| Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-04-02 19:35 -0400 (Wed, 02 Apr 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4764 |
| palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4495 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4522 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4449 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4426 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
| Package: HPiP |
| Version: 1.12.0 |
| Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz |
| StartedAt: 2025-04-01 07:24:24 -0000 (Tue, 01 Apr 2025) |
| EndedAt: 2025-04-01 07:32:04 -0000 (Tue, 01 Apr 2025) |
| EllapsedTime: 460.4 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 34.302 0.420 34.770
corr_plot 33.933 0.235 34.227
FSmethod 33.668 0.351 34.085
pred_ensembel 17.478 0.633 16.902
enrichfindP 0.466 0.048 20.251
getFASTA 0.130 0.004 5.829
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.4.3/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 94.658152
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.900503
final value 94.466823
converged
Fitting Repeat 3
# weights: 103
initial value 101.964828
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 106.724659
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 104.557261
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 120.795888
iter 10 value 93.216798
final value 93.216667
converged
Fitting Repeat 2
# weights: 305
initial value 103.396639
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 98.105474
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 110.800163
final value 94.466823
converged
Fitting Repeat 5
# weights: 305
initial value 96.559368
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 108.999708
iter 10 value 94.478287
iter 10 value 94.478287
iter 10 value 94.478287
final value 94.478287
converged
Fitting Repeat 2
# weights: 507
initial value 115.891845
final value 94.476191
converged
Fitting Repeat 3
# weights: 507
initial value 112.633583
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 96.514774
final value 94.409363
converged
Fitting Repeat 5
# weights: 507
initial value 106.626449
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 104.015973
iter 10 value 94.481863
iter 20 value 94.385333
iter 30 value 94.379535
iter 40 value 90.971830
iter 50 value 90.865141
iter 60 value 90.152736
iter 70 value 90.074660
iter 80 value 86.539127
iter 90 value 86.167476
iter 100 value 86.050263
final value 86.050263
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.898522
iter 10 value 93.586302
iter 20 value 88.116501
iter 30 value 87.909212
iter 40 value 86.899281
iter 50 value 86.601415
iter 60 value 86.568892
final value 86.560299
converged
Fitting Repeat 3
# weights: 103
initial value 112.414701
iter 10 value 94.331660
iter 20 value 87.870672
iter 30 value 86.558883
iter 40 value 85.991829
iter 50 value 85.773285
iter 60 value 85.612620
iter 70 value 85.570332
final value 85.558613
converged
Fitting Repeat 4
# weights: 103
initial value 100.044707
iter 10 value 94.486769
iter 20 value 92.959461
iter 30 value 91.563102
iter 40 value 91.171160
iter 50 value 91.160050
final value 91.160046
converged
Fitting Repeat 5
# weights: 103
initial value 105.543970
iter 10 value 94.488529
iter 20 value 94.430441
iter 30 value 94.397421
iter 40 value 89.155588
iter 50 value 86.913758
iter 60 value 85.622368
iter 70 value 85.338837
iter 80 value 85.175221
iter 90 value 85.098662
iter 100 value 85.071500
final value 85.071500
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 115.564836
iter 10 value 94.496587
iter 20 value 94.476282
iter 30 value 93.172594
iter 40 value 88.905850
iter 50 value 88.094722
iter 60 value 87.632651
iter 70 value 85.588679
iter 80 value 83.555455
iter 90 value 83.340779
iter 100 value 83.241633
final value 83.241633
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 121.393076
iter 10 value 94.480094
iter 20 value 93.391147
iter 30 value 91.109155
iter 40 value 89.243189
iter 50 value 87.680710
iter 60 value 87.045677
iter 70 value 86.524065
iter 80 value 84.452317
iter 90 value 83.013864
iter 100 value 82.835422
final value 82.835422
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.322664
iter 10 value 94.295576
iter 20 value 88.782104
iter 30 value 88.133335
iter 40 value 88.013859
iter 50 value 87.885873
iter 60 value 86.969612
iter 70 value 85.452244
iter 80 value 84.549955
iter 90 value 84.175791
iter 100 value 83.730442
final value 83.730442
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.780176
iter 10 value 96.631439
iter 20 value 90.339163
iter 30 value 88.964829
iter 40 value 88.181854
iter 50 value 86.512795
iter 60 value 84.085669
iter 70 value 83.878421
iter 80 value 83.636269
iter 90 value 83.599122
iter 100 value 83.474100
final value 83.474100
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.533631
iter 10 value 94.535653
iter 20 value 90.676662
iter 30 value 88.240535
iter 40 value 87.913344
iter 50 value 87.802322
iter 60 value 86.771819
iter 70 value 85.473990
iter 80 value 84.558170
iter 90 value 83.153668
iter 100 value 82.614368
final value 82.614368
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 127.685195
iter 10 value 94.915704
iter 20 value 94.602911
iter 30 value 92.714091
iter 40 value 89.479962
iter 50 value 86.834647
iter 60 value 85.607474
iter 70 value 84.888814
iter 80 value 84.355936
iter 90 value 84.226810
iter 100 value 83.871784
final value 83.871784
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 122.132583
iter 10 value 94.385720
iter 20 value 91.866531
iter 30 value 91.059604
iter 40 value 90.011621
iter 50 value 89.635006
iter 60 value 85.559815
iter 70 value 84.986423
iter 80 value 84.719775
iter 90 value 84.242266
iter 100 value 83.973160
final value 83.973160
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.280855
iter 10 value 94.095110
iter 20 value 88.925371
iter 30 value 85.202450
iter 40 value 83.849412
iter 50 value 83.296175
iter 60 value 82.943276
iter 70 value 82.721129
iter 80 value 82.525680
iter 90 value 82.253484
iter 100 value 82.115748
final value 82.115748
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.133163
