Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-08-11 11:40 -0400 (Mon, 11 Aug 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.2 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4823 |
palomino7 | Windows Server 2022 Datacenter | x64 | 4.5.1 (2025-06-13 ucrt) -- "Great Square Root" | 4565 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" | 4603 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4544 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4579 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.14.0 |
Command: /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.14.0.tar.gz |
StartedAt: 2025-08-10 23:17:47 -0400 (Sun, 10 Aug 2025) |
EndedAt: 2025-08-10 23:32:08 -0400 (Sun, 10 Aug 2025) |
EllapsedTime: 861.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.14.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R version 4.5.1 (2025-06-13) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 * running under: Ubuntu 24.04.2 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.14.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 34.229 0.371 34.631 FSmethod 33.364 0.541 33.909 corr_plot 33.114 0.271 33.417 pred_ensembel 13.010 0.108 11.776 enrichfindP 0.484 0.031 8.311 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.21-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 (2025-06-13) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 99.476843 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.220183 iter 10 value 94.398438 iter 20 value 94.365972 iter 30 value 94.363640 final value 94.363637 converged Fitting Repeat 3 # weights: 103 initial value 95.409106 final value 94.026542 converged Fitting Repeat 4 # weights: 103 initial value 99.614502 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.571397 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.388986 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.341490 final value 94.338745 converged Fitting Repeat 3 # weights: 305 initial value 95.311967 iter 10 value 92.714317 final value 92.714286 converged Fitting Repeat 4 # weights: 305 initial value 107.641062 iter 10 value 94.026191 iter 10 value 94.026191 iter 10 value 94.026191 final value 94.026191 converged Fitting Repeat 5 # weights: 305 initial value 122.078013 final value 94.026542 converged Fitting Repeat 1 # weights: 507 initial value 95.505492 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 123.054012 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 98.462370 iter 10 value 94.027857 iter 20 value 94.026544 final value 94.026542 converged Fitting Repeat 4 # weights: 507 initial value 100.493709 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 103.532973 iter 10 value 94.026582 final value 94.026542 converged Fitting Repeat 1 # weights: 103 initial value 107.008903 iter 10 value 94.085886 iter 20 value 88.669483 iter 30 value 86.501442 iter 40 value 86.241037 iter 50 value 86.169251 iter 60 value 86.128666 iter 70 value 86.005154 final value 86.004986 converged Fitting Repeat 2 # weights: 103 initial value 103.748164 iter 10 value 94.489063 iter 20 value 94.289298 iter 30 value 88.839926 iter 40 value 86.675268 iter 50 value 85.521645 iter 60 value 85.347729 iter 70 value 85.326392 iter 70 value 85.326391 iter 70 value 85.326391 final value 85.326391 converged Fitting Repeat 3 # weights: 103 initial value 101.651424 iter 10 value 94.488979 iter 20 value 91.610508 iter 30 value 89.099409 iter 40 value 87.512317 iter 50 value 85.450559 iter 60 value 85.422586 iter 70 value 85.413574 iter 80 value 85.215156 iter 90 value 84.937452 final value 84.934170 converged Fitting Repeat 4 # weights: 103 initial value 114.158178 iter 10 value 94.536064 iter 20 value 92.986541 iter 30 value 89.779584 iter 40 value 88.231663 iter 50 value 86.018383 iter 60 value 85.267025 iter 70 value 84.604557 iter 80 value 84.046711 iter 90 value 83.948529 iter 100 value 83.839976 final value 83.839976 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.054298 iter 10 value 94.505921 iter 20 value 93.969594 iter 30 value 92.141006 iter 40 value 90.776103 iter 50 value 87.640019 iter 60 value 87.047726 iter 70 value 85.821756 iter 80 value 85.127167 iter 90 value 85.006723 iter 100 value 84.934199 final value 84.934199 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.992585 iter 10 value 94.699410 iter 20 value 93.011078 iter 30 value 85.578497 iter 40 value 85.307490 iter 50 value 85.101311 iter 60 value 84.864632 iter 70 value 84.303976 iter 80 value 83.958757 iter 90 value 83.811785 iter 100 value 83.668236 final value 83.668236 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.866749 iter 10 value 93.022434 iter 20 value 87.142309 iter 30 value 86.301451 iter 40 value 85.564858 iter 50 value 84.041113 iter 60 value 83.593795 iter 70 value 82.590465 iter 80 value 82.466101 iter 90 value 82.140444 iter 100 value 81.934191 final value 81.934191 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.275349 iter 10 value 94.236586 iter 20 value 93.741799 iter 30 value 91.512793 iter 40 value 86.864851 iter 50 value 85.594686 iter 60 value 84.984250 iter 70 value 84.919052 iter 80 value 84.512333 iter 90 value 83.469847 iter 100 value 83.018460 final value 83.018460 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.902442 iter 10 value 94.658312 iter 20 value 94.152221 iter 30 value 94.123113 iter 40 value 91.733600 iter 50 value 89.624044 iter 60 value 87.410562 iter 70 value 84.939972 iter 80 value 83.262436 iter 90 value 82.910168 iter 100 value 82.800268 final value 82.800268 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.720445 iter 10 value 93.809830 iter 20 value 88.388160 iter 30 value 86.970256 iter 40 value 85.722090 iter 50 value 85.181283 iter 60 value 84.937650 iter 70 value 84.615548 iter 80 value 83.909897 iter 90 value 83.489993 iter 100 value 83.256783 final value 83.256783 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.483164 iter 10 value 92.623423 iter 20 value 88.313652 iter 30 value 87.761768 iter 40 value 87.156959 iter 50 value 84.860195 iter 60 value 83.801414 iter 70 value 82.709119 iter 80 value 81.857849 iter 90 value 81.578262 iter 100 value 81.124575 final value 81.124575 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.898179 iter 10 value 94.251606 iter 20 value 88.562239 iter 30 value 88.013197 