Back to Multiple platform build/check report for BioC 3.23:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2026-01-21 11:34 -0500 (Wed, 21 Jan 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4805
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4539
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1001/2343HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.17.2  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2026-01-20 13:40 -0500 (Tue, 20 Jan 2026)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: 68bd9a1
git_last_commit_date: 2025-12-28 18:34:02 -0500 (Sun, 28 Dec 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published


CHECK results for HPiP on nebbiolo1

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.17.2
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.2.tar.gz
StartedAt: 2026-01-21 00:30:25 -0500 (Wed, 21 Jan 2026)
EndedAt: 2026-01-21 00:45:26 -0500 (Wed, 21 Jan 2026)
EllapsedTime: 901.3 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.2.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
corr_plot     34.640  0.603  35.244
var_imp       34.503  0.676  35.236
FSmethod      33.046  0.636  33.683
pred_ensembel 13.188  0.360  12.238
enrichfindP    0.562  0.049  12.146
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘HPiP’ ...
** this is package ‘HPiP’ version ‘1.17.2’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 102.032644 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.678261 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.711306 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.446199 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.239447 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.164650 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.375684 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.310695 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.085123 
final  value 94.305882 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.078804 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.409600 
iter  10 value 86.559987
iter  20 value 84.712141
iter  30 value 84.265245
iter  40 value 84.179881
iter  50 value 84.179443
iter  60 value 84.149635
iter  70 value 84.136519
final  value 84.136352 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.502190 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.504305 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 119.259233 
iter  10 value 89.229898
iter  20 value 88.308595
iter  30 value 88.306345
iter  30 value 88.306345
iter  30 value 88.306345
final  value 88.306345 
converged
Fitting Repeat 5 

# weights:  507
initial  value 111.440200 
iter  10 value 94.268380
iter  20 value 93.866718
iter  20 value 93.866717
final  value 93.866676 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.509378 
iter  10 value 94.487083
iter  20 value 94.336911
iter  30 value 94.314439
final  value 94.314164 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.159112 
iter  10 value 94.503774
iter  20 value 91.417352
iter  30 value 87.895564
iter  40 value 86.882054
iter  50 value 86.646206
iter  60 value 85.146851
iter  70 value 84.533162
iter  80 value 83.622633
iter  90 value 83.419843
final  value 83.415314 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.019911 
iter  10 value 94.496063
iter  20 value 90.915447
iter  30 value 86.877249
iter  40 value 86.510371
iter  50 value 86.293578
iter  60 value 83.672144
iter  70 value 83.543827
iter  80 value 83.385370
iter  90 value 83.292865
final  value 83.286993 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.624225 
iter  10 value 90.708899
iter  20 value 88.998756
iter  30 value 88.666644
iter  40 value 88.489248
iter  50 value 88.079029
iter  60 value 86.395128
iter  70 value 86.297190
iter  80 value 86.272853
final  value 86.272831 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.062577 
iter  10 value 94.524416
iter  20 value 94.385764
iter  30 value 93.806443
iter  40 value 92.644209
iter  50 value 87.744006
iter  60 value 86.661756
iter  70 value 86.597520
iter  80 value 84.847068
iter  90 value 84.258968
iter 100 value 84.085599
final  value 84.085599 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 104.694462 
iter  10 value 94.587795
iter  20 value 93.100143
iter  30 value 87.090872
iter  40 value 86.427002
iter  50 value 86.291851
iter  60 value 84.953044
iter  70 value 83.625788
iter  80 value 82.688992
iter  90 value 82.563138
iter 100 value 82.356461
final  value 82.356461 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 113.573769 
iter  10 value 94.454973
iter  20 value 92.235922
iter  30 value 85.907199
iter  40 value 85.745280
iter  50 value 85.481342
iter  60 value 85.256917
iter  70 value 85.024114
iter  80 value 85.016441
iter  90 value 85.011375
iter 100 value 84.983894
final  value 84.983894 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.617434 
iter  10 value 94.175414
iter  20 value 91.781288
iter  30 value 88.771163
iter  40 value 84.921250
iter  50 value 83.432061
iter  60 value 82.965529
iter  70 value 82.701541
iter  80 value 82.643333
iter  90 value 82.545037
iter 100 value 82.374337
final  value 82.374337 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 107.845210 
iter  10 value 94.632848
iter  20 value 94.478217
iter  30 value 93.052145
iter  40 value 91.876737
iter  50 value 91.428318
iter  60 value 90.290406
iter  70 value 86.160189
iter  80 value 83.178956
iter  90 value 82.542860
iter 100 value 82.394657
final  value 82.394657 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.420953 
iter  10 value 91.730779
iter  20 value 89.466010
iter  30 value 89.074666
iter  40 value 87.081636
iter  50 value 86.195287
iter  60 value 85.686175
iter  70 value 84.755920
iter  80 value 84.498733
iter  90 value 84.294467
iter 100 value 83.627029
final  value 83.627029 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 121.878960 
iter  10 value 94.427652
iter  20 value 93.421367
iter  30 value 87.240283
iter  40 value 85.054610
iter  50 value 83.693678
iter  60 value 83.350813
iter  70 value 82.792795
iter  80 value 82.659292
iter  90 value 82.621810
iter 100 value 82.583320
final  value 82.583320 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 132.131952 
iter  10 value 95.463798
iter  20 value 93.882986
iter  30 value 87.619079
iter  40 value 85.706243
iter  50 value 84.267747
iter  60 value 83.437212
iter  70 value 82.560835
iter  80 value 82.406933
iter  90 value 82.260429
iter 100 value 82.165021
final  value 82.165021 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.592894 
iter  10 value 94.210459
iter  20 value 90.607747
iter  30 value 85.069756
iter  40 value 84.327488
iter  50 value 83.669286
iter  60 value 83.589419
iter  70 value 83.447549
iter  80 value 83.102601
iter  90 value 82.922056
iter 100 value 82.609406
final  value 82.609406 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.329765 
iter  10 value 94.466065
iter  20 value 90.090502
iter  30 value 87.910802
iter  40 value 86.017613
iter  50 value 85.274220
iter  60 value 83.062667
iter  70 value 82.557058
iter  80 value 82.415597
iter  90 value 82.072441
iter 100 value 82.020394
final  value 82.020394 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 114.339070 
iter  10 value 93.798336
iter  20 value 88.505268
iter  30 value 85.481835
iter  40 value 83.961359
iter  50 value 83.412303
iter  60 value 83.096132
iter  70 value 82.815881
iter  80 value 82.783723
iter  90 value 82.671069
iter 100 value 82.396948
final  value 82.396948 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.867574 
final  value 94.485812 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.944899 
final  value 94.485964 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.154016 
final  value 94.486299 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.022127 
final  value 94.485745 
converged
Fitting Repeat 5 

