20 value 91.687747
iter 30 value 87.992409
iter 40 value 84.846724
iter 50 value 82.792194
iter 60 value 81.957404
iter 70 value 81.724627
iter 80 value 81.589518
iter 90 value 81.312559
iter 100 value 81.184761
final value 81.184761
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 117.518173
iter 10 value 91.888103
iter 20 value 87.911517
iter 30 value 85.109267
iter 40 value 84.354133
iter 50 value 83.271778
iter 60 value 82.423487
iter 70 value 81.857872
iter 80 value 81.560399
iter 90 value 81.313544
iter 100 value 81.179818
final value 81.179818
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 120.118265
iter 10 value 95.182512
iter 20 value 91.868292
iter 30 value 88.205897
iter 40 value 85.864570
iter 50 value 83.542760
iter 60 value 83.268433
iter 70 value 82.709076
iter 80 value 81.576589
iter 90 value 81.139837
iter 100 value 80.911304
final value 80.911304
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.793646
iter 10 value 94.752626
iter 20 value 87.467153
iter 30 value 85.249386
iter 40 value 84.573272
iter 50 value 84.390304
iter 60 value 84.059629
iter 70 value 83.300469
iter 80 value 82.477393
iter 90 value 81.789469
iter 100 value 81.666315
final value 81.666315
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.214104
iter 10 value 94.538970
iter 20 value 90.194637
iter 30 value 88.477008
iter 40 value 85.692674
iter 50 value 84.957873
iter 60 value 84.599648
iter 70 value 83.623169
iter 80 value 83.090472
iter 90 value 82.839932
iter 100 value 82.784143
final value 82.784143
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.011711
final value 94.485882
converged
Fitting Repeat 2
# weights: 103
initial value 98.261405
final value 94.485937
converged
Fitting Repeat 3
# weights: 103
initial value 95.783958
final value 94.485987
converged
Fitting Repeat 4
# weights: 103
initial value 95.113550
final value 94.485828
converged
Fitting Repeat 5
# weights: 103
initial value 99.744251
final value 94.485727
converged
Fitting Repeat 1
# weights: 305
initial value 98.985509
iter 10 value 94.287484
iter 20 value 93.642414
iter 30 value 93.392007
iter 40 value 86.674574
iter 50 value 85.226589
iter 60 value 84.591614
iter 70 value 84.508114
iter 80 value 84.500711
final value 84.500597
converged
Fitting Repeat 2
# weights: 305
initial value 97.951458
iter 10 value 94.280404
iter 20 value 94.087348
final value 94.083851
converged
Fitting Repeat 3
# weights: 305
initial value 97.304493
iter 10 value 94.489083
iter 20 value 94.484502
iter 30 value 93.917581
iter 40 value 93.559094
final value 93.558973
converged
Fitting Repeat 4
# weights: 305
initial value 104.470243
iter 10 value 94.488542
iter 20 value 92.404934
iter 30 value 89.652406
iter 40 value 89.625154
iter 50 value 89.609297
final value 89.606282
converged
Fitting Repeat 5
# weights: 305
initial value 118.283351
iter 10 value 94.488419
iter 20 value 94.484231
final value 94.484212
converged
Fitting Repeat 1
# weights: 507
initial value 109.445764
iter 10 value 93.566745
iter 20 value 93.487271
iter 30 value 93.410100
final value 93.410085
converged
Fitting Repeat 2
# weights: 507
initial value 105.528041
iter 10 value 94.283918
iter 20 value 93.453576
iter 30 value 84.557973
iter 40 value 83.464858
iter 50 value 83.456389
iter 60 value 83.452957
iter 70 value 83.451659
iter 80 value 83.446536
iter 90 value 83.429374
iter 100 value 83.306837
final value 83.306837
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.654405
iter 10 value 94.491794
iter 20 value 92.359959
iter 30 value 85.262492
iter 40 value 84.662688
iter 50 value 83.559674
iter 60 value 83.344908
iter 70 value 82.771346
iter 80 value 81.689534
iter 90 value 80.202160
iter 100 value 79.832074
final value 79.832074
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.502951
iter 10 value 94.283847
iter 20 value 94.279107
iter 30 value 93.696543
iter 40 value 93.531973
iter 50 value 93.312914
final value 93.312911
converged
Fitting Repeat 5
# weights: 507
initial value 102.999508
iter 10 value 94.493038
iter 20 value 90.643586
