Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-08-11 11:40 -0400 (Mon, 11 Aug 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.2 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4823
palomino7Windows Server 2022 Datacenterx644.5.1 (2025-06-13 ucrt) -- "Great Square Root" 4565
merida1macOS 12.7.5 Montereyx86_644.5.1 RC (2025-06-05 r88288) -- "Great Square Root" 4603
kjohnson1macOS 13.6.6 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4544
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4579
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 997/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.14.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-08-07 13:40 -0400 (Thu, 07 Aug 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_21
git_last_commit: e2435b7
git_last_commit_date: 2025-04-15 12:38:30 -0400 (Tue, 15 Apr 2025)
nebbiolo1Linux (Ubuntu 24.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on nebbiolo1

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.14.0
Command: /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.14.0.tar.gz
StartedAt: 2025-08-10 23:17:47 -0400 (Sun, 10 Aug 2025)
EndedAt: 2025-08-10 23:32:08 -0400 (Sun, 10 Aug 2025)
EllapsedTime: 861.2 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.14.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’
* using R version 4.5.1 (2025-06-13)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.2 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
var_imp       34.229  0.371  34.631
FSmethod      33.364  0.541  33.909
corr_plot     33.114  0.271  33.417
pred_ensembel 13.010  0.108  11.776
enrichfindP    0.484  0.031   8.311
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.21-bioc/R/site-library’
* installing *source* package ‘HPiP’ ...
** this is package ‘HPiP’ version ‘1.14.0’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 99.476843 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.220183 
iter  10 value 94.398438
iter  20 value 94.365972
iter  30 value 94.363640
final  value 94.363637 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.409106 
final  value 94.026542 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.614502 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.571397 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.388986 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.341490 
final  value 94.338745 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.311967 
iter  10 value 92.714317
final  value 92.714286 
converged
Fitting Repeat 4 

# weights:  305
initial  value 107.641062 
iter  10 value 94.026191
iter  10 value 94.026191
iter  10 value 94.026191
final  value 94.026191 
converged
Fitting Repeat 5 

# weights:  305
initial  value 122.078013 
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.505492 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 123.054012 
final  value 94.026542 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.462370 
iter  10 value 94.027857
iter  20 value 94.026544
final  value 94.026542 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.493709 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 103.532973 
iter  10 value 94.026582
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  103
initial  value 107.008903 
iter  10 value 94.085886
iter  20 value 88.669483
iter  30 value 86.501442
iter  40 value 86.241037
iter  50 value 86.169251
iter  60 value 86.128666
iter  70 value 86.005154
final  value 86.004986 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.748164 
iter  10 value 94.489063
iter  20 value 94.289298
iter  30 value 88.839926
iter  40 value 86.675268
iter  50 value 85.521645
iter  60 value 85.347729
iter  70 value 85.326392
iter  70 value 85.326391
iter  70 value 85.326391
final  value 85.326391 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.651424 
iter  10 value 94.488979
iter  20 value 91.610508
iter  30 value 89.099409
iter  40 value 87.512317
iter  50 value 85.450559
iter  60 value 85.422586
iter  70 value 85.413574
iter  80 value 85.215156
iter  90 value 84.937452
final  value 84.934170 
converged
Fitting Repeat 4 

# weights:  103
initial  value 114.158178 
iter  10 value 94.536064
iter  20 value 92.986541
iter  30 value 89.779584
iter  40 value 88.231663
iter  50 value 86.018383
iter  60 value 85.267025
iter  70 value 84.604557
iter  80 value 84.046711
iter  90 value 83.948529
iter 100 value 83.839976
final  value 83.839976 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 103.054298 
iter  10 value 94.505921
iter  20 value 93.969594
iter  30 value 92.141006
iter  40 value 90.776103
iter  50 value 87.640019
iter  60 value 87.047726
iter  70 value 85.821756
iter  80 value 85.127167
iter  90 value 85.006723
iter 100 value 84.934199
final  value 84.934199 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 99.992585 
iter  10 value 94.699410
iter  20 value 93.011078
iter  30 value 85.578497
iter  40 value 85.307490
iter  50 value 85.101311
iter  60 value 84.864632
iter  70 value 84.303976
iter  80 value 83.958757
iter  90 value 83.811785
iter 100 value 83.668236
final  value 83.668236 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.866749 
iter  10 value 93.022434
iter  20 value 87.142309
iter  30 value 86.301451
iter  40 value 85.564858
iter  50 value 84.041113
iter  60 value 83.593795
iter  70 value 82.590465
iter  80 value 82.466101
iter  90 value 82.140444
iter 100 value 81.934191
final  value 81.934191 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.275349 
iter  10 value 94.236586
iter  20 value 93.741799
iter  30 value 91.512793
iter  40 value 86.864851
iter  50 value 85.594686
iter  60 value 84.984250
iter  70 value 84.919052
iter  80 value 84.512333
iter  90 value 83.469847
iter 100 value 83.018460
final  value 83.018460 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.902442 
iter  10 value 94.658312
iter  20 value 94.152221
iter  30 value 94.123113
iter  40 value 91.733600
iter  50 value 89.624044
iter  60 value 87.410562
iter  70 value 84.939972
iter  80 value 83.262436
iter  90 value 82.910168
iter 100 value 82.800268
final  value 82.800268 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.720445 
iter  10 value 93.809830
iter  20 value 88.388160
iter  30 value 86.970256
iter  40 value 85.722090
iter  50 value 85.181283
iter  60 value 84.937650
iter  70 value 84.615548
iter  80 value 83.909897
iter  90 value 83.489993
iter 100 value 83.256783
final  value 83.256783 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.483164 
iter  10 value 92.623423
iter  20 value 88.313652
iter  30 value 87.761768
iter  40 value 87.156959
iter  50 value 84.860195
iter  60 value 83.801414
iter  70 value 82.709119
iter  80 value 81.857849
iter  90 value 81.578262
iter 100 value 81.124575
final  value 81.124575 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.898179 
iter  10 value 94.251606
iter  20 value 88.562239
iter  30 value 88.013197
iter  40 value 86.297103
iter  50 value 84.943435
iter  60 value 83.232968
iter  70 value 82.525850
iter  80 value 82.420226
iter  90 value 82.258900
iter 100 value 82.050846
final  value 82.050846 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 105.107626 
iter  10 value 94.329669
iter  20 value 94.046015
iter  30 value 87.054414
iter  40 value 84.346255
iter  50 value 83.126808
iter  60 value 82.292346
iter  70 value 81.604694
iter  80 value 81.178035
iter  90 value 80.927622
iter 100 value 80.827530
final  value 80.827530 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 117.897119 
iter  10 value 95.281403
iter  20 value 91.089362
iter  30 value 90.346546
iter  40 value 87.474828
iter  50 value 86.353665
iter  60 value 86.025377
iter  70 value 85.838735
iter  80 value 85.797813
iter  90 value 85.311285
iter 100 value 84.411164
final  value 84.411164 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 141.807118 
iter  10 value 95.049480
iter  20 value 94.483203
iter  30 value 91.631137
iter  40 value 91.039743
iter  50 value 88.786829
iter  60 value 86.644066
iter  70 value 85.591242
iter  80 value 84.739879
iter  90 value 84.135393
iter 100 value 83.433908
final  value 83.433908 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.911759 
final  value 94.485695 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.617046 
iter  10 value 94.485681
iter  20 value 94.484248
final  value 94.484214 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.498450 
iter  10 value 94.485810
iter  20 value 94.119129
iter  30 value 89.521960
iter  40 value 89.517357
iter  50 value 87.819986
iter  60 value 87.361330
iter  70 value 87.359171
iter  80 value 87.356691
iter  90 value 87.336789
iter  90 value 87.336788
iter  90 value 87.336788
final  value 87.336788 
converged
Fitting Repeat 4 

