Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-04-22 13:16 -0400 (Tue, 22 Apr 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4831 |
palomino7 | Windows Server 2022 Datacenter | x64 | 4.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" | 4573 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4599 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4553 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4570 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.14.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz |
StartedAt: 2025-04-21 21:17:59 -0400 (Mon, 21 Apr 2025) |
EndedAt: 2025-04-21 21:24:01 -0400 (Mon, 21 Apr 2025) |
EllapsedTime: 362.0 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R version 4.5.0 RC (2025-04-04 r88126) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.14.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.565 1.755 37.785 FSmethod 33.238 1.686 35.232 corr_plot 32.503 1.610 34.328 pred_ensembel 13.190 0.427 11.691 enrichfindP 0.464 0.055 8.893 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.374213 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 102.591906 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.464931 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.643263 iter 10 value 94.057708 final value 94.052905 converged Fitting Repeat 5 # weights: 103 initial value 100.594642 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 100.445462 final value 94.052912 converged Fitting Repeat 2 # weights: 305 initial value 101.103683 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 102.905772 final value 94.038251 converged Fitting Repeat 4 # weights: 305 initial value 94.444537 final value 94.038251 converged Fitting Repeat 5 # weights: 305 initial value 97.192828 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 118.280152 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 97.533854 final value 93.869755 converged Fitting Repeat 3 # weights: 507 initial value 98.894362 final value 94.052911 converged Fitting Repeat 4 # weights: 507 initial value 99.186829 iter 10 value 93.977232 iter 20 value 93.969048 final value 93.969041 converged Fitting Repeat 5 # weights: 507 initial value 101.863296 final value 93.371808 converged Fitting Repeat 1 # weights: 103 initial value 98.531234 iter 10 value 89.702460 iter 20 value 85.060402 iter 30 value 84.129306 iter 40 value 84.046785 iter 50 value 84.028305 final value 84.027676 converged Fitting Repeat 2 # weights: 103 initial value 103.588305 iter 10 value 94.057246 iter 20 value 91.063061 iter 30 value 87.058203 iter 40 value 85.550955 iter 50 value 84.838689 iter 60 value 84.800968 iter 70 value 84.795789 final value 84.795779 converged Fitting Repeat 3 # weights: 103 initial value 97.453513 iter 10 value 94.167451 iter 20 value 94.055076 iter 30 value 93.837029 iter 40 value 93.697291 iter 50 value 93.682364 iter 60 value 89.749056 iter 70 value 86.148659 iter 80 value 84.502271 iter 90 value 84.269500 iter 100 value 83.363996 final value 83.363996 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.599709 iter 10 value 94.024970 iter 20 value 93.696414 iter 30 value 93.336917 iter 40 value 87.912385 iter 50 value 85.797846 iter 60 value 85.197758 iter 70 value 83.826887 iter 80 value 82.890462 iter 90 value 82.489875 final value 82.480678 converged Fitting Repeat 5 # weights: 103 initial value 101.842930 iter 10 value 93.970657 iter 20 value 93.509393 iter 30 value 90.922978 iter 40 value 86.111131 iter 50 value 83.882581 iter 60 value 83.295577 iter 70 value 82.935624 iter 80 value 82.925023 iter 80 value 82.925023 iter 80 value 82.925023 final value 82.925023 converged Fitting Repeat 1 # weights: 305 initial value 110.500489 iter 10 value 94.820314 iter 20 value 91.935936 iter 30 value 88.829834 iter 40 value 87.712353 iter 50 value 86.725070 iter 60 value 86.125802 iter 70 value 86.022084 iter 80 value 85.708960 iter 90 value 85.424013 iter 100 value 85.118833 final value 85.118833 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.922633 iter 10 value 94.099402 iter 20 value 89.897221 iter 30 value 88.909177 iter 40 value 88.328847 iter 50 value 86.062317 iter 60 value 84.756691 iter 70 value 84.435140 iter 80 value 84.159787 iter 90 value 82.514683 iter 100 value 82.021997 final value 82.021997 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.472021 iter 10 value 93.920240 iter 20 value 87.549792 iter 30 value 86.081336 iter 40 value 85.316524 iter 50 value 84.000436 iter 60 value 83.675240 iter 70 value 82.848061 iter 80 value 82.515058 iter 90 value 82.430807 iter 100 value 82.276131 final value 82.276131 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.154807 iter 10 value 93.927971 iter 20 value 87.806112 iter 30 value 85.707107 iter 40 value 83.571700 iter 50 value 81.996208 iter 60 value 81.096136 iter 70 value 80.807904 iter 80 value 80.640558 iter 90 value 80.594297 iter 100 value 80.583504 final value 80.583504 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.973288 iter 10 value 90.300443 iter 20 value 85.104680 iter 30 value 84.668836 iter 40 value 84.547997 iter 50 value 84.116934 iter 60 value 83.159245 iter 70 value 82.935612 iter 80 value 82.906010 iter 90 value 82.509968 iter 100 value 81.654694 final value 81.654694 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.375860 iter 10 value 88.557209 iter 20 value 87.946134 iter 30 value 87.182174 iter 40 value 83.805335 iter 50 value 83.300539 iter 60 value 83.126156 iter 70 value 82.640806 iter 80 value 81.882911 iter 90 value 81.028673 iter 100 value 80.723049 final value 80.723049 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.280896 iter 10 value 94.086369 iter 20 value 88.448716 iter 30 value 85.852052 iter 40 value 84.800714 iter 50 value 83.208169 iter 60 value 82.983757 iter 70 value 82.012781 iter 80 value 81.688294 iter 90 value 81.577639 iter 100 value 81.434365 final value 81.434365 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.454779 iter 10 value 94.534926 iter 20 value 90.688006 iter 30 value 87.285761 iter 40 value 86.144343 iter 50 value 84.708389 iter 60 value 82.417022 iter 70 value 81.332502 iter 80 value 80.874610 iter 90 value 80.531819 iter 100 value 80.464456 final value 80.464456 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.765114 