| Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-04-02 19:34 -0400 (Wed, 02 Apr 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4764 |
| palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4495 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4522 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4449 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4426 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.12.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
| StartedAt: 2025-04-01 21:59:06 -0400 (Tue, 01 Apr 2025) |
| EndedAt: 2025-04-01 22:04:59 -0400 (Tue, 01 Apr 2025) |
| EllapsedTime: 352.6 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
corr_plot 51.831 2.299 54.351
FSmethod 52.080 2.029 54.169
var_imp 51.395 2.298 53.922
pred_ensembel 16.321 0.551 14.810
enrichfindP 0.509 0.077 7.184
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 106.406750
final value 94.448052
converged
Fitting Repeat 2
# weights: 103
initial value 101.671467
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 105.532859
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 100.422538
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.260860
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 102.453595
iter 10 value 94.346954
final value 94.346668
converged
Fitting Repeat 2
# weights: 305
initial value 100.197674
final value 94.448052
converged
Fitting Repeat 3
# weights: 305
initial value 95.251659
final value 94.313817
converged
Fitting Repeat 4
# weights: 305
initial value 105.915125
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 112.102179
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 112.327435
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 96.346738
final value 94.467391
converged
Fitting Repeat 3
# weights: 507
initial value 101.096323
iter 10 value 94.467391
iter 10 value 94.467391
iter 10 value 94.467391
final value 94.467391
converged
Fitting Repeat 4
# weights: 507
initial value 94.675825
iter 10 value 93.330717
iter 20 value 93.051064
iter 30 value 93.049983
final value 93.049968
converged
Fitting Repeat 5
# weights: 507
initial value 124.627934
final value 94.313817
converged
Fitting Repeat 1
# weights: 103
initial value 104.112266
iter 10 value 94.329459
iter 20 value 87.966514
iter 30 value 87.637263
iter 40 value 87.323767
iter 50 value 85.976942
iter 60 value 85.081867
iter 70 value 84.282674
iter 80 value 84.119590
iter 90 value 83.909250
iter 100 value 83.888287
final value 83.888287
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.347067
iter 10 value 94.488976
iter 20 value 92.312780
iter 30 value 87.205068
iter 40 value 84.264932
iter 50 value 83.764262
iter 60 value 83.262081
iter 70 value 83.132926
iter 80 value 82.858330
final value 82.857910
converged
Fitting Repeat 3
# weights: 103
initial value 107.817303
iter 10 value 94.504900
iter 20 value 94.121476
iter 30 value 86.257231
iter 40 value 85.506818
iter 50 value 84.658061
iter 60 value 84.414441
iter 70 value 82.412036
final value 82.398409
converged
Fitting Repeat 4
# weights: 103
initial value 107.690452
iter 10 value 94.446700
iter 20 value 93.478458
iter 30 value 93.221715
iter 40 value 88.948325
iter 50 value 88.359435
iter 60 value 86.936091
iter 70 value 84.260705
iter 80 value 83.462758
iter 90 value 83.347181
iter 100 value 82.971808
final value 82.971808
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 115.804984
iter 10 value 94.058901
iter 20 value 86.348208
iter 30 value 85.130721
iter 40 value 83.688786
iter 50 value 82.134613
iter 60 value 81.516276
iter 70 value 81.299419
iter 80 value 81.023780
iter 90 value 80.949356
iter 100 value 80.919823
final value 80.919823
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.970194
iter 10 value 94.476961
iter 20 value 88.972926
iter 30 value 85.530594
iter 40 value 84.955924
iter 50 value 84.651703
iter 60 value 84.531849
iter 70 value 84.417119
iter 80 value 83.078781
iter 90 value 82.578429
iter 100 value 82.253895
final value 82.253895
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 117.809394
iter 10 value 92.652046
iter 20 value 86.261965
iter 30 value 84.202987
iter 40 value 82.740280
iter 50 value 82.346028
iter 60 value 82.221539
iter 70 value 82.132548
iter 80 value 82.076694
iter 90 value 81.915742
iter 100 value 81.812259
final value 81.812259
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.221401
iter 10 value 93.011780
iter 20 value 85.935446
iter 30 value 85.308224
iter 40 value 84.455987
iter 50 value 84.396441
iter 60 value 83.536507
iter 70 value 82.634299
iter 80 value 82.526018
iter 90 value 82.520223
iter 100 value 82.494436
final value 82.494436
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.491289
iter 10 value 94.501269
iter 20 value 94.410475
iter 30 value 91.393388
iter 40 value 88.138961
iter 50 value 83.329641
iter 60 value 81.185918
iter 70 value 80.232495
iter 80 value 79.809571
iter 90 value 79.577745
iter 100 value 79.486565
final value 79.486565
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 109.397555
iter 10 value 94.267461
iter 20 value 88.400257
iter 30 value 85.728590
iter 40 value 84.113788
iter 50 value 83.341943
iter 60 value 80.681732
iter 70 value 80.072151
iter 80 value 79.955804
iter 90 value 79.765667
iter 100 value 79.736898
final value 79.736898
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.346391
iter 10 value 87.057737
iter 20 value 86.325366
iter 30 value 85.519949
iter 40 value 85.260624
iter 50 value 84.111562
iter 60 value 83.158895
iter 70 value 82.143351
iter 80 value 81.357561
iter 90 value 81.144320
iter 100 value 80.831314
final value 80.831314
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 110.139979
iter 10 value 95.230579
iter 20 value 86.405766
iter 30 value 82.689728
iter 40 value 81.295488
iter 50 value 80.475304
iter 60 value 80.302756
iter 70 value 80.233269
iter 80 value 80.079495
iter 90 value 79.795055
iter 100 value 79.589677
final value 79.589677
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 127.449205
iter 10 value 95.159507
iter 20 value 94.589719
iter 30 value 87.739622