# weights:  103
initial  value 107.639406 
iter  10 value 94.313787
final  value 94.313406 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.062428 
iter  10 value 94.489053
iter  20 value 92.141612
iter  30 value 91.978711
iter  40 value 91.978430
iter  50 value 91.906813
iter  60 value 91.283811
iter  70 value 86.865289
iter  80 value 86.353734
iter  90 value 86.352849
iter  90 value 86.352849
final  value 86.352849 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.663757 
iter  10 value 94.471438
iter  20 value 94.467086
final  value 94.466918 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.425897 
iter  10 value 94.467470
iter  20 value 94.380810
iter  30 value 94.372523
iter  40 value 94.371944
iter  50 value 91.640246
iter  60 value 88.071688
iter  70 value 87.658299
iter  80 value 87.657327
iter  90 value 87.656928
iter 100 value 87.284398
final  value 87.284398 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 119.272922 
iter  10 value 94.471997
iter  20 value 94.467402
iter  30 value 94.295631
iter  40 value 92.612079
iter  50 value 86.484907
iter  60 value 85.087384
iter  70 value 84.865172
iter  80 value 84.863191
iter  90 value 84.855574
iter 100 value 84.246821
final  value 84.246821 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.594013 
iter  10 value 94.489122
iter  20 value 94.392160
iter  30 value 87.095012
iter  40 value 85.610583
iter  50 value 85.595389
iter  60 value 85.593499
final  value 85.593489 
converged
Fitting Repeat 1 

# weights:  507
initial  value 103.371700 
iter  10 value 94.493131
iter  20 value 94.371376
final  value 94.288594 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.825886 
iter  10 value 94.474639
iter  20 value 92.664736
iter  30 value 87.003185
iter  40 value 85.433319
iter  50 value 84.842807
iter  60 value 84.703789
iter  70 value 84.279510
iter  80 value 84.111229
iter  90 value 84.109843
iter 100 value 84.109637
final  value 84.109637 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 97.934056 
iter  10 value 94.475995
iter  20 value 94.472837
iter  30 value 90.240936
iter  40 value 85.113085
iter  50 value 85.068791
final  value 85.063058 
converged
Fitting Repeat 4 

# weights:  507
initial  value 107.927818 
iter  10 value 92.617507
iter  20 value 92.615956
iter  30 value 92.610229
iter  40 value 91.940322
iter  50 value 90.871731
iter  60 value 90.762468
iter  70 value 83.749337
iter  80 value 82.887186
iter  90 value 82.878691
iter 100 value 82.782900
final  value 82.782900 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 98.868194 
iter  10 value 87.333408
iter  20 value 86.232340
iter  30 value 82.976897
iter  40 value 82.802841
iter  50 value 81.605669
iter  60 value 81.435441
iter  70 value 81.425757
iter  80 value 81.371032
iter  90 value 81.369509
iter 100 value 81.366795
final  value 81.366795 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.710545 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.253874 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.096348 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.229051 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.477620 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 111.768584 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.407219 
iter  10 value 93.328639
final  value 93.328261 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.993505 
final  value 93.473743 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.210681 
iter  10 value 90.353958
iter  20 value 82.793323
iter  30 value 82.784701
final  value 82.784679 
converged
Fitting Repeat 5 

# weights:  305
initial  value 102.902883 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.616945 
iter  10 value 93.797284
iter  20 value 93.340065
iter  30 value 83.883657
iter  40 value 82.568376
iter  50 value 82.561221
iter  60 value 82.560763
iter  70 value 82.560721
iter  70 value 82.560720
final  value 82.560716 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.238004 
iter  10 value 93.516039
final  value 93.473743 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.300407 
iter  10 value 93.231071
iter  20 value 92.195813
iter  30 value 92.039522
iter  40 value 92.025058
final  value 92.025000 
converged
Fitting Repeat 4 

# weights:  507
initial  value 124.465700 
iter  10 value 93.714139
final  value 93.654456 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.023301 
iter  10 value 93.284524
iter  10 value 93.284524
iter  10 value 93.284524
final  value 93.284524 
converged
Fitting Repeat 1 

# weights:  103
initial  value 106.462936 
iter  10 value 94.060799
iter  20 value 88.094044
iter  30 value 85.318679
iter  40 value 84.632637
iter  50 value 84.376618
iter  60 value 81.664451
iter  70 value 81.619422
iter  80 value 81.606754
final  value 81.606153 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.653351 
iter  10 value 94.064075
iter  20 value 93.983751
iter  30 value 93.525790
iter  40 value 93.429877
iter  50 value 85.971011
iter  60 value 84.414275
iter  70 value 82.472820
iter  80 value 81.320311
iter  90 value 81.048723
iter 100 value 80.971242
final  value 80.971242 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 101.503340 
iter  10 value 94.058086
final  value 94.056059 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.408515 
iter  10 value 94.042561
iter  20 value 93.746756
iter  30 value 93.713645
iter  40 value 93.673448
iter  50 value 91.339991
iter  60 value 83.238452
iter  70 value 81.585773
iter  80 value 81.365624
iter  90 value 81.165912
iter 100 value 81.066987
final  value 81.066987 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.930671 
iter  10 value 94.054978
iter  20 value 90.614313
iter  30 value 84.048372
iter  40 value 83.524924
iter  50 value 81.828526
iter  60 value 81.678838
iter  70 value 81.575002
iter  80 value 81.524411
final  value 81.522936 
converged
Fitting Repeat 1 