iter 10 value 94.524833
iter 20 value 93.822579
iter 30 value 86.294770
iter 40 value 84.852585
iter 50 value 83.822187
iter 60 value 82.472047
iter 70 value 82.297864
iter 80 value 82.258491
iter 90 value 82.119934
iter 100 value 81.957703
final value 81.957703
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.955525
iter 10 value 95.239918
iter 20 value 85.948321
iter 30 value 85.242602
iter 40 value 84.736383
iter 50 value 84.133556
iter 60 value 83.027336
iter 70 value 82.623948
iter 80 value 82.458000
iter 90 value 82.213718
iter 100 value 82.063734
final value 82.063734
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.760289
final value 94.485782
converged
Fitting Repeat 2
# weights: 103
initial value 94.494319
final value 94.485978
converged
Fitting Repeat 3
# weights: 103
initial value 96.992724
final value 94.485794
converged
Fitting Repeat 4
# weights: 103
initial value 97.312641
final value 94.468340
converged
Fitting Repeat 5
# weights: 103
initial value 94.664779
final value 94.485741
converged
Fitting Repeat 1
# weights: 305
initial value 95.426571
iter 10 value 94.487428
iter 20 value 94.459986
iter 30 value 91.857166
iter 40 value 91.570942
iter 50 value 91.569574
final value 91.569572
converged
Fitting Repeat 2
# weights: 305
initial value 97.205665
iter 10 value 94.488855
iter 20 value 94.484232
final value 94.484215
converged
Fitting Repeat 3
# weights: 305
initial value 97.709699
iter 10 value 94.471734
iter 20 value 94.467693
final value 94.467003
converged
Fitting Repeat 4
# weights: 305
initial value 96.232845
iter 10 value 94.098454
iter 20 value 93.440724
iter 30 value 93.439996
iter 40 value 93.439737
final value 93.439606
converged
Fitting Repeat 5
# weights: 305
initial value 94.735397
iter 10 value 93.127588
iter 20 value 93.039395
iter 30 value 93.026888
iter 40 value 92.163744
iter 50 value 90.225772
final value 90.217431
converged
Fitting Repeat 1
# weights: 507
initial value 110.915988
iter 10 value 93.224337
iter 20 value 93.108920
iter 30 value 90.304379
final value 90.302197
converged
Fitting Repeat 2
# weights: 507
initial value 94.841024
iter 10 value 93.267266
iter 20 value 88.780840
iter 30 value 87.646297
iter 40 value 87.277744
iter 50 value 85.059533
iter 60 value 84.094774
iter 70 value 84.012737
final value 84.012234
converged
Fitting Repeat 3
# weights: 507
initial value 96.288905
iter 10 value 94.475059
iter 20 value 94.389707
iter 30 value 90.700474
iter 40 value 88.131655
iter 50 value 87.878993
iter 60 value 87.878364
final value 87.878271
converged
Fitting Repeat 4
# weights: 507
initial value 104.663554
iter 10 value 94.492495
iter 20 value 94.484280
iter 30 value 94.355308
iter 40 value 87.510987
iter 50 value 87.395250
final value 87.395133
converged
Fitting Repeat 5
# weights: 507
initial value 113.893340
iter 10 value 94.475051
iter 20 value 90.566286
iter 30 value 84.599794
iter 40 value 84.596686
iter 50 value 84.338427
iter 60 value 82.547749
iter 70 value 82.518224
iter 80 value 82.516132
iter 90 value 82.508788
iter 100 value 82.499374
final value 82.499374
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.610729
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.132089
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 96.220644
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 96.684031
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 102.292200
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 107.336132
iter 10 value 94.034464
final value 94.032967
converged
Fitting Repeat 2
# weights: 305
initial value 117.521085
final value 94.032967
converged
Fitting Repeat 3
# weights: 305
initial value 94.486401
iter 10 value 93.332537
final value 93.332520
converged
Fitting Repeat 4
# weights: 305
initial value 105.627740
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 95.271294
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 97.716567
final value 94.042012
converged
Fitting Repeat 2
# weights: 507
initial value 102.397919
iter 10 value 88.072077
iter 20 value 87.986630
iter 30 value 87.978544
final value 87.976152
converged
Fitting Repeat 3
# weights: 507
initial value 97.388397
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 97.436932
iter 10 value 93.273022
iter 20 value 92.843022
iter 30 value 92.478943
iter 40 value 92.474744
final value 92.474741
converged
Fitting Repeat 5
# weights: 507
initial value 95.097131
iter 10 value 94.081537
iter 20 value 87.385808
iter 30 value 86.910900
iter 40 value 86.886765
iter 50 value 86.875054
final value 86.874985
converged
Fitting Repeat 1
# weights: 103
initial value 105.464241
iter 10 value 93.896934
iter 20 value 93.737346
iter 30 value 93.574667
iter 40 value 93.512688
iter 50 value 93.265125
iter 60 value 85.304672
iter 70 value 84.465771
iter 80 value 82.233133
iter 90 value 81.605007
iter 100 value 81.528135
final value 81.528135
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.527054
iter 10 value 93.577339
iter 20 value 85.873017
iter 30 value 85.538034
iter 40 value 83.833863
iter 50 value 83.429805
iter 60 value 83.271898
final value 83.267263
converged
Fitting Repeat 3
# weights: 103
initial value 97.677645
iter 10 value 94.124575
iter 20 value 94.055766
iter 30 value 93.884831
iter 40 value 93.665085
iter 50 value 89.888975
iter 60 value 86.958857
iter 70 value 84.966162
iter 80 value 84.176821
iter 90 value 83.412234
iter 100 value 83.131784
final value 83.131784
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.581241
iter 10 value 94.056651
iter 20 value 84.902096
iter 30 value 84.594810
iter 40 value 84.203379
iter 50 value 83.939174
iter 60 value 83.789951
iter 70 value 83.731255
final value 83.726948
converged
Fitting Repeat 5
# weights: 103
initial value 97.711595
iter 10 value 94.056727
iter 20 value 89.274371
iter 30 value 85.276895
iter 40 value 83.889860
iter 50 value 83.629801
iter 60 value 83.462586
iter 70 value 83.141947
iter 80 value 83.028724
iter 80 value 83.028724
iter 80 value 83.028724
final value 83.028724
converged
Fitting Repeat 1
# weights: 305
initial value 143.313684
iter 10 value 93.983536
iter 20 value 88.139983
iter 30 value 84.743147
