| Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-06-11 15:40 -0400 (Tue, 11 Jun 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.0 RC (2024-04-16 r86468) -- "Puppy Cup" | 4679 |
| palomino4 | Windows Server 2022 Datacenter | x64 | 4.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup" | 4414 |
| merida1 | macOS 12.7.4 Monterey | x86_64 | 4.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup" | 4441 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup" | 4394 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 961/2239 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.11.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.4 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.11.0 |
| Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.11.0.tar.gz |
| StartedAt: 2024-06-10 03:58:07 -0400 (Mon, 10 Jun 2024) |
| EndedAt: 2024-06-10 04:05:26 -0400 (Mon, 10 Jun 2024) |
| EllapsedTime: 439.1 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.11.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck'
* using R version 4.4.0 RC (2024-04-16 r86468 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
gcc.exe (GCC) 13.2.0
GNU Fortran (GCC) 13.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.11.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 31.56 1.30 32.86
FSmethod 29.85 1.80 31.76
corr_plot 29.39 1.44 30.83
pred_ensembel 14.76 0.78 11.25
enrichfindP 0.50 0.45 14.62
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
Running 'runTests.R'
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log'
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 103.451587
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.824002
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 105.563348
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.765732
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 100.756100
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 103.001496
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 115.884081
iter 10 value 94.143812
iter 20 value 94.139388
final value 94.139368
converged
Fitting Repeat 3
# weights: 305
initial value 95.340135
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 125.244610
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 105.100652
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 96.314181
iter 10 value 94.467447
final value 94.467391
converged
Fitting Repeat 2
# weights: 507
initial value 107.828073
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 102.126908
final value 94.467391
converged
Fitting Repeat 4
# weights: 507
initial value 106.814767
final value 94.467391
converged
Fitting Repeat 5
# weights: 507
initial value 98.727057
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 98.911164
iter 10 value 94.498203
iter 20 value 94.176663
iter 30 value 94.134171
iter 40 value 89.959858
iter 50 value 88.552581
iter 60 value 86.091065
iter 70 value 85.630487
iter 80 value 85.508223
iter 90 value 85.257140
iter 100 value 84.771020
final value 84.771020
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.845412
iter 10 value 94.485771
iter 20 value 89.582994
iter 30 value 86.768394
iter 40 value 84.805360
iter 50 value 84.743150
iter 60 value 84.611406
iter 70 value 84.135436
iter 80 value 83.602868
iter 90 value 83.458001
final value 83.457836
converged
Fitting Repeat 3
# weights: 103
initial value 112.995741
iter 10 value 94.005866
iter 20 value 88.342020
iter 30 value 87.138890
iter 40 value 86.419704
iter 50 value 85.910587
iter 60 value 85.867739
iter 70 value 85.497879
final value 85.495439
converged
Fitting Repeat 4
# weights: 103
initial value 100.055138
iter 10 value 94.487248
iter 20 value 89.559663
iter 30 value 86.864399
iter 40 value 86.236986
iter 50 value 85.804188
iter 60 value 85.775488
iter 70 value 85.662826
iter 80 value 85.516561
final value 85.495440
converged
Fitting Repeat 5
# weights: 103
initial value 101.524922
iter 10 value 94.570722
iter 20 value 93.810169
iter 30 value 88.200470
iter 40 value 87.473516
iter 50 value 87.435878
iter 60 value 87.335752
iter 70 value 86.630168
final value 86.626961
converged
Fitting Repeat 1
# weights: 305
initial value 103.964587
iter 10 value 94.308639
iter 20 value 91.617645
iter 30 value 89.605363
iter 40 value 88.148057
iter 50 value 85.968055
iter 60 value 84.879007
iter 70 value 84.735466
iter 80 value 84.689710
iter 90 value 84.682275
iter 100 value 84.418038
final value 84.418038
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.651787
iter 10 value 94.318792
iter 20 value 89.408496
iter 30 value 87.414821
iter 40 value 86.430273
iter 50 value 83.764601
iter 60 value 83.382542
iter 70 value 82.857145
iter 80 value 82.531207
iter 90 value 82.314764
iter 100 value 82.209582
final value 82.209582
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.483772
iter 10 value 94.813012
iter 20 value 94.403481
iter 30 value 92.231735
iter 40 value 90.897544
iter 50 value 87.989601
iter 60 value 87.514634
iter 70 value 87.331845
iter 80 value 85.562181
iter 90 value 85.012014
iter 100 value 83.956961
final value 83.956961
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.129935
iter 10 value 94.531157
iter 20 value 89.727679
iter 30 value 88.341641
iter 40 value 87.555853
iter 50 value 85.123878
iter 60 value 84.486520
iter 70 value 84.154062
iter 80 value 83.393470
iter 90 value 83.118969
iter 100 value 82.331209
final value 82.331209
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.647826
iter 10 value 94.517094
iter 20 value 94.456693
iter 30 value 91.229770
iter 40 value 88.122585
iter 50 value 87.117791
iter 60 value 86.554243
iter 70 value 86.334109
iter 80 value 85.649635
iter 90 value 84.868730
iter 100 value 84.166523
final value 84.166523
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.572962
iter 10 value 91.439208
iter 20 value 87.709139
iter 30 value 85.651760
iter 40 value 85.214908
iter 50 value 84.775633
iter 60 value 83.702988
iter 70 value 83.157816
iter 80 value 82.541326
iter 90 value 82.328524
iter 100 value 82.030062
final value 82.030062
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.945437
iter 10 value 94.440346
iter 20 value 88.702187
iter 30 value 87.141927
iter 40 value 85.138715
iter 50 value 84.403706
iter 60 value 84.181167
iter 70 value 83.653428
iter 80 value 83.068682
iter 90 value 82.323643