# weights:  305
initial  value 108.798488 
iter  10 value 87.211128
iter  20 value 81.463744
iter  30 value 81.290310
iter  40 value 80.144345
iter  50 value 79.579192
iter  60 value 79.376026
iter  70 value 79.046357
iter  80 value 79.001644
iter  90 value 78.990013
iter 100 value 78.974701
final  value 78.974701 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 107.522749 
iter  10 value 94.521451
iter  20 value 93.291339
iter  30 value 86.968453
iter  40 value 83.490676
iter  50 value 81.466879
iter  60 value 80.404618
iter  70 value 80.053458
iter  80 value 80.005045
iter  90 value 79.767435
iter 100 value 79.477942
final  value 79.477942 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 114.617562 
iter  10 value 93.651764
iter  20 value 93.400334
iter  30 value 83.295057
iter  40 value 82.931311
iter  50 value 81.580137
iter  60 value 81.113625
iter  70 value 81.012430
iter  80 value 80.917825
iter  90 value 80.547501
iter 100 value 79.884300
final  value 79.884300 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.141544 
iter  10 value 94.044135
iter  20 value 86.987996
iter  30 value 82.738296
iter  40 value 81.353713
iter  50 value 80.469631
iter  60 value 79.338805
iter  70 value 79.154441
iter  80 value 79.022081
iter  90 value 79.007454
iter 100 value 78.993203
final  value 78.993203 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 110.224263 
iter  10 value 94.489214
iter  20 value 93.592416
iter  30 value 93.268587
iter  40 value 87.127828
iter  50 value 86.077096
iter  60 value 81.790663
iter  70 value 81.469709
iter  80 value 81.347875
iter  90 value 80.935859
iter 100 value 80.824300
final  value 80.824300 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 124.513620 
iter  10 value 93.999604
iter  20 value 87.483374
iter  30 value 83.741637
iter  40 value 82.461001
iter  50 value 81.029799
iter  60 value 80.325437
iter  70 value 79.974637
iter  80 value 79.848678
iter  90 value 79.680236
iter 100 value 79.358801
final  value 79.358801 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 154.328483 
iter  10 value 94.627467
iter  20 value 94.362307
iter  30 value 91.403928
iter  40 value 84.635443
iter  50 value 82.071876
iter  60 value 80.933011
iter  70 value 80.597009
iter  80 value 80.424766
iter  90 value 79.970811
iter 100 value 79.435288
final  value 79.435288 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 107.904717 
iter  10 value 94.431589
iter  20 value 94.121814
iter  30 value 89.971055
iter  40 value 88.925118
iter  50 value 85.365867
iter  60 value 83.025477
iter  70 value 81.363761
iter  80 value 80.421858
iter  90 value 80.284826
iter 100 value 80.128052
final  value 80.128052 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 114.186068 
iter  10 value 97.123452
iter  20 value 94.718284
iter  30 value 93.694473
iter  40 value 87.440541
iter  50 value 86.284824
iter  60 value 83.947036
iter  70 value 81.732956
iter  80 value 80.341503
iter  90 value 80.136179
iter 100 value 79.927952
final  value 79.927952 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.991307 
iter  10 value 93.962955
iter  20 value 87.404560
iter  30 value 81.807797
iter  40 value 81.399722
iter  50 value 81.146354
iter  60 value 80.926757
iter  70 value 80.196535
iter  80 value 79.749918
iter  90 value 79.645989
iter 100 value 79.600182
final  value 79.600182 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.517677 
final  value 94.054476 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.342617 
final  value 94.054835 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.060162 
final  value 94.054393 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.290283 
final  value 94.054493 
converged
Fitting Repeat 5 

# weights:  103
initial  value 118.988277 
final  value 94.054525 
converged
Fitting Repeat 1 

# weights:  305
initial  value 117.555123 
iter  10 value 94.058036
iter  20 value 94.029677
iter  30 value 94.026601
iter  40 value 94.025586
iter  50 value 93.772854
iter  60 value 84.113087
iter  70 value 84.101313
iter  80 value 84.093158
iter  90 value 84.080960
iter 100 value 84.080424
final  value 84.080424 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.372798 
iter  10 value 94.057875
iter  20 value 94.046527
iter  30 value 93.912144
iter  40 value 93.894520
final  value 93.894469 
converged
Fitting Repeat 3 

# weights:  305
initial  value 113.828095 
iter  10 value 93.335347
iter  20 value 93.332892
iter  30 value 89.088575
iter  40 value 81.466039
iter  50 value 81.448792
iter  60 value 79.967903
iter  70 value 79.514205
iter  80 value 79.467335
iter  90 value 79.358804
iter 100 value 79.355466
final  value 79.355466 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.021938 
iter  10 value 93.279146
iter  20 value 93.213595
iter  30 value 93.160335
iter  40 value 93.158522
iter  50 value 93.156798
iter  60 value 93.156606
final  value 93.156322 
converged
Fitting Repeat 5 

# weights:  305
initial  value 108.339668 
iter  10 value 94.072940
iter  20 value 86.908303
iter  30 value 86.648109
iter  40 value 83.153656
iter  50 value 80.403793
iter  60 value 80.393472
iter  70 value 80.392235
iter  80 value 80.390967
final  value 80.390966 
converged
Fitting Repeat 1 

