| Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-04-02 19:32 -0400 (Wed, 02 Apr 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4764 |
| palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4495 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4522 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4449 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4426 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.12.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
| StartedAt: 2025-04-01 04:20:45 -0400 (Tue, 01 Apr 2025) |
| EndedAt: 2025-04-01 04:30:10 -0400 (Tue, 01 Apr 2025) |
| EllapsedTime: 564.4 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: x86_64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 52.417 1.734 59.213
FSmethod 50.602 1.770 54.871
corr_plot 50.508 1.703 55.258
pred_ensembel 25.423 0.392 24.998
calculateTC 4.738 0.478 5.506
enrichfindP 0.889 0.082 13.583
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 95.133346
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 101.922085
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.793805
final value 94.312038
converged
Fitting Repeat 4
# weights: 103
initial value 100.265776
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 99.665182
iter 10 value 89.798081
iter 20 value 88.824461
iter 30 value 87.335922
iter 40 value 87.284138
final value 87.283810
converged
Fitting Repeat 1
# weights: 305
initial value 114.806764
final value 94.466823
converged
Fitting Repeat 2
# weights: 305
initial value 95.648612
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 103.597643
iter 10 value 94.484211
iter 10 value 94.484211
iter 10 value 94.484211
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 114.251881
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 101.082389
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 117.548843
final value 94.466823
converged
Fitting Repeat 2
# weights: 507
initial value 111.010280
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 103.515447
final value 94.466823
converged
Fitting Repeat 4
# weights: 507
initial value 107.478746
final value 94.466823
converged
Fitting Repeat 5
# weights: 507
initial value 100.010424
iter 10 value 94.461209
final value 94.461207
converged
Fitting Repeat 1
# weights: 103
initial value 102.906022
iter 10 value 94.528015
iter 20 value 94.481741
iter 30 value 94.344617
iter 40 value 94.186523
iter 50 value 94.143868
iter 60 value 88.341388
iter 70 value 86.758858
iter 80 value 85.833178
final value 85.824337
converged
Fitting Repeat 2
# weights: 103
initial value 96.371154
iter 10 value 94.514179
iter 20 value 94.486919
iter 30 value 94.486442
iter 40 value 90.912461
iter 50 value 88.156239
iter 60 value 87.594545
iter 70 value 87.424071
iter 80 value 87.338467
final value 87.338440
converged
Fitting Repeat 3
# weights: 103
initial value 101.447292
iter 10 value 94.415999
iter 20 value 92.843183
iter 30 value 89.984376
iter 40 value 86.417939
iter 50 value 85.595765
iter 60 value 83.957092
iter 70 value 83.266738
iter 80 value 82.681074
final value 82.678456
converged
Fitting Repeat 4
# weights: 103
initial value 99.452742
iter 10 value 94.490391
iter 20 value 93.979969
iter 30 value 91.130871
iter 40 value 90.950526
iter 50 value 90.223068
iter 60 value 88.242936
iter 70 value 85.235291
iter 80 value 84.583005
iter 90 value 84.185543
iter 100 value 83.653595
final value 83.653595
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 100.954569
iter 10 value 94.493397
iter 20 value 92.747712
iter 30 value 92.558360
iter 40 value 92.527359
iter 50 value 92.521034
iter 60 value 92.510030
iter 70 value 85.985994
iter 80 value 85.580066
iter 90 value 85.462297
iter 100 value 85.186706
final value 85.186706
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 101.610495
iter 10 value 94.444905
iter 20 value 93.838474
iter 30 value 91.149171
iter 40 value 85.897781
iter 50 value 84.547688
iter 60 value 83.255980
iter 70 value 82.544872
iter 80 value 81.943765
iter 90 value 81.746032
iter 100 value 81.510395
final value 81.510395
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.246657
iter 10 value 97.344946
iter 20 value 93.406449
iter 30 value 87.265135
iter 40 value 85.013093
iter 50 value 84.639547
iter 60 value 83.798907
iter 70 value 83.081754
iter 80 value 82.711915
iter 90 value 82.449473
iter 100 value 82.282505
final value 82.282505
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 116.971984
iter 10 value 94.495717
iter 20 value 91.832593
iter 30 value 87.616758
iter 40 value 87.494611
iter 50 value 87.401772
iter 60 value 86.223756
iter 70 value 85.996311
iter 80 value 84.473179
iter 90 value 84.097070
iter 100 value 83.928365
final value 83.928365
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.621966
iter 10 value 94.137731
iter 20 value 89.007932
iter 30 value 88.139568
iter 40 value 87.672952
iter 50 value 86.342973
iter 60 value 84.747901
iter 70 value 83.548796
iter 80 value 83.008204
iter 90 value 82.651968
iter 100 value 82.616368
final value 82.616368
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.083075
iter 10 value 94.385438
iter 20 value 90.395758
iter 30 value 87.602653
iter 40 value 84.713658
iter 50 value 82.724089
iter 60 value 82.542181
iter 70 value 82.321162
iter 80 value 82.047954
iter 90 value 82.009671
iter 100 value 81.698160
final value 81.698160
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.372906
iter 10 value 94.499018
iter 20 value 94.218840
iter 30 value 89.737783
iter 40 value 87.719725
iter 50 value 84.963267
iter 60 value 82.219780
iter 70 value 81.928203
iter 80 value 81.795204
iter 90 value 81.306401
iter 100 value 81.093187
final value 81.093187
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.243350
iter 10 value 93.452968
iter 20 value 88.235889
iter 30 value 84.316933
iter 40 value 82.699266
iter 50 value 81.816776
iter 60 value 81.458751
iter 70 value 81.028235
iter 80 value 80.677578
iter 90 value 80.562258
iter 100 value 80.508911
final value 80.508911
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 125.433120
iter 10 value 94.519815
iter 20 value 86.906284
iter 30 value 85.509535
iter 40 value 84.986418
iter 50 value 83.158428
iter 60 value 82.470781