iter 40 value 86.440274
iter 50 value 84.728960
iter 60 value 84.602002
iter 70 value 84.238997
iter 80 value 82.036405
iter 90 value 81.284223
iter 100 value 81.215552
final value 81.215552
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.598936
iter 10 value 94.135315
iter 20 value 86.751325
iter 30 value 85.813221
iter 40 value 82.781719
iter 50 value 82.538819
iter 60 value 81.931471
iter 70 value 81.656396
iter 80 value 81.503742
iter 90 value 80.898172
iter 100 value 80.459794
final value 80.459794
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.598896
iter 10 value 94.474702
iter 20 value 93.902608
iter 30 value 85.318488
iter 40 value 84.006905
iter 50 value 83.746950
iter 60 value 83.478854
iter 70 value 83.310956
iter 80 value 81.254092
iter 90 value 81.038681
iter 100 value 80.473938
final value 80.473938
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.403920
final value 94.485666
converged
Fitting Repeat 2
# weights: 103
initial value 98.750944
iter 10 value 94.449789
iter 20 value 94.449113
final value 94.448076
converged
Fitting Repeat 3
# weights: 103
initial value 97.576146
final value 94.468835
converged
Fitting Repeat 4
# weights: 103
initial value 98.812339
final value 94.485844
converged
Fitting Repeat 5
# weights: 103
initial value 94.635642
final value 94.485839
converged
Fitting Repeat 1
# weights: 305
initial value 97.474967
iter 10 value 94.472274
iter 20 value 94.468086
final value 94.467662
converged
Fitting Repeat 2
# weights: 305
initial value 102.915519
iter 10 value 94.487948
iter 20 value 94.482687
iter 30 value 94.448290
final value 94.448221
converged
Fitting Repeat 3
# weights: 305
initial value 112.982550
iter 10 value 94.471927
iter 20 value 94.467599
final value 94.467590
converged
Fitting Repeat 4
# weights: 305
initial value 95.992177
iter 10 value 94.438097
iter 20 value 94.427709
iter 30 value 94.424757
final value 94.424307
converged
Fitting Repeat 5
# weights: 305
initial value 95.785475
iter 10 value 88.340974
iter 20 value 87.774907
iter 30 value 87.770843
iter 40 value 87.039032
iter 50 value 86.457335
iter 60 value 86.435989
final value 86.435986
converged
Fitting Repeat 1
# weights: 507
initial value 97.418701
iter 10 value 94.488510
iter 20 value 94.135100
iter 30 value 86.477322
iter 40 value 84.406889
iter 50 value 84.264860
iter 60 value 81.648820
iter 70 value 79.090187
iter 80 value 78.906319
iter 90 value 78.904979
final value 78.904967
converged
Fitting Repeat 2
# weights: 507
initial value 117.012466
iter 10 value 94.475483
iter 20 value 94.473610
iter 30 value 94.468624
iter 40 value 93.306378
iter 50 value 83.118091
final value 83.097236
converged
Fitting Repeat 3
# weights: 507
initial value 96.044427
iter 10 value 94.475902
iter 20 value 94.442224
iter 30 value 94.438649
iter 40 value 94.434098
iter 50 value 90.501180
iter 60 value 86.721714
iter 70 value 86.714235
final value 86.714155
converged
Fitting Repeat 4
# weights: 507
initial value 97.116150
iter 10 value 94.475782
iter 20 value 94.307865
iter 30 value 86.992271
iter 40 value 82.303582
iter 50 value 81.627134
iter 60 value 81.505167
iter 70 value 81.192213
iter 80 value 79.352361
iter 90 value 78.751723
iter 100 value 78.586445
final value 78.586445
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.780926
iter 10 value 94.485054
iter 20 value 94.478233
iter 30 value 92.549545
iter 40 value 85.648184
iter 50 value 84.418819
iter 60 value 82.708242
iter 70 value 82.418444
iter 80 value 82.416355
iter 90 value 82.414420
iter 100 value 82.055081
final value 82.055081
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.711810
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 98.445259
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 102.883779
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 103.782308
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 95.831133
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 102.840707
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 94.788104
final value 93.836066
converged
Fitting Repeat 3
# weights: 305
initial value 98.528669
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 101.565597
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 111.463091
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 105.979023
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 98.296367
iter 10 value 93.519193
iter 20 value 93.478616
iter 30 value 93.478228
iter 30 value 93.478228
iter 30 value 93.478228
final value 93.478228
converged
Fitting Repeat 3
# weights: 507
initial value 104.300329
iter 10 value 93.756214
iter 20 value 93.676377
final value 93.676191
converged
Fitting Repeat 4
# weights: 507
initial value 98.332485
final value 93.671508
converged
Fitting Repeat 5
# weights: 507
initial value 95.865978
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 96.151731
iter 10 value 93.855237
iter 20 value 89.132015
iter 30 value 87.481520
iter 40 value 86.759632
iter 50 value 83.140600
iter 60 value 81.973183
iter 70 value 81.851300
iter 80 value 81.737457
iter 90 value 81.613902
iter 100 value 81.526332
final value 81.526332
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.459907
iter 10 value 90.568987
iter 20 value 84.754345
iter 30 value 84.211284
iter 40 value 84.043009
iter 50 value 83.959676
iter 60 value 83.004404
iter 70 value 81.880410
iter 80 value 81.666135
iter 90 value 81.665466
iter 90 value 81.665466
iter 90 value 81.665466
final value 81.665466
converged
Fitting Repeat 3
# weights: 103
initial value 97.826702
iter 10 value 94.109907
iter 20 value 94.054640
iter 30 value 93.713305
iter 40 value 90.983516
iter 50 value 89.648629
iter 60 value 88.079575
iter 70 value 86.555858
iter 80 value 85.455437
iter 90 value 85.188089
iter 100 value 85.010420
final value 85.010420
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.033527
iter 10 value 93.989074
iter 20 value 87.320917
iter 30 value 85.544097
iter 40 value 85.477947
iter 50 value 85.460041
iter 60 value 85.387959
iter 70 value 85.238160
iter 80 value 85.099714
iter 90 value 84.977066
iter 100 value 84.894209