iter 100 value 82.245034
final value 82.245034
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.027511
iter 10 value 94.516554
iter 20 value 89.795833
iter 30 value 85.085887
iter 40 value 84.750138
iter 50 value 84.077758
iter 60 value 83.360559
iter 70 value 83.111656
iter 80 value 82.898204
iter 90 value 82.723140
iter 100 value 82.615025
final value 82.615025
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.044408
iter 10 value 95.940368
iter 20 value 94.845974
iter 30 value 94.268959
iter 40 value 93.131329
iter 50 value 87.698249
iter 60 value 85.870877
iter 70 value 85.364294
iter 80 value 85.166231
iter 90 value 85.039982
iter 100 value 84.581636
final value 84.581636
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.930089
iter 10 value 93.889693
iter 20 value 89.414552
iter 30 value 86.794488
iter 40 value 85.857290
iter 50 value 84.762868
iter 60 value 84.050824
iter 70 value 83.573172
iter 80 value 82.490336
iter 90 value 82.406583
iter 100 value 82.026784
final value 82.026784
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.677121
final value 94.485839
converged
Fitting Repeat 2
# weights: 103
initial value 95.035584
iter 10 value 94.485887
iter 20 value 94.482265
iter 30 value 94.454560
iter 40 value 87.645412
iter 50 value 87.291899
iter 60 value 87.286908
final value 87.286880
converged
Fitting Repeat 3
# weights: 103
initial value 97.555693
final value 94.486143
converged
Fitting Repeat 4
# weights: 103
initial value 98.785489
iter 10 value 94.485880
final value 94.484432
converged
Fitting Repeat 5
# weights: 103
initial value 102.175622
final value 94.485664
converged
Fitting Repeat 1
# weights: 305
initial value 98.327776
iter 10 value 94.488938
iter 20 value 94.484227
iter 30 value 88.731919
iter 40 value 88.178483
iter 50 value 86.349294
iter 60 value 86.121089
iter 70 value 86.064954
iter 80 value 86.058813
final value 86.058739
converged
Fitting Repeat 2
# weights: 305
initial value 94.977078
iter 10 value 94.489538
iter 20 value 94.393480
iter 30 value 85.757546
iter 40 value 85.217793
iter 50 value 85.200712
final value 85.200327
converged
Fitting Repeat 3
# weights: 305
initial value 99.791136
iter 10 value 94.472139
iter 20 value 94.467860
iter 30 value 87.505136
iter 40 value 85.933267
iter 50 value 83.558276
iter 60 value 83.311687
iter 70 value 82.950678
iter 80 value 82.806901
iter 90 value 82.461146
iter 100 value 81.886547
final value 81.886547
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 98.767096
iter 10 value 94.192527
iter 20 value 94.107519
iter 30 value 94.097439
iter 40 value 94.096265
iter 50 value 89.873236
iter 60 value 89.756775
iter 70 value 89.756326
iter 80 value 89.753834
iter 90 value 89.742399
final value 89.742333
converged
Fitting Repeat 5
# weights: 305
initial value 96.134427
iter 10 value 94.489428
iter 20 value 94.480380
iter 30 value 88.478164
iter 40 value 86.880284
final value 86.879402
converged
Fitting Repeat 1
# weights: 507
initial value 97.098856
iter 10 value 94.270376
iter 20 value 94.262869
iter 30 value 94.224863
iter 40 value 91.446460
iter 50 value 86.347319
iter 60 value 85.368243
iter 70 value 83.994438
iter 80 value 83.935794
iter 90 value 83.935237
final value 83.935202
converged
Fitting Repeat 2
# weights: 507
initial value 102.274620
iter 10 value 94.492246
iter 20 value 93.625683
iter 30 value 87.383300
iter 40 value 87.215148
iter 50 value 87.034038
iter 60 value 86.971368
final value 86.970489
converged
Fitting Repeat 3
# weights: 507
initial value 100.404726
iter 10 value 94.492689
iter 20 value 91.699401
iter 30 value 89.216878
iter 40 value 88.806717
iter 50 value 88.051621
iter 60 value 84.727793
iter 70 value 83.239367
iter 80 value 82.911190
iter 90 value 82.820530
iter 100 value 82.738696
final value 82.738696
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 101.070602
iter 10 value 94.475491
iter 20 value 94.467517
iter 30 value 94.463608
iter 40 value 87.651742
iter 50 value 85.541705
iter 60 value 84.637739
iter 70 value 84.637046
iter 80 value 84.414320
iter 90 value 83.426015
iter 100 value 82.044534
final value 82.044534
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 113.696620
iter 10 value 94.366958
iter 20 value 94.283124
iter 30 value 93.781344
iter 40 value 90.512689
iter 50 value 88.699104
iter 60 value 88.637009
iter 70 value 88.636346
iter 80 value 88.576849
iter 90 value 85.600212
iter 100 value 85.557271
final value 85.557271
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.250538
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 100.046491
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 95.387134
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 101.671486
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 94.574637
iter 10 value 87.839048
iter 20 value 87.794740
iter 30 value 87.781739
final value 87.781417
converged
Fitting Repeat 1
# weights: 305
initial value 105.731891
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.982134
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 114.010531
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 96.991171
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 110.234267
iter 10 value 93.540711
final value 93.540410
converged
Fitting Repeat 1
# weights: 507
initial value 103.551140
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 109.376596
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 99.440281
iter 10 value 90.920786
final value 90.913016
converged
Fitting Repeat 4
# weights: 507
initial value 105.320064
iter 10 value 89.610970
iter 20 value 87.424164
iter 30 value 87.057384
iter 40 value 87.047998
final value 87.047931
converged
Fitting Repeat 5
# weights: 507
initial value 94.688707
final value 94.275362
converged
Fitting Repeat 1
# weights: 103
initial value 99.105987
iter 10 value 94.486034
iter 20 value 93.936335
iter 30 value 93.901601
iter 40 value 93.892832
iter 50 value 93.878200
iter 60 value 92.426644
iter 70 value 87.253678
iter 80 value 84.701899
iter 90 value 83.676351
iter 100 value 83.119079
final value 83.119079
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.187265
iter 10 value 94.369402
iter 20 value 94.334940
iter 30 value 94.328914
iter 40 value 93.528892
iter 50 value 89.034540
iter 60 value 86.405211
iter 70 value 85.626012
iter 80 value 85.564232