iter 70 value 81.680391
iter 80 value 81.316395
iter 90 value 81.132124
iter 100 value 80.928237
final value 80.928237
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.609537
iter 10 value 91.910362
iter 20 value 87.569210
iter 30 value 86.518565
iter 40 value 85.455700
iter 50 value 85.039196
iter 60 value 84.816345
iter 70 value 82.543294
iter 80 value 81.609373
iter 90 value 81.466731
iter 100 value 81.001541
final value 81.001541
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 122.093106
iter 10 value 94.549566
iter 20 value 92.766630
iter 30 value 92.454253
iter 40 value 92.325468
iter 50 value 92.104885
iter 60 value 90.810810
iter 70 value 85.541945
iter 80 value 84.421388
iter 90 value 83.603608
iter 100 value 83.481279
final value 83.481279
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.512945
final value 94.486023
converged
Fitting Repeat 2
# weights: 103
initial value 102.881632
final value 93.703607
converged
Fitting Repeat 3
# weights: 103
initial value 96.283169
final value 94.485662
converged
Fitting Repeat 4
# weights: 103
initial value 106.583093
final value 94.486033
converged
Fitting Repeat 5
# weights: 103
initial value 97.628987
final value 94.485837
converged
Fitting Repeat 1
# weights: 305
initial value 106.510549
iter 10 value 94.471839
iter 20 value 89.230035
iter 30 value 84.725344
iter 40 value 84.725073
iter 50 value 84.724675
iter 60 value 84.669799
iter 70 value 82.274048
iter 80 value 82.074882
iter 90 value 81.903377
iter 100 value 81.856883
final value 81.856883
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 116.062570
iter 10 value 94.471405
iter 20 value 94.466917
iter 30 value 91.140196
iter 40 value 87.296475
iter 50 value 87.289058
iter 60 value 86.178878
final value 86.158678
converged
Fitting Repeat 3
# weights: 305
initial value 96.840420
iter 10 value 93.712626
iter 20 value 93.710433
iter 30 value 93.709573
iter 40 value 87.047464
final value 86.957384
converged
Fitting Repeat 4
# weights: 305
initial value 98.759118
iter 10 value 94.489562
iter 20 value 94.466192
iter 30 value 87.201702
iter 40 value 87.097252
iter 50 value 87.095636
final value 87.095537
converged
Fitting Repeat 5
# weights: 305
initial value 100.740745
iter 10 value 94.486891
iter 20 value 89.576669
iter 30 value 87.191156
iter 40 value 87.190202
iter 40 value 87.190202
final value 87.190202
converged
Fitting Repeat 1
# weights: 507
initial value 92.415581
iter 10 value 88.342975
iter 20 value 86.541207
iter 30 value 86.495809
iter 40 value 86.491792
iter 50 value 86.489618
iter 60 value 86.488149
iter 70 value 86.487685
iter 80 value 86.487186
iter 90 value 84.691618
final value 84.627462
converged
Fitting Repeat 2
# weights: 507
initial value 100.150367
iter 10 value 94.469307
iter 20 value 93.902532
iter 30 value 89.291776
iter 40 value 87.440568
iter 50 value 86.588057
iter 60 value 85.213371
iter 70 value 84.403773
iter 80 value 84.059486
iter 90 value 83.946469
final value 83.945751
converged
Fitting Repeat 3
# weights: 507
initial value 110.546206
iter 10 value 94.254275
iter 20 value 94.243858
iter 30 value 94.242955
iter 40 value 94.238937
iter 50 value 94.176093
iter 60 value 94.169006
iter 70 value 87.796940
iter 80 value 84.746929
iter 80 value 84.746928
iter 90 value 84.280585
final value 84.280581
converged
Fitting Repeat 4
# weights: 507
initial value 110.733992
iter 10 value 93.711766
iter 20 value 91.489388
iter 30 value 87.985386
iter 40 value 84.531708
iter 50 value 81.950174
iter 60 value 81.871004
iter 70 value 81.825469
final value 81.824271
converged
Fitting Repeat 5
# weights: 507
initial value 133.829609
iter 10 value 94.562441
iter 20 value 94.451056
iter 30 value 94.443252
iter 40 value 94.267341
iter 50 value 94.250062
iter 60 value 94.151329
iter 70 value 94.150739
iter 80 value 94.150524
final value 94.150049
converged
Fitting Repeat 1
# weights: 103
initial value 96.054443
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 104.547410
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.515928
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 102.097586
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 98.763803
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 94.211214
iter 10 value 93.869431
final value 93.867974
converged
Fitting Repeat 2
# weights: 305
initial value 110.788415
iter 10 value 93.817685
final value 93.810010
converged
Fitting Repeat 3
# weights: 305
initial value 106.111085
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 96.029861
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 96.953820
final value 93.836066
converged
Fitting Repeat 1
# weights: 507
initial value 102.152758
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 94.661642
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 96.430260
iter 10 value 93.773505
iter 20 value 92.906778
iter 30 value 92.892555
iter 40 value 88.069604
iter 50 value 87.389253
final value 87.389148
converged
Fitting Repeat 4
# weights: 507
initial value 110.867436
final value 93.836066
converged
Fitting Repeat 5
# weights: 507
initial value 100.806822
iter 10 value 93.571534
final value 93.571529
converged
Fitting Repeat 1
# weights: 103
initial value 99.620574
iter 10 value 94.056724
iter 20 value 92.719109
iter 30 value 87.362938
iter 40 value 86.340996
iter 50 value 85.876376
iter 60 value 85.823707
iter 70 value 85.818387
final value 85.817530
converged
Fitting Repeat 2
# weights: 103
initial value 98.627027
iter 10 value 94.055008
iter 20 value 93.789881
iter 30 value 93.523225
iter 40 value 93.510401
iter 50 value 89.943314
iter 60 value 89.290539
iter 70 value 89.118302
iter 80 value 88.495096
iter 90 value 87.554005
iter 100 value 87.514303
final value 87.514303
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 100.742646
iter 10 value 93.778398
iter 20 value 90.087637
iter 30 value 89.285195
iter 40 value 86.497183
iter 50 value 85.823933
iter 60 value 85.817645
final value 85.817530
converged
Fitting Repeat 4
# weights: 103
initial value 96.618090
iter 10 value 94.069762
iter 20 value 93.625882
iter 30 value 93.573982
iter 40 value 93.571722
iter 50 value 93.569798
iter 60 value 87.939333
iter 70 value 86.718117
iter 80 value 85.743414
iter 90 value 85.533560