final value 84.894209
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.815111
iter 10 value 94.055402
iter 20 value 90.174703
iter 30 value 87.457043
iter 40 value 86.683168
iter 50 value 86.139065
iter 60 value 84.863633
iter 70 value 84.613089
iter 80 value 84.558216
final value 84.558033
converged
Fitting Repeat 1
# weights: 305
initial value 99.922213
iter 10 value 94.552826
iter 20 value 94.139475
iter 30 value 92.705749
iter 40 value 87.156628
iter 50 value 85.644775
iter 60 value 83.540965
iter 70 value 81.426216
iter 80 value 80.787749
iter 90 value 80.440880
iter 100 value 80.384139
final value 80.384139
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.571458
iter 10 value 94.051949
iter 20 value 89.428263
iter 30 value 85.248128
iter 40 value 83.926137
iter 50 value 82.180088
iter 60 value 81.856471
iter 70 value 81.501933
iter 80 value 80.304432
iter 90 value 80.194056
iter 100 value 80.138321
final value 80.138321
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.230916
iter 10 value 93.656072
iter 20 value 90.417888
iter 30 value 87.607564
iter 40 value 85.931689
iter 50 value 85.686520
iter 60 value 83.160747
iter 70 value 81.149974
iter 80 value 80.568087
iter 90 value 80.472290
iter 100 value 80.262253
final value 80.262253
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.464222
iter 10 value 90.903834
iter 20 value 85.802918
iter 30 value 85.597253
iter 40 value 85.131453
iter 50 value 83.325193
iter 60 value 81.362472
iter 70 value 81.033326
iter 80 value 80.470625
iter 90 value 80.391920
iter 100 value 80.365225
final value 80.365225
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.164781
iter 10 value 93.899628
iter 20 value 87.023311
iter 30 value 85.824934
iter 40 value 85.764390
iter 50 value 84.504023
iter 60 value 83.441012
iter 70 value 81.822886
iter 80 value 80.901257
iter 90 value 80.700004
iter 100 value 80.490560
final value 80.490560
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.416538
iter 10 value 94.122250
iter 20 value 88.676841
iter 30 value 87.599731
iter 40 value 86.470600
iter 50 value 83.826707
iter 60 value 82.378010
iter 70 value 81.963591
iter 80 value 81.696144
iter 90 value 81.412699
iter 100 value 80.868232
final value 80.868232
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 119.586446
iter 10 value 93.483679
iter 20 value 88.912479
iter 30 value 86.378946
iter 40 value 83.290948
iter 50 value 81.411130
iter 60 value 80.780425
iter 70 value 80.644674
iter 80 value 80.546303
iter 90 value 80.180096
iter 100 value 80.028337
final value 80.028337
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 119.398178
iter 10 value 93.835331
iter 20 value 86.435267
iter 30 value 85.880871
iter 40 value 83.537610
iter 50 value 82.300528
iter 60 value 81.516514
iter 70 value 80.626082
iter 80 value 80.323915
iter 90 value 80.184000
iter 100 value 80.141374
final value 80.141374
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.095986
iter 10 value 95.107604
iter 20 value 90.195459
iter 30 value 87.272438
iter 40 value 85.373444
iter 50 value 84.095940
iter 60 value 82.863213
iter 70 value 82.757749
iter 80 value 82.323947
iter 90 value 81.129550
iter 100 value 80.710446
final value 80.710446
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.780743
iter 10 value 93.988604
iter 20 value 91.568743
iter 30 value 87.213658
iter 40 value 84.024019
iter 50 value 83.341488
iter 60 value 82.478986
iter 70 value 82.359761
iter 80 value 82.243597
iter 90 value 80.849265
iter 100 value 80.676198
final value 80.676198
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.945755
final value 94.054488
converged
Fitting Repeat 2
# weights: 103
initial value 100.243990
final value 94.054455
converged
Fitting Repeat 3
# weights: 103
initial value 97.731350
final value 94.054456
converged
Fitting Repeat 4
# weights: 103
initial value 99.588096
iter 10 value 94.054559
iter 20 value 94.015855
iter 30 value 93.838606
final value 93.838033
converged
Fitting Repeat 5
# weights: 103
initial value 113.070378
final value 94.054754
converged
Fitting Repeat 1
# weights: 305
initial value 116.938879
iter 10 value 94.058124
iter 20 value 94.052927
iter 30 value 86.760675
iter 40 value 84.540799
iter 50 value 80.524732
iter 60 value 79.505823
iter 70 value 79.440637
iter 80 value 78.913774
iter 90 value 78.516245
iter 100 value 78.183907
final value 78.183907
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.092735
iter 10 value 94.055466
iter 20 value 91.274103
iter 30 value 86.038653
iter 40 value 85.826817
iter 50 value 85.824489
iter 60 value 85.775817
final value 85.762432
converged
Fitting Repeat 3
# weights: 305
initial value 104.305289
iter 10 value 93.769138
iter 20 value 93.486251
iter 30 value 93.484477
iter 40 value 93.465917
iter 50 value 90.038344
iter 60 value 85.807849
iter 70 value 84.746301
iter 80 value 84.562707
iter 90 value 84.427738
final value 84.427378
converged
Fitting Repeat 4
# weights: 305
initial value 101.608841
iter 10 value 94.057982
iter 20 value 93.205776
iter 30 value 83.796991
iter 40 value 83.708722
iter 50 value 83.707015
iter 50 value 83.707015
iter 50 value 83.707015
final value 83.707015
converged
Fitting Repeat 5
# weights: 305
initial value 96.332858
iter 10 value 90.624750
iter 20 value 90.561718
iter 30 value 90.408386
iter 40 value 90.343929
iter 50 value 90.343430
final value 90.341564
converged
Fitting Repeat 1
# weights: 507
initial value 94.476888
iter 10 value 94.054319
iter 20 value 93.182354
iter 30 value 84.784684
iter 40 value 84.643052
iter 50 value 82.970718
iter 60 value 82.868630
iter 70 value 82.867264
iter 80 value 82.700435
iter 90 value 82.613617
iter 100 value 82.422480
final value 82.422480
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 101.444800
iter 10 value 94.061468
iter 20 value 94.009501
iter 30 value 93.733090
iter 40 value 87.019859
iter 50 value 86.927531
iter 60 value 86.926152
iter 70 value 86.926025
iter 80 value 86.198474
iter 90 value 86.155708
final value 86.155698
converged
Fitting Repeat 3
# weights: 507
initial value 101.408742
iter 10 value 94.059340