# weights:  507
initial  value 115.352201 
iter  10 value 94.061069
iter  20 value 94.053048
iter  30 value 93.938270
iter  40 value 91.438360
iter  50 value 89.075593
iter  60 value 89.011221
iter  70 value 87.992469
iter  80 value 82.322447
iter  90 value 81.776894
iter 100 value 81.386514
final  value 81.386514 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.481363 
iter  10 value 93.336556
iter  20 value 93.330528
iter  30 value 92.575974
iter  40 value 92.522943
iter  50 value 92.522747
iter  60 value 90.810873
iter  70 value 84.341377
iter  80 value 79.998510
iter  90 value 79.953032
iter 100 value 79.844585
final  value 79.844585 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 101.155187 
iter  10 value 93.959212
iter  20 value 93.956920
iter  30 value 93.643464
iter  40 value 93.293505
iter  50 value 93.168143
iter  60 value 92.587089
iter  70 value 92.562590
final  value 92.562533 
converged
Fitting Repeat 4 

# weights:  507
initial  value 112.127403 
iter  10 value 94.061039
iter  20 value 94.041018
iter  30 value 92.784401
iter  40 value 90.896743
iter  50 value 90.867867
iter  60 value 90.591953
iter  70 value 90.588399
iter  80 value 89.136819
final  value 87.936871 
converged
Fitting Repeat 5 

# weights:  507
initial  value 109.945449 
iter  10 value 94.060747
iter  20 value 94.047983
iter  30 value 92.769876
iter  40 value 86.201517
iter  50 value 86.084735
iter  60 value 86.081495
iter  70 value 86.079665
iter  80 value 86.078352
iter  90 value 84.876969
iter 100 value 84.330104
final  value 84.330104 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.110642 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.742653 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.586605 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.720398 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.795121 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.758719 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 107.451728 
final  value 94.436782 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.094647 
final  value 94.214007 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.946831 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 108.248943 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 112.819308 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.192861 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.171140 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.230122 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.166592 
final  value 94.466823 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.137464 
iter  10 value 94.469445
iter  20 value 94.398598
iter  30 value 88.016486
iter  40 value 86.327021
iter  50 value 85.306057
iter  60 value 84.112786
iter  70 value 83.166685
iter  80 value 82.827063
iter  90 value 82.755495
iter  90 value 82.755494
iter  90 value 82.755494
final  value 82.755494 
converged
Fitting Repeat 2 

# weights:  103
initial  value 106.978206 
iter  10 value 94.428171
iter  20 value 90.589069
iter  30 value 85.929516
iter  40 value 84.799908
iter  50 value 84.023218
iter  60 value 83.287788
iter  70 value 82.998258
iter  80 value 82.756758
final  value 82.755494 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.381185 
iter  10 value 94.488840
iter  20 value 93.416198
iter  30 value 89.330175
iter  40 value 88.858431
iter  50 value 88.645061
iter  60 value 84.674347
iter  70 value 83.490332
iter  80 value 83.105574
iter  90 value 82.911421
iter 100 value 82.755758
final  value 82.755758 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 101.058245 
iter  10 value 94.488558
iter  20 value 94.478780
iter  30 value 93.107960
iter  40 value 92.687380
iter  50 value 92.542728
iter  60 value 92.473746
iter  70 value 92.342434
iter  80 value 91.412140
iter  90 value 90.846757
iter 100 value 90.445804
final  value 90.445804 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 102.949534 
iter  10 value 93.298709
iter  20 value 87.370486
iter  30 value 86.307933
iter  40 value 86.174430
iter  50 value 85.978365
iter  60 value 85.840412
iter  70 value 83.628920
iter  80 value 83.508021
iter  90 value 82.910802
iter 100 value 82.779769
final  value 82.779769 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 117.722209 
iter  10 value 94.459349
iter  20 value 91.175125
iter  30 value 88.309076
iter  40 value 87.929908
iter  50 value 85.712386
iter  60 value 84.481936
iter  70 value 83.478829
iter  80 value 83.088533
iter  90 value 82.927128
iter 100 value 82.726158
final  value 82.726158 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 109.081153 
iter  10 value 94.464870
iter  20 value 91.253608
iter  30 value 90.775256
iter  40 value 86.749803
iter  50 value 84.320997
iter  60 value 83.802830
iter  70 value 83.599358
iter  80 value 83.495962
iter  90 value 82.373215
iter 100 value 81.980230
final  value 81.980230 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 116.284328 
iter  10 value 94.507201
iter  20 value 89.391550
iter  30 value 87.232387
iter  40 value 87.019857
iter  50 value 86.515242
iter  60 value 85.484110
iter  70 value 85.108904
iter  80 value 85.065446
iter  90 value 84.827812
iter 100 value 83.473524
final  value 83.473524 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 115.439113 
iter  10 value 94.329010
iter  20 value 87.818462
iter  30 value 86.067287
iter  40 value 84.415714
iter  50 value 84.296482
iter  60 value 83.934661
iter  70 value 83.405209
iter  80 value 81.950823
iter  90 value 81.379581
iter 100 value 81.209651
final  value 81.209651 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 127.113188 
iter  10 value 94.468879
iter  20 value 93.436036
iter  30 value 89.124650
iter  40 value 84.679407
iter  50 value 82.629956
iter  60 value 82.476475
iter  70 value 81.959951
iter  80 value 81.557227
iter  90 value 81.511793
iter 100 value 81.467718
final  value 81.467718 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 103.934968 
iter  10 value 90.865232
iter  20 value 89.987922
iter  30 value 89.868224
iter  40 value 86.509253
iter  50 value 84.886793
iter  60 value 84.675631
iter  70 value 84.395808
iter  80 value 84.188164
iter  90 value 83.685643
iter 100 value 83.273134
final  value 83.273134 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.615061 
iter  10 value 95.355497
iter  20 value 89.524355
iter  30 value 84.165718
iter  40 value 83.483590
iter  50 value 83.227804
iter  60 value 83.136888
iter  70 value 82.981835
iter  80 value 82.890594
iter  90 value 82.747565
iter 100 value 82.735256
final  value 82.735256 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.360143 
iter  10 value 94.497554
iter  20 value 89.738814
iter  30 value 86.500497
iter  40 value 84.677057
iter  50 value 82.688005
iter  60 value 82.389810
iter  70 value 82.043959
iter  80 value 81.840218
iter  90 value 81.777982
iter 100 value 81.748853
final  value 81.748853 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 106.561641 
iter  10 value 95.217063
iter  20 value 91.884379
iter  30 value 86.578915
iter  40 value 83.571527
iter  50 value 83.200139
iter  60 value 82.691851
iter  70 value 82.183346
iter  80 value 81.930299
iter  90 value 81.591023
iter 100 value 81.310713
final  value 81.310713 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.527366 
iter  10 value 95.320167
iter  20 value 91.385163
iter  30 value 90.713424
iter  40 value 85.701048
iter  50 value 84.103127
iter  60 value 83.674378
iter  70 value 82.696413
iter  80 value 82.393725
iter  90 value 82.327670
iter 100 value 82.136397
final  value 82.136397 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.633717 
iter  10 value 94.485823
iter  20 value 94.482413
iter  30 value 93.611290
iter  40 value 91.084295
iter  50 value 90.427082
final  value 90.073748 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.519161 
final  value 94.485771 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.158092 
final  value 94.485869 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.272341 
final  value 94.485800 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.352494 
iter  10 value 94.485659
final  value 94.484213 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.074401 
iter  10 value 92.261036
iter  20 value 91.067432
iter  30 value 90.670262
iter  40 value 90.659997
iter  50 value 90.659075
iter  60 value 90.655596
iter  70 value 90.648895
iter  80 value 90.431043
iter  90 value 90.043984
iter 100 value 89.292023
final  value 89.292023 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.135897 
iter  10 value 94.488970
iter  20 value 94.232948
iter  30 value 87.259654
iter  40 value 86.670568
iter  50 value 84.506497
iter  60 value 84.232435
final  value 84.220921 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.011422 
iter  10 value 94.484975
iter  20 value 92.298946
iter  30 value 86.668622
iter  40 value 84.275311
iter  50 value 82.323870
iter  60 value 80.897202
iter  70 value 80.745064
iter  80 value 80.673866
final  value 80.673837 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.589478 
iter  10 value 94.280304
iter  20 value 94.184465
iter  30 value 94.183344
iter  40 value 94.181179
final  value 94.181159 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.998359 
iter  10 value 94.488287
iter  20 value 90.317862
iter  30 value 88.718304
iter  40 value 86.587256
iter  50 value 86.450580
iter  60 value 86.414924
iter  70 value 86.411636
final  value 86.411629 
converged
Fitting Repeat 1 