iter 100 value 85.504843
final value 85.504843
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.517674
iter 10 value 93.909492
iter 20 value 90.291848
iter 30 value 89.247847
iter 40 value 88.047692
iter 50 value 87.519719
iter 60 value 87.514296
final value 87.514288
converged
Fitting Repeat 1
# weights: 305
initial value 116.576648
iter 10 value 89.131667
iter 20 value 87.062559
iter 30 value 86.488882
iter 40 value 85.488968
iter 50 value 85.261637
iter 60 value 85.092776
iter 70 value 85.007514
iter 80 value 84.991521
iter 90 value 84.974645
iter 100 value 84.871290
final value 84.871290
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.690558
iter 10 value 91.762153
iter 20 value 89.656116
iter 30 value 85.862996
iter 40 value 85.631821
iter 50 value 85.219020
iter 60 value 84.131707
iter 70 value 83.977746
iter 80 value 83.739165
iter 90 value 83.516643
iter 100 value 83.240274
final value 83.240274
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.782745
iter 10 value 93.614713
iter 20 value 92.435391
iter 30 value 91.999299
iter 40 value 91.515698
iter 50 value 91.352279
iter 60 value 84.153149
iter 70 value 83.660877
iter 80 value 83.576660
iter 90 value 83.466115
iter 100 value 83.359682
final value 83.359682
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 117.458311
iter 10 value 94.094677
iter 20 value 88.760275
iter 30 value 87.649736
iter 40 value 85.415895
iter 50 value 83.955318
iter 60 value 83.761707
iter 70 value 83.671816
iter 80 value 83.429515
iter 90 value 83.319399
iter 100 value 83.306734
final value 83.306734
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.251410
iter 10 value 94.014251
iter 20 value 88.981785
iter 30 value 88.003515
iter 40 value 87.234056
iter 50 value 86.542941
iter 60 value 86.436170
iter 70 value 86.222972
iter 80 value 84.229696
iter 90 value 83.939989
iter 100 value 83.907091
final value 83.907091
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.342796
iter 10 value 94.425865
iter 20 value 90.363586
iter 30 value 87.920301
iter 40 value 87.456305
iter 50 value 87.219073
iter 60 value 85.930359
iter 70 value 85.289635
iter 80 value 85.070260
iter 90 value 84.890161
iter 100 value 84.863947
final value 84.863947
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 130.385699
iter 10 value 94.176217
iter 20 value 94.045810
iter 30 value 93.510274
iter 40 value 90.259189
iter 50 value 87.798316
iter 60 value 84.759119
iter 70 value 84.065816
iter 80 value 83.732421
iter 90 value 83.422537
iter 100 value 83.335176
final value 83.335176
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 132.284491
iter 10 value 94.423400
iter 20 value 93.742474
iter 30 value 89.092836
iter 40 value 85.837787
iter 50 value 84.646490
iter 60 value 84.134533
iter 70 value 83.817943
iter 80 value 83.563701
iter 90 value 83.470364
iter 100 value 83.434202
final value 83.434202
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.267439
iter 10 value 93.793936
iter 20 value 92.224860
iter 30 value 87.458383
iter 40 value 86.902676
iter 50 value 85.391617
iter 60 value 84.424788
iter 70 value 83.874538
iter 80 value 83.678363
iter 90 value 83.580570
iter 100 value 83.493092
final value 83.493092
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.167208
iter 10 value 93.765386
iter 20 value 92.321993
iter 30 value 89.523785
iter 40 value 85.831683
iter 50 value 84.599648
iter 60 value 84.457301
iter 70 value 84.262151
iter 80 value 83.464175
iter 90 value 83.277720
iter 100 value 83.182117
final value 83.182117
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 108.174878
final value 94.054379
converged
Fitting Repeat 2
# weights: 103
initial value 100.646888
iter 10 value 93.456828
final value 93.456688
converged
Fitting Repeat 3
# weights: 103
initial value 101.874084
iter 10 value 94.054701
iter 20 value 94.052596
iter 30 value 87.483297
iter 40 value 87.377455
iter 50 value 87.375038
iter 60 value 86.172112
iter 70 value 86.169570
final value 86.169506
converged
Fitting Repeat 4
# weights: 103
initial value 97.634376
final value 94.054456
converged
Fitting Repeat 5
# weights: 103
initial value 97.364124
final value 94.055095
converged
Fitting Repeat 1
# weights: 305
initial value 95.022610
iter 10 value 90.086845
iter 20 value 89.300005
iter 30 value 88.220858
iter 40 value 88.218991
iter 50 value 88.158099
iter 60 value 88.157200
iter 70 value 88.153777
final value 88.153596
converged
Fitting Repeat 2
# weights: 305
initial value 102.140800
iter 10 value 94.057965
iter 20 value 94.053239
iter 30 value 93.459328
iter 40 value 90.104247
iter 50 value 86.172962
final value 86.169879
converged
Fitting Repeat 3
# weights: 305
initial value 112.003009
iter 10 value 93.841162
iter 20 value 93.693823
iter 30 value 88.200057
iter 40 value 88.157234
iter 50 value 88.156733
iter 60 value 88.155224
iter 70 value 87.887548
iter 80 value 87.648365
iter 90 value 86.119068
iter 100 value 84.519872
final value 84.519872
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.367487
iter 10 value 94.057686
iter 20 value 94.052924
iter 30 value 93.460088
final value 93.455259
converged
Fitting Repeat 5
# weights: 305
initial value 96.796915
iter 10 value 94.057063
iter 20 value 92.856777
iter 30 value 87.377717
iter 40 value 86.201240
iter 50 value 86.171072
iter 60 value 86.170926
iter 70 value 86.098050
iter 80 value 85.951581
iter 80 value 85.951581
final value 85.951581
converged
Fitting Repeat 1
# weights: 507
initial value 124.693226
iter 10 value 94.079509
iter 20 value 93.059401
iter 30 value 92.779116
iter 40 value 92.717949
iter 50 value 92.511769
iter 60 value 91.461071
iter 70 value 90.409573
iter 80 value 90.368420
iter 90 value 84.042222
iter 100 value 83.301631
final value 83.301631
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 94.695393
iter 10 value 91.035995
iter 20 value 90.537239
iter 30 value 90.533534
iter 40 value 88.655369
iter 50 value 87.915837
iter 60 value 87.752717
final value 87.752710
converged
Fitting Repeat 3
# weights: 507
initial value 111.468169
iter 10 value 93.950721
iter 20 value 93.438567
iter 30 value 93.398781
iter 40 value 93.390064
iter 50 value 93.385725
iter 60 value 93.382386
iter 70 value 93.381417
iter 80 value 92.472527