iter 90 value 84.952589
iter 100 value 84.666995
final value 84.666995
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.914714
iter 10 value 94.489383
iter 20 value 94.430862
iter 30 value 93.772598
iter 40 value 91.640303
iter 50 value 87.719887
iter 60 value 86.592290
iter 70 value 86.536481
iter 80 value 86.256699
iter 90 value 85.745878
iter 100 value 85.255013
final value 85.255013
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 98.533623
iter 10 value 94.488866
iter 20 value 94.356065
iter 30 value 94.220969
iter 40 value 88.056199
iter 50 value 87.784654
iter 60 value 87.590791
iter 70 value 86.894340
iter 80 value 85.118385
iter 90 value 84.699386
iter 100 value 84.648409
final value 84.648409
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.683473
iter 10 value 94.398808
iter 20 value 91.822724
iter 30 value 86.949582
iter 40 value 85.495608
iter 50 value 85.229852
iter 60 value 84.880964
iter 70 value 83.401329
iter 80 value 82.839653
iter 90 value 82.762541
final value 82.762004
converged
Fitting Repeat 1
# weights: 305
initial value 110.151754
iter 10 value 94.247631
iter 20 value 93.599921
iter 30 value 89.442327
iter 40 value 86.624350
iter 50 value 85.861118
iter 60 value 85.621893
iter 70 value 84.006100
iter 80 value 83.288114
iter 90 value 82.997983
iter 100 value 82.661678
final value 82.661678
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.141494
iter 10 value 93.687495
iter 20 value 85.546640
iter 30 value 84.497369
iter 40 value 84.254843
iter 50 value 83.419732
iter 60 value 83.040037
iter 70 value 82.709705
iter 80 value 82.469488
iter 90 value 82.043958
iter 100 value 81.858494
final value 81.858494
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 112.365486
iter 10 value 93.742725
iter 20 value 89.710114
iter 30 value 87.191453
iter 40 value 87.067626
iter 50 value 85.735547
iter 60 value 83.094945
iter 70 value 82.361372
iter 80 value 81.877367
iter 90 value 81.723855
iter 100 value 81.646442
final value 81.646442
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 113.271320
iter 10 value 94.550446
iter 20 value 93.165841
iter 30 value 88.487273
iter 40 value 85.912852
iter 50 value 85.093686
iter 60 value 83.108761
iter 70 value 82.490783
iter 80 value 81.758171
iter 90 value 81.627882
iter 100 value 81.603100
final value 81.603100
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.026016
iter 10 value 94.615318
iter 20 value 86.377634
iter 30 value 83.099747
iter 40 value 82.171948
iter 50 value 81.881637
iter 60 value 81.796633
iter 70 value 81.723897
iter 80 value 81.641189
iter 90 value 81.376980
iter 100 value 81.216393
final value 81.216393
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 113.897971
iter 10 value 94.465833
iter 20 value 86.217627
iter 30 value 85.599897
iter 40 value 83.707999
iter 50 value 83.402312
iter 60 value 82.846351
iter 70 value 82.119266
iter 80 value 81.710266
iter 90 value 81.314489
iter 100 value 81.123232
final value 81.123232
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 114.391608
iter 10 value 98.333411
iter 20 value 89.653016
iter 30 value 86.171371
iter 40 value 85.862204
iter 50 value 84.962490
iter 60 value 84.366414
iter 70 value 83.540097
iter 80 value 83.177451
iter 90 value 82.127232
iter 100 value 81.528601
final value 81.528601
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.493954
iter 10 value 95.004534
iter 20 value 86.181178
iter 30 value 83.999617
iter 40 value 82.630106
iter 50 value 82.471269
iter 60 value 82.161647
iter 70 value 81.748730
iter 80 value 81.174688
iter 90 value 81.071962
iter 100 value 81.031214
final value 81.031214
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 116.256744
iter 10 value 94.220550
iter 20 value 88.113000
iter 30 value 85.440496
iter 40 value 84.735822
iter 50 value 84.576592
iter 60 value 84.417293
iter 70 value 84.369468
iter 80 value 84.341888
iter 90 value 84.233989
iter 100 value 83.889988
final value 83.889988
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.417850
iter 10 value 94.522109
iter 20 value 90.047621
iter 30 value 89.385042
iter 40 value 86.476440
iter 50 value 85.186821
iter 60 value 84.469842
iter 70 value 83.624171
iter 80 value 83.542480
iter 90 value 82.148294
iter 100 value 81.650306
final value 81.650306
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.759373
final value 94.485963
converged
Fitting Repeat 2
# weights: 103
initial value 95.500768
final value 94.486105
converged
Fitting Repeat 3
# weights: 103
initial value 107.906556
iter 10 value 94.485823
iter 20 value 94.475579
iter 30 value 90.976435
final value 90.974165
converged
Fitting Repeat 4
# weights: 103
initial value 116.703132
final value 94.485612
converged
Fitting Repeat 5
# weights: 103
initial value 95.153029
final value 94.485943
converged
Fitting Repeat 1
# weights: 305
initial value 96.054320
iter 10 value 94.489261
iter 20 value 94.484218
iter 30 value 93.638098
final value 93.637674
converged
Fitting Repeat 2
# weights: 305
initial value 95.310129
iter 10 value 94.484763
iter 20 value 93.913431
iter 30 value 86.555176
iter 40 value 86.463630
iter 50 value 84.711983
iter 60 value 84.153806
final value 84.153538
converged
Fitting Repeat 3
# weights: 305
initial value 98.869957
iter 10 value 94.414344
iter 20 value 94.306359
iter 30 value 94.275865
iter 40 value 94.268766
iter 50 value 93.744140
iter 60 value 93.683330
iter 70 value 93.683251
final value 93.683216
converged
Fitting Repeat 4
# weights: 305
initial value 101.950360
iter 10 value 94.280587
iter 20 value 94.053081
iter 30 value 94.029878
iter 30 value 94.029878
iter 30 value 94.029878
final value 94.029878
converged
Fitting Repeat 5
# weights: 305
initial value 102.998997
iter 10 value 94.489472
iter 20 value 94.473700
iter 30 value 93.639558
final value 93.639541
converged
Fitting Repeat 1
# weights: 507
initial value 97.109936
iter 10 value 93.845878
iter 20 value 93.838643
iter 30 value 93.835514
iter 40 value 93.834630
iter 50 value 93.833208
iter 60 value 93.832487
iter 70 value 91.935101
iter 80 value 90.025835
iter 90 value 85.479530
iter 100 value 84.183618
final value 84.183618
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 119.031770
iter 10 value 94.493386
iter 20 value 94.455363
iter 30 value 91.092154
iter 40 value 91.091149
iter 50 value 86.945982