# weights:  103
initial  value 118.429395 
iter  10 value 94.485924
iter  20 value 94.476328
iter  30 value 87.473363
iter  40 value 87.156233
iter  50 value 87.155034
iter  60 value 87.153220
iter  70 value 87.116948
final  value 87.114552 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.806410 
final  value 94.340260 
converged
Fitting Repeat 1 

# weights:  305
initial  value 120.648314 
iter  10 value 87.646587
iter  20 value 86.634089
iter  30 value 86.539056
iter  40 value 85.800088
iter  50 value 84.769145
iter  60 value 84.389448
iter  70 value 84.366018
iter  80 value 84.364483
final  value 84.360260 
converged
Fitting Repeat 2 

# weights:  305
initial  value 110.263492 
iter  10 value 94.492781
iter  20 value 94.485985
final  value 94.484938 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.372519 
iter  10 value 94.488559
iter  20 value 92.097617
final  value 91.816461 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.352060 
iter  10 value 87.563773
iter  20 value 87.484086
iter  30 value 87.464932
iter  40 value 87.464171
iter  50 value 87.459882
iter  60 value 85.996853
iter  70 value 85.979135
final  value 85.978842 
converged
Fitting Repeat 5 

# weights:  305
initial  value 112.355329 
iter  10 value 92.360827
iter  20 value 91.209861
iter  30 value 91.200610
iter  40 value 91.199047
iter  50 value 91.197167
iter  60 value 91.196602
final  value 91.196463 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.554765 
iter  10 value 94.488861
iter  20 value 92.839876
iter  30 value 87.203613
iter  40 value 86.151360
iter  50 value 86.126203
iter  60 value 85.399852
iter  70 value 85.066669
iter  80 value 85.033014
iter  90 value 85.022233
iter 100 value 85.007576
final  value 85.007576 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 95.857530 
iter  10 value 94.034594
iter  20 value 94.030768
iter  30 value 94.028583
iter  40 value 94.022675
iter  50 value 94.020964
final  value 94.020944 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.819130 
iter  10 value 94.499782
iter  20 value 94.490467
iter  30 value 94.272142
iter  40 value 90.726896
iter  50 value 89.743855
iter  60 value 89.741968
iter  70 value 89.741504
iter  80 value 88.928314
iter  90 value 88.777377
iter 100 value 88.774012
final  value 88.774012 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 96.292612 
iter  10 value 87.849279
iter  20 value 87.334525
iter  30 value 87.332255
iter  40 value 86.976991
iter  50 value 82.614829
iter  60 value 82.204041
iter  70 value 81.960951
iter  80 value 81.710276
iter  90 value 81.250609
iter 100 value 81.188247
final  value 81.188247 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 96.134692 
iter  10 value 94.492222
iter  20 value 93.627492
iter  30 value 91.235738
iter  40 value 90.241466
iter  50 value 90.228635
iter  60 value 90.219488
iter  70 value 90.205789
iter  80 value 90.205657
final  value 90.205639 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.943477 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 107.026878 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.132752 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.666047 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.361660 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 116.580631 
final  value 93.836066 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.131046 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.556308 
iter  10 value 86.943486
iter  20 value 86.537226
iter  30 value 86.535731
final  value 86.535564 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.477050 
iter  10 value 83.282561
iter  20 value 82.833587
iter  30 value 82.748118
iter  40 value 82.494172
iter  50 value 82.178174
iter  50 value 82.178173
iter  50 value 82.178173
final  value 82.178173 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.857991 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 110.233676 
iter  10 value 92.542614
final  value 92.541320 
converged
Fitting Repeat 2 