iter 90 value 90.475633
iter 100 value 87.582535
final value 87.582535
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.700599
iter 10 value 93.818151
iter 20 value 93.752883
iter 30 value 93.450889
iter 30 value 93.450888
iter 30 value 93.450888
final value 93.450888
converged
Fitting Repeat 5
# weights: 507
initial value 108.445620
iter 10 value 93.844231
iter 20 value 93.837970
final value 93.836843
converged
Fitting Repeat 1
# weights: 103
initial value 100.492009
final value 94.472273
converged
Fitting Repeat 2
# weights: 103
initial value 98.631288
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 101.128717
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 109.817078
final value 94.354396
converged
Fitting Repeat 5
# weights: 103
initial value 103.423799
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 94.575998
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.979629
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 101.526122
iter 10 value 94.354715
final value 94.354396
converged
Fitting Repeat 4
# weights: 305
initial value 106.076408
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 100.885511
final value 94.206005
converged
Fitting Repeat 1
# weights: 507
initial value 104.120885
iter 10 value 94.448052
iter 10 value 94.448052
iter 10 value 94.448052
final value 94.448052
converged
Fitting Repeat 2
# weights: 507
initial value 102.759310
iter 10 value 94.309525
iter 10 value 94.309524
iter 10 value 94.309524
final value 94.309524
converged
Fitting Repeat 3
# weights: 507
initial value 102.311945
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 95.230034
iter 10 value 91.839528
final value 91.834445
converged
Fitting Repeat 5
# weights: 507
initial value 107.960497
final value 94.322896
converged
Fitting Repeat 1
# weights: 103
initial value 104.292115
iter 10 value 94.488662
iter 20 value 94.392483
iter 30 value 94.382309
iter 40 value 93.687592
iter 50 value 85.284412
iter 60 value 83.921627
iter 70 value 82.976303
iter 80 value 82.223279
iter 90 value 82.124034
iter 100 value 81.523161
final value 81.523161
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 101.190452
iter 10 value 94.467315
iter 20 value 91.702642
iter 30 value 87.300244
iter 40 value 87.154999
iter 50 value 87.123601
iter 60 value 87.105411
iter 70 value 85.281053
iter 80 value 85.250415
iter 90 value 85.204327
iter 100 value 85.189528
final value 85.189528
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 113.842040
iter 10 value 94.490464
iter 20 value 94.481759
iter 30 value 90.987087
iter 40 value 88.540258
iter 50 value 86.418767
iter 60 value 85.922618
iter 70 value 85.038844
iter 80 value 84.680981
iter 90 value 83.894287
iter 100 value 83.871774
final value 83.871774
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.064401
iter 10 value 94.490683
iter 20 value 89.190755
iter 30 value 86.024734
iter 40 value 85.111967
iter 50 value 82.830561
iter 60 value 82.215851
iter 70 value 81.302685
iter 80 value 80.773726
iter 90 value 80.745616
final value 80.745568
converged
Fitting Repeat 5
# weights: 103
initial value 96.506122
iter 10 value 92.957426
iter 20 value 91.099616
iter 30 value 91.064491
iter 40 value 91.058814
iter 50 value 91.057738
iter 50 value 91.057738
iter 50 value 91.057738
final value 91.057738
converged
Fitting Repeat 1
# weights: 305
initial value 103.723805
iter 10 value 94.444221
iter 20 value 90.818582
iter 30 value 87.510142
iter 40 value 86.645251
iter 50 value 85.402490
iter 60 value 82.402295
iter 70 value 80.734463
iter 80 value 80.277065
iter 90 value 80.042104
iter 100 value 79.841207
final value 79.841207
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 121.427018
iter 10 value 94.473307
iter 20 value 92.996836
iter 30 value 86.838609
iter 40 value 85.895265
iter 50 value 84.380682
iter 60 value 82.933614
iter 70 value 81.114865
iter 80 value 80.333167
iter 90 value 80.142194
iter 100 value 80.035982
final value 80.035982
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.401448
iter 10 value 94.526490
iter 20 value 91.825129
iter 30 value 87.004611
iter 40 value 83.500241
iter 50 value 81.720416
iter 60 value 80.752086
iter 70 value 79.978420
iter 80 value 79.242759
iter 90 value 79.137875
iter 100 value 79.036367
final value 79.036367
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.932630
iter 10 value 94.523846
iter 20 value 94.491401
iter 30 value 94.381861
iter 40 value 93.550046
iter 50 value 86.777060
iter 60 value 85.122775
iter 70 value 84.906216
iter 80 value 84.416259
iter 90 value 83.449878
iter 100 value 81.965926
final value 81.965926
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.413034
iter 10 value 94.426305
iter 20 value 90.347740
iter 30 value 87.767218
iter 40 value 83.626992
iter 50 value 82.106614
iter 60 value 80.949586
iter 70 value 80.211824
iter 80 value 79.968542
iter 90 value 79.825041
iter 100 value 79.785256
final value 79.785256
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.461882
iter 10 value 91.509224
iter 20 value 85.642852
iter 30 value 82.816077
iter 40 value 81.915673
iter 50 value 81.051230
iter 60 value 80.491529
iter 70 value 80.400771
iter 80 value 79.905214
iter 90 value 79.606199
iter 100 value 79.538053
final value 79.538053
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.588419
iter 10 value 94.953371
iter 20 value 94.538584
iter 30 value 88.147747
iter 40 value 87.790731
iter 50 value 86.204471
iter 60 value 83.741354
iter 70 value 81.187724
iter 80 value 80.026615
iter 90 value 79.481094
iter 100 value 79.269050
final value 79.269050
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 119.632088
iter 10 value 94.798923
iter 20 value 92.255506
iter 30 value 84.524506
iter 40 value 84.255061
iter 50 value 82.928317
iter 60 value 81.312449
iter 70 value 81.152461
iter 80 value 80.795055
iter 90 value 80.301476
iter 100 value 79.861535
final value 79.861535
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 109.698256
iter 10 value 92.645876
iter 20 value 88.277579
iter 30 value 84.516534
iter 40 value 82.512553
iter 50 value 81.408828
iter 60 value 80.296442
iter 70 value 79.849746
iter 80 value 79.619141
iter 90 value 79.481723
iter 100 value 79.467467
final value 79.467467