iter 60 value 86.945673
iter 70 value 86.475730
iter 80 value 86.324615
iter 90 value 84.420870
iter 100 value 83.132055
final value 83.132055
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.196105
iter 10 value 94.282848
iter 20 value 94.276411
iter 30 value 86.783889
iter 40 value 86.636507
iter 50 value 86.541835
iter 60 value 85.298671
iter 70 value 84.451388
iter 80 value 83.938579
iter 90 value 83.899980
iter 100 value 83.846754
final value 83.846754
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.980615
iter 10 value 94.284116
iter 20 value 94.277475
iter 30 value 90.685062
iter 40 value 88.364076
iter 50 value 88.342590
final value 88.342585
converged
Fitting Repeat 5
# weights: 507
initial value 107.822939
iter 10 value 94.282868
iter 20 value 93.895238
iter 30 value 86.126589
iter 40 value 83.656849
iter 50 value 83.645125
iter 60 value 83.640514
iter 70 value 83.638943
iter 80 value 83.504654
iter 90 value 81.623660
iter 100 value 80.762031
final value 80.762031
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.883187
iter 10 value 93.996832
final value 93.991528
converged
Fitting Repeat 2
# weights: 103
initial value 96.002238
final value 94.032967
converged
Fitting Repeat 3
# weights: 103
initial value 107.494260
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 102.069921
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 97.990640
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 98.496250
final value 94.032967
converged
Fitting Repeat 2
# weights: 305
initial value 100.770850
final value 94.052911
converged
Fitting Repeat 3
# weights: 305
initial value 104.849465
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 114.183109
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 113.416069
final value 94.052911
converged
Fitting Repeat 1
# weights: 507
initial value 98.188849
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 109.979724
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 111.417916
iter 10 value 93.567297
iter 20 value 93.451378
final value 93.451356
converged
Fitting Repeat 4
# weights: 507
initial value 108.134769
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 104.734454
iter 10 value 92.211098
iter 20 value 92.184108
final value 92.182540
converged
Fitting Repeat 1
# weights: 103
initial value 100.037124
iter 10 value 94.052570
iter 20 value 93.935924
iter 30 value 93.848602
iter 40 value 93.839602
iter 50 value 91.000133
iter 60 value 82.428069
iter 70 value 81.986700
iter 80 value 81.783157
iter 90 value 80.906303
iter 100 value 79.998036
final value 79.998036
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.818392
iter 10 value 88.382704
iter 20 value 83.741541
iter 30 value 83.123359
iter 40 value 81.915718
iter 50 value 81.673871
iter 60 value 81.459733
iter 70 value 81.384820
iter 80 value 81.379857
iter 90 value 81.376913
final value 81.376897
converged
Fitting Repeat 3
# weights: 103
initial value 104.857606
iter 10 value 94.057131
iter 20 value 93.956565
iter 30 value 93.822840
iter 40 value 93.792845
iter 50 value 90.973865
iter 60 value 87.278651
iter 70 value 85.747425
iter 80 value 83.601148
iter 90 value 83.324194
iter 100 value 83.110941
final value 83.110941
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.354118
iter 10 value 93.904702
iter 20 value 83.758064
iter 30 value 82.638416
iter 40 value 82.418017
iter 50 value 82.060845
iter 60 value 81.920265
final value 81.920163
converged
Fitting Repeat 5
# weights: 103
initial value 97.718448
iter 10 value 94.054858
iter 20 value 93.176914
iter 30 value 88.668299
iter 40 value 83.778243
iter 50 value 82.250533
iter 60 value 82.228948
iter 70 value 82.142952
iter 80 value 82.087353
iter 90 value 81.927126
final value 81.920163
converged
Fitting Repeat 1
# weights: 305
initial value 112.358391
iter 10 value 93.755454
iter 20 value 88.602166
iter 30 value 84.463261
iter 40 value 83.212301
iter 50 value 82.604861
iter 60 value 81.890756
iter 70 value 81.093237
iter 80 value 79.885692
iter 90 value 78.407890
iter 100 value 77.699117
final value 77.699117
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.073096
iter 10 value 94.081941
iter 20 value 93.936377
iter 30 value 92.313448
iter 40 value 88.361509
iter 50 value 85.004650
iter 60 value 83.429324
iter 70 value 80.568756
iter 80 value 79.088196
iter 90 value 78.957352
iter 100 value 78.301555
final value 78.301555
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.464717
iter 10 value 94.284775
iter 20 value 92.242085
iter 30 value 91.633218
iter 40 value 90.388988
iter 50 value 83.847590
iter 60 value 82.287186
iter 70 value 82.104147
iter 80 value 81.669711
iter 90 value 81.266488
iter 100 value 80.963495
final value 80.963495
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.728074
iter 10 value 87.212595
iter 20 value 84.510943
iter 30 value 82.338050
iter 40 value 82.096675
iter 50 value 81.606795
iter 60 value 81.059634
iter 70 value 80.515093
iter 80 value 80.484032
iter 90 value 80.445145
iter 100 value 80.389150
final value 80.389150
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 113.188776
iter 10 value 94.022146
iter 20 value 92.251494
iter 30 value 91.675639
iter 40 value 91.478274
iter 50 value 91.446752
iter 60 value 82.906969
iter 70 value 81.701181
iter 80 value 81.289754
iter 90 value 80.891826
iter 100 value 80.317360
final value 80.317360
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.327199
iter 10 value 92.058687
iter 20 value 86.074656
iter 30 value 84.401846
iter 40 value 81.800889
iter 50 value 80.088101
iter 60 value 79.654675
iter 70 value 79.467174
iter 80 value 79.058949
iter 90 value 78.606581
iter 100 value 78.208640
final value 78.208640
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 126.238240
iter 10 value 94.094285
iter 20 value 91.066894
iter 30 value 86.935110
iter 40 value 83.785896
iter 50 value 80.022833
iter 60 value 79.048558
iter 70 value 77.943254
iter 80 value 77.815598
iter 90 value 77.652893
iter 100 value 77.541801
final value 77.541801
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.433439
iter 10 value 93.642044
iter 20 value 86.644714
iter 30 value 83.735811
iter 40 value 81.780714
iter 50 value 81.441189
iter 60 value 81.238935
iter 70 value 80.821388
iter 80 value 79.915132
iter 90 value 78.959442
iter 100 value 78.012899
final value 78.012899
