Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-06-13 12:08 -0400 (Fri, 13 Jun 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.2 LTS) | x86_64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4797 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.5.0 (2025-04-11 ucrt) -- "How About a Twenty-Six" | 4538 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.0 Patched (2025-04-21 r88169) -- "How About a Twenty-Six" | 4571 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.0 Patched (2025-04-21 r88169) -- "How About a Twenty-Six" | 4515 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4483 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 984/2309 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-06-12 21:19:22 -0400 (Thu, 12 Jun 2025) |
EndedAt: 2025-06-12 21:25:29 -0400 (Thu, 12 Jun 2025) |
EllapsedTime: 366.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’ * using R version 4.5.0 Patched (2025-04-21 r88169) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.15.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 33.989 1.609 35.872 FSmethod 33.328 1.649 35.213 corr_plot 33.010 1.521 34.736 pred_ensembel 13.298 0.429 11.868 enrichfindP 0.459 0.057 7.822 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.0 Patched (2025-04-21 r88169) -- "How About a Twenty-Six" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.420095 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 104.351298 iter 10 value 94.014455 iter 20 value 94.005860 final value 94.005849 converged Fitting Repeat 3 # weights: 103 initial value 97.450374 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 101.813538 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.057564 iter 10 value 93.582430 final value 93.582418 converged Fitting Repeat 1 # weights: 305 initial value 102.515013 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.884351 iter 10 value 91.315051 iter 20 value 84.926178 iter 30 value 83.843407 iter 40 value 83.730358 final value 83.729943 converged Fitting Repeat 3 # weights: 305 initial value 95.798696 final value 93.582418 converged Fitting Repeat 4 # weights: 305 initial value 101.436784 final value 93.582418 converged Fitting Repeat 5 # weights: 305 initial value 117.646174 iter 10 value 94.011429 iter 10 value 94.011429 iter 10 value 94.011429 final value 94.011429 converged Fitting Repeat 1 # weights: 507 initial value 99.870130 final value 93.582418 converged Fitting Repeat 2 # weights: 507 initial value 125.781863 iter 10 value 93.874413 iter 20 value 91.950239 iter 30 value 90.813245 iter 40 value 90.801712 final value 90.515286 converged Fitting Repeat 3 # weights: 507 initial value 96.888340 final value 93.582418 converged Fitting Repeat 4 # weights: 507 initial value 94.844663 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 112.727646 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 98.058982 iter 10 value 94.056969 iter 20 value 93.819526 iter 30 value 89.497193 iter 40 value 85.359674 iter 50 value 84.675113 iter 60 value 84.090168 iter 70 value 83.388064 iter 80 value 82.692548 iter 90 value 82.567526 final value 82.563309 converged Fitting Repeat 2 # weights: 103 initial value 109.302111 iter 10 value 94.057505 iter 20 value 93.793137 iter 30 value 86.216599 iter 40 value 85.204644 iter 50 value 84.992930 iter 60 value 84.877803 iter 70 value 84.797027 final value 84.796536 converged Fitting Repeat 3 # weights: 103 initial value 98.144874 iter 10 value 93.554279 iter 20 value 93.153213 iter 30 value 88.743171 iter 40 value 88.424814 iter 50 value 85.683925 iter 60 value 84.905704 iter 70 value 84.808947 iter 80 value 84.798884 iter 90 value 84.796545 final value 84.796536 converged Fitting Repeat 4 # weights: 103 initial value 100.665226 iter 10 value 94.056916 iter 20 value 93.792614 iter 30 value 93.011733 iter 40 value 88.006964 iter 50 value 87.831044 iter 60 value 86.863315 iter 70 value 85.359717 iter 80 value 85.316850 iter 90 value 85.290859 iter 100 value 85.280478 final value 85.280478 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 104.333809 iter 10 value 94.001928 iter 20 value 92.194834 iter 30 value 90.695199 iter 40 value 90.101660 iter 50 value 87.036474 iter 60 value 86.228433 iter 70 value 83.231992 iter 80 value 82.897247 iter 90 value 82.734352 final value 82.733817 converged Fitting Repeat 1 # weights: 305 initial value 100.225932 iter 10 value 93.847381 iter 20 value 90.339529 iter 30 value 88.178879 iter 40 value 87.906696 iter 50 value 87.605966 iter 60 value 85.537637 iter 70 value 84.951552 iter 80 value 84.463131 iter 90 value 84.021675 iter 100 value 83.223675 final value 83.223675 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.373230 iter 10 value 94.105594 iter 20 value 93.268201 iter 30 value 86.533344 iter 40 value 83.154257 iter 50 value 81.968264 iter 60 value 81.623041 iter 70 value 81.580949 iter 80 value 81.483287 iter 90 value 81.205855 iter 100 value 81.107580 final value 81.107580 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.871978 iter 10 value 93.966716 iter 20 value 89.033535 iter 30 value 87.078360 iter 40 value 85.903642 iter 50 value 83.214696 iter 60 value 81.896693 iter 70 value 81.383682 iter 80 value 81.280530 iter 90 value 81.186906 iter 100 value 81.025228 final value 81.025228 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.717801 iter 10 value 94.106291 iter 20 value 89.608737 iter 30 value 88.277223 iter 40 value 86.285418 iter 50 value 84.795858 iter 60 value 84.738168 iter 70 value 84.283520 iter 80 value 82.553199 iter 90 value 81.948912 iter 100 value 81.098323 final value 81.098323 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.872679 iter 10 value 95.231329 iter 20 value 86.964365 iter 30 value 85.042861 iter 40 value 83.180748 iter 50 value 82.591178 iter 60 value 82.199745 iter 70 value 82.056812 iter 80 value 81.951729 iter 90 value 81.936296 iter 100 value 81.818627 final value 81.818627 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.047610 iter 10 value 96.064410 iter 20 value 93.608798 iter 30 value 86.168809 iter 40 value 84.827508 iter 50 value 84.736082 iter 60 value 84.562455 iter 70 value 83.744208 iter 80 value 83.340352 iter 90 value 82.265733 iter 100 value 82.018843 final value 