# weights:  507
initial  value 100.954925 
iter  10 value 93.084777
iter  20 value 92.722089
iter  30 value 90.167867
final  value 89.992148 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.718922 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.448105 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 119.542726 
iter  10 value 93.735453
iter  10 value 93.735453
iter  20 value 93.429791
iter  30 value 93.280513
final  value 93.280202 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.773233 
iter  10 value 94.056877
iter  20 value 93.855220
iter  30 value 93.413314
iter  40 value 93.376997
iter  50 value 93.313879
iter  60 value 91.077538
iter  70 value 84.819972
iter  80 value 82.820171
iter  90 value 82.262227
iter 100 value 81.910831
final  value 81.910831 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.375668 
iter  10 value 94.097781
iter  20 value 94.048142
iter  30 value 93.340802
iter  40 value 92.652794
iter  50 value 89.873641
iter  60 value 88.782175
iter  70 value 87.580244
iter  80 value 83.564074
iter  90 value 83.429915
iter 100 value 82.964308
final  value 82.964308 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.196744 
iter  10 value 94.056945
iter  20 value 93.940520
iter  30 value 93.893786
iter  40 value 91.917361
iter  50 value 88.470284
iter  60 value 87.987180
iter  70 value 87.506285
iter  80 value 83.866691
iter  90 value 83.361117
iter 100 value 83.177108
final  value 83.177108 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 102.530783 
iter  10 value 93.912904
iter  20 value 84.893993
iter  30 value 83.389506
iter  40 value 82.628029
iter  50 value 81.308026
iter  60 value 80.966667
iter  70 value 80.935650
iter  80 value 80.886819
iter  80 value 80.886818
iter  80 value 80.886818
final  value 80.886818 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.041977 
iter  10 value 93.599741
iter  20 value 90.345331
iter  30 value 87.400271
iter  40 value 86.199821
iter  50 value 85.925717
iter  60 value 85.698985
final  value 85.692136 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.856131 
iter  10 value 94.077604
iter  20 value 93.458485
iter  30 value 92.339134
iter  40 value 84.262519
iter  50 value 82.698737
iter  60 value 81.384495
iter  70 value 80.874488
iter  80 value 80.678297
iter  90 value 80.650934
iter 100 value 80.587816
final  value 80.587816 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 109.128688 
iter  10 value 94.037014
iter  20 value 92.636379
iter  30 value 88.412854
iter  40 value 83.967426
iter  50 value 80.688599
iter  60 value 79.775764
iter  70 value 79.708627
iter  80 value 79.687831
iter  90 value 79.670052
iter 100 value 79.658966
final  value 79.658966 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.640918 
iter  10 value 93.907895
iter  20 value 84.661012
iter  30 value 81.797771
iter  40 value 80.537700
iter  50 value 80.068307
iter  60 value 79.970984
iter  70 value 79.865708
iter  80 value 79.602264
iter  90 value 79.592321
iter 100 value 79.591296
final  value 79.591296 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 111.299905 
iter  10 value 89.778672
iter  20 value 87.823444
iter  30 value 83.973333
iter  40 value 83.521175
iter  50 value 83.032011
iter  60 value 82.635239
iter  70 value 82.484304
iter  80 value 82.156378
iter  90 value 81.272258
iter 100 value 80.410527
final  value 80.410527 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 118.204352 
iter  10 value 94.017508
iter  20 value 85.398841
iter  30 value 84.760925
iter  40 value 81.704906
iter  50 value 80.447417
iter  60 value 80.174991
iter  70 value 79.783468
iter  80 value 79.513248
iter  90 value 79.315914
iter 100 value 79.261615
final  value 79.261615 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.020383 
iter  10 value 94.927145
iter  20 value 93.247059
iter  30 value 92.780268
iter  40 value 92.556053
iter  50 value 90.762831
iter  60 value 85.294222
iter  70 value 82.923642
iter  80 value 81.492372
iter  90 value 80.782011
iter 100 value 80.282019
final  value 80.282019 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 119.370693 
iter  10 value 93.809974
iter  20 value 92.659502
iter  30 value 89.169272
iter  40 value 84.810058
iter  50 value 83.859614
iter  60 value 82.686635
iter  70 value 82.065490
iter  80 value 81.535534
iter  90 value 80.829358
iter 100 value 80.768948
final  value 80.768948 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.685464 
iter  10 value 93.837715
iter  20 value 90.131161
iter  30 value 86.391592
iter  40 value 85.195694
iter  50 value 82.474526
iter  60 value 80.846581
iter  70 value 79.863857
iter  80 value 79.678534
iter  90 value 79.373233
iter 100 value 79.293116
final  value 79.293116 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.481159 
iter  10 value 94.124016
iter  20 value 90.210994
iter  30 value 87.748033
iter  40 value 83.840443
iter  50 value 82.800394
iter  60 value 81.932749
iter  70 value 81.173508
iter  80 value 80.278848
iter  90 value 80.022779
iter 100 value 79.998944
final  value 79.998944 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 111.250973 
iter  10 value 93.505201
iter  20 value 87.295977
iter  30 value 84.585557
iter  40 value 83.744735
iter  50 value 83.154418
iter  60 value 81.103732
iter  70 value 80.404920
iter  80 value 79.844980
iter  90 value 79.661475
iter 100 value 79.564094
final  value 79.564094 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 106.134072 
final  value 94.054640 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.800801 
final  value 94.054478 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.872127 
iter  10 value 93.837886
iter  20 value 93.742480
final  value 92.389744 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.911521 
final  value 94.054610 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.391569 
final  value 94.054626 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.513666 
iter  10 value 94.057525
iter  20 value 91.674391
iter  30 value 90.974670
iter  40 value 90.866166
final  value 90.861030 
converged
Fitting Repeat 2 

# weights:  305
initial  value 105.512658 
iter  10 value 94.057029
iter  20 value 86.866465
iter  30 value 83.914226
iter  40 value 83.912245
iter  50 value 82.868973
iter  60 value 82.507977
iter  70 value 82.506563
final  value 82.506519 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.028082 
iter  10 value 94.057695
iter  20 value 92.627372
iter  30 value 92.390438
final  value 92.389746 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.897597 
iter  10 value 84.093190
iter  20 value 82.003524
iter  30 value 81.549444
iter  40 value 81.534809
iter  50 value 81.530449
iter  60 value 81.436343
iter  70 value 81.264865
iter  80 value 81.121996
iter  90 value 81.109099
final  value 81.109023 
converged
Fitting Repeat 5 

# weights:  305
initial  value 102.145815 
iter  10 value 94.058026
iter  20 value 94.052931
iter  20 value 94.052930
iter  20 value 94.052930
final  value 94.052930 
converged
Fitting Repeat 1 

# weights:  507
initial  value 104.722834 
iter  10 value 93.844150
iter  20 value 93.837284
final  value 93.836914 
converged
Fitting Repeat 2 