iter 30 value 86.014095
iter 40 value 85.998396
iter 50 value 85.971033
iter 60 value 85.958601
iter 70 value 85.956034
iter 80 value 85.939971
final value 85.939862
converged
Fitting Repeat 1
# weights: 103
initial value 97.468890
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 98.626491
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.503876
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.626152
final value 94.354396
converged
Fitting Repeat 5
# weights: 103
initial value 125.156509
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 110.197343
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 98.332993
iter 10 value 88.195545
iter 20 value 86.191992
iter 30 value 85.644478
final value 85.611688
converged
Fitting Repeat 3
# weights: 305
initial value 96.375213
final value 94.354395
converged
Fitting Repeat 4
# weights: 305
initial value 117.118104
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 101.526848
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 101.765899
final value 94.484210
converged
Fitting Repeat 2
# weights: 507
initial value 114.299452
final value 94.484212
converged
Fitting Repeat 3
# weights: 507
initial value 95.723783
iter 10 value 93.584739
iter 20 value 93.454643
iter 30 value 93.413611
final value 93.413550
converged
Fitting Repeat 4
# weights: 507
initial value 108.928686
iter 10 value 94.206208
final value 94.206005
converged
Fitting Repeat 5
# weights: 507
initial value 101.133977
final value 94.354396
converged
Fitting Repeat 1
# weights: 103
initial value 98.381208
iter 10 value 94.455448
iter 20 value 89.612273
iter 30 value 88.927446
iter 40 value 88.183403
iter 50 value 86.954228
iter 60 value 86.703432
iter 70 value 86.681461
final value 86.681457
converged
Fitting Repeat 2
# weights: 103
initial value 99.331892
iter 10 value 94.456435
iter 20 value 94.153021
iter 30 value 94.143353
iter 40 value 94.142239
iter 50 value 94.141496
iter 60 value 88.353874
iter 70 value 87.441061
iter 80 value 86.430817
iter 90 value 85.908634
iter 100 value 85.861987
final value 85.861987
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 107.461464
iter 10 value 94.195022
iter 20 value 89.093385
iter 30 value 87.306077
iter 40 value 86.251387
iter 50 value 85.739001
iter 60 value 85.639248
iter 70 value 85.098596
iter 80 value 85.011040
final value 85.010973
converged
Fitting Repeat 4
# weights: 103
initial value 99.153665
iter 10 value 94.482535
iter 20 value 93.336895
iter 30 value 89.477532
iter 40 value 88.331984
iter 50 value 86.855625
iter 60 value 85.593564
iter 70 value 84.719420
iter 80 value 83.902771
iter 90 value 83.800209
iter 100 value 83.786379
final value 83.786379
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 100.181270
iter 10 value 94.466213
iter 20 value 90.907715
iter 30 value 89.320255
iter 40 value 89.175411
iter 50 value 89.119380
iter 60 value 89.075010
iter 70 value 86.245228
iter 80 value 85.286185
iter 90 value 85.012136
iter 100 value 84.398046
final value 84.398046
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 105.717926
iter 10 value 93.298192
iter 20 value 87.535073
iter 30 value 85.798778
iter 40 value 85.051346
iter 50 value 83.757655
iter 60 value 83.323085
iter 70 value 83.141615
iter 80 value 82.913739
iter 90 value 82.778039
iter 100 value 82.717875
final value 82.717875
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.838749
iter 10 value 91.984093
iter 20 value 86.572734
iter 30 value 84.257859
iter 40 value 83.644935
iter 50 value 83.442850
iter 60 value 83.252339
iter 70 value 83.181820
iter 80 value 82.857474
iter 90 value 82.551277
iter 100 value 82.492943
final value 82.492943
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 115.101559
iter 10 value 94.422181
iter 20 value 90.276769
iter 30 value 88.317829
iter 40 value 86.205629
iter 50 value 84.920673
iter 60 value 84.450593
iter 70 value 84.153513
iter 80 value 84.105011
iter 90 value 84.092770
iter 100 value 84.074344
final value 84.074344
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.129653