82.018843 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 128.794179 iter 10 value 92.168920 iter 20 value 86.008862 iter 30 value 84.799040 iter 40 value 84.657998 iter 50 value 82.915042 iter 60 value 82.225778 iter 70 value 81.970354 iter 80 value 81.534594 iter 90 value 81.468399 iter 100 value 81.275430 final value 81.275430 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.487914 iter 10 value 93.989940 iter 20 value 88.825954 iter 30 value 87.743094 iter 40 value 84.758779 iter 50 value 82.252396 iter 60 value 81.381913 iter 70 value 81.026853 iter 80 value 80.789320 iter 90 value 80.661296 iter 100 value 80.625896 final value 80.625896 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.708813 iter 10 value 92.925931 iter 20 value 84.966472 iter 30 value 84.839608 iter 40 value 84.148572 iter 50 value 83.534898 iter 60 value 83.068655 iter 70 value 82.824062 iter 80 value 82.687729 iter 90 value 82.480674 iter 100 value 81.836891 final value 81.836891 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 135.801307 iter 10 value 94.311253 iter 20 value 92.510594 iter 30 value 91.210172 iter 40 value 85.338163 iter 50 value 84.505622 iter 60 value 83.971526 iter 70 value 83.687847 iter 80 value 83.236594 iter 90 value 82.432328 iter 100 value 82.113604 final value 82.113604 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.311202 final value 94.054525 converged Fitting Repeat 2 # weights: 103 initial value 96.017845 final value 94.054567 converged Fitting Repeat 3 # weights: 103 initial value 94.494231 final value 94.054526 converged Fitting Repeat 4 # weights: 103 initial value 102.095056 final value 94.054548 converged Fitting Repeat 5 # weights: 103 initial value 95.268284 final value 94.054316 converged Fitting Repeat 1 # weights: 305 initial value 94.888691 iter 10 value 94.057683 iter 20 value 94.005731 iter 30 value 88.234202 iter 40 value 86.969290 iter 50 value 84.028936 iter 60 value 83.986306 iter 70 value 83.977208 iter 80 value 83.976728 iter 90 value 83.962983 iter 100 value 83.962758 final value 83.962758 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.921174 iter 10 value 94.058583 iter 20 value 94.004120 iter 30 value 91.600339 iter 40 value 89.821992 iter 50 value 86.639127 iter 60 value 85.476652 iter 70 value 84.807915 iter 80 value 84.577312 iter 90 value 84.426412 final value 84.425972 converged Fitting Repeat 3 # weights: 305 initial value 101.010699 iter 10 value 94.057796 iter 20 value 94.051577 iter 30 value 93.351538 iter 40 value 84.292964 iter 50 value 84.063596 iter 60 value 84.059895 iter 70 value 84.057264 iter 80 value 84.038350 iter 90 value 83.864034 iter 100 value 82.044323 final value 82.044323 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.836823 iter 10 value 94.057450 iter 20 value 93.384976 iter 30 value 88.464112 iter 40 value 86.821137 iter 50 value 85.628776 iter 60 value 85.240399 iter 60 value 85.240398 final value 85.240398 converged Fitting Repeat 5 # weights: 305 initial value 108.545736 iter 10 value 94.058176 iter 20 value 94.050260 iter 30 value 93.716880 iter 40 value 93.712597 iter 50 value 93.076032 iter 60 value 90.178962 iter 70 value 85.604890 iter 80 value 81.603447 iter 90 value 81.004835 iter 100 value 81.000567 final value 81.000567 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 146.811706 iter 10 value 94.018770 iter 20 value 94.014002 iter 30 value 93.858586 iter 40 value 93.482585 iter 50 value 93.338099 iter 60 value 93.271714 final value 93.270079 converged Fitting Repeat 2 # weights: 507 initial value 95.752033 iter 10 value 93.093969 iter 20 value 92.851000 iter 30 value 92.848156 iter 40 value 92.823507 iter 50 value 92.528965 iter 60 value 91.215560 iter 70 value 89.079817 iter 80 value 86.808676 iter 90 value 86.772668 final value 86.772600 converged Fitting Repeat 3 # weights: 507 initial value 97.718730 iter 10 value 93.590517 iter 20 value 93.519186 final value 93.116649 converged Fitting Repeat 4 # weights: 507 initial value 106.087489 iter 10 value 91.816278 iter 20 value 91.041341 iter 30 value 90.862807 iter 40 value 90.816804 iter 50 value 90.255253 iter 60 value 89.940913 iter 70 value 89.800589 iter 80 value 89.247895 iter 90 value 85.538916 iter 100 value 81.843962 final value 81.843962 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.967548 iter 10 value 93.795704 iter 20 value 93.792973 iter 30 value 93.128601 iter 40 value 93.073346 iter 50 value 93.032265 final value 92.996900 converged Fitting Repeat 1 # weights: 103 initial value 97.825559 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 106.678131 final value 94.484210 converged Fitting Repeat 3 # weights: 103 initial value 100.909382 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 108.557962 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.226180 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.126948 iter 10 value 92.728764 iter 20 value 92.725588 iter 30 value 92.470857 iter 40 value 92.470268 final value 92.470267 converged Fitting Repeat 2 # weights: 305 initial value 97.331580 iter 10 value 92.141982 iter 20 value 91.267683 iter 30 value 83.612623 iter 40 value 82.433733 iter 50 value 82.344287 final value 82.343399 converged Fitting Repeat 3 # weights: 305 initial value 104.651416 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.866035 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 102.578035 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 117.422067 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 105.245550 iter 10 value 90.835769 iter 20 value 89.248864 iter 30 value 89.228531 final value 89.228363 converged Fitting Repeat 3 # weights: 507 initial value 95.361002 final value 94.325945 converged Fitting Repeat 4 # weights: 507 initial value 106.416461 iter 10 value 92.631702 iter 20 value 92.630982 iter 30 value 92.550731 final value 92.550725 converged Fitting Repeat 5 # weights: 507 initial value 95.394723 iter 10 value 87.783382 iter 20 value 87.220744 final value 87.220513 converged Fitting Repeat 1 # weights: 103 initial value 103.797161 iter 10 value 94.487329 iter 20 value 91.208620 iter 30 value 82.797487 iter 40 value 82.308012 iter 50 value 82.011548 iter 60 value 81.791145 iter 70 value 81.339611 iter 80 value 