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 127.497358
iter 10 value 94.568741
iter 20 value 91.621754
iter 30 value 86.246688
iter 40 value 84.966986
iter 50 value 82.956576
iter 60 value 81.864994
iter 70 value 81.602367
iter 80 value 81.480578
iter 90 value 81.009209
iter 100 value 80.268981
final value 80.268981
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.090771
final value 94.485677
converged
Fitting Repeat 2
# weights: 103
initial value 99.179187
final value 94.485853
converged
Fitting Repeat 3
# weights: 103
initial value 99.153852
final value 94.485919
converged
Fitting Repeat 4
# weights: 103
initial value 105.331675
final value 94.485984
converged
Fitting Repeat 5
# weights: 103
initial value 98.258538
iter 10 value 94.485962
final value 94.484214
converged
Fitting Repeat 1
# weights: 305
initial value 107.128450
iter 10 value 94.343897
iter 20 value 93.491950
iter 30 value 89.730695
iter 40 value 83.604455
iter 50 value 79.714178
iter 60 value 79.663599
iter 70 value 79.357646
iter 80 value 79.328490
final value 79.328106
converged
Fitting Repeat 2
# weights: 305
initial value 114.764073
iter 10 value 94.488476
iter 20 value 94.442447
final value 94.354434
converged
Fitting Repeat 3
# weights: 305
initial value 95.144973
iter 10 value 94.489272
iter 20 value 94.484227
iter 30 value 94.128959
iter 40 value 93.179710
iter 50 value 86.751240
iter 60 value 86.293783
iter 70 value 84.734420
iter 80 value 84.075760
iter 90 value 83.968388
iter 100 value 83.967017
final value 83.967017
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 117.041815
iter 10 value 94.489092
iter 20 value 89.587509
iter 30 value 88.771924
iter 40 value 88.249406
iter 50 value 85.813085
iter 60 value 85.775257
iter 70 value 84.537180
iter 80 value 79.730831
iter 90 value 78.639977
iter 100 value 78.300690
final value 78.300690
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 117.017686
iter 10 value 93.651676
iter 20 value 92.927548
iter 30 value 92.851169
iter 40 value 92.621309
iter 50 value 92.619716
iter 60 value 92.619258
final value 92.619133
converged
Fitting Repeat 1
# weights: 507
initial value 117.258068
iter 10 value 94.363283
iter 20 value 94.357768
iter 30 value 94.351223
iter 40 value 88.516620
iter 50 value 85.916983
iter 60 value 85.585121
final value 85.585117
converged
Fitting Repeat 2
# weights: 507
initial value 116.909596
iter 10 value 94.397027
iter 20 value 93.599570
iter 30 value 93.050971
iter 40 value 92.403688
iter 50 value 92.376855
iter 60 value 92.242448
iter 70 value 90.962231
iter 80 value 89.438392
iter 90 value 89.413660
iter 100 value 87.693767
final value 87.693767
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.780427
iter 10 value 94.390985
iter 20 value 94.313674
iter 30 value 94.210378
iter 40 value 93.309178
iter 50 value 88.968088
iter 60 value 87.465814
iter 70 value 87.337935
iter 80 value 87.329487
iter 90 value 87.183550
iter 100 value 84.888499
final value 84.888499
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 98.743238
iter 10 value 94.362330
iter 20 value 94.355311
iter 30 value 94.306731
iter 40 value 91.486662
iter 50 value 89.402892
iter 60 value 89.140676
iter 70 value 89.119687
iter 80 value 89.118622
iter 90 value 89.114020
final value 89.112716
converged
Fitting Repeat 5
# weights: 507
initial value 106.290149
iter 10 value 94.238444
iter 20 value 93.827200
iter 30 value 87.332533
iter 40 value 87.327153
iter 50 value 87.321754
iter 60 value 86.920699
iter 70 value 86.909232
iter 80 value 86.879502
iter 90 value 85.896395
iter 100 value 83.747936
final value 83.747936
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.326405
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 107.808063
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.010651
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 109.206664
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.333859
final value 94.275362
converged
Fitting Repeat 1
# weights: 305
initial value 96.683314
iter 10 value 94.053305
final value 94.052436
converged
Fitting Repeat 2
# weights: 305
initial value 100.525349
final value 94.275362
converged
Fitting Repeat 3
# weights: 305
initial value 112.648342
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 96.538703
final value 94.275362
converged
Fitting Repeat 5
# weights: 305
initial value 100.645912
iter 10 value 84.819024
iter 20 value 82.218401
iter 30 value 82.052278
iter 40 value 82.015678
final value 81.944321
converged
Fitting Repeat 1
# weights: 507
initial value 95.862761
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 108.123842
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 102.322743
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 113.382029
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 105.176162
iter 10 value 94.061133
iter 20 value 83.968403
final value 83.952465
converged
Fitting Repeat 1
# weights: 103
initial value 97.666704
iter 10 value 93.352929
iter 20 value 89.659683
iter 30 value 84.437554
iter 40 value 83.931837
iter 50 value 82.871648
iter 60 value 79.565139
iter 70 value 78.854900
iter 80 value 78.756752
final value 78.736768
converged
Fitting Repeat 2
# weights: 103
initial value 103.676805
iter 10 value 94.333595
iter 20 value 92.907778
iter 30 value 91.841124
iter 40 value 91.384297
iter 50 value 90.546706
iter 60 value 83.734866
iter 70 value 82.081677
iter 80 value 81.319236
iter 90 value 81.225736
final value 81.224330
converged
Fitting Repeat 3
# weights: 103
initial value 99.700432
iter 10 value 93.796945
iter 20 value 84.678729
iter 30 value 82.806828
iter 40 value 82.109191
iter 50 value 81.390235
iter 60 value 80.768885
iter 70 value 80.628155
iter 80 value 80.610377
final value 80.610374
converged
Fitting Repeat 4
# weights: 103
initial value 97.864565
iter 10 value 94.240228
iter 20 value 90.820367
iter 30 value 90.179786
iter 40 value 89.599330
iter 50 value 89.142148
iter 60 value 85.879452
iter 70 value 85.508304
iter 80 value 83.130124
iter 90 value 82.476700
iter 100 value 80.402247
final value 80.402247
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.422199
iter 10 value 94.488713
iter 20 value 93.645150
iter 30 value 91.761610
iter 40 value 84.494093