iter 40 value 86.297103 iter 50 value 84.943435 iter 60 value 83.232968 iter 70 value 82.525850 iter 80 value 82.420226 iter 90 value 82.258900 iter 100 value 82.050846 final value 82.050846 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.107626 iter 10 value 94.329669 iter 20 value 94.046015 iter 30 value 87.054414 iter 40 value 84.346255 iter 50 value 83.126808 iter 60 value 82.292346 iter 70 value 81.604694 iter 80 value 81.178035 iter 90 value 80.927622 iter 100 value 80.827530 final value 80.827530 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.897119 iter 10 value 95.281403 iter 20 value 91.089362 iter 30 value 90.346546 iter 40 value 87.474828 iter 50 value 86.353665 iter 60 value 86.025377 iter 70 value 85.838735 iter 80 value 85.797813 iter 90 value 85.311285 iter 100 value 84.411164 final value 84.411164 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 141.807118 iter 10 value 95.049480 iter 20 value 94.483203 iter 30 value 91.631137 iter 40 value 91.039743 iter 50 value 88.786829 iter 60 value 86.644066 iter 70 value 85.591242 iter 80 value 84.739879 iter 90 value 84.135393 iter 100 value 83.433908 final value 83.433908 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.911759 final value 94.485695 converged Fitting Repeat 2 # weights: 103 initial value 96.617046 iter 10 value 94.485681 iter 20 value 94.484248 final value 94.484214 converged Fitting Repeat 3 # weights: 103 initial value 96.498450 iter 10 value 94.485810 iter 20 value 94.119129 iter 30 value 89.521960 iter 40 value 89.517357 iter 50 value 87.819986 iter 60 value 87.361330 iter 70 value 87.359171 iter 80 value 87.356691 iter 90 value 87.336789 iter 90 value 87.336788 iter 90 value 87.336788 final value 87.336788 converged Fitting Repeat 4 # weights: 103 initial value 118.429395 iter 10 value 94.485924 iter 20 value 94.476328 iter 30 value 87.473363 iter 40 value 87.156233 iter 50 value 87.155034 iter 60 value 87.153220 iter 70 value 87.116948 final value 87.114552 converged Fitting Repeat 5 # weights: 103 initial value 94.806410 final value 94.340260 converged Fitting Repeat 1 # weights: 305 initial value 120.648314 iter 10 value 87.646587 iter 20 value 86.634089 iter 30 value 86.539056 iter 40 value 85.800088 iter 50 value 84.769145 iter 60 value 84.389448 iter 70 value 84.366018 iter 80 value 84.364483 final value 84.360260 converged Fitting Repeat 2 # weights: 305 initial value 110.263492 iter 10 value 94.492781 iter 20 value 94.485985 final value 94.484938 converged Fitting Repeat 3 # weights: 305 initial value 95.372519 iter 10 value 94.488559 iter 20 value 92.097617 final value 91.816461 converged Fitting Repeat 4 # weights: 305 initial value 94.352060 iter 10 value 87.563773 iter 20 value 87.484086 iter 30 value 87.464932 iter 40 value 87.464171 iter 50 value 87.459882 iter 60 value 85.996853 iter 70 value 85.979135 final value 85.978842 converged Fitting Repeat 5 # weights: 305 initial value 112.355329 iter 10 value 92.360827 iter 20 value 91.209861 iter 30 value 91.200610 iter 40 value 91.199047 iter 50 value 91.197167 iter 60 value 91.196602 final value 91.196463 converged Fitting Repeat 1 # weights: 507 initial value 96.554765 iter 10 value 94.488861 iter 20 value 92.839876 iter 30 value 87.203613 iter 40 value 86.151360 iter 50 value 86.126203 iter 60 value 85.399852 iter 70 value 85.066669 iter 80 value 85.033014 iter 90 value 85.022233 iter 100 value 85.007576 final value 85.007576 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.857530 iter 10 value 94.034594 iter 20 value 94.030768 iter 30 value 94.028583 iter 40 value 94.022675 iter 50 value 94.020964 final value 94.020944 converged Fitting Repeat 3 # weights: 507 initial value 110.819130 iter 10 value 94.499782 iter 20 value 94.490467 iter 30 value 94.272142 iter 40 value 90.726896 iter 50 value 89.743855 iter 60 value 89.741968 iter 70 value 89.741504 iter 80 value 88.928314 iter 90 value 88.777377 iter 100 value 88.774012 final value 88.774012 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.292612 iter 10 value 87.849279 iter 20 value 87.334525 iter 30 value 87.332255 iter 40 value 86.976991 iter 50 value 82.614829 iter 60 value 82.204041 iter 70 value 81.960951 iter 80 value 81.710276 iter 90 value 81.250609 iter 100 value 81.188247 final value 81.188247 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.134692 iter 10 value 94.492222 iter 20 value 93.627492 iter 30 value 91.235738 iter 40 value 90.241466 iter 50 value 90.228635 iter 60 value 90.219488 iter 70 value 90.205789 iter 80 value 90.205657 final value 90.205639 converged Fitting Repeat 1 # weights: 103 initial value 101.943477 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 107.026878 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 100.132752 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 103.666047 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.361660 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 116.580631 final value 93.836066 converged Fitting Repeat 2 # weights: 305 initial value 98.131046 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.556308 iter 10 value 86.943486 iter 20 value 86.537226 iter 30 value 86.535731 final value 86.535564 converged Fitting Repeat 4 # weights: 305 initial value 109.477050 iter 10 value 83.282561 iter 20 value 82.833587 iter 30 value 82.748118 iter 40 value 82.494172 iter 50 value 82.178174 iter 50 value 82.178173 iter 50 value 82.178173 final value 82.178173 converged Fitting Repeat 5 # weights: 305 initial value 95.857991 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 110.233676 iter 10 value 92.542614 final value 92.541320 converged Fitting Repeat 2 # weights: 507 initial value 100.954925 iter 10 value 93.084777 iter 20 value 92.722089 iter 30 value 90.167867 final value 89.992148 converged Fitting Repeat 3 # weights: 507 initial value 108.718922 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 98.448105 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 119.542726 iter 10 value 93.735453 iter 10 value 93.735453 iter 20 value 93.429791 iter 30 value 93.280513 final value 93.280202 converged Fitting Repeat 1 # weights: 103 initial value 95.773233 iter 10 value 94.056877 iter 20 value 93.855220 iter 30 value 93.413314 iter 40 value 93.376997 iter 50 value 93.313879 iter 60 value 91.077538 