# weights:  507
initial  value 119.331142 
iter  10 value 94.493189
iter  20 value 94.480430
iter  30 value 87.014588
iter  40 value 86.401924
iter  50 value 86.401893
iter  60 value 86.401371
iter  70 value 83.357292
iter  80 value 82.379802
iter  90 value 81.616919
iter 100 value 80.917866
final  value 80.917866 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.391685 
iter  10 value 94.490397
iter  20 value 94.318753
iter  30 value 92.350416
iter  40 value 92.249919
iter  50 value 88.416548
iter  60 value 88.323285
final  value 88.322677 
converged
Fitting Repeat 3 

# weights:  507
initial  value 107.240335 
iter  10 value 93.434441
iter  20 value 93.355716
iter  30 value 90.546857
iter  40 value 90.482784
iter  50 value 90.082288
iter  60 value 90.076568
iter  70 value 90.074095
iter  80 value 90.073780
iter  90 value 90.056532
iter 100 value 85.589411
final  value 85.589411 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 99.698334 
iter  10 value 94.393777
iter  20 value 94.387306
iter  30 value 94.302519
iter  40 value 90.133579
iter  50 value 90.126843
iter  60 value 90.122781
iter  70 value 89.992361
iter  80 value 89.941776
iter  90 value 89.793192
iter 100 value 89.757643
final  value 89.757643 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 115.263158 
iter  10 value 94.491930
iter  20 value 94.436864
iter  30 value 93.105861
iter  40 value 86.359631
iter  50 value 85.745792
iter  60 value 85.160483
iter  70 value 84.004973
iter  80 value 83.036339
iter  90 value 82.334229
iter 100 value 81.626959
final  value 81.626959 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.618784 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.246403 
iter  10 value 94.314581
final  value 94.312042 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.848492 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.271341 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.945128 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.359913 
final  value 94.484210 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.196712 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.383599 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 108.719177 
final  value 94.088889 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.210878 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.477302 
iter  10 value 94.461539
iter  10 value 94.461538
iter  10 value 94.461538
final  value 94.461538 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.512799 
final  value 94.484210 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.937738 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  507
initial  value 108.939052 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.698848 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.357120 
iter  10 value 94.489438
iter  20 value 94.488562
iter  30 value 94.365439
iter  40 value 94.135177
iter  50 value 93.536404
iter  60 value 87.106647
iter  70 value 86.107093
iter  80 value 85.544414
iter  90 value 85.361728
iter 100 value 85.329574
final  value 85.329574 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 101.208390 
iter  10 value 94.476717
iter  20 value 94.096077
iter  30 value 93.131788
iter  40 value 91.667888
iter  50 value 91.144122
iter  60 value 90.862545
iter  70 value 82.659843
iter  80 value 81.893395
iter  90 value 80.997958
iter 100 value 80.714789
final  value 80.714789 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.099397 
iter  10 value 94.486629
iter  20 value 94.198276
iter  30 value 94.094663
iter  40 value 94.093604
iter  50 value 94.093471
iter  60 value 92.947322
iter  70 value 86.111982
iter  80 value 83.701653
iter  90 value 83.451132
iter 100 value 83.214389
final  value 83.214389 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 100.160568 
iter  10 value 94.459443
iter  20 value 93.980797
iter  30 value 92.917919
iter  40 value 92.795423
iter  50 value 84.538885
iter  60 value 82.490748
iter  70 value 81.705067
iter  80 value 81.329969
iter  90 value 81.159936
iter 100 value 80.820187
final  value 80.820187 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 105.737698 
iter  10 value 94.486710
iter  20 value 94.398645
iter  30 value 91.056971
iter  40 value 87.672671
iter  50 value 83.630819
iter  60 value 83.216575
iter  70 value 82.327707
iter  80 value 81.644601
iter  90 value 80.671337
iter 100 value 80.653776
final  value 80.653776 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 127.722480 
iter  10 value 94.286644
iter  20 value 92.470603
iter  30 value 92.213033
iter  40 value 89.582562
iter  50 value 83.170021
iter  60 value 82.409707
iter  70 value 82.332401
iter  80 value 82.196440
iter  90 value 81.751039
iter 100 value 81.496016
final  value 81.496016 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 107.563675 
iter  10 value 94.688151
iter  20 value 88.476076
iter  30 value 85.301749
iter  40 value 83.802654
iter  50 value 83.353661