# weights:  507
initial  value 140.860124 
iter  10 value 93.380993
iter  20 value 93.374732
iter  30 value 91.680902
iter  40 value 83.091640
iter  50 value 81.655374
iter  60 value 79.887647
iter  70 value 79.675863
iter  80 value 79.667692
iter  90 value 79.667226
iter 100 value 79.667121
final  value 79.667121 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 96.632771 
iter  10 value 93.108014
iter  20 value 93.105763
iter  30 value 93.099659
iter  40 value 92.946591
iter  50 value 90.157829
iter  60 value 82.761638
iter  70 value 81.787083
iter  80 value 81.279744
iter  90 value 80.976596
iter 100 value 80.764336
final  value 80.764336 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 96.815484 
iter  10 value 93.365095
iter  20 value 93.037568
iter  30 value 89.868219
iter  40 value 84.270547
iter  50 value 83.564573
iter  60 value 82.322816
iter  70 value 79.380875
iter  80 value 78.849481
iter  90 value 78.639669
iter 100 value 78.592885
final  value 78.592885 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 103.665786 
iter  10 value 94.060890
iter  20 value 94.051291
iter  30 value 90.700459
iter  40 value 90.363151
iter  50 value 90.225075
iter  60 value 82.631457
iter  70 value 82.326036
iter  80 value 82.120535
iter  90 value 81.889686
iter 100 value 81.858001
final  value 81.858001 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.202737 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.360753 
final  value 94.144481 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.809604 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.770401 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.041922 
iter  10 value 93.911107
iter  20 value 93.902674
iter  20 value 93.902674
iter  20 value 93.902674
final  value 93.902674 
converged
Fitting Repeat 1 

# weights:  305
initial  value 111.400524 
final  value 94.275362 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.142337 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.955949 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 125.220760 
iter  10 value 94.275363
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.125632 
final  value 94.165739 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.662352 
final  value 94.252920 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.413834 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.535073 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.960255 
iter  10 value 90.650749
iter  20 value 81.820407
iter  30 value 81.349620
iter  40 value 79.890528
iter  50 value 79.675076
iter  60 value 79.362237
iter  70 value 79.178144
final  value 79.177257 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.616947 
iter  10 value 93.608184
final  value 93.607287 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.319165 
iter  10 value 94.248043
iter  20 value 93.973283
iter  30 value 92.633054
iter  40 value 85.793044
iter  50 value 85.020454
iter  60 value 82.735632
iter  70 value 81.057167
iter  80 value 80.251133
iter  90 value 80.152135
final  value 80.143393 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.076378 
iter  10 value 94.218016
iter  20 value 84.914370
iter  30 value 84.749739
iter  40 value 84.692862
iter  50 value 84.052743
iter  60 value 83.640939
iter  70 value 83.362253
iter  80 value 83.356209
iter  90 value 83.276789
final  value 83.276346 
converged
Fitting Repeat 3 

# weights:  103
initial  value 107.349538 
iter  10 value 94.489026
iter  20 value 92.692257
iter  30 value 87.273606
iter  40 value 86.560438
iter  50 value 85.358685
iter  60 value 84.265838
iter  70 value 83.900402
iter  80 value 83.883245
final  value 83.883171 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.947389 
iter  10 value 87.339505
iter  20 value 85.028125
iter  30 value 84.401038
iter  40 value 84.008807
iter  50 value 83.890959
iter  60 value 83.890123
final  value 83.889644 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.865023 
iter  10 value 94.490656
iter  20 value 93.532434
iter  30 value 86.130807
iter  40 value 84.735516
iter  50 value 84.425940
iter  60 value 84.060273
iter  70 value 83.883228
final  value 83.883166 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.359038 
iter  10 value 89.907900
iter  20 value 86.558482
iter  30 value 85.880473
iter  40 value 82.858171
iter  50 value 80.467316
iter  60 value 80.196071
iter  70 value 79.698469
iter  80 value 79.422554
iter  90 value 79.227504
iter 100 value 78.899679
final  value 78.899679 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.269035 
iter  10 value 94.088251
iter  20 value 86.724525
iter  30 value 85.119737
iter  40 value 82.564009
iter  50 value 81.414949
iter  60 value 79.784617
iter  70 value 79.550876
iter  80 value 79.296048
iter  90 value 79.031818
iter 100 value 78.959094
final  value 78.959094 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 118.130463 
iter  10 value 90.679407
iter  20 value 86.897928
iter  30 value 84.285043
iter  40 value 82.597383
iter  50 value 82.310158
iter  60 value 81.851622
iter  70 value 81.517693
iter  80 value 81.122749
iter  90 value 81.028490
iter 100 value 80.761392
final  value 80.761392 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.855510 
iter  10 value 94.410143
iter  20 value 93.640973
iter  30 value 90.849865
iter  40 value 83.572779
iter  50 value 83.210076
iter  60 value 82.701122
iter  70 value 82.404352
iter  80 value 81.580150
iter  90 value 80.444167
iter 100 value 79.125288
final  value 79.125288 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.540238 
iter  10 value 94.429442
iter  20 value 89.736823
iter  30 value 82.698017
iter  40 value 82.504216
iter  50 value 82.116854
iter  60 value 81.713985
iter  70 value 80.590998
iter  80 value 79.540179
iter  90 value 79.173588
iter 100 value 78.955656
final  value 78.955656 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.115417 
iter  10 value 94.391392
iter  20 value 86.670539
iter  30 value 85.460460
iter  40 value 85.271969
iter  50 value 84.977272
iter  60 value 83.188155
iter  70 value 81.974824
iter  80 value 81.098569
iter  90 value 80.202876
iter 100 value 79.551688
final  value 79.551688 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.651625 
iter  10 value 94.747477
iter  20 value 94.159815
iter  30 value 86.321357
iter  40 value 83.860037
iter  50 value 83.471886
iter  60 value 82.632246
iter  70 value 80.441939
iter  80 value 79.973630
iter  90 value 79.198599
iter 100 value 78.957478
final  value 78.957478 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 120.788885 
iter  10 value 95.056439
iter  20 value 88.179406
iter  30 value 85.515272
iter  40 value 82.065572
iter  50 value 81.569311
iter  60 value 80.959885
iter  70 value 80.565080
iter  80 value 80.338585
iter  90 value 80.208759
iter 100 value 80.107785
final  value 80.107785 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.978802 
iter  10 value 94.447103
iter  20 value 92.003423
iter  30 value 86.607594
iter  40 value 85.354991
iter  50 value 84.241348
iter  60 value 80.991026
iter  70 value 79.599741
iter  80 value 79.409621
iter  90 value 79.163215
iter 100 value 79.149156
final  value 79.149156 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.553693 
iter  10 value 94.433916
iter  20 value 90.891695
iter  30 value 87.829717
iter  40 value 85.338401
iter  50 value 84.669666
iter  60 value 83.646150
iter  70 value 82.983359
iter  80 value 82.912758
iter  90 value 82.857382
iter 100 value 82.344606
final  value 82.344606 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.657587 
final  value 94.485714 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.832659 
final  value 94.485798 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.504854 
final  value 94.485997 
converged
Fitting Repeat 4 