iter 10 value 94.026502 iter 20 value 89.245096 iter 30 value 87.450742 iter 40 value 86.435974 iter 50 value 84.743452 iter 60 value 84.305539 iter 70 value 83.721940 iter 80 value 82.617859 iter 90 value 81.672624 iter 100 value 81.349828 final value 81.349828 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 102.898200 iter 10 value 86.492010 iter 20 value 85.156001 iter 30 value 83.670777 iter 40 value 83.496413 iter 50 value 83.472964 iter 60 value 83.168965 iter 70 value 82.955892 iter 80 value 82.081543 iter 90 value 81.240282 iter 100 value 81.132653 final value 81.132653 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.290529 iter 10 value 91.137312 iter 20 value 88.955078 iter 30 value 88.943420 iter 40 value 88.411842 iter 50 value 85.779446 final value 85.736731 converged Fitting Repeat 2 # weights: 103 initial value 97.241417 iter 10 value 93.498672 iter 20 value 93.492813 iter 30 value 93.059952 iter 40 value 90.917520 iter 50 value 90.560474 iter 60 value 90.560361 final value 90.560146 converged Fitting Repeat 3 # weights: 103 initial value 96.629136 iter 10 value 94.039846 iter 20 value 94.038385 final value 94.038268 converged Fitting Repeat 4 # weights: 103 initial value 104.190976 final value 94.054536 converged Fitting Repeat 5 # weights: 103 initial value 102.230299 iter 10 value 88.442573 iter 20 value 87.253382 iter 30 value 87.250566 final value 87.250264 converged Fitting Repeat 1 # weights: 305 initial value 96.503997 iter 10 value 93.876511 iter 20 value 93.873600 iter 30 value 93.858515 iter 40 value 93.232906 final value 93.232871 converged Fitting Repeat 2 # weights: 305 initial value 98.832135 iter 10 value 94.057584 iter 20 value 93.957029 iter 30 value 93.654378 final value 93.654007 converged Fitting Repeat 3 # weights: 305 initial value 103.084158 iter 10 value 92.054678 iter 20 value 91.143841 iter 30 value 90.991594 iter 40 value 90.990399 iter 50 value 90.988774 final value 90.988431 converged Fitting Repeat 4 # weights: 305 initial value 110.355594 iter 10 value 93.864198 iter 20 value 93.862213 iter 30 value 93.859862 iter 40 value 84.746337 iter 50 value 84.115511 iter 60 value 83.534769 iter 70 value 82.737601 iter 80 value 82.327717 iter 90 value 81.177981 iter 100 value 79.847448 final value 79.847448 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.112614 iter 10 value 94.043053 iter 20 value 94.039916 iter 30 value 94.033308 iter 40 value 92.204583 iter 50 value 90.789918 final value 90.787339 converged Fitting Repeat 1 # weights: 507 initial value 107.797748 iter 10 value 91.708189 iter 20 value 91.665671 iter 30 value 91.228468 iter 40 value 91.226984 iter 50 value 91.171311 iter 60 value 91.166792 iter 70 value 91.165333 iter 80 value 91.163822 iter 90 value 91.155247 final value 91.155159 converged Fitting Repeat 2 # weights: 507 initial value 106.659996 iter 10 value 94.060532 iter 20 value 94.052832 iter 30 value 94.038443 iter 40 value 94.038375 final value 94.038332 converged Fitting Repeat 3 # weights: 507 initial value 95.174040 iter 10 value 92.206799 iter 20 value 91.142086 iter 30 value 91.140310 iter 40 value 91.134749 iter 50 value 91.134089 iter 60 value 91.133078 iter 70 value 91.132704 iter 80 value 87.518910 iter 90 value 82.527759 iter 100 value 81.924755 final value 81.924755 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.925421 iter 10 value 93.833399 iter 20 value 93.827396 iter 30 value 93.620816 iter 40 value 89.867499 iter 50 value 85.962086 iter 60 value 85.950663 final value 85.950640 converged Fitting Repeat 5 # weights: 507 initial value 130.971677 iter 10 value 94.046857 iter 20 value 94.037365 iter 30 value 91.699861 iter 40 value 90.988154 final value 90.852488 converged Fitting Repeat 1 # weights: 103 initial value 98.384796 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.465199 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.536282 final value 94.449438 converged Fitting Repeat 4 # weights: 103 initial value 95.990815 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.841870 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.353623 final value 94.482932 converged Fitting Repeat 2 # weights: 305 initial value 95.268244 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 115.854695 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 116.334197 final value 94.449438 converged Fitting Repeat 5 # weights: 305 initial value 95.099402 iter 10 value 94.326560 final value 94.326471 converged Fitting Repeat 1 # weights: 507 initial value 124.851547 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 100.825674 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 109.224249 iter 10 value 94.354396 iter 10 value 94.354396 iter 10 value 94.354396 final value 94.354396 converged Fitting Repeat 4 # weights: 507 initial value 120.471281 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 95.643013 iter 10 value 87.706449 iter 20 value 87.184693 iter 30 value 87.169583 iter 40 value 87.059752 final value 87.059441 converged Fitting Repeat 1 # weights: 103 initial value 100.355132 iter 10 value 87.587684 iter 20 value 84.805997 iter 30 value 81.456345 iter 40 value 81.276660 iter 50 value 80.734191 iter 60 value 80.679911 final value 80.679894 converged Fitting Repeat 2 # weights: 103 initial value 108.882936 iter 10 value 94.498419 iter 20 value 90.662009 iter 30 value 90.476199 iter 40 value 90.374960 iter 50 value 90.057377 iter 60 value 87.419197 iter 70 value 85.204060 iter 80 value 84.407659 iter 90 value 84.175096 iter 100 value 83.969324 final value 83.969324 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.501689 iter 10 value 94.486324 iter 20 value 94.341289 iter 30 value 90.996796 iter 40 value 83.306119 iter 50 value 82.936598 iter 60 value 82.519970 iter 70 value 82.230118 iter 80 value 81.716745 iter 90 value 81.675066 iter 100 value 81.674667 final value 81.674667 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.426955 iter 10 value 94.487050 iter 20 value 94.486550 iter 20 value 94.486550 iter 30 value 90.747998 iter 40 value 85.872749 iter 50 value 83.578537 iter 60 value 83.382065 iter 70 value 82.892895 iter 80 value 82.644430 iter 90 value 82.302290 iter 100 value 82.086292 final value 82.086292 