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 109.986894
iter 10 value 90.609165
iter 20 value 81.796755
iter 30 value 80.450171
iter 40 value 79.034722
iter 50 value 78.281014
iter 60 value 78.152306
iter 70 value 78.014607
iter 80 value 77.880091
iter 90 value 77.855638
iter 100 value 77.847684
final value 77.847684
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 123.341074
iter 10 value 94.067991
iter 20 value 88.431463
iter 30 value 85.549626
iter 40 value 83.024829
iter 50 value 80.551656
iter 60 value 79.909465
iter 70 value 79.497764
iter 80 value 79.169144
iter 90 value 78.114796
iter 100 value 77.985766
final value 77.985766
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.423608
iter 10 value 94.054463
iter 20 value 94.028769
iter 30 value 93.805740
iter 40 value 93.798625
final value 93.792198
converged
Fitting Repeat 2
# weights: 103
initial value 97.920837
final value 94.054350
converged
Fitting Repeat 3
# weights: 103
initial value 98.733752
final value 93.992859
converged
Fitting Repeat 4
# weights: 103
initial value 94.343506
final value 94.054523
converged
Fitting Repeat 5
# weights: 103
initial value 94.685378
final value 94.054668
converged
Fitting Repeat 1
# weights: 305
initial value 103.756364
iter 10 value 94.056630
iter 20 value 93.942233
iter 30 value 93.793444
iter 40 value 93.754784
iter 50 value 87.060596
iter 60 value 87.059726
iter 70 value 87.045455
iter 80 value 87.043810
iter 90 value 87.032029
iter 100 value 84.768692
final value 84.768692
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.672013
iter 10 value 94.060253
iter 20 value 93.959753
iter 30 value 87.115250
iter 40 value 87.049501
iter 50 value 86.654982
iter 60 value 86.644231
final value 86.644060
converged
Fitting Repeat 3
# weights: 305
initial value 105.188891
iter 10 value 94.057437
iter 20 value 93.971097
iter 30 value 93.805518
final value 93.805451
converged
Fitting Repeat 4
# weights: 305
initial value 102.110923
iter 10 value 93.994033
iter 20 value 93.972827
iter 30 value 93.967937
iter 40 value 85.751155
iter 50 value 83.419281
iter 60 value 81.722407
iter 70 value 81.559381
iter 80 value 81.557943
iter 90 value 81.557500
final value 81.557452
converged
Fitting Repeat 5
# weights: 305
initial value 104.443414
iter 10 value 94.037954
iter 20 value 93.886168
iter 30 value 93.870369
iter 40 value 93.870192
iter 50 value 85.886138
iter 60 value 85.618120
iter 70 value 85.613447
iter 80 value 85.609659
iter 90 value 84.524469
iter 100 value 84.491887
final value 84.491887
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 98.947525
iter 10 value 94.041726
iter 20 value 94.035183
iter 30 value 93.865849
iter 40 value 91.015119
iter 50 value 81.769277
iter 60 value 81.678688
iter 70 value 81.665206
iter 80 value 81.344304
iter 90 value 81.274103
iter 100 value 81.268663
final value 81.268663
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.366852
iter 10 value 94.041799
iter 20 value 94.018482
iter 30 value 85.733317
final value 85.731091
converged
Fitting Repeat 3
# weights: 507
initial value 124.545325
iter 10 value 94.060490
iter 20 value 94.053261
iter 30 value 87.204633
iter 40 value 84.431403
iter 50 value 84.061986
final value 84.060812
converged
Fitting Repeat 4
# weights: 507
initial value 114.858560
iter 10 value 94.041001
iter 20 value 94.030775
iter 30 value 85.777353
iter 40 value 82.924847
iter 50 value 81.589071
iter 60 value 80.820575
iter 70 value 80.669397
iter 80 value 80.658615
final value 80.657782
converged
Fitting Repeat 5
# weights: 507
initial value 103.214592
iter 10 value 94.061399
iter 20 value 93.887858
iter 30 value 85.732330
final value 85.732329
converged
Fitting Repeat 1
# weights: 103
initial value 102.017110
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.535386
final value 93.582418
converged
Fitting Repeat 3
# weights: 103
initial value 101.660500
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 95.503894
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 96.549544
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 103.274564
iter 10 value 93.615412
iter 20 value 93.554565
final value 93.554286
converged
Fitting Repeat 2
# weights: 305
initial value 95.396020
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 105.608425
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 108.349769
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 117.387907
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 116.128902
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 115.777088
final value 93.582418
converged
Fitting Repeat 3
# weights: 507
initial value 106.204408
iter 10 value 90.167155
iter 20 value 89.905020
iter 30 value 89.900603
final value 89.896825
converged
Fitting Repeat 4
# weights: 507
initial value 98.626524
iter 10 value 87.594655
iter 20 value 86.663486
final value 86.663453
converged
Fitting Repeat 5
# weights: 507
initial value 99.197376
final value 93.471096
converged
Fitting Repeat 1
# weights: 103
initial value 99.486262
iter 10 value 94.055325
iter 20 value 93.696301
iter 30 value 93.683808
iter 40 value 93.582849
iter 50 value 88.077311
iter 60 value 86.760705
iter 70 value 84.071115
iter 80 value 82.972259
iter 90 value 82.454426
iter 100 value 82.373394
final value 82.373394
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 95.995594
iter 10 value 87.462726
iter 20 value 85.093619
iter 30 value 84.845077
iter 40 value 82.483856
iter 50 value 82.062153
iter 60 value 81.967882
iter 70 value 81.919346
iter 80 value 81.906747
iter 90 value 81.817000
iter 100 value 81.793114
final value 81.793114
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 103.669965
iter 10 value 94.056520
iter 20 value 93.769651
iter 30 value 93.696825
iter 40 value 93.689089
iter 50 value 93.688489
iter 60 value 92.581296
iter 70 value 84.741295
iter 80 value 83.512721
iter 90 value 80.969149
iter 100 value 79.674744
final value 79.674744
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 101.511254
iter 10 value 94.046937
iter 20 value 93.773004
iter 30 value 92.848197
iter 40 value 85.712858
iter 50 value 81.568062
iter 60 value 79.399384
iter 70 value 79.143366
iter 80 value 78.854029
iter 90 value 78.670273
iter 100 value 78.651566
final value 78.651566
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 111.626611