iter  60 value 81.992350
iter  70 value 81.551911
iter  80 value 81.165058
iter  90 value 80.654936
iter 100 value 80.511328
final  value 80.511328 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 114.611372 
iter  10 value 94.498504
iter  20 value 94.287161
iter  30 value 90.646643
iter  40 value 87.224549
iter  50 value 85.809523
iter  60 value 85.017015
iter  70 value 84.847667
iter  80 value 84.826171
iter  90 value 84.802633
iter 100 value 84.222839
final  value 84.222839 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.588445 
iter  10 value 94.697295
iter  20 value 94.508892
iter  30 value 94.130571
iter  40 value 91.317416
iter  50 value 90.166404
iter  60 value 88.830379
iter  70 value 83.959070
iter  80 value 83.569975
iter  90 value 82.961141
iter 100 value 82.386040
final  value 82.386040 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.136773 
iter  10 value 94.240879
iter  20 value 88.802160
iter  30 value 87.220161
iter  40 value 86.710005
iter  50 value 85.574683
iter  60 value 85.425552
iter  70 value 84.064831
iter  80 value 81.646213
iter  90 value 80.660759
iter 100 value 80.339377
final  value 80.339377 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 100.307645 
iter  10 value 88.164546
iter  20 value 84.982121
iter  30 value 80.027621
iter  40 value 79.756385
iter  50 value 79.545379
iter  60 value 79.375779
iter  70 value 79.087714
iter  80 value 78.992920
iter  90 value 78.965805
iter 100 value 78.892277
final  value 78.892277 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.047337 
iter  10 value 94.679739
iter  20 value 93.774968
iter  30 value 88.514893
iter  40 value 88.045472
iter  50 value 84.924259
iter  60 value 83.940253
iter  70 value 82.990241
iter  80 value 82.029092
iter  90 value 81.317006
iter 100 value 80.398440
final  value 80.398440 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 125.135627 
iter  10 value 94.911813
iter  20 value 94.521726
iter  30 value 94.129693
iter  40 value 87.241415
iter  50 value 86.475746
iter  60 value 85.307802
iter  70 value 82.946408
iter  80 value 82.457951
iter  90 value 82.085996
iter 100 value 81.519900
final  value 81.519900 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.071605 
iter  10 value 94.890975
iter  20 value 93.382016
iter  30 value 92.336515
iter  40 value 90.639286
iter  50 value 85.170312
iter  60 value 83.302486
iter  70 value 82.877668
iter  80 value 82.292636
iter  90 value 81.622678
iter 100 value 81.040633
final  value 81.040633 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.483645 
iter  10 value 96.521347
iter  20 value 90.516972
iter  30 value 87.676120
iter  40 value 86.849487
iter  50 value 85.669415
iter  60 value 85.108225
iter  70 value 82.562386
iter  80 value 81.834709
iter  90 value 80.932281
iter 100 value 80.517185
final  value 80.517185 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.596405 
iter  10 value 94.485593
iter  20 value 94.484226
iter  30 value 88.817298
iter  40 value 87.264866
iter  50 value 87.259953
iter  60 value 86.144822
iter  70 value 86.084052
iter  80 value 85.838014
iter  90 value 85.607336
iter 100 value 85.606154
final  value 85.606154 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 95.953455 
final  value 94.486051 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.266828 
final  value 94.485646 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.683909 
iter  10 value 94.468682
iter  20 value 94.418835
iter  30 value 93.223700
iter  40 value 93.171451
iter  50 value 93.171114
iter  50 value 93.171113
iter  50 value 93.171113
final  value 93.171113 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.628762 
final  value 94.321712 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.170286 
iter  10 value 94.488869
iter  20 value 94.475102
iter  30 value 94.133219
iter  40 value 94.057786
final  value 94.057680 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.938258 
iter  10 value 94.393612
iter  20 value 87.914995
iter  30 value 87.726161
iter  40 value 87.555492
iter  50 value 85.506759
iter  60 value 84.045875
iter  70 value 81.166913
iter  80 value 80.676028
iter  90 value 80.650202
final  value 80.650094 
converged
Fitting Repeat 3 

# weights:  305
initial  value 109.939448 
iter  10 value 94.488987
iter  20 value 93.887085
iter  30 value 86.948308
iter  40 value 86.105172
iter  50 value 85.059582
iter  60 value 85.051773
iter  70 value 85.018012
iter  80 value 84.672286
iter  90 value 84.629249
iter 100 value 83.514284
final  value 83.514284 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.779568 
iter  10 value 94.118576
iter  20 value 94.116944
iter  30 value 94.093209
iter  40 value 94.092502
iter  50 value 94.092317
iter  60 value 93.926284
iter  70 value 93.920406
iter  70 value 93.920406
final  value 93.920406 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.242168 
iter  10 value 94.488635
final  value 94.484213 
converged
Fitting Repeat 1 