iter 70 value 84.819972 iter 80 value 82.820171 iter 90 value 82.262227 iter 100 value 81.910831 final value 81.910831 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.375668 iter 10 value 94.097781 iter 20 value 94.048142 iter 30 value 93.340802 iter 40 value 92.652794 iter 50 value 89.873641 iter 60 value 88.782175 iter 70 value 87.580244 iter 80 value 83.564074 iter 90 value 83.429915 iter 100 value 82.964308 final value 82.964308 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.196744 iter 10 value 94.056945 iter 20 value 93.940520 iter 30 value 93.893786 iter 40 value 91.917361 iter 50 value 88.470284 iter 60 value 87.987180 iter 70 value 87.506285 iter 80 value 83.866691 iter 90 value 83.361117 iter 100 value 83.177108 final value 83.177108 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.530783 iter 10 value 93.912904 iter 20 value 84.893993 iter 30 value 83.389506 iter 40 value 82.628029 iter 50 value 81.308026 iter 60 value 80.966667 iter 70 value 80.935650 iter 80 value 80.886819 iter 80 value 80.886818 iter 80 value 80.886818 final value 80.886818 converged Fitting Repeat 5 # weights: 103 initial value 101.041977 iter 10 value 93.599741 iter 20 value 90.345331 iter 30 value 87.400271 iter 40 value 86.199821 iter 50 value 85.925717 iter 60 value 85.698985 final value 85.692136 converged Fitting Repeat 1 # weights: 305 initial value 100.856131 iter 10 value 94.077604 iter 20 value 93.458485 iter 30 value 92.339134 iter 40 value 84.262519 iter 50 value 82.698737 iter 60 value 81.384495 iter 70 value 80.874488 iter 80 value 80.678297 iter 90 value 80.650934 iter 100 value 80.587816 final value 80.587816 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.128688 iter 10 value 94.037014 iter 20 value 92.636379 iter 30 value 88.412854 iter 40 value 83.967426 iter 50 value 80.688599 iter 60 value 79.775764 iter 70 value 79.708627 iter 80 value 79.687831 iter 90 value 79.670052 iter 100 value 79.658966 final value 79.658966 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.640918 iter 10 value 93.907895 iter 20 value 84.661012 iter 30 value 81.797771 iter 40 value 80.537700 iter 50 value 80.068307 iter 60 value 79.970984 iter 70 value 79.865708 iter 80 value 79.602264 iter 90 value 79.592321 iter 100 value 79.591296 final value 79.591296 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.299905 iter 10 value 89.778672 iter 20 value 87.823444 iter 30 value 83.973333 iter 40 value 83.521175 iter 50 value 83.032011 iter 60 value 82.635239 iter 70 value 82.484304 iter 80 value 82.156378 iter 90 value 81.272258 iter 100 value 80.410527 final value 80.410527 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.204352 iter 10 value 94.017508 iter 20 value 85.398841 iter 30 value 84.760925 iter 40 value 81.704906 iter 50 value 80.447417 iter 60 value 80.174991 iter 70 value 79.783468 iter 80 value 79.513248 iter 90 value 79.315914 iter 100 value 79.261615 final value 79.261615 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.020383 iter 10 value 94.927145 iter 20 value 93.247059 iter 30 value 92.780268 iter 40 value 92.556053 iter 50 value 90.762831 iter 60 value 85.294222 iter 70 value 82.923642 iter 80 value 81.492372 iter 90 value 80.782011 iter 100 value 80.282019 final value 80.282019 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.370693 iter 10 value 93.809974 iter 20 value 92.659502 iter 30 value 89.169272 iter 40 value 84.810058 iter 50 value 83.859614 iter 60 value 82.686635 iter 70 value 82.065490 iter 80 value 81.535534 iter 90 value 80.829358 iter 100 value 80.768948 final value 80.768948 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.685464 iter 10 value 93.837715 iter 20 value 90.131161 iter 30 value 86.391592 iter 40 value 85.195694 iter 50 value 82.474526 iter 60 value 80.846581 iter 70 value 79.863857 iter 80 value 79.678534 iter 90 value 79.373233 iter 100 value 79.293116 final value 79.293116 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.481159 iter 10 value 94.124016 iter 20 value 90.210994 iter 30 value 87.748033 iter 40 value 83.840443 iter 50 value 82.800394 iter 60 value 81.932749 iter 70 value 81.173508 iter 80 value 80.278848 iter 90 value 80.022779 iter 100 value 79.998944 final value 79.998944 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.250973 iter 10 value 93.505201 iter 20 value 87.295977 iter 30 value 84.585557 iter 40 value 83.744735 iter 50 value 83.154418 iter 60 value 81.103732 iter 70 value 80.404920 iter 80 value 79.844980 iter 90 value 79.661475 iter 100 value 79.564094 final value 79.564094 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.134072 final value 94.054640 converged Fitting Repeat 2 # weights: 103 initial value 94.800801 final value 94.054478 converged Fitting Repeat 3 # weights: 103 initial value 96.872127 iter 10 value 93.837886 iter 20 value 93.742480 final value 92.389744 converged Fitting Repeat 4 # weights: 103 initial value 96.911521 final value 94.054610 converged Fitting Repeat 5 # weights: 103 initial value 95.391569 final value 94.054626 converged Fitting Repeat 1 # weights: 305 initial value 99.513666 iter 10 value 94.057525 iter 20 value 91.674391 iter 30 value 90.974670 iter 40 value 90.866166 final value 90.861030 converged Fitting Repeat 2 # weights: 305 initial value 105.512658 iter 10 value 94.057029 iter 20 value 86.866465 iter 30 value 83.914226 iter 40 value 83.912245 iter 50 value 82.868973 iter 60 value 82.507977 iter 70 value 82.506563 final value 82.506519 converged Fitting Repeat 3 # weights: 305 initial value 97.028082 iter 10 value 94.057695 iter 20 value 92.627372 iter 30 value 92.390438 final value 92.389746 converged Fitting Repeat 4 # weights: 305 initial value 94.897597 iter 10 value 84.093190 iter 20 value 82.003524 iter 30 value 81.549444 iter 40 value 81.534809 iter 50 value 81.530449 iter 60 value 81.436343 iter 70 value 81.264865 iter 80 value 81.121996 iter 90 value 81.109099 final value 81.109023 converged Fitting Repeat 5 # weights: 305 initial value 102.145815 iter 10 value 94.058026 iter 20 value 94.052931 iter 20 value 94.052930 iter 20 value 94.052930 final value 94.052930 converged Fitting Repeat 1 # weights: 507 initial value 104.722834 iter 10 value 93.844150 iter 20 value 93.837284 final value 93.836914 converged Fitting Repeat 2 # weights: 507 initial