81.153098 iter 90 value 80.532534 iter 100 value 80.506103 final value 80.506103 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.865947 iter 10 value 88.758885 iter 20 value 86.969579 iter 30 value 85.038600 iter 40 value 84.616745 iter 50 value 84.612714 final value 84.612712 converged Fitting Repeat 3 # weights: 103 initial value 100.490129 iter 10 value 94.917964 iter 20 value 94.417100 iter 30 value 84.581543 iter 40 value 83.562598 iter 50 value 83.262328 iter 60 value 82.080706 iter 70 value 81.714346 iter 80 value 81.609938 iter 90 value 81.200615 iter 100 value 80.712231 final value 80.712231 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.944446 iter 10 value 94.481165 iter 20 value 88.212661 iter 30 value 86.331531 iter 40 value 85.956436 iter 50 value 85.548779 iter 60 value 85.109272 iter 70 value 85.028379 iter 80 value 80.131855 iter 90 value 79.720600 iter 100 value 79.198525 final value 79.198525 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.085994 iter 10 value 94.488691 iter 20 value 91.787809 iter 30 value 90.605822 iter 40 value 87.468911 iter 50 value 82.260003 iter 60 value 81.503069 iter 70 value 81.203288 iter 80 value 80.848644 iter 90 value 80.542687 final value 80.504829 converged Fitting Repeat 1 # weights: 305 initial value 102.749103 iter 10 value 94.399016 iter 20 value 91.935658 iter 30 value 87.651871 iter 40 value 86.159276 iter 50 value 85.863087 iter 60 value 85.687260 iter 70 value 83.434991 iter 80 value 80.284365 iter 90 value 79.620510 iter 100 value 78.871222 final value 78.871222 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.425354 iter 10 value 94.339533 iter 20 value 82.123154 iter 30 value 80.264376 iter 40 value 79.598882 iter 50 value 79.357444 iter 60 value 79.041644 iter 70 value 78.835143 iter 80 value 78.090747 iter 90 value 77.687946 iter 100 value 77.615602 final value 77.615602 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.047535 iter 10 value 93.919306 iter 20 value 87.218826 iter 30 value 86.328216 iter 40 value 86.112697 iter 50 value 85.976669 iter 60 value 84.573888 iter 70 value 82.811846 iter 80 value 82.230081 iter 90 value 81.444168 iter 100 value 79.225690 final value 79.225690 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.805840 iter 10 value 94.239119 iter 20 value 86.479668 iter 30 value 84.362982 iter 40 value 81.537904 iter 50 value 80.410151 iter 60 value 78.608577 iter 70 value 78.061460 iter 80 value 77.642904 iter 90 value 77.232782 iter 100 value 77.202002 final value 77.202002 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.395020 iter 10 value 94.495043 iter 20 value 88.437613 iter 30 value 85.332771 iter 40 value 82.368411 iter 50 value 81.880981 iter 60 value 80.856352 iter 70 value 79.640813 iter 80 value 78.489476 iter 90 value 78.148385 iter 100 value 78.000275 final value 78.000275 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.837278 iter 10 value 94.552910 iter 20 value 92.008631 iter 30 value 91.631120 iter 40 value 88.585746 iter 50 value 84.726107 iter 60 value 81.856215 iter 70 value 80.966681 iter 80 value 80.469717 iter 90 value 80.055958 iter 100 value 79.454309 final value 79.454309 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.142043 iter 10 value 93.707580 iter 20 value 92.385278 iter 30 value 87.248641 iter 40 value 84.139283 iter 50 value 82.914120 iter 60 value 81.300115 iter 70 value 80.668406 iter 80 value 80.539124 iter 90 value 79.583964 iter 100 value 78.347041 final value 78.347041 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.174642 iter 10 value 94.471609 iter 20 value 91.095679 iter 30 value 85.456451 iter 40 value 83.063452 iter 50 value 82.029659 iter 60 value 81.521563 iter 70 value 80.474420 iter 80 value 80.095306 iter 90 value 79.922453 iter 100 value 79.532601 final value 79.532601 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 131.981185 iter 10 value 94.559758 iter 20 value 92.684164 iter 30 value 88.780858 iter 40 value 83.176095 iter 50 value 81.282201 iter 60 value 79.928396 iter 70 value 79.544695 iter 80 value 78.849153 iter 90 value 78.619658 iter 100 value 78.541402 final value 78.541402 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 129.841181 iter 10 value 94.714359 iter 20 value 93.612134 iter 30 value 87.788856 iter 40 value 86.277830 iter 50 value 85.472984 iter 60 value 83.706821 iter 70 value 80.944841 iter 80 value 79.923497 iter 90 value 78.214661 iter 100 value 77.805765 final value 77.805765 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.498450 iter 10 value 94.485810 iter 20 value 91.619308 iter 30 value 91.314882 final value 91.314869 converged Fitting Repeat 2 # weights: 103 initial value 98.411119 iter 10 value 91.891078 iter 20 value 91.889808 iter 30 value 86.353759 iter 40 value 86.212080 iter 50 value 86.204006 iter 60 value 85.373842 iter 70 value 84.962896 final value 84.907686 converged Fitting Repeat 3 # weights: 103 initial value 101.606938 final value 94.485900 converged Fitting Repeat 4 # weights: 103 initial value 99.009093 final value 94.485928 converged Fitting Repeat 5 # weights: 103 initial value 95.224231 final value 94.486021 converged Fitting Repeat 1 # weights: 305 initial value 98.288680 iter 10 value 94.488634 iter 20 value 94.061620 iter 30 value 86.765077 iter 40 value 86.764576 iter 50 value 86.585022 final value 86.585021 converged Fitting Repeat 2 # weights: 305 initial value 96.243968 iter 10 value 94.488506 iter 20 value 94.327403 iter 30 value 85.702112 final value 85.509574 converged Fitting Repeat 3 # weights: 305 initial value 97.038994 iter 10 value 94.488786 iter 20 value 93.947798 iter 30 value 87.710062 iter 40 value 87.702678 iter 50 value 87.089281 iter 60 value 85.751263 iter 70 value 85.748520 iter 80 value 85.713317 iter 90 value 85.707583 iter 100 value 85.337338 final value 85.337338 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 121.382808 iter 10 value 87.100611 iter 20 value 86.119458 iter 30 value 84.684602 iter 40 value 84.683461 iter 50 value 84.652069 iter 60 value 84.567870 iter 70 value 84.567581 iter 80 value 83.741384 iter 90 value 83.640370 iter 100 value 83.068098 final value 83.068098 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.430061 iter 10 value 94.488051 