iter 20 value 94.020767
iter 30 value 93.500326
iter 40 value 93.439020
final value 93.422450
converged
Fitting Repeat 4
# weights: 507
initial value 95.532068
iter 10 value 94.059046
iter 20 value 94.052934
final value 94.052912
converged
Fitting Repeat 5
# weights: 507
initial value 120.319398
iter 10 value 94.041949
iter 20 value 92.405189
final value 92.359476
converged
Fitting Repeat 1
# weights: 103
initial value 98.869949
final value 94.466823
converged
Fitting Repeat 2
# weights: 103
initial value 101.807671
final value 94.484210
converged
Fitting Repeat 3
# weights: 103
initial value 109.445170
final value 94.466823
converged
Fitting Repeat 4
# weights: 103
initial value 95.437668
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.780249
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 95.426489
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 100.244545
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 127.682617
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 96.371533
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 95.963331
final value 94.466823
converged
Fitting Repeat 1
# weights: 507
initial value 130.780304
iter 10 value 94.484671
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 111.840213
final value 94.484209
converged
Fitting Repeat 3
# weights: 507
initial value 99.057627
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 105.547151
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 99.144603
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 99.900211
iter 10 value 94.451289
iter 20 value 88.637531
iter 30 value 86.201006
iter 40 value 85.740101
iter 50 value 85.623794
iter 60 value 85.575430
iter 70 value 82.824315
iter 80 value 82.691243
iter 90 value 82.660745
final value 82.658100
converged
Fitting Repeat 2
# weights: 103
initial value 100.936560
iter 10 value 94.455615
iter 20 value 87.334334
iter 30 value 86.494978
iter 40 value 85.769952
iter 50 value 85.615900
iter 60 value 83.429741
iter 70 value 82.773726
iter 80 value 82.678501
iter 90 value 82.658105
final value 82.658100
converged
Fitting Repeat 3
# weights: 103
initial value 97.125936
iter 10 value 94.223537
iter 20 value 85.480976
iter 30 value 83.976979
iter 40 value 83.867134
iter 50 value 83.608772
iter 60 value 83.389191
iter 70 value 81.587807
iter 80 value 80.993443
iter 90 value 80.864583
iter 100 value 80.651001
final value 80.651001
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.985469
iter 10 value 94.487434
iter 20 value 94.140498
iter 30 value 86.828536
iter 40 value 85.951040
iter 50 value 84.713940
iter 60 value 83.157494
iter 70 value 82.801293
iter 80 value 82.658113
final value 82.658100
converged
Fitting Repeat 5
# weights: 103
initial value 96.697669
iter 10 value 94.447796
iter 20 value 89.265906
iter 30 value 87.087740
iter 40 value 86.479341
iter 50 value 85.262799
iter 60 value 84.392019
iter 70 value 83.847352
iter 80 value 83.651967
iter 90 value 82.028436
iter 100 value 81.066497
final value 81.066497
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 100.226698
iter 10 value 94.533817
iter 20 value 94.248697
iter 30 value 92.170209
iter 40 value 88.778787
iter 50 value 84.542201
iter 60 value 84.270419
iter 70 value 83.657571
iter 80 value 82.617841
iter 90 value 80.995470
iter 100 value 80.343882
final value 80.343882
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.219284
iter 10 value 94.493271
iter 20 value 86.060624
iter 30 value 85.442719
iter 40 value 85.226915
iter 50 value 84.964740
iter 60 value 84.884935
iter 70 value 84.776167
iter 80 value 81.765142
iter 90 value 80.959756
iter 100 value 80.197090
final value 80.197090
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.079013
iter 10 value 94.491950
iter 20 value 93.962443
iter 30 value 85.701519
iter 40 value 83.741859
iter 50 value 83.477156
iter 60 value 82.944511
iter 70 value 81.831546
iter 80 value 79.370908
iter 90 value 79.186043
iter 100 value 79.056540
final value 79.056540
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.970709
iter 10 value 94.438293
iter 20 value 93.457749
iter 30 value 89.129318
iter 40 value 87.663493
iter 50 value 87.127712
iter 60 value 83.968129
iter 70 value 80.635277
iter 80 value 79.442237
iter 90 value 79.023535
iter 100 value 78.722830
final value 78.722830
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.985962
iter 10 value 94.558729
iter 20 value 94.325919
iter 30 value 91.340126
iter 40 value 84.322332
iter 50 value 83.257750
iter 60 value 82.968483
iter 70 value 82.874577
iter 80 value 82.280444
iter 90 value 82.123531
iter 100 value 81.702763
final value 81.702763
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 102.625697
iter 10 value 96.653421
iter 20 value 87.218019
iter 30 value 85.417740
iter 40 value 84.757194
iter 50 value 83.316108
iter 60 value 80.302217
iter 70 value 79.689857
iter 80 value 79.175387
iter 90 value 78.828250
iter 100 value 78.685570
final value 78.685570
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.367818
iter 10 value 99.385596
iter 20 value 94.832926
iter 30 value 86.493115
iter 40 value 85.801275
iter 50 value 83.539926
iter 60 value 83.031199
iter 70 value 82.183551
iter 80 value 81.005592
iter 90 value 79.767923
iter 100 value 79.551040
final value 79.551040
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 118.199243
iter 10 value 96.327552
iter 20 value 90.294553
iter 30 value 84.237944
iter 40 value 83.509306
iter 50 value 83.174671
iter 60 value 82.525741
iter 70 value 81.653864
iter 80 value 81.526571
iter 90 value 81.448769
iter 100 value 80.599056
final value 80.599056
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.938281
iter 10 value 95.813168
iter 20 value 94.256429
iter 30 value 87.472747
iter 40 value 83.522066
iter 50 value 83.167143
iter 60 value 81.217986
iter 70 value 80.456360
iter 80 value 80.397806
iter 90 value 79.659669
iter 100 value 79.361366
final value 79.361366
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 116.779108
iter 10 value 94.144456
iter 20 value 85.719454
iter 30 value 83.531838
iter 40 value 83.349238