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.846302 iter 10 value 94.483986 iter 20 value 92.189792 iter 30 value 85.469761 iter 40 value 84.453437 iter 50 value 84.180029 iter 60 value 84.163900 iter 70 value 83.959176 iter 80 value 83.906234 iter 90 value 83.806991 final value 83.805239 converged Fitting Repeat 1 # weights: 305 initial value 119.036250 iter 10 value 94.459164 iter 20 value 85.523815 iter 30 value 84.466396 iter 40 value 83.268376 iter 50 value 82.438519 iter 60 value 82.163118 iter 70 value 81.424616 iter 80 value 80.540767 iter 90 value 80.221015 iter 100 value 80.106450 final value 80.106450 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.619589 iter 10 value 94.420748 iter 20 value 93.719368 iter 30 value 89.495224 iter 40 value 89.270254 iter 50 value 86.604888 iter 60 value 84.566601 iter 70 value 82.166614 iter 80 value 81.303356 iter 90 value 80.886489 iter 100 value 79.668912 final value 79.668912 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.014034 iter 10 value 93.962401 iter 20 value 88.539924 iter 30 value 85.302693 iter 40 value 84.867030 iter 50 value 84.390637 iter 60 value 83.902192 iter 70 value 82.697284 iter 80 value 81.365775 iter 90 value 81.202414 iter 100 value 80.627414 final value 80.627414 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.856225 iter 10 value 94.796305 iter 20 value 94.710060 iter 30 value 94.481913 iter 40 value 93.441410 iter 50 value 86.233847 iter 60 value 85.782253 iter 70 value 82.947499 iter 80 value 81.509388 iter 90 value 79.754860 iter 100 value 79.339275 final value 79.339275 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.922286 iter 10 value 90.052311 iter 20 value 83.804766 iter 30 value 83.283599 iter 40 value 82.652565 iter 50 value 82.192568 iter 60 value 80.825770 iter 70 value 80.501929 iter 80 value 80.377117 iter 90 value 80.154444 iter 100 value 79.460607 final value 79.460607 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 125.656010 iter 10 value 94.815963 iter 20 value 84.653311 iter 30 value 83.041322 iter 40 value 82.983328 iter 50 value 82.719270 iter 60 value 82.327187 iter 70 value 82.090339 iter 80 value 81.803234 iter 90 value 81.651168 iter 100 value 80.548253 final value 80.548253 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 155.125860 iter 10 value 96.226130 iter 20 value 95.187135 iter 30 value 92.893762 iter 40 value 90.334349 iter 50 value 87.118330 iter 60 value 84.419978 iter 70 value 81.784397 iter 80 value 80.228593 iter 90 value 79.761332 iter 100 value 79.477712 final value 79.477712 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.477877 iter 10 value 94.433639 iter 20 value 93.297852 iter 30 value 85.729012 iter 40 value 83.569223 iter 50 value 80.371283 iter 60 value 79.577112 iter 70 value 79.276756 iter 80 value 79.089156 iter 90 value 78.893716 iter 100 value 78.667763 final value 78.667763 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.854994 iter 10 value 89.489529 iter 20 value 87.955360 iter 30 value 87.762112 iter 40 value 87.477037 iter 50 value 84.077212 iter 60 value 81.675434 iter 70 value 81.040872 iter 80 value 80.574819 iter 90 value 79.774460 iter 100 value 79.638232 final value 79.638232 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.209937 iter 10 value 92.682894 iter 20 value 86.174309 iter 30 value 81.470145 iter 40 value 80.373377 iter 50 value 80.059707 iter 60 value 79.838537 iter 70 value 79.291491 iter 80 value 78.839411 iter 90 value 78.742318 iter 100 value 78.639510 final value 78.639510 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.824176 final value 94.485959 converged Fitting Repeat 2 # weights: 103 initial value 101.667541 final value 94.485814 converged Fitting Repeat 3 # weights: 103 initial value 107.739857 final value 94.485757 converged Fitting Repeat 4 # weights: 103 initial value 97.257836 final value 94.485854 converged Fitting Repeat 5 # weights: 103 initial value 95.397724 final value 94.487217 converged Fitting Repeat 1 # weights: 305 initial value 101.558698 iter 10 value 94.488516 iter 20 value 94.355058 iter 30 value 94.277453 iter 40 value 89.350011 iter 50 value 88.460606 iter 60 value 86.415436 iter 70 value 82.435989 iter 80 value 77.535675 iter 90 value 77.321059 iter 100 value 77.277921 final value 77.277921 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.263176 iter 10 value 94.488631 iter 20 value 93.721466 iter 30 value 87.457267 iter 40 value 83.197370 iter 50 value 82.683816 iter 60 value 82.489261 iter 70 value 82.439959 final value 82.438722 converged Fitting Repeat 3 # weights: 305 initial value 98.331321 iter 10 value 94.451961 iter 20 value 93.601736 iter 30 value 93.210295 final value 93.210216 converged Fitting Repeat 4 # weights: 305 initial value 107.333948 iter 10 value 94.488979 iter 20 value 94.484423 iter 30 value 91.637761 iter 40 value 91.081508 iter 50 value 89.869421 final value 89.868485 converged Fitting Repeat 5 # weights: 305 initial value 125.399952 iter 10 value 94.489156 iter 20 value 94.452986 iter 30 value 87.891673 iter 40 value 87.580245 iter 50 value 85.535560 iter 60 value 82.671270 iter 70 value 82.314241 iter 80 value 82.070736 final value 82.068638 converged Fitting Repeat 1 # weights: 507 initial value 98.901177 iter 10 value 94.334612 iter 20 value 94.026183 iter 30 value 88.225471 iter 40 value 84.198213 iter 50 value 84.137432 iter 60 value 84.042092 iter 70 value 83.627020 iter 80 value 83.624973 final value 83.624844 converged Fitting Repeat 2 # weights: 507 initial value 124.083386 iter 10 value 89.513447 iter 20 value 88.380496 iter 30 value 87.818922 iter 40 value 87.815139 iter 50 value 87.813297 iter 60 value 85.887630 iter 70 value 85.551197 iter 80 value 85.485201 iter 90 value 85.445363 iter 100 value 85.444113 final value 85.444113 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.453436 iter 10 value 94.487254 iter 20 value 94.479523 iter 30 value 94.453042 iter 40 value 91.822547 iter 50 value 90.384352 iter 60 value 90.301843 iter 70 value 90.301403 iter 80 value 89.744851 iter 90 value 89.611516 iter 100 value 88.395650 final value 88.395650 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.382836 iter 10 value 94.362364 iter 20 value 92.391171 iter 30 value 90.692323 iter 40 value 