iter 40 value 83.966198
iter 50 value 81.205226
iter 60 value 80.755611
iter 70 value 80.511917
iter 80 value 80.359879
iter 90 value 79.951232
iter 100 value 79.703525
final value 79.703525
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 113.240111
iter 10 value 94.237678
iter 20 value 92.747339
iter 30 value 91.081757
iter 40 value 86.946475
iter 50 value 85.896517
iter 60 value 83.598115
iter 70 value 81.525178
iter 80 value 81.039819
iter 90 value 80.426054
iter 100 value 80.281980
final value 80.281980
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.185921
iter 10 value 93.552718
iter 20 value 86.991374
iter 30 value 85.282806
iter 40 value 83.014412
iter 50 value 82.030668
iter 60 value 81.977640
iter 70 value 81.136582
iter 80 value 80.183675
iter 90 value 79.752908
iter 100 value 79.574636
final value 79.574636
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 130.236794
iter 10 value 94.055289
iter 20 value 89.329873
iter 30 value 84.521880
iter 40 value 83.017553
iter 50 value 81.770140
iter 60 value 81.442253
iter 70 value 80.929421
iter 80 value 80.480580
iter 90 value 80.321153
iter 100 value 80.118521
final value 80.118521
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.097834
iter 10 value 94.080324
iter 20 value 93.935357
iter 30 value 93.553428
iter 40 value 93.437581
iter 50 value 90.816760
iter 60 value 83.473511
iter 70 value 82.544622
iter 80 value 80.373821
iter 90 value 80.242209
iter 100 value 80.192820
final value 80.192820
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 118.587605
iter 10 value 94.188779
iter 20 value 93.483775
iter 30 value 88.043131
iter 40 value 86.288803
iter 50 value 85.721258
iter 60 value 85.317989
iter 70 value 84.037137
iter 80 value 82.498330
iter 90 value 81.129432
iter 100 value 80.610746
final value 80.610746
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.863679
iter 10 value 86.814598
iter 20 value 84.070473
iter 30 value 83.647434
iter 40 value 82.438254
iter 50 value 82.111036
iter 60 value 81.730962
iter 70 value 81.580958
iter 80 value 81.559960
iter 90 value 81.468508
iter 100 value 81.274390
final value 81.274390
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.077555
iter 10 value 93.976608
iter 20 value 93.225738
iter 30 value 86.434257
iter 40 value 84.942721
iter 50 value 83.436949
iter 60 value 81.598550
iter 70 value 80.100188
iter 80 value 79.664876
iter 90 value 79.332318
iter 100 value 79.146149
final value 79.146149
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.632009
iter 10 value 93.914972
iter 20 value 90.418308
iter 30 value 85.011895
iter 40 value 83.264864
iter 50 value 81.551299
iter 60 value 79.945047
iter 70 value 79.412307
iter 80 value 79.357895
iter 90 value 79.184122
iter 100 value 79.055406
final value 79.055406
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.139273
iter 10 value 93.871044
iter 20 value 90.659516
iter 30 value 84.663117
iter 40 value 83.743650
iter 50 value 82.279487
iter 60 value 81.987406
iter 70 value 81.579572
iter 80 value 81.361985
iter 90 value 81.318807
iter 100 value 81.290165
final value 81.290165
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.375599
iter 10 value 94.054746
iter 20 value 94.051747
iter 30 value 93.749987
final value 93.747063
converged
Fitting Repeat 2
# weights: 103
initial value 99.048805
final value 94.054256
converged
Fitting Repeat 3
# weights: 103
initial value 103.467264
final value 94.054513
converged
Fitting Repeat 4
# weights: 103
initial value 99.376905
iter 10 value 92.334091
iter 20 value 92.333505
iter 30 value 92.332990
iter 40 value 92.332767
iter 50 value 92.212498
final value 92.208027
converged
Fitting Repeat 5
# weights: 103
initial value 95.430194
final value 94.054565
converged
Fitting Repeat 1
# weights: 305
initial value 95.477248
iter 10 value 94.054348
iter 20 value 93.295902
iter 30 value 90.073948
iter 40 value 84.368910
iter 50 value 83.462182
iter 60 value 83.241410
iter 70 value 83.240989
iter 80 value 83.150489
iter 90 value 80.650298
iter 100 value 80.648790
final value 80.648790
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.252761
iter 10 value 92.472407
iter 20 value 92.393806
iter 30 value 92.393511
iter 40 value 91.868584
iter 50 value 91.783067
iter 60 value 91.782602
iter 70 value 91.782006
iter 80 value 90.384832
iter 90 value 85.121742
iter 100 value 80.632985
final value 80.632985
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.979003
iter 10 value 89.799170
iter 20 value 82.061247
iter 30 value 81.834649
iter 40 value 81.834310
iter 50 value 81.335776
iter 60 value 81.292744
iter 70 value 81.211621
iter 80 value 81.122808
iter 90 value 81.071309
iter 100 value 81.037403
final value 81.037403
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 97.348212
iter 10 value 93.584720
iter 20 value 91.340462
iter 30 value 85.170016
iter 40 value 83.885810
iter 50 value 83.723739
iter 60 value 83.694582
iter 70 value 83.693750
iter 80 value 83.693682
iter 90 value 83.673511
iter 100 value 83.604142
final value 83.604142
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.739288
iter 10 value 94.058118
iter 20 value 85.361620
iter 30 value 85.323311
iter 40 value 85.285713
iter 50 value 85.121442
iter 60 value 81.260450
iter 70 value 80.619294
iter 80 value 79.961666
iter 90 value 79.960401
iter 100 value 79.960036
final value 79.960036
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 99.922194
iter 10 value 93.553800
iter 20 value 93.456683
iter 30 value 93.338108
iter 40 value 92.642719
iter 50 value 91.580924
iter 60 value 91.536557
iter 70 value 91.530437
iter 80 value 91.529120
final value 91.528797
converged
Fitting Repeat 2
# weights: 507
initial value 100.515116
iter 10 value 94.061013
iter 20 value 93.470155
iter 30 value 92.845407
final value 92.844011
converged
Fitting Repeat 3
# weights: 507
initial value 129.930866
iter 10 value 94.042320
iter 20 value 93.831780
iter 30 value 90.741272
iter 40 value 87.620772
iter 50 value 87.617319
iter 60 value 87.615655
iter 70 value 87.604374
iter 80 value 86.918625
iter 90 value 83.071724
iter 100 value 82.312651
final value 82.312651