iter 10 value 94.053758
iter 20 value 93.694227
iter 30 value 93.633526
iter 40 value 87.052907
iter 50 value 85.635088
iter 60 value 85.497935
iter 70 value 85.459248
iter 80 value 85.259739
iter 90 value 82.627036
iter 100 value 82.430698
final value 82.430698
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 107.359815
iter 10 value 94.129976
iter 20 value 93.755915
iter 30 value 85.956045
iter 40 value 84.229769
iter 50 value 83.909378
iter 60 value 82.160638
iter 70 value 82.101693
iter 80 value 82.060461
iter 90 value 82.005592
iter 100 value 81.777623
final value 81.777623
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.298852
iter 10 value 94.105942
iter 20 value 93.732833
iter 30 value 93.537296
iter 40 value 90.652385
iter 50 value 89.677359
iter 60 value 82.182280
iter 70 value 80.529873
iter 80 value 80.464474
iter 90 value 80.096983
iter 100 value 79.494662
final value 79.494662
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.623814
iter 10 value 93.620959
iter 20 value 93.351028
iter 30 value 89.445613
iter 40 value 84.924510
iter 50 value 78.311819
iter 60 value 77.434145
iter 70 value 76.866290
iter 80 value 76.540305
iter 90 value 76.421805
iter 100 value 76.269665
final value 76.269665
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.193346
iter 10 value 94.076644
iter 20 value 83.123310
iter 30 value 80.818614
iter 40 value 79.958119
iter 50 value 79.585371
iter 60 value 79.526420
iter 70 value 79.381188
iter 80 value 77.389328
iter 90 value 76.772587
iter 100 value 76.712216
final value 76.712216
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.850369
iter 10 value 93.624509
iter 20 value 85.834438
iter 30 value 82.517485
iter 40 value 81.815839
iter 50 value 79.026650
iter 60 value 78.493738
iter 70 value 78.077883
iter 80 value 78.056649
iter 90 value 78.000500
iter 100 value 77.938434
final value 77.938434
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 127.761843
iter 10 value 94.556435
iter 20 value 91.160363
iter 30 value 86.063643
iter 40 value 81.705607
iter 50 value 80.573419
iter 60 value 77.842445
iter 70 value 77.104138
iter 80 value 76.881464
iter 90 value 76.671665
iter 100 value 76.621743
final value 76.621743
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.368521
iter 10 value 91.152071
iter 20 value 84.538318
iter 30 value 83.347167
iter 40 value 81.815922
iter 50 value 79.238714
iter 60 value 78.320598
iter 70 value 77.973871
iter 80 value 77.894438
iter 90 value 77.575033
iter 100 value 77.290553
final value 77.290553
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 127.323108
iter 10 value 94.055661
iter 20 value 84.488789
iter 30 value 82.940487
iter 40 value 81.834089
iter 50 value 81.182522
iter 60 value 78.333411
iter 70 value 77.517468
iter 80 value 77.183430
iter 90 value 77.165539
iter 100 value 77.040265
final value 77.040265
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 118.410908
iter 10 value 94.132478
iter 20 value 92.861987
iter 30 value 89.738940
iter 40 value 89.299417
iter 50 value 88.323878
iter 60 value 85.397258
iter 70 value 82.598533
iter 80 value 81.814062
iter 90 value 81.356505
iter 100 value 79.968688
final value 79.968688
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.221135
iter 10 value 93.743976
iter 20 value 92.921474
iter 30 value 87.488941
iter 40 value 82.972490
iter 50 value 82.037167
iter 60 value 81.261754
iter 70 value 80.403021
iter 80 value 80.038939
iter 90 value 79.462008
iter 100 value 79.336720
final value 79.336720
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.060376
final value 94.054621
converged
Fitting Repeat 2
# weights: 103
initial value 96.521696
final value 94.054649
converged
Fitting Repeat 3
# weights: 103
initial value 101.954512
final value 94.054412
converged
Fitting Repeat 4
# weights: 103
initial value 103.495838
iter 10 value 93.580684
final value 93.580222
converged
Fitting Repeat 5
# weights: 103
initial value 96.851887
iter 10 value 94.054659
iter 20 value 94.052971
final value 94.052918
converged
Fitting Repeat 1
# weights: 305
initial value 101.589817
iter 10 value 94.056452
iter 20 value 93.913859
iter 30 value 86.812082
iter 40 value 78.276718
iter 50 value 77.818633
iter 60 value 77.816220
iter 70 value 77.815601
final value 77.815251
converged
Fitting Repeat 2
# weights: 305
initial value 99.457748
iter 10 value 87.195129
iter 20 value 86.416933
iter 30 value 86.395671
iter 40 value 86.348966
iter 50 value 85.761009
iter 60 value 85.759292
iter 70 value 81.960871
iter 80 value 78.703563
iter 90 value 78.566465
final value 78.564689
converged
Fitting Repeat 3
# weights: 305
initial value 126.261915
iter 10 value 94.057819
iter 20 value 94.052964
final value 94.052918
converged
Fitting Repeat 4
# weights: 305
initial value 97.038632
iter 10 value 93.967050
iter 20 value 93.965230
iter 30 value 93.962055
iter 40 value 93.577562
iter 50 value 93.471390
final value 93.471325
converged
Fitting Repeat 5
# weights: 305
initial value 100.632330
iter 10 value 93.730091
iter 20 value 93.705531
iter 30 value 93.474103
iter 40 value 93.472495
final value 93.471834
converged
Fitting Repeat 1
# weights: 507
initial value 102.606055
iter 10 value 91.560019
iter 20 value 91.179455
iter 30 value 90.583801
iter 40 value 90.246635
iter 50 value 90.234344
iter 60 value 90.233044
iter 70 value 89.465063
iter 80 value 89.438116
iter 90 value 89.437557
iter 100 value 89.433293
final value 89.433293
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 101.170544
iter 10 value 93.813063
iter 20 value 91.551249
iter 30 value 84.098139
iter 40 value 83.403381
iter 50 value 82.782711
iter 60 value 82.782022
iter 70 value 82.779477
iter 80 value 82.600983
iter 90 value 82.221558
iter 100 value 82.217832
final value 82.217832
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 96.237882
iter 10 value 94.040539
iter 20 value 94.036190
iter 30 value 94.034942
iter 40 value 93.747172
iter 50 value 88.114127
iter 60 value 79.164004
iter 70 value 79.022952
iter 80 value 79.013714
iter 90 value 78.988590
iter 100 value 78.983542
final value 78.983542
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.454020
iter 10 value 93.585949
iter 20 value 93.552435
iter 30 value 92.501539
iter 40 value 87.572235
iter 50 value 87.320619
iter 60 value 83.696278
iter 70 value 82.720498