# weights:  507
initial  value 117.467082 
iter  10 value 94.493051
final  value 94.492251 
converged
Fitting Repeat 2 

# weights:  507
initial  value 103.946982 
iter  10 value 94.314183
iter  10 value 94.314182
final  value 94.314182 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.434885 
iter  10 value 94.494321
iter  20 value 94.287824
iter  30 value 88.349754
iter  40 value 88.344801
iter  50 value 85.963670
final  value 85.783645 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.230133 
iter  10 value 94.269733
iter  20 value 94.268869
iter  30 value 94.263214
final  value 94.263196 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.372233 
iter  10 value 90.470877
iter  20 value 89.547354
iter  30 value 89.132445
iter  40 value 88.931180
iter  50 value 87.503152
iter  60 value 84.998402
iter  70 value 84.475032
iter  80 value 84.393324
final  value 84.393040 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.779437 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.862735 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 108.871006 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.782037 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.982561 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.569680 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 113.015484 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.921439 
final  value 93.836065 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.980204 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 94.930230 
iter  10 value 82.016373
iter  20 value 81.991611
final  value 81.991354 
converged
Fitting Repeat 1 

# weights:  507
initial  value 110.248397 
iter  10 value 93.327629
iter  20 value 87.573008
iter  30 value 86.501582
iter  40 value 86.452885
iter  50 value 86.445550
final  value 86.445549 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.118866 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.300883 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 118.124589 
iter  10 value 93.433812
final  value 93.433810 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.705476 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.570576 
iter  10 value 94.069982
iter  20 value 92.932285
iter  30 value 86.345144
iter  40 value 84.774550
iter  50 value 84.628365
iter  60 value 82.322175
iter  70 value 81.954339
iter  80 value 81.631419
iter  90 value 81.591695
iter 100 value 81.588588
final  value 81.588588 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 99.037919 
iter  10 value 94.058955
iter  20 value 93.959765
iter  30 value 93.892441
iter  40 value 93.891713
iter  50 value 93.890946
iter  60 value 93.771248
iter  70 value 84.018008
iter  80 value 81.401998
iter  90 value 80.901761
iter 100 value 79.560664
final  value 79.560664 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 96.377102 
iter  10 value 93.962637
iter  20 value 93.337402
iter  30 value 93.303087
iter  40 value 89.010401
iter  50 value 85.813021
iter  60 value 85.518482
iter  70 value 82.043537
iter  80 value 81.598849
iter  90 value 81.588593
final  value 81.588587 
converged
Fitting Repeat 4 

# weights:  103
initial  value 109.105756 
iter  10 value 94.056697
iter  20 value 80.767362
iter  30 value 80.245354
iter  40 value 79.817219
iter  50 value 79.513328
final  value 79.512218 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.748851 
iter  10 value 93.423863
iter  20 value 83.816273
iter  30 value 82.550894
iter  40 value 80.710784
iter  50 value 80.337323
iter  60 value 79.779643
iter  70 value 79.344102
iter  80 value 79.273752
iter  90 value 79.242339
final  value 79.239839 
converged
Fitting Repeat 1 

# weights:  305
initial  value 125.484259 
iter  10 value 96.188344
iter  20 value 93.739448
iter  30 value 89.953862
iter  40 value 89.823236
iter  50 value 86.623552
iter  60 value 83.389833
iter  70 value 82.242223
iter  80 value 81.068720
iter  90 value 80.448444
iter 100 value 78.544222
final  value 78.544222 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.520403 
iter  10 value 94.354438
iter  20 value 84.947572
iter  30 value 80.636537
iter  40 value 80.200159
iter  50 value 80.073439
iter  60 value 79.737122
iter  70 value 79.075063
iter  80 value 78.847575
iter  90 value 78.645237
iter 100 value 78.203367
final  value 78.203367 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.116216 
iter  10 value 94.123249
iter  20 value 94.009209
iter  30 value 83.919325
iter  40 value 81.681179
iter  50 value 81.049161
iter  60 value 80.698137
iter  70 value 80.496742
iter  80 value 79.683346
iter  90 value 78.722345
iter 100 value 77.863594
final  value 77.863594 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 103.746792 
iter  10 value 86.429878
iter  20 value 82.341585
iter  30 value 79.570720
iter  40 value 77.253088
iter  50 value 77.063543
final  value 77.038764 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.431346 
iter  10 value 93.967408
iter  20 value 86.627591
iter  30 value 81.649328
iter  40 value 80.540343
iter  50 value 78.535645
iter  60 value 77.330690
iter  70 value 77.218783
iter  80 value 77.120027
iter  90 value 77.085365
iter 100 value 77.074722
final  value 77.074722 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 122.971886 
iter  10 value 94.089602
iter  20 value 93.980463
iter  30 value 91.882409
iter  40 value 84.678899
iter  50 value 80.549872
iter  60 value 79.333493
iter  70 value 78.753007
iter  80 value 78.158080
iter  90 value 77.458211
iter 100 value 77.151138
final  value 77.151138 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.199037 
iter  10 value 94.135011
iter  20 value 86.577328
iter  30 value 82.962737
iter  40 value 82.233761
iter  50 value 80.493370
iter  60 value 79.688180
iter  70 value 79.249113
iter  80 value 79.018262
iter  90 value 78.835626
iter 100 value 78.418075
final  value 78.418075 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.310335 
iter  10 value 92.039631
iter  20 value 83.027661
iter  30 value 81.464294
iter  40 value 78.361459
iter  50 value 77.570607
iter  60 value 77.272405
iter  70 value 77.030939
iter  80 value 76.827027
iter  90 value 76.505326
iter 100 value 76.451376
final  value 76.451376 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 106.029388 
iter  10 value 94.421933
iter  20 value 93.573525
iter  30 value 87.486912
iter  40 value 85.992944
iter  50 value 83.072218
iter  60 value 81.593782
iter  70 value 80.208773
iter  80 value 79.952137
iter  90 value 79.238014
iter 100 value 78.475139
final  value 78.475139 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.628391 
iter  10 value 93.991826
iter  20 value 84.772987
iter  30 value 82.310340
iter  40 value 77.988054
iter  50 value 77.291114
iter  60 value 76.927908
iter  70 value 76.647181
iter  80 value 76.334401
iter  90 value 76.220675
iter 100 value 76.145161
final  value 76.145161 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 107.113798 
final  value 94.054559 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.998230 
final  value 94.007700 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.717759 
iter  10 value 89.383793
iter  20 value 87.168396
iter  30 value 86.946539
iter  40 value 86.943277
final  value 86.943266 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.004356 
final  value 94.054440 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.618749 
iter  10 value 93.837594
iter  20 value 93.754089
iter  30 value 90.572283
iter  40 value 90.459242
iter  40 value 90.459241
iter  40 value 90.459241
final  value 90.459241 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.366606 
iter  10 value 94.057544
iter  20 value 94.052953
iter  30 value 81.451894
iter  40 value 81.140860
iter  50 value 80.920416
iter  60 value 80.919723
iter  70 value 79.895199
iter  80 value 79.761511
final  value 79.761306 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.117815 
iter  10 value 93.841046
iter  20 value 93.836231
final  value 93.836220 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.163821 
iter  10 value 93.841383
iter  20 value 93.838198
iter  30 value 93.837305
final  value 93.837291 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.108724 
iter  10 value 93.840834
iter  20 value 93.836274
iter  30 value 84.785984
iter  40 value 81.592052
iter  50 value 81.314538
iter  60 value 81.175032
iter  70 value 81.012004
iter  80 value 81.011436
iter  90 value 79.640664
iter 100 value 79.615923
final  value 79.615923 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.819451 
iter  10 value 94.057887
iter  20 value 93.972731
iter  30 value 91.994338
iter  40 value 88.721821
iter  50 value 88.597582
iter  60 value 88.593427
iter  70 value 88.552089
iter  80 value 81.445038
iter  90 value 81.292916
iter 100 value 79.564515
final  value 79.564515 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 106.542355 
iter  10 value 93.847860
iter  20 value 93.839629
iter  30 value 93.839091
iter  30 value 93.839091
iter  30 value 93.839091
final  value 93.839091 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.805664 
iter  10 value 93.844689
iter  20 value 93.837173
iter  30 value 93.282910
iter  40 value 92.137227
final  value 92.137164 
converged
Fitting Repeat 3 