90.596408 iter 50 value 90.577469 iter 60 value 90.577294 iter 70 value 90.511458 iter 80 value 88.800396 iter 90 value 84.876091 iter 100 value 84.104896 final value 84.104896 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.049855 iter 10 value 94.362513 iter 20 value 94.362016 iter 30 value 94.354023 iter 40 value 92.772044 iter 50 value 83.596891 iter 60 value 80.898439 iter 70 value 80.894323 iter 80 value 80.892183 iter 90 value 80.876147 iter 100 value 80.773723 final value 80.773723 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.541217 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.795340 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.022108 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 103.870561 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.800578 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.160379 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 100.822827 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 103.942091 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 109.761058 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.671266 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 108.371261 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 98.246480 final value 94.032967 converged Fitting Repeat 3 # weights: 507 initial value 99.130868 iter 10 value 93.962475 iter 20 value 93.943880 final value 93.943842 converged Fitting Repeat 4 # weights: 507 initial value 93.238060 iter 10 value 84.165878 iter 20 value 83.836808 iter 30 value 83.436573 iter 40 value 83.337450 iter 50 value 83.185978 iter 60 value 83.067341 iter 70 value 83.059876 iter 80 value 83.059498 iter 90 value 83.059454 final value 83.059450 converged Fitting Repeat 5 # weights: 507 initial value 99.669368 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 99.315726 iter 10 value 94.052037 iter 20 value 93.968814 iter 30 value 86.338434 iter 40 value 84.359852 iter 50 value 83.947727 iter 60 value 83.658343 iter 70 value 83.377181 iter 80 value 83.375594 final value 83.375012 converged Fitting Repeat 2 # weights: 103 initial value 102.036803 iter 10 value 94.056635 iter 20 value 89.855462 iter 30 value 85.787118 iter 40 value 82.713167 iter 50 value 82.274123 iter 60 value 81.851908 iter 70 value 81.443260 iter 80 value 81.254378 final value 81.211204 converged Fitting Repeat 3 # weights: 103 initial value 100.607240 iter 10 value 94.020824 iter 20 value 90.157963 iter 30 value 87.247776 iter 40 value 85.838118 iter 50 value 84.960268 iter 60 value 84.373419 iter 70 value 84.138242 iter 80 value 83.996188 final value 83.987670 converged Fitting Repeat 4 # weights: 103 initial value 97.164529 iter 10 value 94.124484 iter 20 value 94.056387 iter 30 value 94.052952 iter 40 value 85.120896 iter 50 value 84.113433 iter 60 value 83.478327 iter 70 value 83.387941 iter 80 value 83.367740 final value 83.367635 converged Fitting Repeat 5 # weights: 103 initial value 101.865752 iter 10 value 94.052471 iter 20 value 88.681194 iter 30 value 86.421247 iter 40 value 85.953023 iter 50 value 85.296289 iter 60 value 85.008319 iter 70 value 84.223887 iter 80 value 84.043930 final value 83.987670 converged Fitting Repeat 1 # weights: 305 initial value 102.101914 iter 10 value 93.869160 iter 20 value 89.684474 iter 30 value 85.993266 iter 40 value 85.429381 iter 50 value 81.696188 iter 60 value 81.030874 iter 70 value 80.709449 iter 80 value 80.605288 iter 90 value 80.569986 iter 100 value 80.516792 final value 80.516792 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.881969 iter 10 value 94.032314 iter 20 value 90.247285 iter 30 value 88.286112 iter 40 value 88.093474 iter 50 value 85.144210 iter 60 value 81.056473 iter 70 value 80.841330 iter 80 value 80.716842 iter 90 value 80.508529 iter 100 value 80.215834 final value 80.215834 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.615596 iter 10 value 94.275507 iter 20 value 93.920161 iter 30 value 93.313958 iter 40 value 87.939923 iter 50 value 86.508521 iter 60 value 84.611390 iter 70 value 83.118632 iter 80 value 82.674132 iter 90 value 82.173851 iter 100 value 81.416514 final value 81.416514 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.813883 iter 10 value 93.443515 iter 20 value 87.421131 iter 30 value 85.811426 iter 40 value 84.707153 iter 50 value 84.076539 iter 60 value 83.972554 iter 70 value 83.867112 iter 80 value 83.618018 iter 90 value 83.561758 iter 100 value 83.494096 final value 83.494096 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.285336 iter 10 value 94.163234 iter 20 value 93.341014 iter 30 value 88.708640 iter 40 value 85.955374 iter 50 value 83.319943 iter 60 value 82.427655 iter 70 value 81.933731 iter 80 value 81.574893 iter 90 value 81.444579 iter 100 value 81.047259 final value 81.047259 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.036366 iter 10 value 94.044109 iter 20 value 89.997634 iter 30 value 85.727101 iter 40 value 83.473758 iter 50 value 82.537851 iter 60 value 81.722771 iter 70 value 81.363975 iter 80 value 80.435430 iter 90 value 80.181371 iter 100 value 79.860422 final value 79.860422 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.990515 iter 10 value 93.090815 iter 20 value 88.492460 iter 30 value 84.929831 iter 40 value 84.007413 iter 50 value 83.638458 iter 60 value 82.179113 iter 70 value 81.333464 iter 80 value 80.723722 iter 90 value 80.240728 iter 100 value 79.772021 final value 79.772021 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.013681 iter 10 value 94.628705 iter 20 value 93.274962 iter 30 value 85.563883 iter 40 value 84.092895 iter 50 value 83.092097 iter 60 value 81.288073 iter 70 value 80.791081 iter 80 value 80.509091 iter 90 value 80.250930 iter 100 value 80.194891 final value 80.194891 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.761543 iter 10 value 97.967981 iter 20 value 90.850617 iter 30 value 89.675230 iter 40 value 84.101364 iter 50 value 82.380493 iter 60 value 81.508130 iter 70 value 80.470844 iter 80 value 80.062755 iter 90 value 79.912634 iter 100 value 79.699920 final value 79.699920 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.142208 iter 10 value 91.376120 iter 20 value 85.948172 iter 30 value 84.261012 iter 40 value 81.691925 iter 50 value 81.031135 iter 60 value 