iter 80 value 82.661538
iter 90 value 82.660901
iter 90 value 82.660901
final value 82.660901
converged
Fitting Repeat 5
# weights: 507
initial value 108.563418
iter 10 value 94.061684
iter 20 value 89.643266
iter 30 value 88.606534
iter 40 value 88.594786
final value 88.594456
converged
Fitting Repeat 1
# weights: 103
initial value 96.461351
iter 10 value 91.979920
iter 20 value 88.328704
final value 88.328109
converged
Fitting Repeat 2
# weights: 103
initial value 95.499157
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 108.281166
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 101.159195
iter 10 value 92.339219
final value 92.227947
converged
Fitting Repeat 5
# weights: 103
initial value 102.989854
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 120.613832
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.101795
final value 94.448052
converged
Fitting Repeat 3
# weights: 305
initial value 98.360990
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 101.571351
iter 10 value 91.018227
iter 20 value 83.346095
iter 30 value 82.376230
iter 40 value 81.882282
iter 50 value 81.771729
final value 81.771726
converged
Fitting Repeat 5
# weights: 305
initial value 127.168227
final value 94.275363
converged
Fitting Repeat 1
# weights: 507
initial value 96.522183
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 109.016070
final value 94.275362
converged
Fitting Repeat 3
# weights: 507
initial value 99.837994
iter 10 value 94.242146
iter 10 value 94.242146
iter 10 value 94.242146
final value 94.242146
converged
Fitting Repeat 4
# weights: 507
initial value 95.963507
iter 10 value 89.994460
iter 20 value 87.815996
iter 30 value 87.810964
iter 40 value 87.810093
iter 40 value 87.810093
iter 40 value 87.810093
final value 87.810093
converged
Fitting Repeat 5
# weights: 507
initial value 103.485850
iter 10 value 93.464316
iter 20 value 92.298564
iter 30 value 92.065592
final value 92.064568
converged
Fitting Repeat 1
# weights: 103
initial value 108.822179
iter 10 value 94.420918
iter 20 value 90.389368
iter 30 value 86.214018
iter 40 value 86.107789
iter 50 value 85.992452
iter 60 value 85.593712
iter 70 value 84.122767
iter 80 value 83.018781
iter 90 value 82.599641
iter 100 value 81.679746
final value 81.679746
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.039985
iter 10 value 90.065760
iter 20 value 84.748264
iter 30 value 81.845642
iter 40 value 81.416865
iter 50 value 81.403065
final value 81.402977
converged
Fitting Repeat 3
# weights: 103
initial value 96.998600
iter 10 value 94.494101
iter 20 value 94.035120
iter 30 value 93.715538
iter 40 value 93.606219
iter 50 value 93.310805
iter 60 value 86.686219
iter 70 value 85.779720
iter 80 value 85.150533
iter 90 value 84.971002
iter 100 value 84.957830
final value 84.957830
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.328611
iter 10 value 94.362545
iter 20 value 94.339379
iter 30 value 94.298526
iter 40 value 91.402476
iter 50 value 90.163421
iter 60 value 89.137859
iter 70 value 89.123968
iter 80 value 89.121081
final value 89.121006
converged
Fitting Repeat 5
# weights: 103
initial value 111.645626
iter 10 value 94.489532
iter 20 value 94.365998
iter 30 value 87.678810
iter 40 value 85.196130
iter 50 value 85.083835
iter 60 value 84.311903
iter 70 value 84.148462
final value 84.148232
converged
Fitting Repeat 1
# weights: 305
initial value 103.148949
iter 10 value 94.444741
iter 20 value 86.414458
iter 30 value 85.105882
iter 40 value 84.938153
iter 50 value 84.333140
iter 60 value 83.736127
iter 70 value 82.317371
iter 80 value 81.403416
iter 90 value 80.846793
iter 100 value 80.668510
final value 80.668510
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.518247
iter 10 value 94.691870
iter 20 value 87.292011
iter 30 value 86.336468
iter 40 value 84.682769
iter 50 value 82.707537
iter 60 value 81.525349
iter 70 value 81.041414
iter 80 value 80.869029
iter 90 value 80.668422
iter 100 value 80.602199
final value 80.602199
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 113.498054
iter 10 value 94.539786
iter 20 value 94.487376
iter 30 value 94.009883
iter 40 value 86.279510
iter 50 value 83.539991
iter 60 value 83.111337
iter 70 value 82.096761
iter 80 value 81.360454
iter 90 value 81.160532
iter 100 value 80.407850
final value 80.407850
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.281015
iter 10 value 94.515348
iter 20 value 93.692958
iter 30 value 87.110139
iter 40 value 83.819153
iter 50 value 82.920803
iter 60 value 81.819367
iter 70 value 80.952580
iter 80 value 80.592648
iter 90 value 80.483656
iter 100 value 80.331164
final value 80.331164
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.398354
iter 10 value 94.605085
iter 20 value 94.387755
iter 30 value 89.800724
iter 40 value 84.056646
iter 50 value 82.870099
iter 60 value 82.076844
iter 70 value 81.326303
iter 80 value 81.167894
iter 90 value 80.785025
iter 100 value 80.605937
final value 80.605937
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.928047
iter 10 value 94.395755
iter 20 value 92.361870
iter 30 value 85.509098
iter 40 value 84.220357
iter 50 value 81.787063
iter 60 value 81.335576
iter 70 value 80.596086
iter 80 value 80.273010
iter 90 value 80.138399
iter 100 value 80.034232
final value 80.034232
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.880144
iter 10 value 94.639786
iter 20 value 94.468778
iter 30 value 94.191427
iter 40 value 91.516981
iter 50 value 86.408755
iter 60 value 85.551407
iter 70 value 84.811964
iter 80 value 83.796277
iter 90 value 81.627501
iter 100 value 80.902619
final value 80.902619
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 122.256566
iter 10 value 94.855975
iter 20 value 93.245383
iter 30 value 88.042266
iter 40 value 87.194005
iter 50 value 84.213748
iter 60 value 82.492313
iter 70 value 82.293314
iter 80 value 82.139270
iter 90 value 81.636615
iter 100 value 81.209670
final value 81.209670
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 109.326796
iter 10 value 94.915613
iter 20 value 89.874720
iter 30 value 84.925967
iter 40 value 82.955928
iter 50 value 82.632638
iter 60 value 81.907159
iter 70 value 81.073659
iter 80 value 80.695515
iter 90 value 80.665346
iter 100 value 80.596908
final value 80.596908
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 115.993712