# weights:  103
initial  value 114.795582 
final  value 94.485955 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.569120 
iter  10 value 93.785413
iter  20 value 92.874258
iter  30 value 92.766428
final  value 92.766373 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.395804 
iter  10 value 94.279954
iter  20 value 94.136032
iter  30 value 87.537046
iter  40 value 85.241907
iter  50 value 85.176632
iter  60 value 85.170126
iter  60 value 85.170126
final  value 85.170126 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.097212 
iter  10 value 93.863627
iter  20 value 92.088607
iter  30 value 83.212866
iter  40 value 82.474011
iter  50 value 82.471247
iter  60 value 82.445697
iter  70 value 82.415385
iter  80 value 82.414053
iter  90 value 81.850910
iter 100 value 79.923842
final  value 79.923842 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 95.884667 
iter  10 value 94.280257
iter  20 value 94.276247
final  value 94.275649 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.176774 
iter  10 value 94.280045
iter  20 value 94.275669
iter  30 value 94.152307
iter  40 value 84.890296
iter  50 value 84.843404
final  value 84.843335 
converged
Fitting Repeat 5 

# weights:  305
initial  value 117.280503 
iter  10 value 94.489375
iter  20 value 94.483375
iter  30 value 94.064159
iter  40 value 88.487913
iter  50 value 88.398759
iter  60 value 88.398300
final  value 88.398192 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.104257 
iter  10 value 94.038912
iter  20 value 92.754234
iter  30 value 92.632010
iter  40 value 92.631807
final  value 92.631713 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.083660 
iter  10 value 92.397421
iter  20 value 92.344135
iter  30 value 92.341187
iter  40 value 92.339963
iter  50 value 92.337569
iter  60 value 92.337416
iter  70 value 92.105494
iter  80 value 87.136014
iter  90 value 86.782468
iter 100 value 86.780418
final  value 86.780418 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 94.781540 
iter  10 value 93.063594
iter  20 value 85.650136
iter  30 value 85.248054
iter  40 value 84.955112
iter  50 value 84.910739
iter  60 value 84.843533
iter  70 value 84.836404
iter  80 value 84.814507
iter  90 value 83.031865
iter 100 value 82.077854
final  value 82.077854 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 98.700597 
iter  10 value 94.283482
iter  20 value 93.718651
iter  30 value 83.666663
iter  40 value 83.450730
iter  50 value 83.339865
final  value 83.339402 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.315251 
iter  10 value 94.385999
iter  20 value 93.920208
iter  30 value 93.909599
iter  40 value 93.903265
final  value 93.903220 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.104079 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.878494 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.442297 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.457876 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.708448 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.926591 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 106.349875 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.975490 
final  value 94.467391 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.858876 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 94.973698 
iter  10 value 91.651123
final  value 91.651099 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.147619 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 111.469962 
iter  10 value 94.467399
final  value 94.467391 
converged
Fitting Repeat 3 

# weights:  507
initial  value 117.828299 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.047231 
final  value 94.467391 
converged
Fitting Repeat 5 

# weights:  507
initial  value 114.132773 
final  value 94.467389 
converged
Fitting Repeat 1 

# weights:  103
initial  value 114.792743 
iter  10 value 94.481471
iter  20 value 94.471680
iter  30 value 91.661587
iter  40 value 87.177872
iter  50 value 86.458823
iter  60 value 85.219702
iter  70 value 84.700709
iter  80 value 84.539088
final  value 84.538655 
converged
Fitting Repeat 2 