iter 50 value 82.914745
iter 60 value 81.807893
iter 70 value 81.355338
iter 80 value 81.273916
iter 90 value 81.193543
iter 100 value 80.149657
final value 80.149657
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.435277
final value 94.485653
converged
Fitting Repeat 2
# weights: 103
initial value 104.475228
final value 94.485797
converged
Fitting Repeat 3
# weights: 103
initial value 101.049145
final value 94.485915
converged
Fitting Repeat 4
# weights: 103
initial value 98.106964
iter 10 value 94.485643
final value 94.484660
converged
Fitting Repeat 5
# weights: 103
initial value 112.013883
iter 10 value 94.468588
iter 20 value 94.467906
final value 94.467597
converged
Fitting Repeat 1
# weights: 305
initial value 95.161652
iter 10 value 94.482754
iter 20 value 94.439085
iter 30 value 94.433115
iter 40 value 92.382153
iter 50 value 84.330918
iter 60 value 84.297289
iter 70 value 83.855534
iter 80 value 81.506520
iter 90 value 80.719016
iter 100 value 79.606877
final value 79.606877
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 109.458578
iter 10 value 94.489150
final value 94.484388
converged
Fitting Repeat 3
# weights: 305
initial value 104.617229
iter 10 value 94.471394
iter 20 value 94.467043
iter 30 value 88.698081
iter 40 value 86.710729
iter 50 value 86.709395
iter 60 value 85.678826
iter 70 value 82.975802
iter 80 value 82.630890
iter 90 value 82.615871
iter 100 value 82.595707
final value 82.595707
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.384129
iter 10 value 94.471838
iter 20 value 94.276843
iter 30 value 87.641401
iter 40 value 82.505198
iter 50 value 82.484159
iter 60 value 82.097707
iter 70 value 82.094205
iter 80 value 82.092124
iter 90 value 82.088989
iter 90 value 82.088989
final value 82.088989
converged
Fitting Repeat 5
# weights: 305
initial value 116.932358
iter 10 value 94.488647
iter 20 value 94.484568
iter 30 value 94.178306
iter 40 value 85.089466
iter 50 value 85.066869
iter 60 value 85.066179
iter 70 value 82.720755
iter 80 value 82.627600
iter 90 value 82.546726
iter 100 value 82.503573
final value 82.503573
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 101.920776
iter 10 value 94.318821
iter 20 value 94.068985
iter 30 value 92.112368
iter 40 value 85.412115
iter 50 value 85.170405
iter 60 value 84.784386
iter 70 value 84.771425
final value 84.771076
converged
Fitting Repeat 2
# weights: 507
initial value 112.933024
iter 10 value 94.474576
iter 20 value 94.468572
iter 30 value 91.819766
iter 40 value 91.782296
iter 50 value 91.772774
iter 60 value 91.738858
iter 70 value 91.411208
iter 80 value 91.377230
iter 90 value 84.372840
iter 100 value 83.475693
final value 83.475693
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 100.812906
iter 10 value 94.492219
iter 20 value 94.418231
iter 30 value 91.815294
final value 91.808963
converged
Fitting Repeat 4
# weights: 507
initial value 105.787145
iter 10 value 92.836611
iter 20 value 86.385559
iter 30 value 81.068003
iter 40 value 79.463650
iter 50 value 79.246718
iter 60 value 79.243729
iter 70 value 79.242416
final value 79.239718
converged
Fitting Repeat 5
# weights: 507
initial value 97.655966
iter 10 value 94.475167
iter 20 value 94.256005
iter 30 value 94.207064
iter 40 value 94.206148
final value 94.206143
converged
Fitting Repeat 1
# weights: 103
initial value 101.023231
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 101.650237
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 94.587411
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.697199
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.789466
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 99.321465
final value 94.354396
converged
Fitting Repeat 2
# weights: 305
initial value 95.090612
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 100.643623
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 94.710557
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 111.319325
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 111.280304
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 100.450568
final value 94.354396
converged
Fitting Repeat 3
# weights: 507
initial value 101.834201
final value 94.354396
converged
Fitting Repeat 4
# weights: 507
initial value 110.942896
iter 10 value 91.975111
final value 91.967755
converged
Fitting Repeat 5
# weights: 507
initial value 113.907231
iter 10 value 93.493107
final value 93.482424
converged
Fitting Repeat 1
# weights: 103
initial value 102.727163
iter 10 value 94.485752
iter 20 value 94.110044
iter 30 value 94.088651
iter 40 value 89.748350
iter 50 value 89.315912
iter 60 value 89.312751
iter 70 value 89.312140
iter 80 value 86.766037
iter 90 value 86.519321
iter 100 value 86.356025
final value 86.356025
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 104.295808
iter 10 value 94.480449
iter 20 value 94.309413
iter 30 value 92.356058
iter 40 value 90.234092
iter 50 value 86.787170
iter 60 value 86.488554
iter 70 value 86.480387
iter 80 value 86.477956
iter 80 value 86.477955
iter 80 value 86.477955
final value 86.477955
converged
Fitting Repeat 3
# weights: 103
initial value 105.874924
iter 10 value 94.488849
iter 20 value 94.315510
iter 30 value 92.999707
iter 40 value 92.187389
iter 50 value 92.051004
iter 60 value 90.824178
iter 70 value 88.843421
iter 80 value 88.194257
iter 90 value 87.391488
iter 100 value 86.438033
final value 86.438033
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 110.371948
iter 10 value 94.486876
iter 20 value 93.833836
iter 30 value 90.698867
iter 40 value 88.849905
iter 50 value 87.516002
iter 60 value 86.975399
iter 70 value 86.904522
iter 80 value 86.731598
iter 90 value 86.705407
final value 86.705380
converged
Fitting Repeat 5
# weights: 103
initial value 97.513152
iter 10 value 94.370447
iter 20 value 94.119504
iter 30 value 88.799256
iter 40 value 87.159545
iter 50 value 86.883752
iter 60 value 86.729877
iter 70 value 86.705385
final value 86.705380
converged
Fitting Repeat 1
# weights: 305
initial value 107.545373
iter 10 value 94.676937
iter 20 value 86.990062
iter 30 value 84.748151
iter 40 value 83.446179