value 140.860124 iter 10 value 93.380993 iter 20 value 93.374732 iter 30 value 91.680902 iter 40 value 83.091640 iter 50 value 81.655374 iter 60 value 79.887647 iter 70 value 79.675863 iter 80 value 79.667692 iter 90 value 79.667226 iter 100 value 79.667121 final value 79.667121 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.632771 iter 10 value 93.108014 iter 20 value 93.105763 iter 30 value 93.099659 iter 40 value 92.946591 iter 50 value 90.157829 iter 60 value 82.761638 iter 70 value 81.787083 iter 80 value 81.279744 iter 90 value 80.976596 iter 100 value 80.764336 final value 80.764336 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.815484 iter 10 value 93.365095 iter 20 value 93.037568 iter 30 value 89.868219 iter 40 value 84.270547 iter 50 value 83.564573 iter 60 value 82.322816 iter 70 value 79.380875 iter 80 value 78.849481 iter 90 value 78.639669 iter 100 value 78.592885 final value 78.592885 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.665786 iter 10 value 94.060890 iter 20 value 94.051291 iter 30 value 90.700459 iter 40 value 90.363151 iter 50 value 90.225075 iter 60 value 82.631457 iter 70 value 82.326036 iter 80 value 82.120535 iter 90 value 81.889686 iter 100 value 81.858001 final value 81.858001 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.202737 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.360753 final value 94.144481 converged Fitting Repeat 3 # weights: 103 initial value 94.809604 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.770401 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.041922 iter 10 value 93.911107 iter 20 value 93.902674 iter 20 value 93.902674 iter 20 value 93.902674 final value 93.902674 converged Fitting Repeat 1 # weights: 305 initial value 111.400524 final value 94.275362 converged Fitting Repeat 2 # weights: 305 initial value 98.142337 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 94.955949 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 125.220760 iter 10 value 94.275363 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 96.125632 final value 94.165739 converged Fitting Repeat 1 # weights: 507 initial value 98.662352 final value 94.252920 converged Fitting Repeat 2 # weights: 507 initial value 102.413834 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 104.535073 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 103.960255 iter 10 value 90.650749 iter 20 value 81.820407 iter 30 value 81.349620 iter 40 value 79.890528 iter 50 value 79.675076 iter 60 value 79.362237 iter 70 value 79.178144 final value 79.177257 converged Fitting Repeat 5 # weights: 507 initial value 96.616947 iter 10 value 93.608184 final value 93.607287 converged Fitting Repeat 1 # weights: 103 initial value 96.319165 iter 10 value 94.248043 iter 20 value 93.973283 iter 30 value 92.633054 iter 40 value 85.793044 iter 50 value 85.020454 iter 60 value 82.735632 iter 70 value 81.057167 iter 80 value 80.251133 iter 90 value 80.152135 final value 80.143393 converged Fitting Repeat 2 # weights: 103 initial value 101.076378 iter 10 value 94.218016 iter 20 value 84.914370 iter 30 value 84.749739 iter 40 value 84.692862 iter 50 value 84.052743 iter 60 value 83.640939 iter 70 value 83.362253 iter 80 value 83.356209 iter 90 value 83.276789 final value 83.276346 converged Fitting Repeat 3 # weights: 103 initial value 107.349538 iter 10 value 94.489026 iter 20 value 92.692257 iter 30 value 87.273606 iter 40 value 86.560438 iter 50 value 85.358685 iter 60 value 84.265838 iter 70 value 83.900402 iter 80 value 83.883245 final value 83.883171 converged Fitting Repeat 4 # weights: 103 initial value 104.947389 iter 10 value 87.339505 iter 20 value 85.028125 iter 30 value 84.401038 iter 40 value 84.008807 iter 50 value 83.890959 iter 60 value 83.890123 final value 83.889644 converged Fitting Repeat 5 # weights: 103 initial value 101.865023 iter 10 value 94.490656 iter 20 value 93.532434 iter 30 value 86.130807 iter 40 value 84.735516 iter 50 value 84.425940 iter 60 value 84.060273 iter 70 value 83.883228 final value 83.883166 converged Fitting Repeat 1 # weights: 305 initial value 107.359038 iter 10 value 89.907900 iter 20 value 86.558482 iter 30 value 85.880473 iter 40 value 82.858171 iter 50 value 80.467316 iter 60 value 80.196071 iter 70 value 79.698469 iter 80 value 79.422554 iter 90 value 79.227504 iter 100 value 78.899679 final value 78.899679 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.269035 iter 10 value 94.088251 iter 20 value 86.724525 iter 30 value 85.119737 iter 40 value 82.564009 iter 50 value 81.414949 iter 60 value 79.784617 iter 70 value 79.550876 iter 80 value 79.296048 iter 90 value 79.031818 iter 100 value 78.959094 final value 78.959094 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 118.130463 iter 10 value 90.679407 iter 20 value 86.897928 iter 30 value 84.285043 iter 40 value 82.597383 iter 50 value 82.310158 iter 60 value 81.851622 iter 70 value 81.517693 iter 80 value 81.122749 iter 90 value 81.028490 iter 100 value 80.761392 final value 80.761392 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.855510 iter 10 value 94.410143 iter 20 value 93.640973 iter 30 value 90.849865 iter 40 value 83.572779 iter 50 value 83.210076 iter 60 value 82.701122 iter 70 value 82.404352 iter 80 value 81.580150 iter 90 value 80.444167 iter 100 value 79.125288 final value 79.125288 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.540238 iter 10 value 94.429442 iter 20 value 89.736823 iter 30 value 82.698017 iter 40 value 82.504216 iter 50 value 82.116854 iter 60 value 81.713985 iter 70 value 80.590998 iter 80 value 79.540179 iter 90 value 79.173588 iter 100 value 78.955656 final value 78.955656 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.115417 iter 10 value 94.391392 iter 20 value 86.670539 iter 30 value 85.460460 iter 40 value 85.271969 iter 50 value 84.977272 iter 60 value 83.188155 iter 70 value 81.974824 iter 80 value 81.098569 iter 90 value 80.202876 iter 100 value 79.551688 final value 79.551688 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.651625 iter 10 value 94.747477 iter 20 value 94.159815 iter 30 value 86.321357 iter 40 value 83.860037 iter 50 value 83.471886 iter 60 value 82.632246 iter 70 value 80.441939 iter 80 value 79.973630 iter 90 value 79.198599 iter 100 value 78.957478 final value 