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 94.061690
iter 10 value 85.352533
iter 20 value 85.232891
iter 30 value 85.227474
iter 40 value 84.085595
iter 50 value 83.967097
iter 60 value 83.838550
iter 70 value 83.463409
iter 80 value 83.046551
iter 90 value 83.044776
iter 100 value 83.043307
final value 83.043307
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.544610
iter 10 value 94.041609
iter 20 value 94.012184
iter 30 value 89.767812
iter 40 value 88.417046
iter 50 value 88.392948
iter 60 value 86.848505
iter 70 value 81.798036
iter 80 value 80.689170
iter 90 value 79.039622
iter 100 value 78.639308
final value 78.639308
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.171661
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 103.932448
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.580876
iter 10 value 92.211113
final value 92.211111
converged
Fitting Repeat 4
# weights: 103
initial value 95.117488
final value 93.915746
converged
Fitting Repeat 5
# weights: 103
initial value 99.113340
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 98.296775
iter 10 value 93.919667
final value 93.915746
converged
Fitting Repeat 2
# weights: 305
initial value 112.252064
final value 93.915746
converged
Fitting Repeat 3
# weights: 305
initial value 116.444600
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 91.144059
iter 10 value 86.163970
final value 86.163858
converged
Fitting Repeat 5
# weights: 305
initial value 97.329906
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 101.386592
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 105.380583
iter 10 value 93.360911
iter 20 value 93.328540
final value 93.328497
converged
Fitting Repeat 3
# weights: 507
initial value 97.106535
iter 10 value 93.937327
final value 93.937249
converged
Fitting Repeat 4
# weights: 507
initial value 110.236631
final value 93.915746
converged
Fitting Repeat 5
# weights: 507
initial value 99.572897
iter 10 value 93.963056
iter 20 value 93.943842
iter 20 value 93.943841
iter 20 value 93.943841
final value 93.943841
converged
Fitting Repeat 1
# weights: 103
initial value 101.442950
iter 10 value 94.013787
iter 20 value 88.491039
iter 30 value 85.276654
iter 40 value 84.762770
iter 50 value 83.877417
iter 60 value 83.749791
iter 70 value 83.748808
final value 83.748766
converged
Fitting Repeat 2
# weights: 103
initial value 100.841974
iter 10 value 94.075491
iter 20 value 87.069380
iter 30 value 86.386272
iter 40 value 85.135180
iter 50 value 83.779001
iter 60 value 83.753436
iter 70 value 83.749126
iter 80 value 83.748766
iter 80 value 83.748766
iter 80 value 83.748766
final value 83.748766
converged
Fitting Repeat 3
# weights: 103
initial value 104.147828
iter 10 value 94.217231
iter 20 value 94.056503
iter 30 value 93.824879
iter 40 value 91.634406
iter 50 value 90.710334
iter 60 value 85.676917
iter 70 value 84.967986
iter 80 value 83.656483
iter 90 value 83.106210
iter 100 value 82.747717
final value 82.747717
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 103.218572
iter 10 value 94.054936
iter 20 value 93.885942
iter 30 value 85.268133
iter 40 value 83.688953
iter 50 value 83.580143
iter 60 value 83.509075
iter 70 value 83.092633
iter 80 value 82.866232
iter 90 value 82.745230
final value 82.745216
converged
Fitting Repeat 5
# weights: 103
initial value 98.835132
iter 10 value 93.962606
iter 20 value 93.801693
iter 30 value 87.266113
iter 40 value 84.951202
iter 50 value 84.933632
iter 60 value 84.925753
iter 70 value 84.147909
iter 80 value 83.911115
iter 90 value 83.767315
iter 100 value 83.757003
final value 83.757003
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 118.890476
iter 10 value 93.314854
iter 20 value 84.023990
iter 30 value 82.848667
iter 40 value 82.021424
iter 50 value 81.788146
iter 60 value 81.743216
iter 70 value 81.700405
iter 80 value 81.678976
iter 90 value 81.568453
iter 100 value 81.516645
final value 81.516645
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.298345
iter 10 value 93.299232
iter 20 value 85.972805
iter 30 value 84.794002
iter 40 value 82.859892
iter 50 value 82.682609
iter 60 value 81.987882
iter 70 value 81.789202
iter 80 value 81.745585
iter 90 value 81.737017
iter 100 value 81.727189
final value 81.727189
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.985258
iter 10 value 94.019678
iter 20 value 84.465737
iter 30 value 84.167998
iter 40 value 83.639323
iter 50 value 83.520244
iter 60 value 83.512521
iter 60 value 83.512520
final value 83.512520
converged
Fitting Repeat 4
# weights: 305
initial value 105.092943
iter 10 value 94.127706
iter 20 value 92.904179
iter 30 value 89.283268
iter 40 value 83.593429
iter 50 value 83.469041
iter 60 value 83.385901
iter 70 value 83.293075
iter 80 value 83.080672
iter 90 value 82.629360
iter 100 value 81.927744
final value 81.927744
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 120.858444
iter 10 value 93.923934
iter 20 value 87.912890
iter 30 value 84.010935
iter 40 value 83.348744
iter 50 value 82.585626
iter 60 value 81.867713
iter 70 value 81.758005
iter 80 value 81.721327
iter 90 value 81.713234
iter 100 value 81.709660
final value 81.709660
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.803564
iter 10 value 94.056207
iter 20 value 90.251625
iter 30 value 87.008897
iter 40 value 85.258648
iter 50 value 83.908539
iter 60 value 83.739803
iter 70 value 83.045208
iter 80 value 82.121123
iter 90 value 81.634293
iter 100 value 81.270137
final value 81.270137
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.895400
iter 10 value 94.153339
iter 20 value 93.164925
iter 30 value 90.370624
iter 40 value 89.750150
iter 50 value 84.567533
iter 60 value 84.160642
iter 70 value 83.665198
iter 80 value 83.540539
iter 90 value 82.501975
iter 100 value 81.981044
final value 81.981044
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 112.664294
iter 10 value 94.098313
iter 20 value 91.114861
iter 30 value 85.043565
iter 40 value 84.575612
iter 50 value 83.028940
iter 60 value 82.643205
iter 70 value 81.872337
iter 80 value 81.571262
iter 90 value 81.406478
iter 100 value 81.150574
final value 81.150574