iter 50 value 82.623475
iter 60 value 82.387811
iter 70 value 82.286462
iter 80 value 82.282772
iter 90 value 82.242664
iter 100 value 81.986872
final value 81.986872
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 118.876205
iter 10 value 94.641702
iter 20 value 87.242716
iter 30 value 86.319072
iter 40 value 85.773749
iter 50 value 85.281140
iter 60 value 84.230286
iter 70 value 82.583556
iter 80 value 82.225434
iter 90 value 82.099847
iter 100 value 81.932310
final value 81.932310
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.101334
iter 10 value 94.340717
iter 20 value 89.319666
iter 30 value 86.652745
iter 40 value 85.868479
iter 50 value 84.916260
iter 60 value 83.995555
iter 70 value 83.477760
iter 80 value 82.759150
iter 90 value 82.735922
iter 100 value 82.709573
final value 82.709573
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.685070
iter 10 value 94.437874
iter 20 value 93.753346
iter 30 value 89.613296
iter 40 value 85.708547
iter 50 value 83.649183
iter 60 value 82.749159
iter 70 value 82.406409
iter 80 value 82.226429
iter 90 value 82.202256
iter 100 value 82.154242
final value 82.154242
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 118.728066
iter 10 value 92.997156
iter 20 value 87.615444
iter 30 value 86.679520
iter 40 value 86.093657
iter 50 value 85.973255
iter 60 value 85.924270
iter 70 value 85.149974
iter 80 value 84.161797
iter 90 value 83.913657
iter 100 value 83.679221
final value 83.679221
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.231125
iter 10 value 95.118840
iter 20 value 94.261254
iter 30 value 87.276261
iter 40 value 85.011369
iter 50 value 84.028554
iter 60 value 83.468794
iter 70 value 82.425020
iter 80 value 82.032117
iter 90 value 81.745536
iter 100 value 81.531448
final value 81.531448
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 124.828555
iter 10 value 94.494438
iter 20 value 94.190442
iter 30 value 92.431965
iter 40 value 91.162468
iter 50 value 85.833651
iter 60 value 84.155495
iter 70 value 83.340450
iter 80 value 82.615621
iter 90 value 82.443932
iter 100 value 82.171158
final value 82.171158
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.926943
iter 10 value 94.478964
iter 20 value 87.665747
iter 30 value 86.898595
iter 40 value 86.592064
iter 50 value 85.085076
iter 60 value 83.665268
iter 70 value 83.034785
iter 80 value 82.444435
iter 90 value 82.351750
iter 100 value 82.091797
final value 82.091797
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.210302
iter 10 value 94.442497
iter 20 value 89.154200
iter 30 value 86.815233
iter 40 value 85.738341
iter 50 value 84.688682
iter 60 value 84.345742
iter 70 value 83.954493
iter 80 value 83.242293
iter 90 value 83.078154
iter 100 value 82.968315
final value 82.968315
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 137.254681
iter 10 value 94.229295
iter 20 value 90.338847
iter 30 value 86.897478
iter 40 value 86.178228
iter 50 value 85.716435
iter 60 value 85.024707
iter 70 value 84.883547
iter 80 value 83.440715
iter 90 value 83.135025
iter 100 value 82.705556
final value 82.705556
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.758968
final value 94.485988
converged
Fitting Repeat 2
# weights: 103
initial value 96.211427
final value 94.485928
converged
Fitting Repeat 3
# weights: 103
initial value 105.703969
final value 94.486013
converged
Fitting Repeat 4
# weights: 103
initial value 94.814889
final value 94.485825
converged
Fitting Repeat 5
# weights: 103
initial value 99.480813
final value 94.485876
converged
Fitting Repeat 1
# weights: 305
initial value 118.607938
iter 10 value 94.486106
iter 20 value 94.384005
iter 30 value 94.368812
iter 40 value 94.224884
iter 50 value 94.097802
iter 60 value 94.094132
iter 70 value 92.713842
iter 80 value 92.632546
iter 90 value 92.632458
iter 100 value 92.632307
final value 92.632307
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 114.648716
iter 10 value 94.489141
iter 20 value 94.321335
final value 94.052738
converged
Fitting Repeat 3
# weights: 305
initial value 109.527181
iter 10 value 93.813965
iter 20 value 90.082517
iter 30 value 88.857792
iter 40 value 88.829721
final value 88.828913
converged
Fitting Repeat 4
# weights: 305
initial value 100.078085
iter 10 value 94.359607
iter 20 value 94.354870
iter 30 value 94.277358
iter 40 value 92.634032
iter 50 value 92.632009
final value 92.631970
converged
Fitting Repeat 5
# weights: 305
initial value 96.065021
iter 10 value 94.489185
iter 20 value 94.484578
iter 30 value 94.053088
iter 30 value 94.053088
iter 30 value 94.053088
final value 94.053088
converged
Fitting Repeat 1
# weights: 507
initial value 98.830072
iter 10 value 94.471963
iter 20 value 93.740723
iter 30 value 88.572598
iter 40 value 88.184908
iter 50 value 88.107232
iter 60 value 87.259446
iter 70 value 84.150201
iter 80 value 83.910789
iter 90 value 83.867038
iter 100 value 83.779337
final value 83.779337
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.509852
iter 10 value 93.708588
iter 20 value 93.707227
iter 30 value 92.516758
iter 40 value 87.749418
iter 50 value 84.600620
iter 60 value 83.923414
iter 70 value 83.243957
iter 80 value 82.720989
iter 90 value 82.309863
iter 100 value 81.904451
final value 81.904451
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.921692
iter 10 value 94.491906
iter 20 value 94.313528
iter 30 value 93.347560
iter 40 value 93.284134
iter 50 value 89.740233
iter 60 value 87.732011
iter 70 value 87.728231
final value 87.728098
converged
Fitting Repeat 4
# weights: 507
initial value 96.043621
iter 10 value 94.489742
iter 20 value 94.453554
iter 30 value 94.215068
iter 40 value 94.214875
iter 50 value 94.147654
iter 60 value 88.593372
iter 70 value 87.808738
iter 80 value 86.083652
iter 90 value 84.848709
iter 100 value 81.530488
final value 81.530488
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.779500
iter 10 value 88.705877
iter 20 value 87.972489
final value 87.967828
converged
Fitting Repeat 1
# weights: 103
initial value 95.923633
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.416674