iter 20 value 94.361554 iter 30 value 91.436385 iter 40 value 89.790506 iter 50 value 89.722460 final value 89.721297 converged Fitting Repeat 1 # weights: 507 initial value 102.851504 iter 10 value 88.581131 iter 20 value 85.446397 final value 85.438844 converged Fitting Repeat 2 # weights: 507 initial value 116.237311 iter 10 value 94.096729 iter 20 value 81.181708 iter 30 value 80.458557 iter 40 value 80.414092 final value 80.408117 converged Fitting Repeat 3 # weights: 507 initial value 111.120179 iter 10 value 94.491897 iter 20 value 93.445887 iter 30 value 80.176778 iter 40 value 78.510596 iter 50 value 78.333959 iter 60 value 78.316871 iter 70 value 78.310293 iter 80 value 78.055342 iter 90 value 77.980736 iter 100 value 77.968356 final value 77.968356 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.539445 iter 10 value 94.431404 iter 20 value 94.429563 iter 30 value 91.076318 iter 40 value 85.019576 iter 50 value 81.689423 iter 60 value 81.476231 iter 70 value 81.427623 iter 80 value 81.342107 iter 90 value 81.244662 iter 100 value 81.208239 final value 81.208239 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 97.355065 iter 10 value 94.485091 iter 20 value 91.322892 iter 30 value 83.435982 iter 40 value 83.401085 iter 50 value 83.351559 final value 83.351535 converged Fitting Repeat 1 # weights: 103 initial value 94.699503 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.778474 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.310969 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.837150 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.486276 iter 10 value 93.714687 iter 20 value 93.714320 iter 20 value 93.714319 iter 20 value 93.714318 final value 93.714318 converged Fitting Repeat 1 # weights: 305 initial value 95.142197 iter 10 value 93.650498 final value 93.649425 converged Fitting Repeat 2 # weights: 305 initial value 106.018580 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.536762 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.850005 iter 10 value 93.923075 iter 20 value 93.918078 iter 30 value 93.916956 final value 93.916876 converged Fitting Repeat 5 # weights: 305 initial value 101.725662 final value 94.088888 converged Fitting Repeat 1 # weights: 507 initial value 100.246497 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 106.849897 iter 10 value 94.539232 iter 20 value 94.401202 iter 30 value 94.144892 final value 94.144482 converged Fitting Repeat 3 # weights: 507 initial value 96.151136 iter 10 value 90.390732 iter 20 value 90.014334 final value 90.014268 converged Fitting Repeat 4 # weights: 507 initial value 98.628198 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 101.939385 iter 10 value 94.467420 final value 94.467391 converged Fitting Repeat 1 # weights: 103 initial value 100.771768 iter 10 value 94.407353 iter 20 value 92.256464 iter 30 value 91.954423 iter 40 value 85.288264 iter 50 value 83.532116 iter 60 value 83.005741 iter 70 value 82.582684 iter 80 value 82.190552 iter 90 value 82.085092 iter 100 value 82.022102 final value 82.022102 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.548994 iter 10 value 92.929388 iter 20 value 86.386948 iter 30 value 85.332755 iter 40 value 84.616333 iter 50 value 83.974863 final value 83.930142 converged Fitting Repeat 3 # weights: 103 initial value 106.446140 iter 10 value 94.405779 iter 20 value 89.656071 iter 30 value 85.883509 iter 40 value 84.977200 iter 50 value 84.562748 iter 60 value 83.953952 final value 83.930142 converged Fitting Repeat 4 # weights: 103 initial value 98.297116 iter 10 value 92.253584 iter 20 value 87.254478 iter 30 value 86.939827 iter 40 value 86.480738 iter 50 value 86.187342 iter 60 value 86.001373 final value 86.001310 converged Fitting Repeat 5 # weights: 103 initial value 100.538708 iter 10 value 94.403227 iter 20 value 86.804785 iter 30 value 84.849581 iter 40 value 84.087510 iter 50 value 83.546481 iter 60 value 83.522168 final value 83.522131 converged Fitting Repeat 1 # weights: 305 initial value 103.149894 iter 10 value 94.550782 iter 20 value 94.287651 iter 30 value 86.052273 iter 40 value 85.403116 iter 50 value 85.041349 iter 60 value 84.595571 iter 70 value 83.896597 iter 80 value 81.655601 iter 90 value 81.472398 iter 100 value 81.389077 final value 81.389077 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.767681 iter 10 value 94.396587 iter 20 value 92.090654 iter 30 value 90.534788 iter 40 value 89.380677 iter 50 value 87.950041 iter 60 value 86.512449 iter 70 value 83.652078 iter 80 value 83.207121 iter 90 value 82.494839 iter 100 value 81.611788 final value 81.611788 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.369882 iter 10 value 95.051196 iter 20 value 94.466783 iter 30 value 86.725273 iter 40 value 85.292265 iter 50 value 84.097922 iter 60 value 82.584394 iter 70 value 82.394748 iter 80 value 82.216337 iter 90 value 81.860891 iter 100 value 81.840561 final value 81.840561 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.661205 iter 10 value 94.316526 iter 20 value 89.546623 iter 30 value 84.874615 iter 40 value 81.824001 iter 50 value 81.305012 iter 60 value 80.930124 iter 70 value 80.714958 iter 80 value 80.564752 iter 90 value 80.539801 iter 100 value 80.535130 final value 80.535130 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.021824 iter 10 value 91.639645 iter 20 value 87.388555 iter 30 value 83.447913 iter 40 value 81.316303 iter 50 value 81.077013 iter 60 value 80.910863 iter 70 value 80.857952 iter 80 value 80.843394 iter 90 value 80.829540 iter 100 value 80.820890 final value 80.820890 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.970600 iter 10 value 94.459607 iter 20 value 88.824776 iter 30 value 85.907594 iter 40 value 82.218652 iter 50 value 81.440497 iter 60 value 81.236913 iter 70 value 81.067068 iter 80 value 80.990203 iter 90 value 80.980192 iter 100 value 80.966287 final value 80.966287 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.899358 iter 10 value 94.726537 iter 20 value 88.995771 iter 30 value 87.097292 iter 40 value 86.839428 iter 50 value 86.601680 iter 60 value 85.973586 iter 70 value 84.734659 iter 80 value 81.002751 iter 90 value 80.417023 iter 100 value 80.339845 final value 80.339845 