# weights:  103
initial  value 105.749442 
iter  10 value 94.453182
iter  20 value 92.687672
iter  30 value 92.296798
iter  40 value 89.292113
iter  50 value 88.206298
iter  60 value 86.040293
iter  70 value 85.458515
iter  80 value 84.406764
iter  90 value 84.106852
iter 100 value 84.094815
final  value 84.094815 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.817074 
iter  10 value 94.482703
iter  20 value 86.665380
iter  30 value 86.118667
iter  40 value 86.051067
iter  50 value 85.402733
iter  60 value 84.863699
iter  70 value 84.811914
iter  80 value 84.773282
iter  90 value 84.722439
final  value 84.700078 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.649237 
iter  10 value 94.487966
iter  20 value 90.495176
iter  30 value 89.690983
iter  40 value 87.951892
iter  50 value 86.150972
iter  60 value 84.896442
iter  70 value 83.770093
iter  80 value 83.085336
iter  90 value 82.884365
iter 100 value 82.564766
final  value 82.564766 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 100.310243 
iter  10 value 94.462820
iter  20 value 94.046434
iter  30 value 90.587159
iter  40 value 88.966216
iter  50 value 88.866094
iter  60 value 88.843394
iter  70 value 88.789647
iter  80 value 88.761625
iter  90 value 88.636406
iter 100 value 84.604769
final  value 84.604769 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 98.441389 
iter  10 value 93.294320
iter  20 value 88.479850
iter  30 value 85.161878
iter  40 value 84.425346
iter  50 value 83.846372
iter  60 value 83.313279
iter  70 value 81.964760
iter  80 value 81.659586
iter  90 value 81.335956
iter 100 value 81.276690
final  value 81.276690 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.161418 
iter  10 value 94.509672
iter  20 value 93.996875
iter  30 value 86.009473
iter  40 value 85.495650
iter  50 value 83.022985
iter  60 value 82.397720
iter  70 value 82.031710
iter  80 value 81.505043
iter  90 value 81.245199
iter 100 value 81.209529
final  value 81.209529 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.025206 
iter  10 value 94.461112
iter  20 value 93.801164
iter  30 value 86.565638
iter  40 value 83.912996
iter  50 value 83.156962
iter  60 value 82.944064
iter  70 value 82.893790
iter  80 value 82.382930
iter  90 value 82.173640
iter 100 value 82.061471
final  value 82.061471 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.705792 
iter  10 value 90.066526
iter  20 value 88.211283
iter  30 value 84.687437
iter  40 value 83.944791
iter  50 value 82.503789
iter  60 value 82.107073
iter  70 value 81.864523
iter  80 value 81.745855
iter  90 value 81.598956
iter 100 value 81.359388
final  value 81.359388 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 127.889990 
iter  10 value 94.581673
iter  20 value 93.866830
iter  30 value 88.354055
iter  40 value 84.739370
iter  50 value 83.947006
iter  60 value 82.697115
iter  70 value 82.126621
iter  80 value 81.468625
iter  90 value 81.302915
iter 100 value 81.261060
final  value 81.261060 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.059290 
iter  10 value 94.520254
iter  20 value 94.509591
iter  30 value 94.406417
iter  40 value 91.420994
iter  50 value 90.048340
iter  60 value 88.738848
iter  70 value 85.743197
iter  80 value 84.040682
iter  90 value 83.081706
iter 100 value 82.367821
final  value 82.367821 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.173077 
iter  10 value 95.206758
iter  20 value 94.641294
iter  30 value 91.942140
iter  40 value 89.330938
iter  50 value 83.916965
iter  60 value 82.453850
iter  70 value 82.109825
iter  80 value 81.906174
iter  90 value 81.559856
iter 100 value 81.286232
final  value 81.286232 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 121.472538 
iter  10 value 94.478409
iter  20 value 93.871036
iter  30 value 92.417950
iter  40 value 84.552771
iter  50 value 82.969398
iter  60 value 82.750516
iter  70 value 82.643485
iter  80 value 82.317696
iter  90 value 81.674835
iter 100 value 81.302528
final  value 81.302528 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 121.674081 
iter  10 value 95.895453
iter  20 value 91.935883
iter  30 value 91.419081
iter  40 value 91.213992
iter  50 value 90.332806
iter  60 value 88.621286
iter  70 value 84.655719
iter  80 value 82.895370
iter  90 value 82.700006
iter 100 value 82.422493
final  value 82.422493 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.309013 
iter  10 value 94.572689
iter  20 value 89.732799
iter  30 value 86.337561
iter  40 value 85.127947
iter  50 value 82.914834
iter  60 value 81.930689
iter  70 value 81.707345
iter  80 value 81.488970
iter  90 value 81.325074
iter 100 value 81.206228
final  value 81.206228 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.262359 
iter  10 value 94.486066
iter  20 value 94.484276
iter  30 value 94.372226
iter  40 value 86.790833
iter  50 value 85.750757
iter  60 value 85.748742
iter  70 value 85.748700
iter  80 value 85.622624
iter  90 value 85.563903
iter 100 value 85.180370
final  value 85.180370 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.737512 
final  value 94.485855 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.350908 
iter  10 value 94.276936
iter  20 value 90.248180
final  value 87.291928 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.413726 
final  value 94.485899 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.072233 
final  value 94.430442 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.069800 
iter  10 value 94.401214
iter  20 value 94.398634
iter  30 value 94.377453
iter  40 value 94.248470
iter  50 value 94.241172
iter  60 value 94.238337
iter  70 value 94.238269
iter  80 value 91.390563
iter  90 value 88.605857
final  value 88.601786 
converged
Fitting Repeat 2 

# weights:  305
initial  value 122.740248 
iter  10 value 94.489845
iter  20 value 94.470762
iter  30 value 93.566138
iter  40 value 93.555925
iter  50 value 93.555787
iter  60 value 92.599739
iter  70 value 88.769883
iter  80 value 87.035491
iter  90 value 87.034370
iter  90 value 87.034370
final  value 87.034370 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.895453 
iter  10 value 89.331375
iter  20 value 86.331971
iter  30 value 84.967326
iter  40 value 84.767863
final  value 84.766414 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.917162 
iter  10 value 94.488874
iter  20 value 94.467852
iter  30 value 94.467450
iter  40 value 94.450277
iter  50 value 94.449434
iter  60 value 89.391294
final  value 89.270101 
converged
Fitting Repeat 5 

# weights:  305
initial  value 105.093878 
iter  10 value 94.489737
iter  20 value 94.375822
iter  30 value 91.996814
iter  40 value 91.751125
iter  50 value 91.747759
iter  60 value 91.709272
iter  70 value 91.708965
final  value 91.708728 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.831837 
iter  10 value 94.284068
iter  20 value 94.283441
iter  30 value 94.276926
iter  40 value 94.275265
iter  50 value 94.275139
final  value 94.275131 
converged
Fitting Repeat 2 

# weights:  507
initial  value 127.109279 
iter  10 value 94.475508
iter  20 value 94.471843
iter  30 value 92.663812
iter  40 value 85.824814
iter  50 value 85.779293
final  value 85.779064 
converged
Fitting Repeat 3 

# weights:  507
initial  value 96.528311 
iter  10 value 94.492245
iter  20 value 93.562909
iter  30 value 87.266988
iter  40 value 84.920598
iter  50 value 84.882216
iter  60 value 84.760862
iter  70 value 84.026451
iter  80 value 83.496344
iter  90 value 83.458402
iter 100 value 83.367937
final  value 83.367937 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.182490 
iter  10 value 94.492476
iter  20 value 94.483940
iter  30 value 93.682380
iter  40 value 89.705054
iter  50 value 89.662762
iter  60 value 89.657031
final  value 89.656002 
converged
Fitting Repeat 5 