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 104.632309
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 96.917827
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 98.045193
iter 10 value 89.575624
iter 20 value 83.178839
iter 30 value 83.152925
final value 83.152920
converged
Fitting Repeat 1
# weights: 305
initial value 97.112849
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 100.501042
iter 10 value 93.328261
iter 10 value 93.328261
iter 10 value 93.328261
final value 93.328261
converged
Fitting Repeat 3
# weights: 305
initial value 102.982784
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 117.101285
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 100.126309
iter 10 value 93.226524
final value 93.215984
converged
Fitting Repeat 1
# weights: 507
initial value 113.937351
iter 10 value 93.482435
final value 93.328261
converged
Fitting Repeat 2
# weights: 507
initial value 96.972114
iter 10 value 92.775065
iter 20 value 83.168945
iter 30 value 82.694059
iter 40 value 82.643365
final value 82.643363
converged
Fitting Repeat 3
# weights: 507
initial value 95.566817
iter 10 value 93.328261
iter 10 value 93.328261
iter 10 value 93.328261
final value 93.328261
converged
Fitting Repeat 4
# weights: 507
initial value 132.211738
iter 10 value 93.907743
final value 93.903448
converged
Fitting Repeat 5
# weights: 507
initial value 99.963553
iter 10 value 93.183825
final value 93.183802
converged
Fitting Repeat 1
# weights: 103
initial value 99.076550
iter 10 value 93.970079
iter 20 value 93.331540
iter 30 value 93.298076
iter 40 value 92.922552
iter 50 value 86.840665
iter 60 value 85.721349
iter 70 value 85.463547
iter 80 value 85.037624
iter 90 value 83.578380
iter 100 value 83.170137
final value 83.170137
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.999884
iter 10 value 92.529667
iter 20 value 85.702126
iter 30 value 85.352197
iter 40 value 84.935006
iter 50 value 83.372133
iter 60 value 83.089825
iter 70 value 83.010305
final value 83.009674
converged
Fitting Repeat 3
# weights: 103
initial value 95.886918
iter 10 value 94.061027
iter 20 value 89.645676
iter 30 value 88.375775
iter 40 value 85.312663
iter 50 value 83.450716
iter 60 value 82.969743
iter 70 value 82.873882
iter 80 value 82.706419
iter 90 value 82.662588
iter 90 value 82.662588
iter 90 value 82.662588
final value 82.662588
converged
Fitting Repeat 4
# weights: 103
initial value 103.355196
iter 10 value 94.061573
iter 20 value 93.360713
iter 30 value 83.698151
iter 40 value 82.923859
iter 50 value 82.205494
iter 60 value 82.038358
final value 82.037613
converged
Fitting Repeat 5
# weights: 103
initial value 102.706595
iter 10 value 93.941563
iter 20 value 88.286109
iter 30 value 87.466671
iter 40 value 86.975042
iter 50 value 86.652907
iter 60 value 83.646884
iter 70 value 83.258845
iter 80 value 83.011167
final value 83.009673
converged
Fitting Repeat 1
# weights: 305
initial value 116.750026
iter 10 value 94.047831
iter 20 value 91.950410
iter 30 value 91.582116
iter 40 value 91.043045
iter 50 value 84.470486
iter 60 value 82.716847
iter 70 value 80.305315
iter 80 value 79.994890
iter 90 value 79.757158
iter 100 value 79.553637
final value 79.553637
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.001062
iter 10 value 94.055911
iter 20 value 87.952791
iter 30 value 85.464240
iter 40 value 83.873419
iter 50 value 83.262568
iter 60 value 82.875151
iter 70 value 81.290040
iter 80 value 80.071852
iter 90 value 79.956246
iter 100 value 79.795227
final value 79.795227
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 138.772658
iter 10 value 93.807372
iter 20 value 92.677843
iter 30 value 87.051346
iter 40 value 84.431627
iter 50 value 83.394437
iter 60 value 80.665404
iter 70 value 80.162922
iter 80 value 80.065988
iter 90 value 79.866641
iter 100 value 79.379659
final value 79.379659
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 114.887805
iter 10 value 91.185346
iter 20 value 84.586109
iter 30 value 83.920411
iter 40 value 83.376766
iter 50 value 81.641421
iter 60 value 81.169107
iter 70 value 80.050471
iter 80 value 79.610860
iter 90 value 79.360415
iter 100 value 79.310846
final value 79.310846
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 111.307645
iter 10 value 93.454334
iter 20 value 90.782627
iter 30 value 83.694221
iter 40 value 82.799399
iter 50 value 81.665776
iter 60 value 80.284518
iter 70 value 80.074972
iter 80 value 79.667385
iter 90 value 79.574348
iter 100 value 79.532538
final value 79.532538
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 124.062381
iter 10 value 94.090913
iter 20 value 85.424064
iter 30 value 83.405800
iter 40 value 83.147631
iter 50 value 80.896386
iter 60 value 80.505443
iter 70 value 79.852524
iter 80 value 79.621967
iter 90 value 79.391655
iter 100 value 79.353291
final value 79.353291
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.819973
iter 10 value 94.587727
iter 20 value 91.687240
iter 30 value 84.800027
iter 40 value 83.598436
iter 50 value 81.840350
iter 60 value 80.131715
iter 70 value 79.562580
iter 80 value 79.418300
iter 90 value 79.056969
iter 100 value 78.756922
final value 78.756922
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 127.178286
iter 10 value 94.971444
iter 20 value 93.441778
iter 30 value 85.352123
iter 40 value 84.236889
iter 50 value 82.591764
iter 60 value 81.952816
iter 70 value 81.821540
iter 80 value 81.300829
iter 90 value 79.764837
iter 100 value 79.243904
final value 79.243904
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.821157
iter 10 value 94.663468
iter 20 value 87.242099
iter 30 value 86.713811
iter 40 value 84.853599
iter 50 value 81.038444
iter 60 value 80.239727
iter 70 value 80.082263
iter 80 value 79.963630
iter 90 value 79.725693
iter 100 value 79.672590
final value 79.672590
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 147.752895
iter 10 value 88.634981
iter 20 value 87.493136
iter 30 value 86.985957
iter 40 value 85.149864
iter 50 value 84.361311
iter 60 value 82.911846
iter 70 value 82.002414
iter 80 value 80.351896
iter 90 value 79.842547