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.055211 iter 10 value 96.146698 iter 20 value 94.534929 iter 30 value 86.118824 iter 40 value 85.736726 iter 50 value 83.549568 iter 60 value 81.879284 iter 70 value 81.742248 iter 80 value 81.599460 iter 90 value 81.196427 iter 100 value 81.008816 final value 81.008816 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.879063 iter 10 value 98.606204 iter 20 value 94.288840 iter 30 value 89.405939 iter 40 value 87.132779 iter 50 value 85.197654 iter 60 value 82.440953 iter 70 value 81.719751 iter 80 value 81.416962 iter 90 value 81.138502 iter 100 value 80.866775 final value 80.866775 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 118.623398 iter 10 value 94.928490 iter 20 value 94.510208 iter 30 value 94.444423 iter 40 value 93.816532 iter 50 value 88.184682 iter 60 value 87.161366 iter 70 value 84.969319 iter 80 value 84.256216 iter 90 value 83.905964 iter 100 value 82.420143 final value 82.420143 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.838895 final value 94.485789 converged Fitting Repeat 2 # weights: 103 initial value 101.026337 final value 94.485500 converged Fitting Repeat 3 # weights: 103 initial value 95.119619 iter 10 value 94.484692 final value 94.484678 converged Fitting Repeat 4 # weights: 103 initial value 100.331729 final value 94.486188 converged Fitting Repeat 5 # weights: 103 initial value 103.251599 final value 94.485797 converged Fitting Repeat 1 # weights: 305 initial value 98.992582 iter 10 value 94.318968 iter 20 value 87.670935 iter 30 value 86.973754 iter 40 value 86.951776 final value 86.946437 converged Fitting Repeat 2 # weights: 305 initial value 104.484597 iter 10 value 94.489031 iter 20 value 94.346931 iter 30 value 87.858351 iter 40 value 87.671228 iter 50 value 87.228692 iter 60 value 86.116876 iter 70 value 83.528558 iter 80 value 83.437646 iter 90 value 83.432023 iter 100 value 83.417288 final value 83.417288 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.537589 iter 10 value 94.489213 iter 20 value 94.050452 iter 30 value 88.277690 iter 40 value 87.097169 iter 50 value 87.089763 iter 50 value 87.089762 final value 87.089762 converged Fitting Repeat 4 # weights: 305 initial value 99.869094 iter 10 value 94.187324 iter 20 value 94.184631 iter 30 value 94.181413 final value 94.181405 converged Fitting Repeat 5 # weights: 305 initial value 98.486653 iter 10 value 94.489452 iter 20 value 94.484405 final value 94.484324 converged Fitting Repeat 1 # weights: 507 initial value 102.543144 iter 10 value 94.484804 iter 20 value 94.476000 iter 30 value 94.469975 iter 40 value 92.150265 iter 50 value 85.513078 iter 60 value 85.403282 iter 70 value 84.236699 iter 80 value 82.832711 iter 90 value 82.459896 iter 100 value 82.329416 final value 82.329416 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.242901 iter 10 value 94.108063 iter 20 value 93.949592 iter 30 value 84.736121 iter 40 value 84.581641 iter 50 value 84.580700 iter 60 value 84.580216 iter 70 value 84.056806 iter 80 value 83.347757 iter 90 value 83.324255 iter 100 value 83.324029 final value 83.324029 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.078091 iter 10 value 94.492127 iter 20 value 94.394102 iter 30 value 94.052746 final value 94.052715 converged Fitting Repeat 4 # weights: 507 initial value 99.057498 iter 10 value 94.256563 iter 20 value 93.956023 iter 30 value 89.434876 iter 40 value 88.341943 iter 50 value 88.334813 iter 60 value 88.283780 iter 70 value 87.335568 iter 80 value 87.298539 final value 87.282517 converged Fitting Repeat 5 # weights: 507 initial value 108.879169 iter 10 value 94.272410 iter 20 value 94.265236 iter 30 value 94.020632 iter 40 value 87.017207 iter 50 value 84.156138 final value 84.155969 converged Fitting Repeat 1 # weights: 103 initial value 102.966850 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.853161 final value 94.251193 converged Fitting Repeat 3 # weights: 103 initial value 102.863545 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.897152 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.209328 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.534616 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.949202 iter 10 value 91.473969 iter 20 value 91.266221 final value 91.266196 converged Fitting Repeat 3 # weights: 305 initial value 98.506206 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 109.837220 iter 10 value 94.112915 final value 94.112903 converged Fitting Repeat 5 # weights: 305 initial value 102.463454 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 107.535314 iter 10 value 94.146215 iter 20 value 94.065867 final value 94.065746 converged Fitting Repeat 2 # weights: 507 initial value 110.667646 iter 10 value 94.333267 final value 94.325945 converged Fitting Repeat 3 # weights: 507 initial value 117.036723 final value 94.165746 converged Fitting Repeat 4 # weights: 507 initial value 98.876796 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 96.804245 iter 10 value 87.352007 iter 20 value 86.347896 iter 30 value 86.239048 iter 40 value 86.238379 final value 86.238376 converged Fitting Repeat 1 # weights: 103 initial value 100.731237 iter 10 value 94.498019 iter 20 value 85.574363 iter 30 value 85.000870 iter 40 value 84.528997 iter 50 value 84.441192 iter 60 value 84.412623 iter 70 value 83.848782 iter 80 value 83.731138 iter 90 value 83.721537 final value 83.721529 converged Fitting Repeat 2 # weights: 103 initial value 101.210198 iter 10 value 91.527271 iter 20 value 88.879316 iter 30 value 86.560213 iter 40 value 86.432512 iter 50 value 85.330017 iter 60 value 84.805838 iter 70 value 84.303197 iter 80 value 84.079141 iter 90 value 84.070826 iter 90 value 84.070825 iter 90 value 84.070825 final value 84.070825 converged Fitting Repeat 3 # weights: 103 initial value 100.415712 iter 10 value 94.343783 iter 20 value 86.824806 iter 30 value 85.965974 iter 40 value 84.552435 iter 50 value 84.044717 iter 60 value 83.862919 iter 70 value 83.762303 iter 80 value 83.735538 iter 90 value 83.721584 final value 83.721529 converged Fitting Repeat 4 # weights: 103 initial value 110.653152 iter 10 value 94.486508 iter 20 value 94.212570 iter 30 value 94.190325 final value 94.188780 converged Fitting Repeat 5 # weights: 103 initial value 99.834244 iter 10 value 94.486617 iter 20 value 94.484434 iter 30 value 93.206141 iter 40 value 91.353887 iter 50 value 91.150217 final value 91.147653 converged Fitting Repeat 1 # weights: 305 initial value 109.814193 iter 10 value 92.313234 iter 20 value 87.904752 iter 30 value 85.206704 iter 40 value 84.592593 iter 50 value 83.920091 iter 60 value 83.762751 iter 70 value 83.712969 iter 80 value 83.357388 iter 90 value 83.238116 iter 100 value 83.019114 final value 83.019114 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 115.362230 iter 10 value 94.456262 iter 20 value 88.909172 iter 30 value 85.598880 iter 40 value 85.097426 iter 50 value 84.726872 iter 60 value 84.055695 iter 70 value 83.803093 iter 80 value 83.575640 iter 90 value 83.343341 iter 100 value 83.163614 final value 83.163614 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.062088 iter 10 value 94.489456 iter 20 value 90.205820 iter 30 value 85.699832 iter 40 value 85.179005 iter 50 value 84.555651 iter 60 value 84.417007 iter 70 value 83.870196 iter 80 value 83.238555 iter 90 value 82.842477 iter 100 value 82.767459 final value 82.767459 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.611431 iter 10 value 94.622941 iter 20 value 94.497114 iter 30 value 94.373171 iter 40 value 91.003275 iter 50 value 90.575181 iter 60 value 85.722750 iter 70 value 84.670357 iter 80 value 84.559522 iter 90 value 84.353292 iter 100 value 83.266404 final value 83.266404 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.958024 iter 10 value 94.930291 iter 20 value 94.079363 iter 30 value 88.401793 iter 40 value 85.904519 iter 50 value 84.523558 iter 60 value 83.920233 iter 70 value 83.306214 iter 80 value 83.126065 iter 90 value 82.915780 iter 100 value 82.777034 final value 82.777034 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.574644 iter 10 value 94.883657 iter 20 value 93.284905 iter 30 value 91.834032 iter 40 value 87.858340 iter 50 value 84.616339 iter 60 value 83.477006 iter 70 value 83.316483 iter 80 value 82.960837 iter 90 value 82.932967 iter 100 value 82.694779 final value 82.694779 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.560572 iter 10 value 96.209121 iter 20 value 90.295397 iter 30 value 84.873860 iter 40 value 83.895175 iter 50 value 83.570807 iter 60 value 82.549886 iter 70 value 82.173465 iter 80 value 82.001295 iter 90 value 81.960341 iter 100 value 81.930005 final value 81.930005 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.485875 iter 10 value 94.425329 iter 20 value 92.054660 iter 30 value 91.554746 iter 40 value 90.865118 iter 50 value 86.985036 iter 60 value 84.174607 iter 70 value 83.708484 iter 80 value 82.720505 iter 90 value 81.948408 iter 100 value 81.555380 final value 81.555380 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.191905 iter 10 value 95.723694 iter 20 value 86.439531 iter 30 value 85.554190 iter 40 value 83.579017 iter 50 value 82.685952 iter 60 value 82.200383 iter 70 value 82.048389 iter 80 value 81.951285 iter 90 value 81.902802 iter 100 value 81.748680 final value 81.748680 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.375532 iter 10 value 94.194024 iter 20 value 90.244823 iter 30 value 86.320453 iter 40 value 84.793547 iter 50 value 83.930580 iter 60 value 83.522239 iter 70 value 83.226949 iter 80 value 82.790322 iter 90 value 82.751043 iter 100 value 82.574962 final value 82.574962 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 109.071164 final value 94.485945 converged Fitting Repeat 2 # weights: 103 initial value 100.605014 final value 94.485824 converged Fitting Repeat 3 # weights: 103 initial value 100.922053 iter 10 value 94.116409 iter 20 value 88.998580 iter 30 value 84.421123 iter 40 value 84.418856 iter 50 value 83.974401 final value 83.770582 converged Fitting Repeat 4 # weights: 103 initial value 94.780627 final value 94.485882 converged Fitting Repeat 5 # weights: 103 initial value 105.738153 final value 94.485918 converged Fitting Repeat 1 # weights: 305 initial value 96.898301 iter 10 value 88.630909 iter 20 value 88.526689 iter 30 value 88.518625 iter 40 value 85.890305 iter 50 value 85.486483 iter 60 value 85.029129 iter 70 value 84.900795 iter 80 value 84.900209 iter 90 value 83.011488 iter 100 value 83.010329 final value 83.010329 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.939407 iter 10 value 94.485887 iter 20 value 88.545312 iter 30 value 86.539898 iter 40 value 86.519948 iter 50 value 85.794185 final value 85.794179 converged Fitting Repeat 3 # weights: 305 initial value 103.261074 iter 10 value 94.162858 iter 20 value 94.161286 iter 30 value 94.109698 iter 40 value 94.079380 iter 50 value 90.439679 iter 60 value 86.977155 iter 70 value 85.989707 iter 80 value 85.900178 iter 90 value 85.871453 iter 100 value 85.832210 final value 85.832210 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.873137 iter 10 value 94.488738 iter 20 value 94.484545 final value 94.484428 converged Fitting Repeat 5 # weights: 305 initial value 97.341254 iter 10 value 94.483721 iter 20 value 93.988327 iter 30 value 87.099881 iter 40 value 87.099578 iter 50 value 86.605477 final value 86.603650 converged Fitting Repeat 1 # weights: 507 initial value 108.231913 iter 10 value 94.121038 iter 20 value 94.118656 iter 30 value 94.075460 iter 40 value 94.066906 iter 50 value 94.066491 final value 94.066468 converged Fitting Repeat 2 # weights: 507 initial value 98.493727 iter 10 value 94.456486 iter 20 value 93.830892 iter 30 value 93.787172 iter 40 value 93.785730 iter 50 value 92.697728 iter 60 value 85.623662 iter 70 value 85.130966 iter 80 value 84.966560 iter 90 value 84.960784 iter 100 value 84.959246 final value 84.959246 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.703708 iter 10 value 94.122290 iter 20 value 94.120115 iter 30 value 94.114294 iter 40 value 93.678797 iter 50 value 92.779246 iter 60 value 83.889325 iter 70 value 81.155002 iter 80 value 80.723762 iter 90 value 80.529822 iter 100 value 80.372026 final value 80.372026 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 100.576187 iter 10 value 93.982786 iter 20 value 93.981404 iter 30 value 93.974046 iter 40 value 86.588392 final value 86.566492 converged Fitting Repeat 5 # weights: 