iter 50 value 84.283163
iter 60 value 81.730570
iter 70 value 81.256497
iter 80 value 81.225419
final value 81.224330
converged
Fitting Repeat 1
# weights: 305
initial value 118.277028
iter 10 value 94.467276
iter 20 value 93.274856
iter 30 value 85.020839
iter 40 value 83.456155
iter 50 value 83.218405
iter 60 value 81.586524
iter 70 value 80.998657
iter 80 value 79.094051
iter 90 value 78.297012
iter 100 value 77.933628
final value 77.933628
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.329602
iter 10 value 94.474691
iter 20 value 92.077895
iter 30 value 81.462571
iter 40 value 79.933801
iter 50 value 79.459959
iter 60 value 78.689314
iter 70 value 77.904410
iter 80 value 77.178709
iter 90 value 76.947508
iter 100 value 76.830353
final value 76.830353
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.740583
iter 10 value 92.308457
iter 20 value 87.630280
iter 30 value 84.548028
iter 40 value 83.481016
iter 50 value 82.588782
iter 60 value 79.330209
iter 70 value 78.066887
iter 80 value 77.766770
iter 90 value 77.694068
iter 100 value 77.421672
final value 77.421672
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.848008
iter 10 value 93.422951
iter 20 value 83.670846
iter 30 value 82.677836
iter 40 value 81.799946
iter 50 value 81.307023
iter 60 value 81.209333
iter 70 value 81.182590
iter 80 value 80.842044
iter 90 value 80.540945
iter 100 value 80.099687
final value 80.099687
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.419615
iter 10 value 94.307839
iter 20 value 90.717120
iter 30 value 87.684351
iter 40 value 85.490672
iter 50 value 84.620376
iter 60 value 82.667853
iter 70 value 82.287481
iter 80 value 80.238128
iter 90 value 79.877977
iter 100 value 78.196311
final value 78.196311
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.722024
iter 10 value 95.185644
iter 20 value 88.756434
iter 30 value 85.767677
iter 40 value 85.156874
iter 50 value 84.778472
iter 60 value 80.364166
iter 70 value 79.356204
iter 80 value 77.622908
iter 90 value 77.216753
iter 100 value 77.028219
final value 77.028219
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 116.900925
iter 10 value 95.205791
iter 20 value 89.024272
iter 30 value 80.589705
iter 40 value 77.711645
iter 50 value 77.305798
iter 60 value 77.176224
iter 70 value 76.830920
iter 80 value 76.762779
iter 90 value 76.745528
iter 100 value 76.612201
final value 76.612201
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.907488
iter 10 value 94.366749
iter 20 value 90.966703
iter 30 value 90.110813
iter 40 value 89.360336
iter 50 value 81.350017
iter 60 value 80.500009
iter 70 value 78.607520
iter 80 value 78.000068
iter 90 value 77.372726
iter 100 value 77.315179
final value 77.315179
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.271643
iter 10 value 88.740884
iter 20 value 80.883026
iter 30 value 78.888153
iter 40 value 78.363653
iter 50 value 77.875416
iter 60 value 77.744776
iter 70 value 77.131800
iter 80 value 76.899922
iter 90 value 76.530678
iter 100 value 76.428696
final value 76.428696
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 136.056296
iter 10 value 93.986446
iter 20 value 86.997826
iter 30 value 81.306351
iter 40 value 79.173303
iter 50 value 78.041202
iter 60 value 77.012881
iter 70 value 76.900573
iter 80 value 76.826646
iter 90 value 76.749375
iter 100 value 76.735529
final value 76.735529
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.617938
final value 94.485678
converged
Fitting Repeat 2
# weights: 103
initial value 104.992714
final value 94.485781
converged
Fitting Repeat 3
# weights: 103
initial value 95.816493
final value 94.486045
converged
Fitting Repeat 4
# weights: 103
initial value 94.819799
final value 94.485974
converged
Fitting Repeat 5
# weights: 103
initial value 103.018715
final value 94.485695
converged
Fitting Repeat 1
# weights: 305
initial value 127.399324
iter 10 value 94.489203
iter 20 value 94.282450
iter 30 value 81.072685
iter 40 value 80.046060
final value 80.032725
converged
Fitting Repeat 2
# weights: 305
initial value 102.797744
iter 10 value 94.280725
iter 20 value 86.843355
iter 30 value 80.885445
iter 40 value 80.877468
iter 50 value 80.144188
iter 60 value 80.026753
final value 80.025456
converged
Fitting Repeat 3
# weights: 305
initial value 103.697128
iter 10 value 94.489274
iter 20 value 94.478126
iter 30 value 84.609342
final value 84.591578
converged
Fitting Repeat 4
# weights: 305
initial value 94.687224
iter 10 value 94.464488
iter 20 value 94.280061
iter 30 value 94.275846
iter 40 value 91.302100
iter 50 value 81.765136
iter 60 value 79.884267
iter 70 value 79.561037
final value 79.560007
converged
Fitting Repeat 5
# weights: 305
initial value 110.428969
iter 10 value 94.381103
iter 20 value 94.281107
iter 30 value 93.772377
iter 40 value 90.221985
final value 90.221828
converged
Fitting Repeat 1
# weights: 507
initial value 103.515412
iter 10 value 94.282916
iter 20 value 94.279378
iter 30 value 94.278480
iter 40 value 94.071921
iter 50 value 91.998573
iter 60 value 85.925845
final value 85.925830
converged
Fitting Repeat 2
# weights: 507
initial value 106.010888
iter 10 value 94.490738
iter 20 value 90.503488
iter 30 value 90.118957
iter 40 value 90.117531
iter 40 value 90.117530
final value 90.117530
converged
Fitting Repeat 3
# weights: 507
initial value 123.889448
iter 10 value 94.492966
iter 20 value 91.707417
iter 30 value 85.885721
iter 40 value 84.155242
iter 50 value 79.245445
iter 60 value 78.995911
iter 70 value 78.985126
iter 80 value 78.973930
iter 90 value 78.971251
iter 100 value 78.969465
final value 78.969465
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.441151
iter 10 value 94.283392
iter 20 value 94.279828
iter 30 value 85.142040
iter 40 value 83.926285
iter 50 value 83.876916
iter 60 value 82.252576
iter 70 value 81.578903
iter 80 value 81.574777
iter 90 value 81.574169
iter 100 value 81.571930
final value 81.571930
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.792935
iter 10 value 94.151836
iter 20 value 91.595848
iter 30 value 80.964327
iter 40 value 80.528705
iter 50 value 80.521289
iter 60 value 80.514331
iter 70 value 80.511406
iter 80 value 80.328309
iter 90 value 79.469424
iter 100 value 77.690239
final value 77.690239