78.957478 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 120.788885 iter 10 value 95.056439 iter 20 value 88.179406 iter 30 value 85.515272 iter 40 value 82.065572 iter 50 value 81.569311 iter 60 value 80.959885 iter 70 value 80.565080 iter 80 value 80.338585 iter 90 value 80.208759 iter 100 value 80.107785 final value 80.107785 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.978802 iter 10 value 94.447103 iter 20 value 92.003423 iter 30 value 86.607594 iter 40 value 85.354991 iter 50 value 84.241348 iter 60 value 80.991026 iter 70 value 79.599741 iter 80 value 79.409621 iter 90 value 79.163215 iter 100 value 79.149156 final value 79.149156 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.553693 iter 10 value 94.433916 iter 20 value 90.891695 iter 30 value 87.829717 iter 40 value 85.338401 iter 50 value 84.669666 iter 60 value 83.646150 iter 70 value 82.983359 iter 80 value 82.912758 iter 90 value 82.857382 iter 100 value 82.344606 final value 82.344606 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.657587 final value 94.485714 converged Fitting Repeat 2 # weights: 103 initial value 96.832659 final value 94.485798 converged Fitting Repeat 3 # weights: 103 initial value 97.504854 final value 94.485997 converged Fitting Repeat 4 # weights: 103 initial value 114.795582 final value 94.485955 converged Fitting Repeat 5 # weights: 103 initial value 94.569120 iter 10 value 93.785413 iter 20 value 92.874258 iter 30 value 92.766428 final value 92.766373 converged Fitting Repeat 1 # weights: 305 initial value 100.395804 iter 10 value 94.279954 iter 20 value 94.136032 iter 30 value 87.537046 iter 40 value 85.241907 iter 50 value 85.176632 iter 60 value 85.170126 iter 60 value 85.170126 final value 85.170126 converged Fitting Repeat 2 # weights: 305 initial value 97.097212 iter 10 value 93.863627 iter 20 value 92.088607 iter 30 value 83.212866 iter 40 value 82.474011 iter 50 value 82.471247 iter 60 value 82.445697 iter 70 value 82.415385 iter 80 value 82.414053 iter 90 value 81.850910 iter 100 value 79.923842 final value 79.923842 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.884667 iter 10 value 94.280257 iter 20 value 94.276247 final value 94.275649 converged Fitting Repeat 4 # weights: 305 initial value 100.176774 iter 10 value 94.280045 iter 20 value 94.275669 iter 30 value 94.152307 iter 40 value 84.890296 iter 50 value 84.843404 final value 84.843335 converged Fitting Repeat 5 # weights: 305 initial value 117.280503 iter 10 value 94.489375 iter 20 value 94.483375 iter 30 value 94.064159 iter 40 value 88.487913 iter 50 value 88.398759 iter 60 value 88.398300 final value 88.398192 converged Fitting Repeat 1 # weights: 507 initial value 101.104257 iter 10 value 94.038912 iter 20 value 92.754234 iter 30 value 92.632010 iter 40 value 92.631807 final value 92.631713 converged Fitting Repeat 2 # weights: 507 initial value 107.083660 iter 10 value 92.397421 iter 20 value 92.344135 iter 30 value 92.341187 iter 40 value 92.339963 iter 50 value 92.337569 iter 60 value 92.337416 iter 70 value 92.105494 iter 80 value 87.136014 iter 90 value 86.782468 iter 100 value 86.780418 final value 86.780418 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 94.781540 iter 10 value 93.063594 iter 20 value 85.650136 iter 30 value 85.248054 iter 40 value 84.955112 iter 50 value 84.910739 iter 60 value 84.843533 iter 70 value 84.836404 iter 80 value 84.814507 iter 90 value 83.031865 iter 100 value 82.077854 final value 82.077854 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.700597 iter 10 value 94.283482 iter 20 value 93.718651 iter 30 value 83.666663 iter 40 value 83.450730 iter 50 value 83.339865 final value 83.339402 converged Fitting Repeat 5 # weights: 507 initial value 105.315251 iter 10 value 94.385999 iter 20 value 93.920208 iter 30 value 93.909599 iter 40 value 93.903265 final value 93.903220 converged Fitting Repeat 1 # weights: 103 initial value 99.104079 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.878494 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.442297 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.457876 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.708448 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.926591 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 106.349875 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 96.975490 final value 94.467391 converged Fitting Repeat 4 # weights: 305 initial value 94.858876 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 94.973698 iter 10 value 91.651123 final value 91.651099 converged Fitting Repeat 1 # weights: 507 initial value 95.147619 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 111.469962 iter 10 value 94.467399 final value 94.467391 converged Fitting Repeat 3 # weights: 507 initial value 117.828299 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 99.047231 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 114.132773 final value 94.467389 converged Fitting Repeat 1 # weights: 103 initial value 114.792743 iter 10 value 94.481471 iter 20 value 94.471680 iter 30 value 91.661587 iter 40 value 87.177872 iter 50 value 86.458823 iter 60 value 85.219702 iter 70 value 84.700709 iter 80 value 84.539088 final value 84.538655 converged Fitting Repeat 2 # weights: 103 initial value 105.749442 iter 10 value 94.453182 iter 20 value 92.687672 iter 30 value 92.296798 iter 40 value 89.292113 iter 50 value 88.206298 iter 60 value 86.040293 iter 70 value 85.458515 iter 80 value 84.406764 iter 90 value 84.106852 iter 100 value 84.094815 final value 84.094815 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.817074 iter 10 value 94.482703 iter 20 value 86.665380 iter 30 value 86.118667 iter 40 value 86.051067 iter 50 value 85.402733 iter 60 value 84.863699 iter 70 value 84.811914 iter 80 value 84.773282 iter 90 value 84.722439 final value 84.700078 converged Fitting Repeat 4 # weights: 103 initial value 96.649237 iter 10 value 94.487966 iter 20 value 90.495176 iter 30 value 89.690983 iter 40 value 87.951892 iter 50 value 86.150972 iter 60 value 84.896442 iter 70 value 83.770093 iter 80 value 83.085336 iter 90 value 82.884365 iter 100 value 82.564766 final value 82.564766 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.310243 iter 10 value 94.462820 iter 20 value 94.046434 iter 30 value 