507 initial value 99.679966 iter 10 value 94.121043 iter 20 value 94.114704 iter 30 value 94.106557 iter 40 value 93.823449 iter 50 value 88.501051 iter 60 value 88.221683 iter 70 value 86.450598 iter 80 value 83.264651 iter 90 value 81.724470 iter 100 value 80.815626 final value 80.815626 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 110.757274 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.736853 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.593605 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.234198 iter 10 value 94.053194 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.206949 iter 10 value 93.455092 final value 93.455029 converged Fitting Repeat 1 # weights: 305 initial value 100.556198 final value 93.915746 converged Fitting Repeat 2 # weights: 305 initial value 97.033207 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 96.649656 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 100.018092 iter 10 value 94.013518 iter 20 value 87.217029 iter 30 value 87.138446 iter 40 value 86.793456 iter 50 value 86.567097 iter 60 value 86.279092 final value 85.976098 converged Fitting Repeat 5 # weights: 305 initial value 112.896485 final value 93.414528 converged Fitting Repeat 1 # weights: 507 initial value 107.502431 iter 10 value 82.596460 iter 20 value 82.541713 final value 82.541667 converged Fitting Repeat 2 # weights: 507 initial value 100.059803 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 128.131619 iter 10 value 93.455036 final value 93.455030 converged Fitting Repeat 4 # weights: 507 initial value 101.665900 iter 10 value 93.733275 iter 20 value 93.725675 final value 93.725223 converged Fitting Repeat 5 # weights: 507 initial value 107.151046 iter 10 value 93.455039 final value 93.455030 converged Fitting Repeat 1 # weights: 103 initial value 105.742540 iter 10 value 94.028800 iter 20 value 93.265399 iter 30 value 93.249353 iter 40 value 93.240866 iter 50 value 82.439262 iter 60 value 79.691222 iter 70 value 78.998345 iter 80 value 78.540826 final value 78.524034 converged Fitting Repeat 2 # weights: 103 initial value 98.103442 iter 10 value 94.723523 iter 20 value 93.263524 iter 30 value 93.179444 iter 40 value 88.168877 iter 50 value 82.774617 iter 60 value 80.861520 iter 70 value 80.033706 iter 80 value 79.743946 iter 90 value 79.423832 iter 100 value 79.131088 final value 79.131088 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.543064 iter 10 value 93.894635 iter 20 value 84.706302 iter 30 value 81.830400 iter 40 value 79.966324 iter 50 value 79.309672 iter 60 value 79.097698 final value 79.064063 converged Fitting Repeat 4 # weights: 103 initial value 111.370330 iter 10 value 94.021622 iter 20 value 92.058813 iter 30 value 85.621554 iter 40 value 82.920867 iter 50 value 81.505905 iter 60 value 81.468415 iter 70 value 81.446562 final value 81.438153 converged Fitting Repeat 5 # weights: 103 initial value 101.917512 iter 10 value 93.768434 iter 20 value 90.496743 iter 30 value 86.569817 iter 40 value 85.999201 iter 50 value 85.881123 iter 60 value 85.869545 iter 70 value 85.826008 iter 80 value 85.824336 final value 85.819632 converged Fitting Repeat 1 # weights: 305 initial value 103.183446 iter 10 value 94.086277 iter 20 value 93.987764 iter 30 value 84.077678 iter 40 value 82.247402 iter 50 value 81.824245 iter 60 value 80.165850 iter 70 value 78.753942 iter 80 value 78.037526 iter 90 value 77.515264 iter 100 value 77.292526 final value 77.292526 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.201021 iter 10 value 94.471975 iter 20 value 93.871477 iter 30 value 91.351223 iter 40 value 91.097746 iter 50 value 83.794305 iter 60 value 82.347428 iter 70 value 81.856704 iter 80 value 81.644429 iter 90 value 80.822976 iter 100 value 79.729778 final value 79.729778 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 121.887455 iter 10 value 93.584087 iter 20 value 93.257043 iter 30 value 92.046879 iter 40 value 90.596161 iter 50 value 89.531826 iter 60 value 82.011583 iter 70 value 81.399074 iter 80 value 80.271183 iter 90 value 79.983391 iter 100 value 78.161371 final value 78.161371 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.062314 iter 10 value 94.255471 iter 20 value 93.237102 iter 30 value 90.563020 iter 40 value 82.438236 iter 50 value 80.622166 iter 60 value 78.885166 iter 70 value 78.526035 iter 80 value 78.303141 iter 90 value 78.160385 iter 100 value 78.061079 final value 78.061079 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.525886 iter 10 value 93.830520 iter 20 value 84.079543 iter 30 value 83.600362 iter 40 value 81.893400 iter 50 value 80.509322 iter 60 value 79.611432 iter 70 value 79.384444 iter 80 value 78.628373 iter 90 value 78.464081 iter 100 value 78.228667 final value 78.228667 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.482257 iter 10 value 93.834326 iter 20 value 85.269774 iter 30 value 83.200856 iter 40 value 82.380698 iter 50 value 80.698437 iter 60 value 79.820836 iter 70 value 79.477744 iter 80 value 79.216330 iter 90 value 79.059682 iter 100 value 78.901843 final value 78.901843 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.603221 iter 10 value 93.978538 iter 20 value 91.794045 iter 30 value 85.373787 iter 40 value 79.731366 iter 50 value 78.904698 iter 60 value 77.914932 iter 70 value 77.125237 iter 80 value 76.848455 iter 90 value 76.769010 iter 100 value 76.731792 final value 76.731792 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.519321 iter 10 value 93.853852 iter 20 value 91.501711 iter 30 value 87.017928 iter 40 value 83.252743 iter 50 value 82.582115 iter 60 value 80.919962 iter 70 value 79.041346 iter 80 value 77.881413 iter 90 value 77.618315 iter 100 value 77.363122 final value 77.363122 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.843714 iter 10 value 94.184480 iter 20 value 88.652324 iter 30 value 87.386924 iter 40 value 82.004663 iter 50 value 81.181459 iter 60 value 80.711353 iter 70 value 79.143980 iter 80 value 78.329878 iter 90 value 77.352352 iter 100 value 76.868104 final value 76.868104 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.285554 iter 10 value 93.320840 iter 20 value 87.177892 iter 30 value 82.448911 iter 40 value 81.275557 iter 50 value 80.831744 iter 60 value 