80.719547 iter 70 value 79.995297 iter 80 value 79.657708 iter 90 value 79.572500 iter 100 value 79.450148 final value 79.450148 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.280829 final value 94.054226 converged Fitting Repeat 2 # weights: 103 initial value 98.563846 final value 94.054428 converged Fitting Repeat 3 # weights: 103 initial value 98.639466 iter 10 value 86.832906 iter 20 value 84.242444 iter 30 value 83.966681 iter 40 value 83.935219 iter 50 value 83.934484 final value 83.933129 converged Fitting Repeat 4 # weights: 103 initial value 105.710884 final value 94.054495 converged Fitting Repeat 5 # weights: 103 initial value 104.628314 final value 94.054623 converged Fitting Repeat 1 # weights: 305 initial value 109.700433 iter 10 value 94.038025 iter 20 value 93.982830 iter 30 value 93.810410 final value 93.809460 converged Fitting Repeat 2 # weights: 305 initial value 101.225467 iter 10 value 93.730020 iter 20 value 93.715773 iter 30 value 85.544544 iter 40 value 85.177521 iter 50 value 85.176581 iter 60 value 83.912763 iter 70 value 82.851502 iter 80 value 82.687729 iter 90 value 82.640883 iter 100 value 82.637639 final value 82.637639 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 97.632661 iter 10 value 94.056975 iter 20 value 93.381221 iter 30 value 92.878118 iter 40 value 92.736868 iter 50 value 92.723930 iter 60 value 91.681993 iter 70 value 91.678497 final value 91.678352 converged Fitting Repeat 4 # weights: 305 initial value 98.301627 iter 10 value 94.058100 iter 20 value 94.052918 iter 30 value 92.876378 iter 40 value 85.929772 iter 50 value 82.942896 iter 60 value 82.625302 iter 70 value 82.620918 iter 80 value 82.546089 iter 90 value 82.104971 iter 100 value 82.049168 final value 82.049168 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.071943 iter 10 value 94.057903 iter 20 value 94.053059 iter 30 value 87.532723 iter 40 value 85.331353 iter 50 value 85.321059 iter 60 value 85.318751 iter 70 value 84.447321 iter 80 value 83.214196 iter 90 value 80.306947 iter 100 value 80.097892 final value 80.097892 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.376628 iter 10 value 94.061074 iter 20 value 94.018338 iter 30 value 87.779302 iter 40 value 84.350125 iter 50 value 84.318339 iter 60 value 84.301053 iter 70 value 83.336806 iter 80 value 81.373731 iter 90 value 80.479816 iter 100 value 80.339043 final value 80.339043 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 98.873321 iter 10 value 93.286482 iter 20 value 93.246335 iter 30 value 92.638808 iter 40 value 92.499853 iter 50 value 92.498516 iter 50 value 92.498515 iter 60 value 92.498116 iter 70 value 92.496696 iter 80 value 92.494079 iter 90 value 91.899976 iter 100 value 85.661498 final value 85.661498 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.906414 iter 10 value 94.040870 iter 20 value 93.626259 iter 30 value 92.738502 iter 40 value 92.577145 iter 50 value 92.547832 iter 60 value 92.546397 final value 92.545240 converged Fitting Repeat 4 # weights: 507 initial value 94.531071 iter 10 value 94.060090 iter 20 value 90.804213 iter 30 value 85.385043 iter 40 value 85.314914 iter 50 value 83.947289 iter 60 value 82.705469 iter 70 value 82.300157 iter 80 value 82.021240 final value 82.021135 converged Fitting Repeat 5 # weights: 507 initial value 125.535878 iter 10 value 94.044927 iter 20 value 94.040059 iter 30 value 86.304493 iter 40 value 84.561654 iter 50 value 84.508150 iter 60 value 84.364053 iter 70 value 84.352102 iter 80 value 84.161712 iter 90 value 81.174652 iter 100 value 80.820932 final value 80.820932 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.938168 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.195002 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.542125 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.159591 iter 10 value 93.772973 iter 10 value 93.772973 iter 10 value 93.772973 final value 93.772973 converged Fitting Repeat 5 # weights: 103 initial value 105.461517 iter 10 value 92.597607 iter 20 value 88.847252 iter 30 value 87.324243 iter 40 value 86.747756 iter 50 value 86.747308 iter 50 value 86.747308 iter 50 value 86.747308 final value 86.747308 converged Fitting Repeat 1 # weights: 305 initial value 97.922530 iter 10 value 93.772994 final value 93.772973 converged Fitting Repeat 2 # weights: 305 initial value 118.885430 iter 10 value 93.773441 final value 93.772973 converged Fitting Repeat 3 # weights: 305 initial value 100.781021 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 99.567847 final value 93.691092 converged Fitting Repeat 5 # weights: 305 initial value 103.266449 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.900328 final value 93.772973 converged Fitting Repeat 2 # weights: 507 initial value 105.481847 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 118.524562 iter 10 value 92.137006 final value 92.019542 converged Fitting Repeat 4 # weights: 507 initial value 105.944518 iter 10 value 93.772974 iter 10 value 93.772974 iter 10 value 93.772974 final value 93.772974 converged Fitting Repeat 5 # weights: 507 initial value 115.810481 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 100.597760 iter 10 value 94.488405 iter 20 value 94.221520 iter 30 value 92.359760 iter 40 value 84.394353 iter 50 value 81.855957 iter 60 value 81.785798 iter 70 value 81.778707 iter 80 value 81.775890 iter 90 value 81.775668 iter 100 value 81.774824 final value 81.774824 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 110.885703 iter 10 value 93.605408 iter 20 value 87.228318 iter 30 value 84.367965 iter 40 value 83.116849 iter 50 value 82.625283 iter 60 value 82.086047 iter 70 value 82.070504 iter 80 value 82.058214 final value 82.058182 converged Fitting Repeat 3 # weights: 103 initial value 101.757680 iter 10 value 94.483829 iter 20 value 93.420294 iter 30 value 93.153041 iter 40 value 89.503993 iter 50 value 87.306048 iter 60 value 86.806548 iter 70 value 86.572361 iter 80 value 85.583267 iter 90 value 84.578668 iter 100 value 84.556220 final value 84.556220 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.099082 iter 10 value 93.421692 iter 20 value 87.425302 iter 30 value 85.718018 iter 40 value 84.618827 iter 50 value 84.591399 iter 60 value 84.587891 iter 60 value 84.587891 