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.626972
iter 10 value 94.161961
iter 20 value 88.357551
iter 30 value 85.012802
iter 40 value 83.919071
iter 50 value 83.754070
iter 60 value 83.117808
iter 70 value 82.047886
iter 80 value 81.655983
iter 90 value 81.327804
iter 100 value 81.199481
final value 81.199481
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 129.395266
iter 10 value 94.219585
iter 20 value 85.652520
iter 30 value 83.999387
iter 40 value 83.771066
iter 50 value 83.639245
iter 60 value 82.333005
iter 70 value 81.929752
iter 80 value 81.718397
iter 90 value 81.350429
iter 100 value 81.161158
final value 81.161158
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 112.482144
final value 94.054435
converged
Fitting Repeat 2
# weights: 103
initial value 96.490975
final value 94.054481
converged
Fitting Repeat 3
# weights: 103
initial value 97.088152
iter 10 value 93.917406
iter 20 value 93.915882
iter 20 value 93.915881
iter 20 value 93.915881
final value 93.915881
converged
Fitting Repeat 4
# weights: 103
initial value 109.494774
iter 10 value 94.054510
iter 20 value 93.873451
iter 30 value 89.775705
iter 40 value 89.772724
final value 89.772717
converged
Fitting Repeat 5
# weights: 103
initial value 96.548287
iter 10 value 94.054468
iter 20 value 94.052912
iter 30 value 93.546602
iter 40 value 92.217776
iter 50 value 92.214900
final value 92.213682
converged
Fitting Repeat 1
# weights: 305
initial value 107.234457
iter 10 value 94.057854
iter 20 value 94.053150
iter 30 value 92.621727
iter 40 value 83.748061
iter 50 value 83.673426
iter 60 value 83.672855
iter 70 value 83.672635
iter 80 value 83.672029
iter 90 value 83.671002
iter 100 value 83.183725
final value 83.183725
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.263002
iter 10 value 94.058120
iter 20 value 93.923741
iter 30 value 90.235855
final value 89.496184
converged
Fitting Repeat 3
# weights: 305
initial value 94.454012
iter 10 value 94.056044
iter 20 value 94.031761
final value 93.869879
converged
Fitting Repeat 4
# weights: 305
initial value 102.439390
iter 10 value 93.920644
iter 20 value 93.890926
iter 30 value 93.570113
iter 40 value 88.686278
iter 50 value 88.613847
iter 60 value 88.599738
iter 70 value 88.583970
iter 80 value 88.519688
iter 90 value 88.329452
iter 100 value 88.326837
final value 88.326837
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.196430
iter 10 value 94.058018
iter 20 value 92.784600
iter 30 value 91.865063
iter 40 value 85.487264
iter 50 value 84.017834
iter 60 value 83.672299
iter 70 value 83.477807
final value 83.474574
converged
Fitting Repeat 1
# weights: 507
initial value 102.092813
iter 10 value 93.923911
iter 20 value 93.910262
iter 30 value 85.623190
iter 40 value 85.483616
iter 50 value 85.433871
iter 60 value 85.432416
iter 70 value 85.425594
iter 80 value 83.829311
iter 90 value 82.619044
iter 100 value 82.558241
final value 82.558241
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 99.310551
iter 10 value 94.061160
iter 20 value 93.978040
iter 30 value 87.514157
iter 40 value 86.991155
iter 50 value 84.221663
iter 60 value 83.479743
iter 70 value 83.477721
iter 80 value 83.475551
iter 90 value 83.110997
iter 100 value 82.443183
final value 82.443183
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.195728
iter 10 value 94.061485
final value 94.053546
converged
Fitting Repeat 4
# weights: 507
initial value 111.220291
iter 10 value 93.924082
iter 20 value 93.915977
final value 93.915852
converged
Fitting Repeat 5
# weights: 507
initial value 132.856139
iter 10 value 94.060605
iter 20 value 91.462227
iter 30 value 83.511703
iter 40 value 83.477842
final value 83.477751
converged
Fitting Repeat 1
# weights: 103
initial value 104.299056
iter 10 value 94.279665
final value 94.275362
converged
Fitting Repeat 2
# weights: 103
initial value 99.884921
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 122.973569
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 102.251565
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 116.514092
final value 94.052434
converged
Fitting Repeat 1
# weights: 305
initial value 104.368421
final value 94.484210
converged
Fitting Repeat 2
# weights: 305
initial value 108.857579
iter 10 value 93.851665
iter 20 value 93.814237
final value 93.813954
converged
Fitting Repeat 3
# weights: 305
initial value 105.282798
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 94.781567
final value 94.275362
converged
Fitting Repeat 5
# weights: 305
initial value 96.110409
iter 10 value 93.179400
iter 20 value 93.170780
final value 93.170767
converged
Fitting Repeat 1
# weights: 507
initial value 109.741234
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 109.118772
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 99.440086
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 107.381679
final value 94.275362
converged
Fitting Repeat 5
# weights: 507
initial value 105.343885
iter 10 value 94.275392
final value 94.275365
converged
Fitting Repeat 1
# weights: 103
initial value 109.945580
iter 10 value 93.884848
iter 20 value 93.820962
iter 30 value 90.846495
iter 40 value 87.148758
iter 50 value 87.000223
iter 60 value 86.381879
iter 70 value 85.816444
iter 80 value 85.706608
iter 90 value 85.659583
iter 100 value 85.404366
final value 85.404366
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 106.185999
iter 10 value 94.487234
iter 20 value 94.464721
iter 30 value 93.884115
iter 40 value 93.829781
iter 50 value 93.823118
iter 60 value 93.822978
final value 93.822924
converged
Fitting Repeat 3
# weights: 103
initial value 97.150245
iter 10 value 94.488091
iter 20 value 93.966465
iter 30 value 93.845023
iter 40 value 93.822557
iter 50 value 88.313253
iter 60 value 87.078835
iter 70 value 86.862301
iter 80 value 86.779770
iter 90 value 85.420923
iter 100 value 84.764246
final value 84.764246
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.224774
iter 10 value 94.346249
iter 20 value 86.924978
iter 30 value 85.756183
iter 40 value 85.257876
iter 50 value 84.881754
iter 60 value 84.698265
final value 84.697962
converged
Fitting Repeat 5
# weights: 103
initial value 104.897445