iter 10 value 94.453039
iter 20 value 90.150906
iter 30 value 86.698710
iter 40 value 85.766232
iter 50 value 84.989242
iter 60 value 83.676674
iter 70 value 83.179641
iter 80 value 82.885171
iter 90 value 82.803834
iter 100 value 82.789240
final value 82.789240
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.318201
iter 10 value 94.783398
iter 20 value 94.454402
iter 30 value 93.925397
iter 40 value 93.319224
iter 50 value 92.883936
iter 60 value 90.548131
iter 70 value 89.551598
iter 80 value 87.501660
iter 90 value 84.059766
iter 100 value 83.595578
final value 83.595578
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.945437
iter 10 value 94.385019
iter 20 value 88.655667
iter 30 value 86.509016
iter 40 value 84.744347
iter 50 value 83.841963
iter 60 value 83.068230
iter 70 value 82.885823
iter 80 value 82.824874
iter 90 value 82.671110
iter 100 value 82.526874
final value 82.526874
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.779098
iter 10 value 95.012550
iter 20 value 94.499374
iter 30 value 94.254366
iter 40 value 87.584465
iter 50 value 86.546878
iter 60 value 86.151462
iter 70 value 85.788951
iter 80 value 85.120602
iter 90 value 83.795897
iter 100 value 83.047585
final value 83.047585
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.762603
iter 10 value 94.534336
iter 20 value 92.420265
iter 30 value 88.342614
iter 40 value 86.741440
iter 50 value 86.424987
iter 60 value 85.220316
iter 70 value 83.788346
iter 80 value 83.663172
iter 90 value 83.472337
iter 100 value 83.091223
final value 83.091223
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.289113
iter 10 value 91.705869
iter 20 value 87.251867
iter 30 value 86.831776
iter 40 value 86.201594
iter 50 value 85.797348
iter 60 value 85.326016
iter 70 value 84.988598
iter 80 value 84.955932
iter 90 value 83.910002
iter 100 value 83.513140
final value 83.513140
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 113.277041
iter 10 value 94.480091
iter 20 value 91.859266
iter 30 value 88.790104
iter 40 value 85.425971
iter 50 value 84.349479
iter 60 value 83.438408
iter 70 value 83.294802
iter 80 value 83.096172
iter 90 value 82.785233
iter 100 value 82.594640
final value 82.594640
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.143466
iter 10 value 94.485998
iter 20 value 94.484196
iter 30 value 94.144876
final value 94.144862
converged
Fitting Repeat 2
# weights: 103
initial value 98.066938
final value 94.485993
converged
Fitting Repeat 3
# weights: 103
initial value 95.889786
final value 94.485800
converged
Fitting Repeat 4
# weights: 103
initial value 95.496174
final value 94.485911
converged
Fitting Repeat 5
# weights: 103
initial value 100.989463
final value 94.485809
converged
Fitting Repeat 1
# weights: 305
initial value 119.744544
iter 10 value 94.489358
iter 20 value 94.310829
iter 30 value 93.512578
iter 40 value 93.485229
iter 50 value 93.483193
final value 93.483187
converged
Fitting Repeat 2
# weights: 305
initial value 95.600486
iter 10 value 94.489488
iter 20 value 94.484507
iter 30 value 90.275101
iter 40 value 88.520161
iter 50 value 86.795482
iter 60 value 86.637080
iter 70 value 86.607340
iter 80 value 86.466291
iter 90 value 83.102269
iter 100 value 82.702820
final value 82.702820
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 97.896148
iter 10 value 94.359245
iter 20 value 94.208689
iter 30 value 88.142602
final value 88.090129
converged
Fitting Repeat 4
# weights: 305
initial value 106.062421
iter 10 value 94.331305
iter 20 value 93.911608
iter 30 value 87.891689
iter 40 value 87.860703
iter 50 value 87.859990
iter 60 value 87.858747
final value 87.858740
converged
Fitting Repeat 5
# weights: 305
initial value 99.780566
iter 10 value 94.484440
iter 20 value 92.921015
iter 30 value 92.896234
iter 40 value 92.895381
final value 92.895342
converged
Fitting Repeat 1
# weights: 507
initial value 99.911503
iter 10 value 94.331549
iter 20 value 94.324706
final value 94.323323
converged
Fitting Repeat 2
# weights: 507
initial value 109.003036
iter 10 value 94.492257