90.587159 iter 40 value 88.966216 iter 50 value 88.866094 iter 60 value 88.843394 iter 70 value 88.789647 iter 80 value 88.761625 iter 90 value 88.636406 iter 100 value 84.604769 final value 84.604769 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 98.441389 iter 10 value 93.294320 iter 20 value 88.479850 iter 30 value 85.161878 iter 40 value 84.425346 iter 50 value 83.846372 iter 60 value 83.313279 iter 70 value 81.964760 iter 80 value 81.659586 iter 90 value 81.335956 iter 100 value 81.276690 final value 81.276690 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.161418 iter 10 value 94.509672 iter 20 value 93.996875 iter 30 value 86.009473 iter 40 value 85.495650 iter 50 value 83.022985 iter 60 value 82.397720 iter 70 value 82.031710 iter 80 value 81.505043 iter 90 value 81.245199 iter 100 value 81.209529 final value 81.209529 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.025206 iter 10 value 94.461112 iter 20 value 93.801164 iter 30 value 86.565638 iter 40 value 83.912996 iter 50 value 83.156962 iter 60 value 82.944064 iter 70 value 82.893790 iter 80 value 82.382930 iter 90 value 82.173640 iter 100 value 82.061471 final value 82.061471 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.705792 iter 10 value 90.066526 iter 20 value 88.211283 iter 30 value 84.687437 iter 40 value 83.944791 iter 50 value 82.503789 iter 60 value 82.107073 iter 70 value 81.864523 iter 80 value 81.745855 iter 90 value 81.598956 iter 100 value 81.359388 final value 81.359388 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 127.889990 iter 10 value 94.581673 iter 20 value 93.866830 iter 30 value 88.354055 iter 40 value 84.739370 iter 50 value 83.947006 iter 60 value 82.697115 iter 70 value 82.126621 iter 80 value 81.468625 iter 90 value 81.302915 iter 100 value 81.261060 final value 81.261060 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.059290 iter 10 value 94.520254 iter 20 value 94.509591 iter 30 value 94.406417 iter 40 value 91.420994 iter 50 value 90.048340 iter 60 value 88.738848 iter 70 value 85.743197 iter 80 value 84.040682 iter 90 value 83.081706 iter 100 value 82.367821 final value 82.367821 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.173077 iter 10 value 95.206758 iter 20 value 94.641294 iter 30 value 91.942140 iter 40 value 89.330938 iter 50 value 83.916965 iter 60 value 82.453850 iter 70 value 82.109825 iter 80 value 81.906174 iter 90 value 81.559856 iter 100 value 81.286232 final value 81.286232 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 121.472538 iter 10 value 94.478409 iter 20 value 93.871036 iter 30 value 92.417950 iter 40 value 84.552771 iter 50 value 82.969398 iter 60 value 82.750516 iter 70 value 82.643485 iter 80 value 82.317696 iter 90 value 81.674835 iter 100 value 81.302528 final value 81.302528 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 121.674081 iter 10 value 95.895453 iter 20 value 91.935883 iter 30 value 91.419081 iter 40 value 91.213992 iter 50 value 90.332806 iter 60 value 88.621286 iter 70 value 84.655719 iter 80 value 82.895370 iter 90 value 82.700006 iter 100 value 82.422493 final value 82.422493 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.309013 iter 10 value 94.572689 iter 20 value 89.732799 iter 30 value 86.337561 iter 40 value 85.127947 iter 50 value 82.914834 iter 60 value 81.930689 iter 70 value 81.707345 iter 80 value 81.488970 iter 90 value 81.325074 iter 100 value 81.206228 final value 81.206228 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.262359 iter 10 value 94.486066 iter 20 value 94.484276 iter 30 value 94.372226 iter 40 value 86.790833 iter 50 value 85.750757 iter 60 value 85.748742 iter 70 value 85.748700 iter 80 value 85.622624 iter 90 value 85.563903 iter 100 value 85.180370 final value 85.180370 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.737512 final value 94.485855 converged Fitting Repeat 3 # weights: 103 initial value 103.350908 iter 10 value 94.276936 iter 20 value 90.248180 final value 87.291928 converged Fitting Repeat 4 # weights: 103 initial value 100.413726 final value 94.485899 converged Fitting Repeat 5 # weights: 103 initial value 102.072233 final value 94.430442 converged Fitting Repeat 1 # weights: 305 initial value 103.069800 iter 10 value 94.401214 iter 20 value 94.398634 iter 30 value 94.377453 iter 40 value 94.248470 iter 50 value 94.241172 iter 60 value 94.238337 iter 70 value 94.238269 iter 80 value 91.390563 iter 90 value 88.605857 final value 88.601786 converged Fitting Repeat 2 # weights: 305 initial value 122.740248 iter 10 value 94.489845 iter 20 value 94.470762 iter 30 value 93.566138 iter 40 value 93.555925 iter 50 value 93.555787 iter 60 value 92.599739 iter 70 value 88.769883 iter 80 value 87.035491 iter 90 value 87.034370 iter 90 value 87.034370 final value 87.034370 converged Fitting Repeat 3 # weights: 305 initial value 105.895453 iter 10 value 89.331375 iter 20 value 86.331971 iter 30 value 84.967326 iter 40 value 84.767863 final value 84.766414 converged Fitting Repeat 4 # weights: 305 initial value 97.917162 iter 10 value 94.488874 iter 20 value 94.467852 iter 30 value 94.467450 iter 40 value 94.450277 iter 50 value 94.449434 iter 60 value 89.391294 final value 89.270101 converged Fitting Repeat 5 # weights: 305 initial value 105.093878 iter 10 value 94.489737 iter 20 value 94.375822 iter 30 value 91.996814 iter 40 value 91.751125 iter 50 value 91.747759 iter 60 value 91.709272 iter 70 value 91.708965 final value 91.708728 converged Fitting Repeat 1 # weights: 507 initial value 98.831837 iter 10 value 94.284068 iter 20 value 94.283441 iter 30 value 94.276926 iter 40 value 94.275265 iter 50 value 94.275139 final value 94.275131 converged Fitting Repeat 2 # weights: 507 initial value 127.109279 iter 10 value 94.475508 iter 20 value 94.471843 iter 30 value 92.663812 iter 40 value 85.824814 iter 50 value 85.779293 final value 85.779064 converged Fitting Repeat 3 # weights: 507 initial value 96.528311 iter 10 value 94.492245 iter 20 value 93.562909 iter 30 value 87.266988 iter 40 value 84.920598 iter 50 value 84.882216 iter 60 value 84.760862 iter 70 value 84.026451 iter 80 value 83.496344 iter 90 value 83.458402 iter 100 value 83.367937 final value 83.367937 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.182490 iter 10 value 94.492476 iter 20 value 