iter 10 value 94.486308
iter 20 value 93.853288
iter 30 value 93.824529
iter 40 value 89.325416
iter 50 value 86.904678
iter 60 value 86.902338
iter 70 value 86.868825
iter 80 value 86.189013
iter 90 value 85.178427
iter 100 value 84.728051
final value 84.728051
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 110.910185
iter 10 value 94.663413
iter 20 value 92.147019
iter 30 value 86.872504
iter 40 value 86.094050
iter 50 value 83.029422
iter 60 value 82.268362
iter 70 value 81.024417
iter 80 value 80.582406
iter 90 value 80.142403
iter 100 value 79.943275
final value 79.943275
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.091256
iter 10 value 88.675841
iter 20 value 86.451713
iter 30 value 86.073048
iter 40 value 85.140130
iter 50 value 84.194170
iter 60 value 81.820817
iter 70 value 81.177021
iter 80 value 80.994329
iter 90 value 80.884527
iter 100 value 80.794647
final value 80.794647
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.146543
iter 10 value 94.121939
iter 20 value 93.867329
iter 30 value 89.393184
iter 40 value 86.854203
iter 50 value 86.763524
iter 60 value 85.688735
iter 70 value 84.830990
iter 80 value 83.846986
iter 90 value 83.513996
iter 100 value 81.807008
final value 81.807008
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.494772
iter 10 value 94.393599
iter 20 value 92.735600
iter 30 value 92.206825
iter 40 value 90.786215
iter 50 value 89.246037
iter 60 value 88.435403
iter 70 value 85.601997
iter 80 value 83.313533
iter 90 value 81.408600
iter 100 value 81.119401
final value 81.119401
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.259655
iter 10 value 94.509786
iter 20 value 88.156006
iter 30 value 86.542328
iter 40 value 85.531567
iter 50 value 84.980538
iter 60 value 84.801217
iter 70 value 84.699845
iter 80 value 84.642148
iter 90 value 84.585150
iter 100 value 83.714776
final value 83.714776
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 116.985350
iter 10 value 93.933704
iter 20 value 91.123050
iter 30 value 85.949345
iter 40 value 84.098554
iter 50 value 83.410360
iter 60 value 82.986074
iter 70 value 81.577453
iter 80 value 81.241355
iter 90 value 80.892177
iter 100 value 80.156253
final value 80.156253
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 110.049748
iter 10 value 94.247253
iter 20 value 87.284372
iter 30 value 83.151693
iter 40 value 81.925608
iter 50 value 80.729451
iter 60 value 80.117342
iter 70 value 79.898891
iter 80 value 79.689897
iter 90 value 79.548848
iter 100 value 79.498961
final value 79.498961
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.518375
iter 10 value 95.062023
iter 20 value 94.497715
iter 30 value 94.235638
iter 40 value 86.015209
iter 50 value 84.813197
iter 60 value 84.510032
iter 70 value 83.998287
iter 80 value 83.061904
iter 90 value 82.013427
iter 100 value 80.873793
final value 80.873793
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.136803
iter 10 value 94.512101
iter 20 value 87.432058
iter 30 value 86.021275
iter 40 value 85.279443
iter 50 value 84.441390
iter 60 value 84.356270
iter 70 value 84.334410
iter 80 value 83.999927
iter 90 value 82.654574
iter 100 value 81.846935
final value 81.846935
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.500455
iter 10 value 92.729491
iter 20 value 87.299817
iter 30 value 83.051706
iter 40 value 81.674765
iter 50 value 80.745279
iter 60 value 80.693333
iter 70 value 80.413407
iter 80 value 80.288641
iter 90 value 80.267498
iter 100 value 80.261317
final value 80.261317
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.484966
final value 94.485813
converged
Fitting Repeat 2
# weights: 103
initial value 100.291990
final value 94.485850
converged
Fitting Repeat 3
# weights: 103
initial value 96.455778
final value 94.485984
converged
Fitting Repeat 4
# weights: 103
initial value 96.265148
iter 10 value 94.485965
iter 20 value 94.484257
final value 94.484219
converged
Fitting Repeat 5
# weights: 103
initial value 100.445367
iter 10 value 94.485892
iter 20 value 94.436737
final value 93.814258
converged
Fitting Repeat 1
# weights: 305
initial value 97.939077
iter 10 value 94.489575
iter 20 value 94.484228
iter 30 value 93.867409
iter 40 value 93.003293
iter 50 value 92.999842
iter 60 value 92.999776
final value 92.999761
converged
Fitting Repeat 2
# weights: 305
initial value 96.068646
iter 10 value 94.280578
iter 20 value 93.985137
iter 30 value 84.921811
iter 40 value 84.760771
iter 50 value 84.752302
iter 60 value 84.644193
iter 70 value 84.359577
iter 80 value 84.358594
iter 90 value 84.334191
iter 100 value 84.240171
final value 84.240171
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.608640
iter 10 value 94.489009
iter 20 value 94.484400
final value 94.484383
converged
Fitting Repeat 4
# weights: 305
initial value 96.816407
iter 10 value 94.488988
iter 20 value 94.416097
iter 30 value 93.753433
final value 93.753414
converged
Fitting Repeat 5
# weights: 305
initial value 96.455862
iter 10 value 94.488561
iter 20 value 94.473382
iter 30 value 87.935240
iter 40 value 86.751806
iter 50 value 86.623867
iter 60 value 86.550565
final value 86.549752
converged
Fitting Repeat 1
# weights: 507
initial value 108.846316
iter 10 value 93.822441
iter 20 value 93.815639
iter 30 value 93.814546
iter 40 value 93.798520
iter 50 value 93.754840
iter 60 value 93.753904
final value 93.753809
converged
Fitting Repeat 2
# weights: 507
initial value 110.922412
iter 10 value 94.491774
iter 20 value 94.427582
iter 30 value 90.692439
iter 40 value 88.655114
iter 50 value 85.498104
iter 60 value 83.728028
iter 70 value 83.504983
iter 80 value 83.361484
iter 90 value 82.545408
iter 100 value 82.454231
final value 82.454231
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 96.658460
iter 10 value 94.492193
iter 20 value 94.464646
iter 30 value 93.814612
iter 30 value 93.814611
iter 30 value 93.814611
final value 93.814611
converged
Fitting Repeat 4
# weights: 507
initial value 101.987543
iter 10 value 94.283830
iter 20 value 94.141846
iter 30 value 93.785028
final value 93.784859
converged
Fitting Repeat 5
# weights: 507
initial value 95.012580
iter 10 value 90.850705
iter 20 value 89.342076