iter 60 value 84.587891 final value 84.587891 converged Fitting Repeat 5 # weights: 103 initial value 100.151634 iter 10 value 94.244327 iter 20 value 89.088795 iter 30 value 87.740661 iter 40 value 86.320899 iter 50 value 85.703498 iter 60 value 85.468604 iter 70 value 85.353813 iter 80 value 84.197912 iter 90 value 82.289991 iter 100 value 82.227633 final value 82.227633 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 117.121155 iter 10 value 94.464684 iter 20 value 90.257033 iter 30 value 86.904175 iter 40 value 84.160341 iter 50 value 82.767054 iter 60 value 81.927579 iter 70 value 81.386983 iter 80 value 81.037455 iter 90 value 80.826124 iter 100 value 80.727901 final value 80.727901 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.414355 iter 10 value 94.933912 iter 20 value 92.710450 iter 30 value 89.505455 iter 40 value 87.353307 iter 50 value 85.394515 iter 60 value 82.708021 iter 70 value 81.987977 iter 80 value 81.781002 iter 90 value 81.678688 iter 100 value 81.667909 final value 81.667909 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.014346 iter 10 value 95.203584 iter 20 value 94.492177 iter 30 value 94.161169 iter 40 value 91.044030 iter 50 value 90.713618 iter 60 value 90.473873 iter 70 value 90.448862 iter 80 value 89.856638 iter 90 value 84.714721 iter 100 value 82.461063 final value 82.461063 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.872088 iter 10 value 93.942400 iter 20 value 89.242739 iter 30 value 86.414916 iter 40 value 85.953645 iter 50 value 85.777201 iter 60 value 85.570627 iter 70 value 85.547661 iter 80 value 85.527217 iter 90 value 85.381430 iter 100 value 83.586846 final value 83.586846 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 123.943785 iter 10 value 94.218687 iter 20 value 85.462847 iter 30 value 84.023546 iter 40 value 82.886914 iter 50 value 82.295001 iter 60 value 82.040888 iter 70 value 81.770290 iter 80 value 81.389115 iter 90 value 80.932511 iter 100 value 80.772557 final value 80.772557 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 128.053903 iter 10 value 96.568631 iter 20 value 94.490511 iter 30 value 87.610338 iter 40 value 86.120614 iter 50 value 84.578683 iter 60 value 82.113320 iter 70 value 81.833922 iter 80 value 81.173764 iter 90 value 80.756869 iter 100 value 80.584301 final value 80.584301 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.252841 iter 10 value 95.631882 iter 20 value 94.741109 iter 30 value 92.834821 iter 40 value 86.248666 iter 50 value 85.706463 iter 60 value 85.173880 iter 70 value 83.171118 iter 80 value 82.151982 iter 90 value 81.490629 iter 100 value 80.951829 final value 80.951829 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.062022 iter 10 value 94.920520 iter 20 value 93.333143 iter 30 value 87.298084 iter 40 value 84.929945 iter 50 value 83.904963 iter 60 value 82.796643 iter 70 value 81.023977 iter 80 value 80.265854 iter 90 value 80.062218 iter 100 value 79.962483 final value 79.962483 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 124.266515 iter 10 value 94.526166 iter 20 value 93.382770 iter 30 value 87.590471 iter 40 value 87.113126 iter 50 value 85.510221 iter 60 value 85.207943 iter 70 value 84.763216 iter 80 value 83.887581 iter 90 value 82.623723 iter 100 value 81.368584 final value 81.368584 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 137.316064 iter 10 value 94.490101 iter 20 value 93.892015 iter 30 value 93.359744 iter 40 value 88.289556 iter 50 value 84.429234 iter 60 value 83.148643 iter 70 value 83.003481 iter 80 value 82.950210 iter 90 value 82.753028 iter 100 value 82.051546 final value 82.051546 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.380789 final value 94.485837 converged Fitting Repeat 2 # weights: 103 initial value 95.036084 iter 10 value 94.485904 iter 20 value 94.484252 final value 94.484215 converged Fitting Repeat 3 # weights: 103 initial value 95.600812 iter 10 value 94.485794 iter 20 value 94.484214 iter 20 value 94.484214 iter 20 value 94.484214 final value 94.484214 converged Fitting Repeat 4 # weights: 103 initial value 103.201579 final value 94.254801 converged Fitting Repeat 5 # weights: 103 initial value 97.070934 final value 94.486015 converged Fitting Repeat 1 # weights: 305 initial value 97.615177 iter 10 value 94.215373 iter 20 value 93.777994 iter 30 value 93.511166 iter 40 value 93.475857 iter 50 value 93.008859 iter 60 value 93.007116 iter 70 value 88.258007 iter 80 value 86.246723 iter 90 value 84.556439 iter 100 value 84.216654 final value 84.216654 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.259374 iter 10 value 93.778650 iter 20 value 93.776532 iter 30 value 93.435625 iter 40 value 92.057237 iter 50 value 86.531019 iter 60 value 82.632446 iter 70 value 80.780124 iter 80 value 80.014889 iter 90 value 80.005827 final value 80.005107 converged Fitting Repeat 3 # weights: 305 initial value 97.348733 iter 10 value 94.488930 iter 20 value 94.483843 iter 30 value 94.291987 final value 93.773421 converged Fitting Repeat 4 # weights: 305 initial value 111.900534 iter 10 value 94.489121 iter 20 value 94.477932 iter 30 value 92.347971 iter 40 value 85.391004 iter 50 value 85.095540 final value 85.093744 converged Fitting Repeat 5 # weights: 305 initial value 102.870979 iter 10 value 94.489654 iter 20 value 93.312304 iter 30 value 93.302509 iter 40 value 93.262478 iter 50 value 84.221628 iter 60 value 82.629614 iter 70 value 81.102885 iter 80 value 80.007350 final value 80.007129 converged Fitting Repeat 1 # weights: 507 initial value 110.525597 iter 10 value 94.493145 iter 20 value 94.485130 iter 30 value 93.412690 iter 40 value 88.053075 iter 50 value 87.401856 iter 60 value 87.391761 iter 70 value 87.391251 final value 87.387364 converged Fitting Repeat 2 # weights: 507 initial value 127.560902 iter 10 value 94.492311 iter 20 value 94.431418 iter 30 value 92.983461 iter 40 value 91.800668 iter 50 value 91.467813 iter 60 value 91.466045 iter 70 value 91.465076 iter 80 value 91.464513 iter 80 value 91.464513 final value 91.464513 converged Fitting Repeat 3 # weights: 507 initial value 106.379592 iter 10 value 93.781665 iter 20 value 93.779072 iter 30 value 91.081940 iter 40 value 91.011845 iter 50 value 90.703142 iter 60 value 90.501526 iter 70 value 90.446539 final