iter 100 value 79.339246
final value 79.339246
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.873614
final value 94.054507
converged
Fitting Repeat 2
# weights: 103
initial value 96.615572
iter 10 value 94.054663
iter 20 value 94.052952
iter 30 value 93.184858
final value 93.184364
converged
Fitting Repeat 3
# weights: 103
initial value 109.599797
final value 94.054429
converged
Fitting Repeat 4
# weights: 103
initial value 105.388062
final value 94.054486
converged
Fitting Repeat 5
# weights: 103
initial value 98.084678
final value 94.054639
converged
Fitting Repeat 1
# weights: 305
initial value 97.610896
iter 10 value 93.908292
iter 20 value 93.438869
iter 30 value 89.502158
iter 40 value 89.400192
iter 50 value 89.394641
iter 60 value 89.394459
iter 70 value 89.085860
iter 80 value 85.753242
iter 90 value 85.423361
iter 100 value 83.588173
final value 83.588173
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.689009
iter 10 value 94.058284
iter 20 value 94.036761
iter 30 value 88.906142
iter 40 value 88.651276
iter 50 value 88.155879
iter 60 value 87.300388
iter 70 value 83.961730
iter 80 value 83.899906
iter 90 value 83.765995
iter 100 value 83.105404
final value 83.105404
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.166748
iter 10 value 94.058060
iter 20 value 94.032024
iter 30 value 93.328746
iter 30 value 93.328746
iter 30 value 93.328746
final value 93.328746
converged
Fitting Repeat 4
# weights: 305
initial value 93.416016
iter 10 value 87.203307
iter 20 value 86.938424
iter 30 value 86.879925
iter 40 value 86.876702
iter 50 value 86.740677
iter 60 value 86.536932
final value 86.536919
converged
Fitting Repeat 5
# weights: 305
initial value 100.100091
iter 10 value 94.058314
iter 20 value 93.904118
iter 30 value 93.184090
iter 30 value 93.184090
iter 30 value 93.184090
final value 93.184090
converged
Fitting Repeat 1
# weights: 507
initial value 96.714438
iter 10 value 88.490133
iter 20 value 88.151146
iter 30 value 87.791916
iter 40 value 87.785830
iter 50 value 86.463552
iter 60 value 86.453348
final value 86.452334
converged
Fitting Repeat 2
# weights: 507
initial value 100.646345
iter 10 value 94.060334
iter 20 value 93.361899
iter 30 value 93.087385
final value 93.087323
converged
Fitting Repeat 3
# weights: 507
initial value 107.006610
iter 10 value 93.336855
iter 20 value 93.332092
iter 30 value 93.090933
iter 40 value 83.375363
iter 50 value 79.488579
iter 60 value 78.338052
iter 70 value 78.206401
iter 80 value 78.079314
iter 90 value 78.035836
iter 100 value 78.029564
final value 78.029564
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 101.319266
iter 10 value 93.336644
iter 20 value 93.331898
iter 30 value 93.248850
iter 40 value 91.826448
iter 50 value 88.148223
iter 60 value 87.983516
iter 70 value 87.982962
final value 87.982499
converged
Fitting Repeat 5
# weights: 507
initial value 106.033836
iter 10 value 94.061185
iter 20 value 94.038736
iter 30 value 93.193045
iter 40 value 87.878148
iter 50 value 87.783709
iter 60 value 84.390196
iter 70 value 84.341328
final value 84.340903
converged
Fitting Repeat 1
# weights: 305
initial value 122.674036
iter 10 value 117.834865
iter 20 value 111.916261
iter 30 value 107.548582
iter 40 value 105.708835
iter 50 value 105.194673
iter 60 value 104.857185
iter 70 value 103.201547
iter 80 value 102.338660
iter 90 value 102.038004
iter 100 value 101.632651
final value 101.632651
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 130.420829
iter 10 value 120.465538
iter 20 value 115.288842
iter 30 value 113.758935
iter 40 value 112.349445
iter 50 value 111.021457
iter 60 value 107.412015
iter 70 value 104.689075
iter 80 value 104.464792
iter 90 value 104.240945
iter 100 value 103.195561
final value 103.195561
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 140.454843
iter 10 value 121.554085
iter 20 value 118.005472
iter 30 value 113.701424
iter 40 value 109.152729
iter 50 value 108.812090
iter 60 value 106.294588
iter 70 value 104.759448
iter 80 value 102.285798
iter 90 value 101.731993
iter 100 value 101.516502
final value 101.516502
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 129.933375
iter 10 value 117.147690
iter 20 value 111.439503
iter 30 value 107.587433
iter 40 value 105.486171
iter 50 value 104.683577
iter 60 value 103.517948
iter 70 value 102.308340
iter 80 value 101.213741
iter 90 value 101.026741
iter 100 value 100.900292
final value 100.900292
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 127.140761
iter 10 value 117.629192
iter 20 value 108.894492
iter 30 value 104.989324
iter 40 value 104.253563
iter 50 value 103.694868
iter 60 value 101.952145
iter 70 value 101.095993
iter 80 value 100.904478
iter 90 value 100.811541
iter 100 value 100.800040
final value 100.800040
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Apr 1 22:04:48 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
50.150 1.708 67.905
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 52.080 | 2.029 | 54.169 | |
| FreqInteractors | 0.244 | 0.012 | 0.268 | |
| calculateAAC | 0.044 | 0.008 | 0.057 | |
| calculateAutocor | 0.431 | 0.091 | 0.524 | |
| calculateCTDC | 0.081 | 0.008 | 0.087 | |
| calculateCTDD | 0.562 | 0.028 | 0.590 | |
| calculateCTDT | 0.254 | 0.013 | 0.268 | |
| calculateCTriad | 0.450 | 0.040 | 0.489 | |
| calculateDC | 0.095 | 0.009 | 0.103 | |
| calculateF | 0.345 | 0.021 | 0.365 | |
| calculateKSAAP | 0.098 | 0.010 | 0.109 | |
| calculateQD_Sm | 1.491 | 0.113 | 1.610 | |
| calculateTC | 1.648 | 0.130 | 1.780 | |
| calculateTC_Sm | 0.320 | 0.034 | 0.358 | |
| corr_plot | 51.831 | 2.299 | 54.351 | |
| enrichfindP | 0.509 | 0.077 | 7.184 | |
| enrichfind_hp | 0.069 | 0.016 | 0.736 | |
| enrichplot | 0.379 | 0.007 | 0.386 | |
| filter_missing_values | 0.001 | 0.000 | 0.002 | |
| getFASTA | 0.087 | 0.016 | 1.077 | |
| getHPI | 0.000 | 0.000 | 0.001 | |
| get_negativePPI | 0.001 | 0.000 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.001 | 0.000 | 0.001 | |
| plotPPI | 0.074 | 0.003 | 0.077 | |
| pred_ensembel | 16.321 | 0.551 | 14.810 | |
| var_imp | 51.395 | 2.298 | 53.922 | |