# weights:  507
initial  value 117.303805 
iter  10 value 94.492932
iter  20 value 92.676812
iter  30 value 92.184144
iter  40 value 92.129259
iter  50 value 85.076775
iter  60 value 84.846659
final  value 84.839119 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.041929 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.033906 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.265018 
iter  10 value 93.551927
final  value 93.551914 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.389633 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.100985 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.587231 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.234509 
iter  10 value 85.158157
iter  20 value 81.811986
iter  30 value 81.739381
final  value 81.739347 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.522295 
iter  10 value 94.032967
iter  10 value 94.032967
iter  10 value 94.032967
final  value 94.032967 
converged
Fitting Repeat 4 

# weights:  305
initial  value 119.657740 
final  value 94.052911 
converged
Fitting Repeat 5 

# weights:  305
initial  value 110.694822 
iter  10 value 91.756873
iter  20 value 85.984243
final  value 85.799663 
converged
Fitting Repeat 1 

# weights:  507
initial  value 108.964700 
final  value 93.869755 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.161991 
final  value 94.032967 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.852597 
final  value 93.869756 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.097895 
iter  10 value 86.803685
iter  20 value 82.222784
iter  30 value 81.876619
iter  40 value 81.855556
iter  40 value 81.855556
iter  40 value 81.855556
final  value 81.855556 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.092059 
final  value 94.032967 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.537959 
iter  10 value 93.139950
iter  20 value 87.949005
iter  30 value 85.145242
iter  40 value 83.627746
iter  50 value 83.199254
iter  60 value 82.964448
iter  70 value 81.923645
iter  80 value 81.648272
final  value 81.648157 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.211203 
iter  10 value 93.999497
iter  20 value 88.163117
iter  30 value 84.526630
iter  40 value 83.826778
iter  50 value 83.523395
iter  60 value 83.418686
iter  70 value 83.109128
iter  80 value 82.177768
iter  90 value 82.054790
final  value 82.054770 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.404197 
iter  10 value 94.056530
iter  20 value 92.757256
iter  30 value 92.623258
iter  40 value 84.647381
iter  50 value 83.380517
iter  60 value 82.545190
iter  70 value 82.452184
iter  80 value 82.434947
final  value 82.434929 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.550654 
iter  10 value 94.080724
iter  20 value 94.009377
iter  30 value 89.550384
iter  40 value 87.078101
iter  50 value 84.229592
iter  60 value 84.029459
iter  70 value 81.457301
iter  80 value 80.911441
final  value 80.909862 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.223672 
iter  10 value 93.718359
iter  20 value 86.086559
iter  30 value 84.298408
iter  40 value 82.538536
iter  50 value 82.138717
iter  60 value 81.673218
final  value 81.648157 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.706790 
iter  10 value 94.037743
iter  20 value 89.363899
iter  30 value 84.893001
iter  40 value 84.546554
iter  50 value 84.393926
iter  60 value 83.058658
iter  70 value 82.263505
iter  80 value 82.046146
iter  90 value 81.772580
iter 100 value 80.564598
final  value 80.564598 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 111.474492 
iter  10 value 96.707857
iter  20 value 92.604042
iter  30 value 92.025610
iter  40 value 91.282326
iter  50 value 82.679818
iter  60 value 81.869356
iter  70 value 81.649370
iter  80 value 81.501591
iter  90 value 80.790970
iter 100 value 80.317606
final  value 80.317606 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 108.726759 
iter  10 value 94.017679
iter  20 value 92.146708
iter  30 value 87.555734
iter  40 value 86.184855
iter  50 value 85.865622
iter  60 value 83.970542
iter  70 value 81.255949
iter  80 value 80.066820
iter  90 value 79.938909
iter 100 value 79.892454
final  value 79.892454 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 103.785326 
iter  10 value 93.882824
iter  20 value 85.156789
iter  30 value 84.219829
iter  40 value 82.674350
iter  50 value 82.408875
iter  60 value 82.381620
iter  70 value 81.882746
iter  80 value 81.431617
iter  90 value 80.893996
iter 100 value 80.198202
final  value 80.198202 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 110.945267 
iter  10 value 94.086841
iter  20 value 94.037347
iter  30 value 93.589485
iter  40 value 84.801451
iter  50 value 82.791024
iter  60 value 82.564094
iter  70 value 82.398719
iter  80 value 81.827503
iter  90 value 81.267578
iter 100 value 81.217129
final  value 81.217129 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 128.270043 
iter  10 value 99.066354
iter  20 value 92.313545
iter  30 value 85.447832
iter  40 value 82.249412
iter  50 value 82.121198
iter  60 value 81.828566
iter  70 value 81.360074
iter  80 value 80.342415
iter  90 value 79.612305
iter 100 value 79.513983
final  value 79.513983 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 137.067479 
iter  10 value 94.073978
iter  20 value 87.453357
iter  30 value 85.387101
iter  40 value 84.803677
iter  50 value 82.172296
iter  60 value 80.765899
iter  70 value 79.669207
iter  80 value 79.391654
iter  90 value 79.080691
iter 100 value 78.917006
final  value 78.917006 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 107.272932 
iter  10 value 94.088123
iter  20 value 90.300465
iter  30 value 86.521991
iter  40 value 83.409176
iter  50 value 81.975432
iter  60 value 81.592599
iter  70 value 81.539797
iter  80 value 81.466656
iter  90 value 80.068182
iter 100 value 79.328517
final  value 79.328517 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 99.108829 
iter  10 value 84.789881
iter  20 value 83.629654
iter  30 value 83.022789
iter  40 value 81.564584
iter  50 value 81.190102
iter  60 value 80.515271
iter  70 value 80.297721
iter  80 value 80.225524
iter  90 value 79.803000
iter 100 value 79.260744
final  value 79.260744 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 116.391643 
iter  10 value 88.183374
iter  20 value 84.506673
iter  30 value 81.215934
iter  40 value 80.576334
iter  50 value 80.418698
iter  60 value 79.518646
iter  70 value 79.234216
iter  80 value 79.157212
iter  90 value 79.137632
iter 100 value 79.067865
final  value 79.067865 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.472067 
final  value 94.054626 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.325046 
iter  10 value 86.614217
iter  20 value 85.818234
iter  30 value 85.814914
iter  40 value 85.122603
iter  50 value 84.841045
iter  60 value 84.722680
iter  70 value 82.892684
iter  80 value 82.674215
iter  90 value 82.667892
iter 100 value 82.543551
final  value 82.543551 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.902999 
iter  10 value 94.054519
iter  20 value 94.050700
iter  30 value 85.352159
iter  40 value 84.541417
iter  50 value 84.538584
final  value 84.538481 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.062647 
iter  10 value 94.054428
iter  20 value 94.052630
iter  30 value 88.344666
iter  40 value 84.583241
iter  50 value 84.581972
iter  60 value 83.448373
iter  70 value 83.267869
iter  80 value 83.254210
iter  90 value 83.139585
final  value 83.123555 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.296361 
final  value 94.054569 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.541911 
iter  10 value 84.921912
iter  20 value 82.778612
iter  30 value 82.777950
iter  40 value 82.774433
iter  50 value 82.437863
iter  60 value 82.241519
iter  70 value 80.219318
iter  80 value 79.188598
iter  90 value 79.104702
iter 100 value 79.082350
final  value 79.082350 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 95.184860 
iter  10 value 94.057264
iter  20 value 92.955804
iter  30 value 88.651036
final  value 88.651024 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.354140 
iter  10 value 84.140389
iter  20 value 84.102549
iter  30 value 82.278720
iter  40 value 82.057010
iter  50 value 81.938216
iter  60 value 81.869842
final  value 81.869187 
converged
Fitting Repeat 4 