94.483940 iter 30 value 93.682380 iter 40 value 89.705054 iter 50 value 89.662762 iter 60 value 89.657031 final value 89.656002 converged Fitting Repeat 5 # weights: 507 initial value 117.303805 iter 10 value 94.492932 iter 20 value 92.676812 iter 30 value 92.184144 iter 40 value 92.129259 iter 50 value 85.076775 iter 60 value 84.846659 final value 84.839119 converged Fitting Repeat 1 # weights: 103 initial value 100.041929 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 102.033906 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.265018 iter 10 value 93.551927 final value 93.551914 converged Fitting Repeat 4 # weights: 103 initial value 106.389633 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.100985 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.587231 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 98.234509 iter 10 value 85.158157 iter 20 value 81.811986 iter 30 value 81.739381 final value 81.739347 converged Fitting Repeat 3 # weights: 305 initial value 96.522295 iter 10 value 94.032967 iter 10 value 94.032967 iter 10 value 94.032967 final value 94.032967 converged Fitting Repeat 4 # weights: 305 initial value 119.657740 final value 94.052911 converged Fitting Repeat 5 # weights: 305 initial value 110.694822 iter 10 value 91.756873 iter 20 value 85.984243 final value 85.799663 converged Fitting Repeat 1 # weights: 507 initial value 108.964700 final value 93.869755 converged Fitting Repeat 2 # weights: 507 initial value 107.161991 final value 94.032967 converged Fitting Repeat 3 # weights: 507 initial value 101.852597 final value 93.869756 converged Fitting Repeat 4 # weights: 507 initial value 97.097895 iter 10 value 86.803685 iter 20 value 82.222784 iter 30 value 81.876619 iter 40 value 81.855556 iter 40 value 81.855556 iter 40 value 81.855556 final value 81.855556 converged Fitting Repeat 5 # weights: 507 initial value 105.092059 final value 94.032967 converged Fitting Repeat 1 # weights: 103 initial value 99.537959 iter 10 value 93.139950 iter 20 value 87.949005 iter 30 value 85.145242 iter 40 value 83.627746 iter 50 value 83.199254 iter 60 value 82.964448 iter 70 value 81.923645 iter 80 value 81.648272 final value 81.648157 converged Fitting Repeat 2 # weights: 103 initial value 99.211203 iter 10 value 93.999497 iter 20 value 88.163117 iter 30 value 84.526630 iter 40 value 83.826778 iter 50 value 83.523395 iter 60 value 83.418686 iter 70 value 83.109128 iter 80 value 82.177768 iter 90 value 82.054790 final value 82.054770 converged Fitting Repeat 3 # weights: 103 initial value 101.404197 iter 10 value 94.056530 iter 20 value 92.757256 iter 30 value 92.623258 iter 40 value 84.647381 iter 50 value 83.380517 iter 60 value 82.545190 iter 70 value 82.452184 iter 80 value 82.434947 final value 82.434929 converged Fitting Repeat 4 # weights: 103 initial value 98.550654 iter 10 value 94.080724 iter 20 value 94.009377 iter 30 value 89.550384 iter 40 value 87.078101 iter 50 value 84.229592 iter 60 value 84.029459 iter 70 value 81.457301 iter 80 value 80.911441 final value 80.909862 converged Fitting Repeat 5 # weights: 103 initial value 100.223672 iter 10 value 93.718359 iter 20 value 86.086559 iter 30 value 84.298408 iter 40 value 82.538536 iter 50 value 82.138717 iter 60 value 81.673218 final value 81.648157 converged Fitting Repeat 1 # weights: 305 initial value 103.706790 iter 10 value 94.037743 iter 20 value 89.363899 iter 30 value 84.893001 iter 40 value 84.546554 iter 50 value 84.393926 iter 60 value 83.058658 iter 70 value 82.263505 iter 80 value 82.046146 iter 90 value 81.772580 iter 100 value 80.564598 final value 80.564598 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.474492 iter 10 value 96.707857 iter 20 value 92.604042 iter 30 value 92.025610 iter 40 value 91.282326 iter 50 value 82.679818 iter 60 value 81.869356 iter 70 value 81.649370 iter 80 value 81.501591 iter 90 value 80.790970 iter 100 value 80.317606 final value 80.317606 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.726759 iter 10 value 94.017679 iter 20 value 92.146708 iter 30 value 87.555734 iter 40 value 86.184855 iter 50 value 85.865622 iter 60 value 83.970542 iter 70 value 81.255949 iter 80 value 80.066820 iter 90 value 79.938909 iter 100 value 79.892454 final value 79.892454 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.785326 iter 10 value 93.882824 iter 20 value 85.156789 iter 30 value 84.219829 iter 40 value 82.674350 iter 50 value 82.408875 iter 60 value 82.381620 iter 70 value 81.882746 iter 80 value 81.431617 iter 90 value 80.893996 iter 100 value 80.198202 final value 80.198202 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.945267 iter 10 value 94.086841 iter 20 value 94.037347 iter 30 value 93.589485 iter 40 value 84.801451 iter 50 value 82.791024 iter 60 value 82.564094 iter 70 value 82.398719 iter 80 value 81.827503 iter 90 value 81.267578 iter 100 value 81.217129 final value 81.217129 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 128.270043 iter 10 value 99.066354 iter 20 value 92.313545 iter 30 value 85.447832 iter 40 value 82.249412 iter 50 value 82.121198 iter 60 value 81.828566 iter 70 value 81.360074 iter 80 value 80.342415 iter 90 value 79.612305 iter 100 value 79.513983 final value 79.513983 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 137.067479 iter 10 value 94.073978 iter 20 value 87.453357 iter 30 value 85.387101 iter 40 value 84.803677 iter 50 value 82.172296 iter 60 value 80.765899 iter 70 value 79.669207 iter 80 value 79.391654 iter 90 value 79.080691 iter 100 value 78.917006 final value 78.917006 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.272932 iter 10 value 94.088123 iter 20 value 90.300465 iter 30 value 86.521991 iter 40 value 83.409176 iter 50 value 81.975432 iter 60 value 81.592599 iter 70 value 81.539797 iter 80 value 81.466656 iter 90 value 80.068182 iter 100 value 79.328517 final value 79.328517 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.108829 iter 10 value 84.789881 iter 20 value 83.629654 iter 30 value 83.022789 iter 40 value 81.564584 iter 50 value 81.190102 iter 60 value 80.515271 iter 70 value 80.297721 iter 80 value 80.225524 iter 90 value 79.803000 iter 100 value 79.260744 final value 79.260744 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.391643 iter 10 value 88.183374 iter 20 value 84.506673 