iter 10 value 95.021642
iter 20 value 93.600147
iter 30 value 90.105268
iter 40 value 83.612806
iter 50 value 81.380113
iter 60 value 80.986007
iter 70 value 80.894831
iter 80 value 80.744540
iter 90 value 80.282922
iter 100 value 80.071876
final value 80.071876
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.292159
final value 94.485897
converged
Fitting Repeat 2
# weights: 103
initial value 101.433657
iter 10 value 94.276902
iter 20 value 94.246971
iter 30 value 92.231458
iter 40 value 92.231146
iter 50 value 92.230722
iter 60 value 92.230635
iter 70 value 92.229999
iter 80 value 85.178988
iter 90 value 83.553999
iter 100 value 83.543862
final value 83.543862
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.752853
final value 94.486610
converged
Fitting Repeat 4
# weights: 103
initial value 114.014798
final value 94.485919
converged
Fitting Repeat 5
# weights: 103
initial value 104.152685
iter 10 value 94.485906
iter 20 value 94.096555
iter 30 value 90.682659
final value 90.682307
converged
Fitting Repeat 1
# weights: 305
initial value 103.324140
iter 10 value 92.234092
iter 20 value 92.231743
iter 30 value 84.298392
iter 40 value 84.055880
iter 50 value 84.017785
final value 84.017629
converged
Fitting Repeat 2
# weights: 305
initial value 98.918728
iter 10 value 94.280219
iter 20 value 94.261636
iter 30 value 93.541401
iter 40 value 89.245510
iter 50 value 88.713149
iter 60 value 88.650988
iter 70 value 86.412465
iter 80 value 82.834065
iter 90 value 82.534660
iter 100 value 82.312441
final value 82.312441
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.358771
iter 10 value 94.280339
iter 20 value 94.278990
iter 30 value 94.275253
iter 40 value 94.160394
iter 50 value 94.159572
final value 94.159570
converged
Fitting Repeat 4
# weights: 305
initial value 98.693823
iter 10 value 94.168175
iter 20 value 87.711031
iter 30 value 83.699862
iter 40 value 82.237303
iter 50 value 82.182247
iter 60 value 82.181365
iter 70 value 82.179709
final value 82.179346
converged
Fitting Repeat 5
# weights: 305
initial value 108.901797
iter 10 value 94.488959
iter 20 value 94.428097
iter 30 value 85.089513
iter 40 value 85.044359
final value 85.043802
converged
Fitting Repeat 1
# weights: 507
initial value 112.813018
iter 10 value 94.491802
iter 20 value 94.347405
iter 30 value 88.514104
iter 40 value 88.476639
iter 50 value 88.476324
iter 60 value 88.475927
final value 88.475651
converged
Fitting Repeat 2
# weights: 507
initial value 102.987306
iter 10 value 94.238204
iter 20 value 94.232917
iter 30 value 85.448718
iter 40 value 84.720375
iter 50 value 84.331613
iter 60 value 84.240385
iter 70 value 84.010667
iter 80 value 83.941954
iter 90 value 83.445605
iter 100 value 83.442456
final value 83.442456
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 112.567847
iter 10 value 94.487655
iter 20 value 94.484969
final value 94.484642
converged
Fitting Repeat 4
# weights: 507
initial value 96.746741
iter 10 value 88.139128
iter 20 value 84.299226
iter 30 value 83.813036
iter 40 value 83.755215
iter 50 value 83.748969
iter 60 value 83.746403
iter 70 value 83.741043
iter 80 value 83.571894
iter 90 value 83.488464
final value 83.488279
converged
Fitting Repeat 5
# weights: 507
initial value 109.370524
iter 10 value 94.314246
iter 20 value 94.289982
iter 30 value 89.781490
iter 40 value 89.513666
iter 50 value 89.512975
final value 89.512967
converged
Fitting Repeat 1
# weights: 507
initial value 153.080866
iter 10 value 118.544926
iter 20 value 110.170941
iter 30 value 105.719847
iter 40 value 104.966145
iter 50 value 104.203884
iter 60 value 103.755868
iter 70 value 103.355072
iter 80 value 103.143792
iter 90 value 102.761919
iter 100 value 102.087249
final value 102.087249
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 128.156335
iter 10 value 117.977567
iter 20 value 109.073813
iter 30 value 107.881457
iter 40 value 105.275970
iter 50 value 102.846052
iter 60 value 102.151660
iter 70 value 101.368453
iter 80 value 101.036610
iter 90 value 100.844045
iter 100 value 100.712548
final value 100.712548
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 135.562204
iter 10 value 118.632839
iter 20 value 117.567758
iter 30 value 116.112140
iter 40 value 109.904318
iter 50 value 104.894427
iter 60 value 102.741853
iter 70 value 101.978147
iter 80 value 101.551227
iter 90 value 101.272813
iter 100 value 100.990599
final value 100.990599
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 137.167185
iter 10 value 117.922598
iter 20 value 108.260195
iter 30 value 105.405321
iter 40 value 104.484158
iter 50 value 102.958283
iter 60 value 101.708325
iter 70 value 101.351823
iter 80 value 101.120144
iter 90 value 100.936515
iter 100 value 100.707143
final value 100.707143
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 131.784016
iter 10 value 124.145985
iter 20 value 110.242432
iter 30 value 108.758857
iter 40 value 106.665642
iter 50 value 104.971782
iter 60 value 104.234968
iter 70 value 102.770836
iter 80 value 101.515311
iter 90 value 100.971549
iter 100 value 100.807918
final value 100.807918
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Mon Jun 10 04:05:10 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
47.06 7.62 56.15
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 29.85 | 1.80 | 31.76 | |
| FreqInteractors | 0.28 | 0.00 | 0.31 | |
| calculateAAC | 0.04 | 0.00 | 0.05 | |
| calculateAutocor | 0.43 | 0.09 | 0.51 | |
| calculateCTDC | 0.07 | 0.00 | 0.08 | |
| calculateCTDD | 0.61 | 0.03 | 0.64 | |
| calculateCTDT | 0.28 | 0.02 | 0.30 | |
| calculateCTriad | 0.36 | 0.03 | 0.39 | |
| calculateDC | 0.10 | 0.01 | 0.11 | |
| calculateF | 0.29 | 0.02 | 0.31 | |
| calculateKSAAP | 0.08 | 0.03 | 0.11 | |
| calculateQD_Sm | 1.97 | 0.14 | 2.11 | |
| calculateTC | 1.38 | 0.11 | 1.48 | |
| calculateTC_Sm | 0.26 | 0.03 | 0.30 | |
| corr_plot | 29.39 | 1.44 | 30.83 | |
| enrichfindP | 0.50 | 0.45 | 14.62 | |
| enrichfind_hp | 0.10 | 0.00 | 1.24 | |
| enrichplot | 0.45 | 0.02 | 0.47 | |
| filter_missing_values | 0 | 0 | 0 | |
| getFASTA | 0.05 | 0.00 | 2.40 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0 | 0 | 0 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0 | 0 | 0 | |
| plotPPI | 0.11 | 0.00 | 0.14 | |
| pred_ensembel | 14.76 | 0.78 | 11.25 | |
| var_imp | 31.56 | 1.30 | 32.86 | |