iter 20 value 94.358099
iter 30 value 87.860517
iter 40 value 87.574663
iter 50 value 85.657016
iter 60 value 84.544131
iter 70 value 82.333515
iter 80 value 82.089572
iter 90 value 82.049382
iter 100 value 82.033331
final value 82.033331
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.680023
iter 10 value 94.219063
iter 20 value 91.634246
iter 30 value 87.599302
iter 40 value 86.429322
iter 50 value 85.802358
iter 60 value 85.802139
iter 70 value 85.801258
iter 80 value 85.799900
final value 85.799449
converged
Fitting Repeat 4
# weights: 507
initial value 97.928136
iter 10 value 94.221325
iter 20 value 94.214058
iter 30 value 93.723707
iter 40 value 93.381182
final value 93.281460
converged
Fitting Repeat 5
# weights: 507
initial value 116.127007
iter 10 value 94.492241
iter 20 value 92.546129
iter 30 value 88.626435
iter 40 value 88.193654
iter 50 value 88.186531
iter 60 value 88.165345
iter 70 value 88.163265
iter 80 value 88.161447
iter 90 value 88.136895
iter 100 value 88.135370
final value 88.135370
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 123.067415
iter 10 value 118.020515
iter 20 value 114.852512
iter 30 value 109.717073
iter 40 value 107.095349
iter 50 value 106.888848
iter 60 value 103.524953
iter 70 value 103.145911
iter 80 value 102.889059
iter 90 value 102.382084
iter 100 value 101.922955
final value 101.922955
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 123.604107
iter 10 value 117.574546
iter 20 value 108.284772
iter 30 value 106.815933
iter 40 value 105.808168
iter 50 value 105.562066
iter 60 value 105.524234
iter 70 value 105.477500
iter 80 value 105.332891
iter 90 value 105.282990
iter 100 value 104.351066
final value 104.351066
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 135.453277
iter 10 value 117.570370
iter 20 value 114.642661
iter 30 value 105.386782
iter 40 value 102.348299
iter 50 value 101.568756
iter 60 value 101.358518
iter 70 value 100.972830
iter 80 value 100.882381
iter 90 value 100.797949
iter 100 value 100.623999
final value 100.623999
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 131.136635
iter 10 value 118.429495
iter 20 value 113.026740
iter 30 value 107.518160
iter 40 value 106.219855
iter 50 value 103.609568
iter 60 value 102.503551
iter 70 value 101.968326
iter 80 value 101.723277
iter 90 value 101.629337
iter 100 value 101.615125
final value 101.615125
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 125.281597
iter 10 value 117.899698
iter 20 value 111.851389
iter 30 value 108.906746
iter 40 value 108.381208
iter 50 value 106.942765
iter 60 value 106.235699
iter 70 value 103.101265
iter 80 value 102.617793
iter 90 value 101.633458
iter 100 value 101.220192
final value 101.220192
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Fri Nov 28 02:20:25 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
44.711 1.834 81.211
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 36.870 | 1.816 | 40.911 | |
| FreqInteractors | 0.526 | 0.052 | 0.583 | |
| calculateAAC | 0.033 | 0.005 | 0.038 | |
| calculateAutocor | 0.644 | 0.052 | 0.702 | |
| calculateCTDC | 0.105 | 0.010 | 0.116 | |
| calculateCTDD | 0.551 | 0.024 | 0.579 | |
| calculateCTDT | 0.193 | 0.027 | 0.229 | |
| calculateCTriad | 0.382 | 0.024 | 0.409 | |
| calculateDC | 0.100 | 0.012 | 0.113 | |
| calculateF | 0.400 | 0.018 | 0.424 | |
| calculateKSAAP | 0.105 | 0.009 | 0.114 | |
| calculateQD_Sm | 1.723 | 0.129 | 1.873 | |
| calculateTC | 1.716 | 0.158 | 1.894 | |
| calculateTC_Sm | 0.303 | 0.020 | 0.329 | |
| corr_plot | 35.517 | 1.756 | 37.681 | |
| enrichfindP | 0.529 | 0.081 | 9.469 | |
| enrichfind_hp | 0.045 | 0.010 | 1.145 | |
| enrichplot | 0.549 | 0.016 | 0.571 | |
| filter_missing_values | 0.002 | 0.000 | 0.001 | |
| getFASTA | 0.074 | 0.013 | 4.777 | |
| getHPI | 0.001 | 0.000 | 0.001 | |
| get_negativePPI | 0.002 | 0.000 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.001 | 0.000 | 0.002 | |
| plotPPI | 0.123 | 0.005 | 0.130 | |
| pred_ensembel | 13.979 | 0.465 | 12.536 | |
| var_imp | 35.089 | 1.792 | 37.390 | |