iter 30 value 81.215934 iter 40 value 80.576334 iter 50 value 80.418698 iter 60 value 79.518646 iter 70 value 79.234216 iter 80 value 79.157212 iter 90 value 79.137632 iter 100 value 79.067865 final value 79.067865 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.472067 final value 94.054626 converged Fitting Repeat 2 # weights: 103 initial value 100.325046 iter 10 value 86.614217 iter 20 value 85.818234 iter 30 value 85.814914 iter 40 value 85.122603 iter 50 value 84.841045 iter 60 value 84.722680 iter 70 value 82.892684 iter 80 value 82.674215 iter 90 value 82.667892 iter 100 value 82.543551 final value 82.543551 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.902999 iter 10 value 94.054519 iter 20 value 94.050700 iter 30 value 85.352159 iter 40 value 84.541417 iter 50 value 84.538584 final value 84.538481 converged Fitting Repeat 4 # weights: 103 initial value 96.062647 iter 10 value 94.054428 iter 20 value 94.052630 iter 30 value 88.344666 iter 40 value 84.583241 iter 50 value 84.581972 iter 60 value 83.448373 iter 70 value 83.267869 iter 80 value 83.254210 iter 90 value 83.139585 final value 83.123555 converged Fitting Repeat 5 # weights: 103 initial value 100.296361 final value 94.054569 converged Fitting Repeat 1 # weights: 305 initial value 98.541911 iter 10 value 84.921912 iter 20 value 82.778612 iter 30 value 82.777950 iter 40 value 82.774433 iter 50 value 82.437863 iter 60 value 82.241519 iter 70 value 80.219318 iter 80 value 79.188598 iter 90 value 79.104702 iter 100 value 79.082350 final value 79.082350 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.184860 iter 10 value 94.057264 iter 20 value 92.955804 iter 30 value 88.651036 final value 88.651024 converged Fitting Repeat 3 # weights: 305 initial value 95.354140 iter 10 value 84.140389 iter 20 value 84.102549 iter 30 value 82.278720 iter 40 value 82.057010 iter 50 value 81.938216 iter 60 value 81.869842 final value 81.869187 converged Fitting Repeat 4 # weights: 305 initial value 113.330281 iter 10 value 93.984979 iter 20 value 85.058212 iter 30 value 84.946482 iter 40 value 84.934728 iter 50 value 84.011890 iter 60 value 82.697171 iter 70 value 82.456005 iter 80 value 82.444771 iter 90 value 82.438857 iter 100 value 82.407837 final value 82.407837 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.989441 iter 10 value 93.840935 iter 20 value 93.838527 iter 30 value 93.814566 iter 40 value 93.508350 iter 50 value 91.816265 iter 60 value 83.084310 iter 70 value 82.373226 iter 80 value 82.290837 final value 82.290056 converged Fitting Repeat 1 # weights: 507 initial value 132.374412 iter 10 value 94.060979 iter 20 value 93.681195 iter 30 value 87.767487 iter 40 value 87.585425 iter 50 value 87.581097 iter 60 value 87.580771 iter 70 value 87.485517 iter 80 value 87.225476 final value 87.222993 converged Fitting Repeat 2 # weights: 507 initial value 119.146311 iter 10 value 91.706762 iter 20 value 91.377614 iter 30 value 91.174542 iter 40 value 91.168351 iter 50 value 91.167534 iter 60 value 91.164999 iter 70 value 91.162065 iter 80 value 85.859313 iter 90 value 81.758277 iter 100 value 80.973652 final value 80.973652 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.813398 iter 10 value 89.697643 iter 20 value 86.063444 iter 30 value 83.243828 iter 40 value 83.061698 iter 50 value 83.046517 iter 60 value 83.000711 iter 70 value 82.917275 final value 82.908600 converged Fitting Repeat 4 # weights: 507 initial value 100.884302 iter 10 value 94.060673 iter 20 value 90.564634 iter 30 value 82.748382 iter 40 value 82.725240 iter 50 value 82.534518 iter 60 value 82.489507 iter 70 value 81.989714 iter 80 value 81.870949 iter 90 value 81.862421 iter 100 value 79.888809 final value 79.888809 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.935483 iter 10 value 93.546874 iter 20 value 93.545493 iter 30 value 93.535573 iter 40 value 90.994723 iter 50 value 82.402073 iter 60 value 80.170163 iter 70 value 79.557472 iter 80 value 79.481996 iter 90 value 79.481027 iter 100 value 79.480629 final value 79.480629 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.122018 iter 10 value 117.897219 iter 20 value 117.881294 iter 30 value 117.157260 final value 117.157072 converged Fitting Repeat 2 # weights: 507 initial value 143.616017 iter 10 value 117.766909 iter 20 value 117.388132 iter 30 value 110.590614 iter 40 value 103.633376 iter 50 value 100.397561 iter 60 value 100.330060 iter 70 value 100.325394 iter 80 value 100.322319 iter 90 value 100.132950 iter 100 value 99.871312 final value 99.871312 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 131.061666 iter 10 value 117.767391 iter 20 value 117.758472 iter 30 value 109.413421 final value 108.528594 converged Fitting Repeat 4 # weights: 507 initial value 134.617494 iter 10 value 117.898656 iter 20 value 117.883784 final value 117.758888 converged Fitting Repeat 5 # weights: 507 initial value 131.055495 iter 10 value 117.766788 iter 20 value 115.951517 iter 30 value 114.652246 iter 40 value 114.604113 final value 114.604060 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sun Aug 10 23:22:33 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 39.431 1.130 76.902
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.364 | 0.541 | 33.909 | |
FreqInteractors | 0.203 | 0.005 | 0.208 | |
calculateAAC | 0.031 | 0.007 | 0.038 | |
calculateAutocor | 0.346 | 0.016 | 0.363 | |
calculateCTDC | 0.069 | 0.001 | 0.071 | |
calculateCTDD | 0.489 | 0.001 | 0.491 | |
calculateCTDT | 0.173 | 0.011 | 0.184 | |
calculateCTriad | 0.357 | 0.019 | 0.376 | |
calculateDC | 0.084 | 0.006 | 0.091 | |
calculateF | 0.285 | 0.002 | 0.288 | |
calculateKSAAP | 0.089 | 0.007 | 0.096 | |
calculateQD_Sm | 1.705 | 0.035 | 1.741 | |
calculateTC | 1.457 | 0.168 | 1.626 | |
calculateTC_Sm | 0.273 | 0.004 | 0.277 | |
corr_plot | 33.114 | 0.271 | 33.417 | |
enrichfindP | 0.484 | 0.031 | 8.311 | |
enrichfind_hp | 0.099 | 0.005 | 1.050 | |
enrichplot | 0.364 | 0.000 | 0.365 | |
filter_missing_values | 0.000 | 0.000 | 0.002 | |
getFASTA | 0.380 | 0.007 | 3.420 | |
getHPI | 0.001 | 0.002 | 0.002 | |
get_negativePPI | 0.002 | 0.002 | 0.004 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.002 | 0.004 | |
plotPPI | 0.082 | 0.000 | 0.083 | |
pred_ensembel | 13.010 | 0.108 | 11.776 | |
var_imp | 34.229 | 0.371 | 34.631 | |