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.436306
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 97.416495
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.749301
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 94.594425
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 100.618909
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 100.380517
final value 93.890110
converged
Fitting Repeat 2
# weights: 305
initial value 102.152670
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 101.965684
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 116.275388
final value 93.890110
converged
Fitting Repeat 5
# weights: 305
initial value 108.726149
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 117.085546
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 97.336152
iter 10 value 85.209237
iter 20 value 83.068497
iter 30 value 82.984952
iter 30 value 82.984952
iter 30 value 82.984952
final value 82.984952
converged
Fitting Repeat 3
# weights: 507
initial value 97.799569
iter 10 value 93.286498
final value 93.093311
converged
Fitting Repeat 4
# weights: 507
initial value 106.287547
iter 10 value 94.008697
final value 94.008696
converged
Fitting Repeat 5
# weights: 507
initial value 98.590505
final value 94.008696
converged
Fitting Repeat 1
# weights: 103
initial value 103.075408
iter 10 value 94.055649
iter 20 value 90.788394
iter 30 value 87.117077
iter 40 value 86.248713
iter 50 value 84.914378
iter 60 value 83.207115
iter 70 value 83.045091
iter 80 value 83.002417
iter 90 value 82.822826
iter 100 value 82.555022
final value 82.555022
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.568490
iter 10 value 93.823737
iter 20 value 83.277672
iter 30 value 82.301766
iter 40 value 81.865800
iter 50 value 81.360092
iter 60 value 80.657570
iter 70 value 80.581620
iter 80 value 80.522586
iter 80 value 80.522585
iter 80 value 80.522585
final value 80.522585
converged
Fitting Repeat 3
# weights: 103
initial value 103.485697
iter 10 value 93.996677
iter 20 value 93.452412
iter 30 value 91.754008
iter 40 value 90.693204
iter 50 value 90.537277
iter 60 value 90.477925
final value 90.477622
converged
Fitting Repeat 4
# weights: 103
initial value 108.039110
iter 10 value 94.013517
iter 20 value 84.928464
iter 30 value 83.605440
iter 40 value 83.043380
iter 50 value 82.353888
iter 60 value 82.113530
iter 70 value 82.081206
iter 80 value 82.076742
final value 82.076725
converged
Fitting Repeat 5
# weights: 103
initial value 98.489647
iter 10 value 94.077277
iter 20 value 94.010091
iter 30 value 90.257261
iter 40 value 84.678263
iter 50 value 82.361215
iter 60 value 81.150576
iter 70 value 80.957913
iter 80 value 80.714823
iter 90 value 80.658261
iter 100 value 80.603158
final value 80.603158
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 110.716020
iter 10 value 93.936677
iter 20 value 91.994272
iter 30 value 89.251860
iter 40 value 88.165639
iter 50 value 87.710388
iter 60 value 83.120740
iter 70 value 81.205901
iter 80 value 80.333975
iter 90 value 79.902215
iter 100 value 79.837899
final value 79.837899
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.207586
iter 10 value 92.100712
iter 20 value 85.234884
iter 30 value 82.292606
iter 40 value 81.536040
iter 50 value 80.738615
iter 60 value 80.160153
iter 70 value 79.852206
iter 80 value 79.574573
iter 90 value 79.446550
iter 100 value 79.330258
final value 79.330258
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 116.592440
iter 10 value 93.956300
iter 20 value 85.882024
iter 30 value 84.672072
iter 40 value 83.407898
iter 50 value 81.249285
iter 60 value 80.123310
iter 70 value 79.862579
iter 80 value 79.636045
iter 90 value 79.604401
iter 100 value 79.594720
final value 79.594720
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.679571
iter 10 value 94.134998
iter 20 value 90.764876
iter 30 value 89.413111
iter 40 value 87.568170
iter 50 value 86.836848
iter 60 value 81.907819
iter 70 value 80.403675
iter 80 value 80.125806
iter 90 value 80.003908
iter 100 value 79.789084
final value 79.789084
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.132051
iter 10 value 94.144355
iter 20 value 94.073385
iter 30 value 92.625552
iter 40 value 85.340128
iter 50 value 84.068405
iter 60 value 81.826235
iter 70 value 81.006916
iter 80 value 80.761392
iter 90 value 80.281674
iter 100 value 79.897269
final value 79.897269
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.727612
iter 10 value 94.241088
iter 20 value 92.712928
iter 30 value 83.899191
iter 40 value 82.923812
iter 50 value 81.694476
iter 60 value 81.130462
iter 70 value 80.636864
iter 80 value 80.550899
iter 90 value 80.499582
iter 100 value 80.429327
final value 80.429327
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.889731
iter 10 value 94.054898
iter 20 value 86.176519
iter 30 value 84.688948
iter 40 value 84.062527
iter 50 value 82.842560
iter 60 value 82.577449
iter 70 value 81.636939
iter 80 value 80.220229
iter 90 value 79.445940
iter 100 value 79.210557
final value 79.210557
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.232499
iter 10 value 94.193889
iter 20 value 89.793671
iter 30 value 86.724031
iter 40 value 83.909743
iter 50 value 81.633088
iter 60 value 80.790065
iter 70 value 80.571671
iter 80 value 80.450392
iter 90 value 80.417012
iter 100 value 80.334425
final value 80.334425
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.174865
iter 10 value 94.211686
iter 20 value 90.735734
iter 30 value 84.572909
iter 40 value 81.909480
iter 50 value 80.556973
iter 60 value 80.171974
iter 70 value 79.776710
iter 80 value 79.556845
iter 90 value 79.443377
iter 100 value 79.382407
final value 79.382407
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.675814
iter 10 value 95.196140
iter 20 value 92.247439
iter 30 value 87.741398
iter 40 value 85.810243
iter 50 value 85.302041
iter 60 value 83.505833
iter 70 value 82.245372
iter 80 value 81.724843
iter 90 value 81.061540
iter 100 value 80.545784
final value 80.545784
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.768918
final value 94.055081
converged
Fitting Repeat 2
# weights: 103
initial value 94.741103
iter 10 value 93.895667
iter 20 value 93.894791
iter 30 value 93.810851