value 90.444447 converged Fitting Repeat 4 # weights: 507 initial value 102.043078 iter 10 value 93.515587 iter 20 value 93.508579 iter 30 value 93.139729 final value 93.085679 converged Fitting Repeat 5 # weights: 507 initial value 110.066638 iter 10 value 94.334646 iter 20 value 90.675825 iter 30 value 84.025893 iter 40 value 83.986560 iter 50 value 83.986323 iter 50 value 83.986323 iter 50 value 83.986323 final value 83.986323 converged Fitting Repeat 1 # weights: 103 initial value 100.644988 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.052226 iter 10 value 93.996119 final value 93.994891 converged Fitting Repeat 3 # weights: 103 initial value 98.594727 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.062522 iter 10 value 92.929142 iter 20 value 92.923556 final value 92.923530 converged Fitting Repeat 5 # weights: 103 initial value 106.310569 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.670672 final value 94.275362 converged Fitting Repeat 2 # weights: 305 initial value 101.692397 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 102.637298 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.006993 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.039120 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 131.513985 iter 10 value 94.276223 final value 94.275362 converged Fitting Repeat 2 # weights: 507 initial value 103.937186 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 108.754009 final value 94.274404 converged Fitting Repeat 4 # weights: 507 initial value 106.490400 iter 10 value 94.307530 iter 20 value 94.274445 final value 94.274405 converged Fitting Repeat 5 # weights: 507 initial value 102.324329 iter 10 value 93.286594 final value 93.286550 converged Fitting Repeat 1 # weights: 103 initial value 100.887608 iter 10 value 94.440802 iter 20 value 92.830547 iter 30 value 87.782987 iter 40 value 83.880196 iter 50 value 82.446399 iter 60 value 82.367485 iter 70 value 82.315505 iter 80 value 82.148531 iter 90 value 81.999379 final value 81.992302 converged Fitting Repeat 2 # weights: 103 initial value 111.868626 iter 10 value 94.439876 iter 20 value 94.117562 iter 30 value 93.669313 iter 40 value 93.655860 iter 50 value 92.988252 iter 60 value 90.656743 iter 70 value 88.694614 iter 80 value 86.396836 iter 90 value 86.246725 iter 100 value 82.384225 final value 82.384225 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.195172 iter 10 value 94.490208 iter 20 value 91.434970 iter 30 value 87.845934 final value 86.399884 converged Fitting Repeat 4 # weights: 103 initial value 97.107977 iter 10 value 94.497333 iter 20 value 94.332052 iter 30 value 93.490485 iter 40 value 90.669631 iter 50 value 89.320943 iter 60 value 82.186748 iter 70 value 81.799461 iter 80 value 81.663638 iter 90 value 81.504081 iter 100 value 81.453771 final value 81.453771 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.564593 iter 10 value 92.498124 iter 20 value 82.189223 iter 30 value 81.789849 iter 40 value 81.547881 iter 50 value 81.455754 final value 81.453729 converged Fitting Repeat 1 # weights: 305 initial value 102.820290 iter 10 value 94.373590 iter 20 value 89.384907 iter 30 value 85.357090 iter 40 value 81.919632 iter 50 value 81.674592 iter 60 value 81.089621 iter 70 value 79.961273 iter 80 value 79.659350 iter 90 value 79.042625 iter 100 value 78.949815 final value 78.949815 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 118.393740 iter 10 value 94.382274 iter 20 value 88.957419 iter 30 value 87.408522 iter 40 value 86.671652 iter 50 value 85.417718 iter 60 value 84.641976 iter 70 value 82.850355 iter 80 value 81.292986 iter 90 value 80.686825 iter 100 value 80.518350 final value 80.518350 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.025402 iter 10 value 94.515293 iter 20 value 86.978046 iter 30 value 86.261918 iter 40 value 84.034468 iter 50 value 83.051405 iter 60 value 82.043703 iter 70 value 80.517882 iter 80 value 80.376736 iter 90 value 80.105537 iter 100 value 79.858753 final value 79.858753 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.538577 iter 10 value 93.945451 iter 20 value 85.894749 iter 30 value 85.765661 iter 40 value 84.596303 iter 50 value 82.227562 iter 60 value 80.609929 iter 70 value 80.415219 final value 80.347898 converged Fitting Repeat 5 # weights: 305 initial value 104.264935 iter 10 value 94.312307 iter 20 value 92.478943 iter 30 value 84.313824 iter 40 value 82.775417 iter 50 value 82.424531 iter 60 value 81.576502 iter 70 value 80.619949 iter 80 value 79.662022 iter 90 value 79.220819 iter 100 value 79.110906 final value 79.110906 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.992862 iter 10 value 92.507850 iter 20 value 87.390201 iter 30 value 86.454474 iter 40 value 85.547081 iter 50 value 84.189758 iter 60 value 80.644485 iter 70 value 80.470875 iter 80 value 80.157452 iter 90 value 79.372316 iter 100 value 79.058714 final value 79.058714 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 129.608405 iter 10 value 94.992133 iter 20 value 87.821214 iter 30 value 84.367979 iter 40 value 82.705241 iter 50 value 82.270013 iter 60 value 81.225934 iter 70 value 80.890564 iter 80 value 80.399630 iter 90 value 79.916049 iter 100 value 79.550830 final value 79.550830 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.806860 iter 10 value 95.103841 iter 20 value 85.101120 iter 30 value 82.227711 iter 40 value 81.879184 iter 50 value 80.750813 iter 60 value 79.972365 iter 70 value 79.563639 iter 80 value 79.511746 iter 90 value 79.364472 iter 100 value 79.214213 final value 79.214213 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.464627 iter 10 value 85.485759 iter 20 value 83.250465 iter 30 value 82.037680 iter 40 value 81.404124 iter 50 value 80.421905 iter 60 value 79.719054 iter 70 value 79.560789 iter 80 value 79.468052 iter 90 value 79.295020 iter 100 value 79.192762 final value 79.192762 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 102.526589 iter 10 value 91.247131 iter 20 value 84.988398 iter 30 value 81.754115 iter 40 value 81.423692 iter 50 value 80.795922 iter 60 value 79.946923 iter 70 value 79.710649 iter 80 value 79.687034 iter 90 value 79.653022 iter 100 value 79.538410 final value 79.538410 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.368250 