iter 30 value 86.958665
iter 40 value 86.944852
iter 50 value 86.941957
iter 60 value 86.393445
iter 70 value 85.870194
iter 80 value 85.248691
iter 90 value 84.766121
iter 100 value 84.495452
final value 84.495452
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 107.069069
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.493563
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.365383
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.550902
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.911655
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 99.445399
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 106.785454
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 99.057478
iter 10 value 92.062290
final value 92.059162
converged
Fitting Repeat 4
# weights: 305
initial value 111.993072
iter 10 value 92.078703
iter 20 value 84.480077
iter 30 value 84.320789
iter 40 value 84.319769
iter 50 value 83.639086
iter 60 value 83.611887
final value 83.611639
converged
Fitting Repeat 5
# weights: 305
initial value 95.125373
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 99.923476
iter 10 value 92.550480
iter 20 value 91.929300
final value 91.929293
converged
Fitting Repeat 2
# weights: 507
initial value 98.763844
iter 10 value 93.657047
iter 20 value 92.823244
iter 30 value 92.822869
iter 40 value 92.820801
final value 92.820789
converged
Fitting Repeat 3
# weights: 507
initial value 107.782340
iter 10 value 94.112911
final value 94.112903
converged
Fitting Repeat 4
# weights: 507
initial value 106.666595
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 95.913598
final value 93.634731
converged
Fitting Repeat 1
# weights: 103
initial value 96.279869
iter 10 value 94.488404
iter 20 value 94.417536
iter 30 value 93.783183
iter 40 value 92.734993
iter 50 value 90.542552
iter 60 value 90.444938
iter 70 value 90.439587
final value 90.439577
converged
Fitting Repeat 2
# weights: 103
initial value 113.419260
iter 10 value 94.194910
iter 20 value 85.238556
iter 30 value 81.660687
iter 40 value 80.258529
iter 50 value 78.579456
iter 60 value 78.009857
iter 70 value 77.967945
iter 80 value 77.965595
final value 77.963392
converged
Fitting Repeat 3
# weights: 103
initial value 107.893430
iter 10 value 94.363157
iter 20 value 88.739037
iter 30 value 86.562222
iter 40 value 82.209617
iter 50 value 78.811426
iter 60 value 78.293504
iter 70 value 78.071855
iter 80 value 77.925582
iter 90 value 77.654713
final value 77.651588
converged
Fitting Repeat 4
# weights: 103
initial value 97.275786
iter 10 value 93.132872
iter 20 value 84.928731
iter 30 value 84.374077
iter 40 value 83.070200
iter 50 value 82.887398
iter 60 value 82.356011
iter 70 value 81.935793
final value 81.927165
converged
Fitting Repeat 5
# weights: 103
initial value 96.282195
iter 10 value 94.488843
iter 20 value 94.126546
iter 30 value 93.851641
iter 40 value 93.817530
iter 50 value 88.796501
iter 60 value 86.767048
iter 70 value 83.638735
iter 80 value 83.099394
iter 90 value 82.683555
iter 100 value 82.345079
final value 82.345079
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 117.636591
iter 10 value 94.203000
iter 20 value 85.613596
iter 30 value 83.393382
iter 40 value 82.406103
iter 50 value 81.949587
iter 60 value 81.750881
iter 70 value 80.298656
iter 80 value 78.295111
iter 90 value 77.545305
iter 100 value 77.182481
final value 77.182481
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 114.359490
iter 10 value 94.726469
iter 20 value 94.503853
iter 30 value 86.056172
iter 40 value 84.224138
iter 50 value 83.809227
iter 60 value 81.266107
iter 70 value 79.403086
iter 80 value 78.627618
iter 90 value 77.806922
iter 100 value 77.455078
final value 77.455078
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.778156
iter 10 value 94.380909
iter 20 value 87.842912
iter 30 value 82.161306
iter 40 value 80.208897
iter 50 value 78.922423
iter 60 value 78.221055
iter 70 value 77.579151
iter 80 value 77.028259
iter 90 value 76.964507
iter 100 value 76.920719
final value 76.920719
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 116.564648
iter 10 value 94.850786
iter 20 value 94.528690
iter 30 value 92.421217
iter 40 value 85.243370
iter 50 value 85.018306
iter 60 value 84.417300
iter 70 value 80.187597
iter 80 value 78.363805
iter 90 value 77.410140
iter 100 value 77.206306
final value 77.206306
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 129.810129
iter 10 value 94.077830
iter 20 value 92.574810
iter 30 value 84.491558
iter 40 value 83.364043
iter 50 value 79.288101
iter 60 value 77.803951
iter 70 value 76.984395
iter 80 value 76.586025
iter 90 value 76.303067
iter 100 value 76.151632
final value 76.151632
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 123.935633
iter 10 value 94.525631
iter 20 value 90.753225
iter 30 value 87.625407
iter 40 value 84.871858
iter 50 value 84.099942
iter 60 value 80.996678
iter 70 value 77.843795
iter 80 value 77.204151
iter 90 value 76.619858
iter 100 value 76.438612
final value 76.438612
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.794654
iter 10 value 94.490907
iter 20 value 86.951850
iter 30 value 82.130969
iter 40 value 80.437206
iter 50 value 77.998881
iter 60 value 76.981465
iter 70 value 76.375768
iter 80 value 76.150810
iter 90 value 76.060224
iter 100 value 75.935721
final value 75.935721
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.687381
iter 10 value 95.236094
iter 20 value 94.602943
iter 30 value 86.317296
iter 40 value 84.992996
iter 50 value 82.275026
iter 60 value 80.249294
iter 70 value 79.670263
iter 80 value 77.880661
iter 90 value 77.247634
iter 100 value 77.074152
final value 77.074152
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.284226
iter 10 value 96.403238
iter 20 value 89.748582
iter 30 value 86.955252
iter 40 value 84.097478
iter 50 value 83.108726
iter 60 value 82.594430
iter 70 value 79.155515
iter 80 value 78.119581
iter 90 value 77.398594
iter 100 value 77.355208
final value 77.355208
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.206821
iter 10 value 94.457370
iter 20 value 94.135659
iter 30 value 89.079446
iter 40 value 83.229228