80.756660 iter 70 value 80.561666 iter 80 value 79.839271 iter 90 value 78.262426 iter 100 value 77.909498 final value 77.909498 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.237954 final value 94.054507 converged Fitting Repeat 2 # weights: 103 initial value 103.462496 iter 10 value 94.054703 iter 20 value 94.052040 iter 30 value 93.092321 final value 93.092183 converged Fitting Repeat 3 # weights: 103 initial value 97.438711 iter 10 value 94.054581 iter 20 value 93.963663 iter 30 value 84.385751 iter 40 value 83.657852 iter 50 value 83.644474 iter 60 value 83.086753 iter 70 value 82.903221 iter 80 value 82.826757 iter 90 value 80.703270 iter 100 value 80.107161 final value 80.107161 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.509181 final value 94.054829 converged Fitting Repeat 5 # weights: 103 initial value 97.804349 iter 10 value 93.917324 iter 20 value 93.915817 iter 30 value 89.237463 iter 40 value 89.218240 iter 50 value 87.113229 iter 60 value 85.262365 iter 70 value 83.786533 iter 80 value 83.722369 iter 90 value 83.703305 iter 100 value 83.540745 final value 83.540745 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 119.365690 iter 10 value 93.920754 iter 20 value 93.107316 iter 30 value 91.882854 iter 40 value 84.563628 iter 50 value 83.933654 iter 60 value 83.524915 iter 70 value 83.512153 iter 80 value 82.991874 final value 82.991780 converged Fitting Repeat 2 # weights: 305 initial value 95.568856 iter 10 value 93.769286 iter 20 value 93.766832 iter 30 value 93.675604 iter 40 value 93.349579 iter 50 value 93.314789 final value 93.314777 converged Fitting Repeat 3 # weights: 305 initial value 95.705980 iter 10 value 94.057175 iter 20 value 94.048618 iter 30 value 93.091258 iter 30 value 93.091258 iter 30 value 93.091258 final value 93.091258 converged Fitting Repeat 4 # weights: 305 initial value 98.023289 iter 10 value 94.057447 final value 94.052920 converged Fitting Repeat 5 # weights: 305 initial value 100.550698 iter 10 value 92.528135 iter 20 value 90.712927 iter 30 value 90.704222 iter 40 value 90.133149 iter 50 value 89.037730 iter 60 value 89.036688 iter 70 value 89.036151 iter 80 value 89.035859 iter 80 value 89.035859 final value 89.035859 converged Fitting Repeat 1 # weights: 507 initial value 108.920118 iter 10 value 90.675927 iter 20 value 90.674002 iter 30 value 89.728991 iter 40 value 89.173363 iter 50 value 89.155641 iter 60 value 89.155329 iter 70 value 89.155023 final value 89.154842 converged Fitting Repeat 2 # weights: 507 initial value 112.488923 iter 10 value 93.600221 iter 20 value 93.015296 iter 30 value 92.311716 iter 40 value 92.309817 iter 50 value 92.306758 iter 60 value 92.306633 iter 70 value 92.306454 iter 80 value 90.693762 iter 90 value 90.336376 iter 100 value 89.604542 final value 89.604542 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.009001 iter 10 value 93.612765 iter 20 value 84.319799 iter 30 value 83.795714 iter 40 value 82.890320 iter 50 value 82.517547 iter 60 value 82.512082 iter 70 value 81.960409 iter 80 value 80.839114 iter 90 value 80.646311 iter 100 value 80.493318 final value 80.493318 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.525745 iter 10 value 87.718868 iter 20 value 84.754178 iter 30 value 84.753650 iter 40 value 84.545436 iter 50 value 84.544380 final value 84.540584 converged Fitting Repeat 5 # weights: 507 initial value 132.597778 iter 10 value 94.060604 iter 20 value 92.014776 iter 30 value 85.902478 iter 40 value 84.594685 iter 50 value 84.576660 iter 50 value 84.576660 iter 50 value 84.576660 final value 84.576660 converged Fitting Repeat 1 # weights: 305 initial value 118.868310 iter 10 value 117.895113 iter 20 value 117.612200 iter 30 value 113.897281 iter 40 value 111.499208 iter 50 value 111.409440 iter 60 value 111.402473 iter 70 value 107.633234 iter 80 value 105.182588 iter 90 value 104.625621 iter 100 value 104.600580 final value 104.600580 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.790910 iter 10 value 117.764121 iter 20 value 117.763283 final value 117.759684 converged Fitting Repeat 3 # weights: 305 initial value 154.466118 iter 10 value 117.895426 iter 20 value 117.823461 iter 30 value 116.912930 iter 40 value 109.400209 iter 50 value 106.395989 iter 60 value 105.329221 iter 70 value 104.704669 iter 80 value 104.593303 iter 90 value 104.313120 iter 100 value 104.312639 final value 104.312639 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.399472 iter 10 value 117.894341 iter 20 value 112.998679 iter 30 value 107.036900 iter 40 value 107.016074 iter 50 value 106.953348 iter 60 value 106.908368 iter 70 value 106.659469 final value 106.657798 converged Fitting Repeat 5 # weights: 305 initial value 128.816734 iter 10 value 114.187333 iter 20 value 109.153329 iter 30 value 107.931049 iter 40 value 107.897984 iter 50 value 107.893698 iter 60 value 106.827654 iter 70 value 105.889761 iter 80 value 105.369095 iter 90 value 105.218560 iter 100 value 105.216987 final value 105.216987 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Jun 12 21:25:19 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 41.527 1.633 122.473
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.328 | 1.649 | 35.213 | |
FreqInteractors | 0.255 | 0.010 | 0.269 | |
calculateAAC | 0.036 | 0.006 | 0.042 | |
calculateAutocor | 0.396 | 0.057 | 0.457 | |
calculateCTDC | 0.088 | 0.006 | 0.093 | |
calculateCTDD | 0.726 | 0.025 | 0.758 | |
calculateCTDT | 0.265 | 0.011 | 0.278 | |
calculateCTriad | 0.366 | 0.029 | 0.398 | |
calculateDC | 0.089 | 0.009 | 0.098 | |
calculateF | 0.364 | 0.012 | 0.377 | |
calculateKSAAP | 0.110 | 0.008 | 0.119 | |
calculateQD_Sm | 1.735 | 0.102 | 1.850 | |
calculateTC | 1.687 | 0.136 | 1.836 | |
calculateTC_Sm | 0.336 | 0.030 | 0.369 | |
corr_plot | 33.010 | 1.521 | 34.736 | |
enrichfindP | 0.459 | 0.057 | 7.822 | |
enrichfind_hp | 0.061 | 0.022 | 1.027 | |
enrichplot | 0.408 | 0.007 | 0.418 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.069 | 0.010 | 4.248 | |
getHPI | 0.000 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0.001 | 0.000 | 0.001 | |
impute_missing_data | 0.002 | 0.000 | 0.002 | |
plotPPI | 0.068 | 0.002 | 0.071 | |
pred_ensembel | 13.298 | 0.429 | 11.868 | |
var_imp | 33.989 | 1.609 | 35.872 | |