final value 94.486018 converged Fitting Repeat 2 # weights: 103 initial value 95.913501 iter 10 value 86.663996 iter 20 value 84.943073 iter 30 value 84.872630 iter 40 value 84.871262 iter 50 value 80.894271 iter 60 value 80.890548 iter 70 value 80.886699 final value 80.886460 converged Fitting Repeat 3 # weights: 103 initial value 102.423700 final value 94.485679 converged Fitting Repeat 4 # weights: 103 initial value 98.905608 final value 94.485888 converged Fitting Repeat 5 # weights: 103 initial value 95.490092 final value 94.485890 converged Fitting Repeat 1 # weights: 305 initial value 99.284544 iter 10 value 94.280100 iter 20 value 94.230017 iter 30 value 85.170387 iter 40 value 85.169266 iter 50 value 85.081038 iter 60 value 84.657846 iter 70 value 84.657736 final value 84.657343 converged Fitting Repeat 2 # weights: 305 initial value 112.273031 iter 10 value 94.489167 iter 20 value 94.475886 iter 30 value 81.401482 iter 40 value 80.903380 iter 50 value 80.891120 iter 60 value 80.236519 iter 70 value 78.759276 iter 80 value 78.087287 iter 90 value 77.987859 iter 100 value 77.922841 final value 77.922841 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.461442 iter 10 value 94.488688 iter 20 value 94.479505 iter 30 value 90.988301 iter 40 value 90.590623 iter 50 value 90.212279 iter 60 value 81.908794 iter 70 value 79.829390 iter 80 value 79.643586 iter 90 value 79.071536 iter 100 value 78.966227 final value 78.966227 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.687312 iter 10 value 94.280382 iter 20 value 94.097174 iter 30 value 94.000694 iter 40 value 93.322102 iter 50 value 92.607166 iter 60 value 92.604139 iter 70 value 92.494205 iter 80 value 92.492846 final value 92.492844 converged Fitting Repeat 5 # weights: 305 initial value 116.419867 iter 10 value 94.489012 iter 20 value 94.401743 iter 30 value 93.512813 final value 93.512409 converged Fitting Repeat 1 # weights: 507 initial value 98.752872 iter 10 value 94.491837 iter 20 value 94.484333 iter 30 value 94.424953 iter 40 value 93.549037 iter 50 value 91.919740 iter 60 value 84.366443 iter 70 value 82.088483 iter 80 value 81.589658 iter 90 value 81.562362 iter 100 value 81.486399 final value 81.486399 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.025595 iter 10 value 85.343165 iter 20 value 85.029209 iter 30 value 84.673396 iter 40 value 84.637632 iter 50 value 84.475073 iter 60 value 81.960319 iter 70 value 81.508930 iter 80 value 81.245350 iter 90 value 81.115923 iter 100 value 81.112752 final value 81.112752 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.537593 iter 10 value 94.417469 iter 20 value 94.261620 iter 30 value 94.258679 iter 40 value 94.201594 iter 50 value 94.200915 final value 94.200839 converged Fitting Repeat 4 # weights: 507 initial value 108.900967 iter 10 value 94.283583 iter 20 value 94.278067 iter 30 value 90.529820 iter 40 value 89.250691 iter 50 value 89.250231 final value 89.250162 converged Fitting Repeat 5 # weights: 507 initial value 117.260558 iter 10 value 94.284003 iter 20 value 94.276496 iter 30 value 94.010455 iter 40 value 81.785552 iter 50 value 81.760003 iter 60 value 80.943419 iter 70 value 80.699971 iter 80 value 80.459539 iter 90 value 80.410546 iter 100 value 80.407682 final value 80.407682 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 128.461476 iter 10 value 115.931822 iter 20 value 108.902929 iter 30 value 106.776232 iter 40 value 106.215554 iter 50 value 106.181481 iter 60 value 105.602640 iter 70 value 105.097079 iter 80 value 104.930519 iter 90 value 104.894980 iter 100 value 103.399607 final value 103.399607 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 147.599776 iter 10 value 118.269112 iter 20 value 111.033687 iter 30 value 108.384544 iter 40 value 106.235522 iter 50 value 103.257456 iter 60 value 102.704258 iter 70 value 102.073482 iter 80 value 101.975601 iter 90 value 101.620961 iter 100 value 101.409006 final value 101.409006 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 128.783917 iter 10 value 117.399555 iter 20 value 108.981639 iter 30 value 105.782761 iter 40 value 105.109005 iter 50 value 103.754435 iter 60 value 103.394735 iter 70 value 102.464978 iter 80 value 101.701405 iter 90 value 101.640014 iter 100 value 101.595584 final value 101.595584 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 148.430198 iter 10 value 117.555166 iter 20 value 116.341361 iter 30 value 108.277063 iter 40 value 107.193950 iter 50 value 105.677732 iter 60 value 105.276287 iter 70 value 104.367916 iter 80 value 103.399914 iter 90 value 102.260248 iter 100 value 101.316455 final value 101.316455 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 146.991779 iter 10 value 117.850538 iter 20 value 117.426965 iter 30 value 115.527923 iter 40 value 110.351161 iter 50 value 107.042947 iter 60 value 105.576141 iter 70 value 104.503503 iter 80 value 102.258114 iter 90 value 101.313183 iter 100 value 100.921845 final value 100.921845 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Apr 21 21:23:52 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 40.175 1.601 119.849
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.238 | 1.686 | 35.232 | |
FreqInteractors | 0.259 | 0.013 | 0.275 | |
calculateAAC | 0.038 | 0.006 | 0.043 | |
calculateAutocor | 0.343 | 0.063 | 0.408 | |
calculateCTDC | 0.088 | 0.006 | 0.096 | |
calculateCTDD | 0.599 | 0.028 | 0.631 | |
calculateCTDT | 0.215 | 0.009 | 0.225 | |
calculateCTriad | 0.372 | 0.023 | 0.397 | |
calculateDC | 0.096 | 0.010 | 0.106 | |
calculateF | 0.356 | 0.016 | 0.376 | |
calculateKSAAP | 0.102 | 0.009 | 0.112 | |
calculateQD_Sm | 1.742 | 0.097 | 1.851 | |
calculateTC | 1.797 | 0.155 | 1.966 | |
calculateTC_Sm | 0.277 | 0.016 | 0.295 | |
corr_plot | 32.503 | 1.610 | 34.328 | |
enrichfindP | 0.464 | 0.055 | 8.893 | |
enrichfind_hp | 0.074 | 0.021 | 1.057 | |
enrichplot | 0.396 | 0.007 | 0.406 | |
filter_missing_values | 0.001 | 0.001 | 0.001 | |
getFASTA | 0.069 | 0.010 | 3.749 | |
getHPI | 0.000 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.001 | 0.002 | |
get_positivePPI | 0.000 | 0.001 | 0.000 | |
impute_missing_data | 0.001 | 0.001 | 0.002 | |
plotPPI | 0.076 | 0.003 | 0.081 | |
pred_ensembel | 13.190 | 0.427 | 11.691 | |
var_imp | 35.565 | 1.755 | 37.785 | |