# weights:  305
initial  value 113.330281 
iter  10 value 93.984979
iter  20 value 85.058212
iter  30 value 84.946482
iter  40 value 84.934728
iter  50 value 84.011890
iter  60 value 82.697171
iter  70 value 82.456005
iter  80 value 82.444771
iter  90 value 82.438857
iter 100 value 82.407837
final  value 82.407837 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.989441 
iter  10 value 93.840935
iter  20 value 93.838527
iter  30 value 93.814566
iter  40 value 93.508350
iter  50 value 91.816265
iter  60 value 83.084310
iter  70 value 82.373226
iter  80 value 82.290837
final  value 82.290056 
converged
Fitting Repeat 1 

# weights:  507
initial  value 132.374412 
iter  10 value 94.060979
iter  20 value 93.681195
iter  30 value 87.767487
iter  40 value 87.585425
iter  50 value 87.581097
iter  60 value 87.580771
iter  70 value 87.485517
iter  80 value 87.225476
final  value 87.222993 
converged
Fitting Repeat 2 

# weights:  507
initial  value 119.146311 
iter  10 value 91.706762
iter  20 value 91.377614
iter  30 value 91.174542
iter  40 value 91.168351
iter  50 value 91.167534
iter  60 value 91.164999
iter  70 value 91.162065
iter  80 value 85.859313
iter  90 value 81.758277
iter 100 value 80.973652
final  value 80.973652 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 99.813398 
iter  10 value 89.697643
iter  20 value 86.063444
iter  30 value 83.243828
iter  40 value 83.061698
iter  50 value 83.046517
iter  60 value 83.000711
iter  70 value 82.917275
final  value 82.908600 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.884302 
iter  10 value 94.060673
iter  20 value 90.564634
iter  30 value 82.748382
iter  40 value 82.725240
iter  50 value 82.534518
iter  60 value 82.489507
iter  70 value 81.989714
iter  80 value 81.870949
iter  90 value 81.862421
iter 100 value 79.888809
final  value 79.888809 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.935483 
iter  10 value 93.546874
iter  20 value 93.545493
iter  30 value 93.535573
iter  40 value 90.994723
iter  50 value 82.402073
iter  60 value 80.170163
iter  70 value 79.557472
iter  80 value 79.481996
iter  90 value 79.481027
iter 100 value 79.480629
final  value 79.480629 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 121.122018 
iter  10 value 117.897219
iter  20 value 117.881294
iter  30 value 117.157260
final  value 117.157072 
converged
Fitting Repeat 2 

# weights:  507
initial  value 143.616017 
iter  10 value 117.766909
iter  20 value 117.388132
iter  30 value 110.590614
iter  40 value 103.633376
iter  50 value 100.397561
iter  60 value 100.330060
iter  70 value 100.325394
iter  80 value 100.322319
iter  90 value 100.132950
iter 100 value 99.871312
final  value 99.871312 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 131.061666 
iter  10 value 117.767391
iter  20 value 117.758472
iter  30 value 109.413421
final  value 108.528594 
converged
Fitting Repeat 4 

# weights:  507
initial  value 134.617494 
iter  10 value 117.898656
iter  20 value 117.883784
final  value 117.758888 
converged
Fitting Repeat 5 

# weights:  507
initial  value 131.055495 
iter  10 value 117.766788
iter  20 value 115.951517
iter  30 value 114.652246
iter  40 value 114.604113
final  value 114.604060 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Sun Aug 10 23:22:33 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 39.431   1.130  76.902 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod33.364 0.54133.909
FreqInteractors0.2030.0050.208
calculateAAC0.0310.0070.038
calculateAutocor0.3460.0160.363
calculateCTDC0.0690.0010.071
calculateCTDD0.4890.0010.491
calculateCTDT0.1730.0110.184
calculateCTriad0.3570.0190.376
calculateDC0.0840.0060.091
calculateF0.2850.0020.288
calculateKSAAP0.0890.0070.096
calculateQD_Sm1.7050.0351.741
calculateTC1.4570.1681.626
calculateTC_Sm0.2730.0040.277
corr_plot33.114 0.27133.417
enrichfindP0.4840.0318.311
enrichfind_hp0.0990.0051.050
enrichplot0.3640.0000.365
filter_missing_values0.0000.0000.002
getFASTA0.3800.0073.420
getHPI0.0010.0020.002
get_negativePPI0.0020.0020.004
get_positivePPI000
impute_missing_data0.0020.0020.004
plotPPI0.0820.0000.083
pred_ensembel13.010 0.10811.776
var_imp34.229 0.37134.631