iter 50 value 82.169881
iter 60 value 80.272695
iter 70 value 79.827524
iter 80 value 78.755390
iter 90 value 78.464791
iter 100 value 78.209037
final value 78.209037
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.536979
iter 10 value 94.485829
final value 94.484216
converged
Fitting Repeat 2
# weights: 103
initial value 111.338366
final value 94.485828
converged
Fitting Repeat 3
# weights: 103
initial value 94.763386
final value 94.485828
converged
Fitting Repeat 4
# weights: 103
initial value 98.935526
final value 94.486134
converged
Fitting Repeat 5
# weights: 103
initial value 103.279651
final value 94.486045
converged
Fitting Repeat 1
# weights: 305
initial value 125.505927
iter 10 value 94.489261
iter 20 value 94.484303
iter 30 value 93.944589
iter 40 value 88.375324
iter 50 value 87.762926
iter 60 value 87.542130
iter 70 value 86.825281
iter 80 value 86.800729
iter 90 value 86.800494
iter 100 value 85.252273
final value 85.252273
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.754580
iter 10 value 94.487217
iter 20 value 94.116814
iter 30 value 94.113175
final value 94.113167
converged
Fitting Repeat 3
# weights: 305
initial value 100.482229
iter 10 value 93.944268
iter 20 value 93.882088
iter 30 value 93.477489
iter 40 value 92.986029
iter 50 value 92.794040
iter 60 value 92.615748
iter 70 value 88.074490
iter 80 value 81.831535
iter 90 value 81.825313
iter 100 value 81.817648
final value 81.817648
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 96.629225
iter 10 value 94.118370
iter 20 value 94.114284
iter 30 value 93.501076
iter 40 value 83.913684
final value 83.787448
converged
Fitting Repeat 5
# weights: 305
initial value 97.330383
iter 10 value 94.489063
iter 20 value 94.465349
iter 30 value 93.729566
iter 40 value 93.728691
iter 50 value 93.728077
iter 60 value 93.727143
final value 93.727137
converged
Fitting Repeat 1
# weights: 507
initial value 97.776539
iter 10 value 94.492061
iter 20 value 94.469231
iter 30 value 93.725523
final value 93.725508
converged
Fitting Repeat 2
# weights: 507
initial value 96.326917
iter 10 value 93.665617
iter 20 value 93.643054
iter 30 value 90.327264
iter 40 value 83.786107
iter 40 value 83.786107
iter 40 value 83.786107
final value 83.786107
converged
Fitting Repeat 3
# weights: 507
initial value 100.612955
iter 10 value 93.191147
iter 20 value 92.033896
iter 30 value 91.919372
iter 40 value 91.215673
iter 50 value 91.008575
iter 60 value 90.978144
iter 70 value 90.962263
iter 80 value 90.958055
iter 90 value 90.956231
iter 100 value 90.951982
final value 90.951982
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 109.700697
iter 10 value 93.480951
iter 20 value 93.469611
iter 30 value 89.232323
iter 40 value 85.414449
iter 50 value 83.785778
iter 60 value 83.608356
final value 83.604413
converged
Fitting Repeat 5
# weights: 507
initial value 97.175254
iter 10 value 93.466626
iter 20 value 81.132402
iter 30 value 81.094980
iter 40 value 80.671610
iter 50 value 80.540512
iter 60 value 80.537838
iter 70 value 78.717987
iter 80 value 77.459271
iter 90 value 76.227949
iter 100 value 76.173303
final value 76.173303
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 159.033109
iter 10 value 118.657184
iter 20 value 116.711297
iter 30 value 106.295955
iter 40 value 105.812798
iter 50 value 104.590660
iter 60 value 104.333207
iter 70 value 104.247850
iter 80 value 103.971436
iter 90 value 103.739875
iter 100 value 103.529215
final value 103.529215
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 138.214401
iter 10 value 118.342796
iter 20 value 117.726648
iter 30 value 115.283945
iter 40 value 108.822628
iter 50 value 104.353142
iter 60 value 103.511068
iter 70 value 102.370554
iter 80 value 102.251957
iter 90 value 101.782678
iter 100 value 101.221293
final value 101.221293
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 128.317796
iter 10 value 116.731123
iter 20 value 106.635894
iter 30 value 102.905569
iter 40 value 102.247422
iter 50 value 101.989341
iter 60 value 101.431685
iter 70 value 101.074333
iter 80 value 101.042765
iter 90 value 101.022235
iter 100 value 100.925748
final value 100.925748
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 138.657907
iter 10 value 121.470556
iter 20 value 117.839362
iter 30 value 115.105186
iter 40 value 107.669941
iter 50 value 105.772884
iter 60 value 105.697078
iter 70 value 104.912360
iter 80 value 103.087725
iter 90 value 102.934996
iter 100 value 102.404605
final value 102.404605
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 140.545015
iter 10 value 117.723808
iter 20 value 111.634025
iter 30 value 109.525062
iter 40 value 108.746369
iter 50 value 104.883831
iter 60 value 104.488306
iter 70 value 103.768208
iter 80 value 102.866169
iter 90 value 101.781479
iter 100 value 101.218748
final value 101.218748
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Apr 1 07:32:01 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
52.384 1.345 206.722
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 33.668 | 0.351 | 34.085 | |
| FreqInteractors | 0.281 | 0.008 | 0.289 | |
| calculateAAC | 0.043 | 0.004 | 0.046 | |
| calculateAutocor | 0.622 | 0.016 | 0.641 | |
| calculateCTDC | 0.088 | 0.000 | 0.088 | |
| calculateCTDD | 0.691 | 0.000 | 0.692 | |
| calculateCTDT | 0.243 | 0.000 | 0.243 | |
| calculateCTriad | 0.463 | 0.004 | 0.467 | |
| calculateDC | 0.119 | 0.000 | 0.119 | |
| calculateF | 0.389 | 0.004 | 0.393 | |
| calculateKSAAP | 0.129 | 0.000 | 0.129 | |
| calculateQD_Sm | 2.232 | 0.020 | 2.256 | |
| calculateTC | 2.142 | 0.036 | 2.181 | |
| calculateTC_Sm | 0.350 | 0.000 | 0.351 | |
| corr_plot | 33.933 | 0.235 | 34.227 | |
| enrichfindP | 0.466 | 0.048 | 20.251 | |
| enrichfind_hp | 0.080 | 0.000 | 1.436 | |
| enrichplot | 0.465 | 0.015 | 0.485 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.130 | 0.004 | 5.829 | |
| getHPI | 0.001 | 0.000 | 0.000 | |
| get_negativePPI | 0.002 | 0.000 | 0.001 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.000 | 0.001 | 0.001 | |
| plotPPI | 0.081 | 0.001 | 0.082 | |
| pred_ensembel | 17.478 | 0.633 | 16.902 | |
| var_imp | 34.302 | 0.420 | 34.770 | |