# weights:  507
initial  value 105.765346 
iter  10 value 94.060766
iter  20 value 88.789724
iter  30 value 82.135504
iter  40 value 79.588828
iter  50 value 77.656194
iter  60 value 75.972080
iter  70 value 75.758745
iter  80 value 75.742776
iter  90 value 75.742483
iter 100 value 75.566916
final  value 75.566916 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 106.282725 
iter  10 value 94.014353
iter  20 value 92.387749
iter  30 value 89.178436
iter  40 value 88.883492
iter  50 value 88.883124
final  value 88.882889 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.998516 
iter  10 value 94.061315
iter  20 value 89.397594
iter  30 value 82.584727
iter  40 value 82.549901
iter  50 value 79.803352
iter  60 value 79.735632
iter  70 value 79.605746
iter  80 value 78.925804
iter  90 value 76.743128
iter 100 value 76.491121
final  value 76.491121 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 133.298424 
iter  10 value 117.900553
iter  20 value 117.872632
iter  30 value 110.558865
iter  40 value 108.168289
iter  50 value 107.366044
iter  60 value 106.673654
iter  70 value 106.653435
iter  80 value 106.483310
iter  90 value 105.462552
iter 100 value 105.290583
final  value 105.290583 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 128.541099 
iter  10 value 117.767451
iter  20 value 117.765579
iter  30 value 117.697370
iter  40 value 117.516505
iter  50 value 117.511780
final  value 117.511768 
converged
Fitting Repeat 3 

# weights:  507
initial  value 126.445053 
iter  10 value 117.714214
iter  20 value 107.624320
iter  30 value 107.250897
iter  40 value 107.247819
iter  50 value 107.244056
iter  60 value 107.129880
iter  70 value 106.813191
iter  80 value 106.810547
iter  90 value 106.809249
iter 100 value 106.232993
final  value 106.232993 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 132.423639 
iter  10 value 117.214168
iter  20 value 115.039723
iter  30 value 114.924149
iter  40 value 108.718788
iter  50 value 108.387358
iter  60 value 108.381390
iter  70 value 108.380142
iter  80 value 108.352178
iter  90 value 107.184746
iter 100 value 104.851695
final  value 104.851695 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 190.632955 
iter  10 value 108.968773
iter  20 value 108.535546
iter  30 value 108.446475
iter  40 value 107.201117
iter  50 value 107.185637
iter  60 value 107.151321
iter  70 value 107.050162
final  value 107.047031 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Wed Jan 21 00:35:49 2026 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 41.783   1.961  98.327 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod33.046 0.63633.683
FreqInteractors0.4290.0290.461
calculateAAC0.0330.0000.033
calculateAutocor0.2700.0190.290
calculateCTDC0.0770.0000.077
calculateCTDD0.4680.0000.468
calculateCTDT0.1470.0010.150
calculateCTriad0.4170.0070.424
calculateDC0.0880.0060.095
calculateF0.2980.0010.300
calculateKSAAP0.0960.0060.103
calculateQD_Sm1.8090.0271.836
calculateTC1.4800.1441.624
calculateTC_Sm0.2870.0040.291
corr_plot34.640 0.60335.244
enrichfindP 0.562 0.04912.146
enrichfind_hp0.0420.0012.015
enrichplot0.4930.0030.495
filter_missing_values0.0010.0000.001
getFASTA0.5010.0123.462
getHPI0.0000.0000.001
get_negativePPI0.0010.0010.001
get_positivePPI000
impute_missing_data0.0010.0010.002
plotPPI0.0820.0120.094
pred_ensembel13.188 0.36012.238
var_imp34.503 0.67635.236