iter 30 value 93.810851
iter 30 value 93.810851
final value 93.810851
converged
Fitting Repeat 3
# weights: 103
initial value 100.541702
iter 10 value 94.055248
final value 94.053622
converged
Fitting Repeat 4
# weights: 103
initial value 99.840786
final value 94.054667
converged
Fitting Repeat 5
# weights: 103
initial value 105.343513
iter 10 value 94.054583
iter 20 value 94.053005
iter 30 value 92.805235
iter 40 value 92.301780
iter 50 value 92.289686
final value 92.289679
converged
Fitting Repeat 1
# weights: 305
initial value 96.156038
iter 10 value 94.057658
iter 20 value 93.768193
iter 30 value 91.406288
iter 40 value 91.241641
final value 91.176655
converged
Fitting Repeat 2
# weights: 305
initial value 95.163089
iter 10 value 94.057992
iter 20 value 93.912693
iter 30 value 91.499330
iter 40 value 87.828561
iter 50 value 85.974065
iter 60 value 84.836739
iter 70 value 84.835273
iter 80 value 84.835019
iter 90 value 84.382265
iter 100 value 82.730617
final value 82.730617
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.450382
iter 10 value 87.826995
iter 20 value 83.002017
iter 30 value 82.214721
iter 40 value 82.214072
iter 50 value 82.163213
iter 60 value 82.151023
iter 70 value 82.147984
final value 82.146395
converged
Fitting Repeat 4
# weights: 305
initial value 94.466153
iter 10 value 93.790567
iter 20 value 93.788133
iter 30 value 93.787005
iter 40 value 93.786820
iter 50 value 93.786225
final value 93.786205
converged
Fitting Repeat 5
# weights: 305
initial value 100.671490
iter 10 value 94.057765
iter 20 value 92.471460
iter 30 value 84.786747
final value 84.746058
converged
Fitting Repeat 1
# weights: 507
initial value 94.337452
iter 10 value 94.017129
iter 20 value 91.991518
iter 30 value 85.752895
iter 40 value 85.750105
iter 50 value 85.211636
iter 60 value 84.917838
iter 70 value 84.743401
final value 84.739548
converged
Fitting Repeat 2
# weights: 507
initial value 106.603412
iter 10 value 94.020676
iter 20 value 93.853462
iter 30 value 93.806196
iter 40 value 93.781918
iter 50 value 93.781526
iter 60 value 91.586948
iter 70 value 91.380075
iter 80 value 91.033001
iter 90 value 90.743160
iter 100 value 90.732287
final value 90.732287
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.928648
iter 10 value 94.016304
iter 20 value 94.010447
iter 30 value 93.965528
iter 40 value 84.150223
iter 50 value 83.144915
iter 60 value 83.144634
iter 70 value 83.008987
iter 80 value 81.180154
iter 90 value 81.114308
iter 100 value 81.095331
final value 81.095331
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.220990
iter 10 value 93.722632
iter 20 value 93.391838
iter 30 value 84.404631
iter 40 value 82.746630
iter 50 value 82.724234
iter 60 value 82.557372
iter 70 value 81.285835
iter 80 value 81.277214
iter 90 value 81.277168
iter 100 value 80.709065
final value 80.709065
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 95.287616
iter 10 value 94.017420
iter 20 value 94.008598
iter 30 value 93.675368
iter 40 value 88.504821
iter 50 value 85.861730
iter 60 value 85.858290
iter 70 value 85.694955
iter 80 value 85.691422
iter 90 value 85.687373
iter 100 value 85.184969
final value 85.184969
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 177.625295
iter 10 value 119.811723
iter 20 value 114.654343
iter 30 value 110.344871
iter 40 value 110.108281
iter 50 value 109.255143
iter 60 value 105.291778
iter 70 value 103.905918
iter 80 value 102.921033
iter 90 value 102.355942
iter 100 value 101.809372
final value 101.809372
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 159.933225
iter 10 value 118.311454
iter 20 value 117.901536
iter 30 value 117.669746
iter 40 value 112.865977
iter 50 value 105.829992
iter 60 value 105.581327
iter 70 value 104.502682
iter 80 value 103.202125
iter 90 value 102.155682
iter 100 value 101.866970
final value 101.866970
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 133.599541
iter 10 value 114.969007
iter 20 value 107.858431
iter 30 value 106.435964
iter 40 value 104.300090
iter 50 value 103.049683
iter 60 value 102.726754
iter 70 value 101.588851
iter 80 value 101.540931
iter 90 value 101.390280
iter 100 value 101.339081
final value 101.339081
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 156.683575
iter 10 value 117.803552
iter 20 value 117.378828
iter 30 value 107.132492
iter 40 value 104.966974
iter 50 value 102.662864
iter 60 value 101.963056
iter 70 value 101.646635
iter 80 value 101.414985
iter 90 value 101.143830
iter 100 value 101.046851
final value 101.046851
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 138.069745
iter 10 value 117.580006
iter 20 value 117.205672
iter 30 value 106.271345
iter 40 value 106.119751
iter 50 value 105.505184
iter 60 value 103.173090
iter 70 value 102.144635
iter 80 value 101.429116
iter 90 value 101.151370
iter 100 value 101.063117
final value 101.063117
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Apr 1 04:29:55 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
76.887 2.048 153.930
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 50.602 | 1.770 | 54.871 | |
| FreqInteractors | 0.471 | 0.027 | 0.509 | |
| calculateAAC | 0.071 | 0.012 | 0.085 | |
| calculateAutocor | 0.856 | 0.106 | 1.003 | |
| calculateCTDC | 0.147 | 0.007 | 0.158 | |
| calculateCTDD | 1.256 | 0.037 | 1.346 | |
| calculateCTDT | 0.438 | 0.015 | 0.515 | |
| calculateCTriad | 0.771 | 0.057 | 0.847 | |
| calculateDC | 0.261 | 0.030 | 0.330 | |
| calculateF | 0.715 | 0.027 | 0.775 | |
| calculateKSAAP | 0.290 | 0.023 | 0.326 | |
| calculateQD_Sm | 3.562 | 0.177 | 3.921 | |
| calculateTC | 4.738 | 0.478 | 5.506 | |
| calculateTC_Sm | 0.580 | 0.034 | 0.663 | |
| corr_plot | 50.508 | 1.703 | 55.258 | |
| enrichfindP | 0.889 | 0.082 | 13.583 | |
| enrichfind_hp | 0.129 | 0.027 | 1.197 | |
| enrichplot | 0.850 | 0.012 | 0.943 | |
| filter_missing_values | 0.002 | 0.001 | 0.004 | |
| getFASTA | 0.123 | 0.017 | 3.021 | |
| getHPI | 0.001 | 0.001 | 0.002 | |
| get_negativePPI | 0.003 | 0.001 | 0.004 | |
| get_positivePPI | 0.001 | 0.001 | 0.002 | |
| impute_missing_data | 0.002 | 0.001 | 0.004 | |
| plotPPI | 0.139 | 0.007 | 0.185 | |
| pred_ensembel | 25.423 | 0.392 | 24.998 | |
| var_imp | 52.417 | 1.734 | 59.213 | |