| Back to Multiple platform build/check report for BioC 3.6 |
|
This page was generated on 2018-04-12 13:18:21 -0400 (Thu, 12 Apr 2018).
| Package 63/1472 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
| aroma.light 3.8.0 Henrik Bengtsson
| malbec1 | Linux (Ubuntu 16.04.1 LTS) / x86_64 | OK | OK | OK | |||||||
| tokay1 | Windows Server 2012 R2 Standard / x64 | OK | OK | [ OK ] | OK | |||||||
| veracruz1 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | OK | OK |
| Package: aroma.light |
| Version: 3.8.0 |
| Command: rm -rf aroma.light.buildbin-libdir aroma.light.Rcheck && mkdir aroma.light.buildbin-libdir aroma.light.Rcheck && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=aroma.light.buildbin-libdir aroma.light_3.8.0.tar.gz >aroma.light.Rcheck\00install.out 2>&1 && cp aroma.light.Rcheck\00install.out aroma.light-install.out && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD check --library=aroma.light.buildbin-libdir --install="check:aroma.light-install.out" --force-multiarch --no-vignettes --timings aroma.light_3.8.0.tar.gz |
| StartedAt: 2018-04-11 22:14:19 -0400 (Wed, 11 Apr 2018) |
| EndedAt: 2018-04-11 22:17:26 -0400 (Wed, 11 Apr 2018) |
| EllapsedTime: 186.9 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: aroma.light.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### rm -rf aroma.light.buildbin-libdir aroma.light.Rcheck && mkdir aroma.light.buildbin-libdir aroma.light.Rcheck && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=aroma.light.buildbin-libdir aroma.light_3.8.0.tar.gz >aroma.light.Rcheck\00install.out 2>&1 && cp aroma.light.Rcheck\00install.out aroma.light-install.out && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD check --library=aroma.light.buildbin-libdir --install="check:aroma.light-install.out" --force-multiarch --no-vignettes --timings aroma.light_3.8.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'C:/Users/biocbuild/bbs-3.6-bioc/meat/aroma.light.Rcheck'
* using R version 3.4.4 (2018-03-15)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'aroma.light/DESCRIPTION' ... OK
* this is package 'aroma.light' version '3.8.0'
* package encoding: latin1
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... NOTE
Found the following hidden files and directories:
inst/rsp/.rspPlugins
These were most likely included in error. See section 'Package
structure' in the 'Writing R Extensions' manual.
* checking for portable file names ... OK
* checking whether package 'aroma.light' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
Examples with CPU or elapsed time > 5s
user system elapsed
normalizeCurveFit 7.22 0.03 7.25
normalizeAffine 7.12 0.02 7.14
** running examples for arch 'x64' ... OK
Examples with CPU or elapsed time > 5s
user system elapsed
normalizeAffine 7.44 0.02 7.45
normalizeCurveFit 7.31 0.03 7.34
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
Running 'backtransformAffine.matrix.R'
Running 'backtransformPrincipalCurve.matrix.R'
Running 'callNaiveGenotypes.R'
Running 'distanceBetweenLines.R'
Running 'findPeaksAndValleys.R'
Running 'fitPrincipalCurve.matrix.R'
Running 'fitXYCurve.matrix.R'
Running 'iwpca.matrix.R'
Running 'likelihood.smooth.spline.R'
Running 'medianPolish.matrix.R'
Running 'normalizeAffine.matrix.R'
Running 'normalizeAverage.list.R'
Running 'normalizeAverage.matrix.R'
Running 'normalizeCurveFit.matrix.R'
Running 'normalizeDifferencesToAverage.R'
Running 'normalizeFragmentLength-ex1.R'
Running 'normalizeFragmentLength-ex2.R'
Running 'normalizeQuantileRank.list.R'
Running 'normalizeQuantileRank.matrix.R'
Running 'normalizeQuantileSpline.matrix.R'
Running 'normalizeTumorBoost,flavors.R'
Running 'normalizeTumorBoost.R'
Running 'robustSmoothSpline.R'
Running 'rowAverages.matrix.R'
Running 'sampleCorrelations.matrix.R'
Running 'sampleTuples.R'
Running 'wpca.matrix.R'
Running 'wpca2.matrix.R'
OK
** running tests for arch 'x64' ...
Running 'backtransformAffine.matrix.R'
Running 'backtransformPrincipalCurve.matrix.R'
Running 'callNaiveGenotypes.R'
Running 'distanceBetweenLines.R'
Running 'findPeaksAndValleys.R'
Running 'fitPrincipalCurve.matrix.R'
Running 'fitXYCurve.matrix.R'
Running 'iwpca.matrix.R'
Running 'likelihood.smooth.spline.R'
Running 'medianPolish.matrix.R'
Running 'normalizeAffine.matrix.R'
Running 'normalizeAverage.list.R'
Running 'normalizeAverage.matrix.R'
Running 'normalizeCurveFit.matrix.R'
Running 'normalizeDifferencesToAverage.R'
Running 'normalizeFragmentLength-ex1.R'
Running 'normalizeFragmentLength-ex2.R'
Running 'normalizeQuantileRank.list.R'
Running 'normalizeQuantileRank.matrix.R'
Running 'normalizeQuantileSpline.matrix.R'
Running 'normalizeTumorBoost,flavors.R'
Running 'normalizeTumorBoost.R'
Running 'robustSmoothSpline.R'
Running 'rowAverages.matrix.R'
Running 'sampleCorrelations.matrix.R'
Running 'sampleTuples.R'
Running 'wpca.matrix.R'
Running 'wpca2.matrix.R'
OK
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
'C:/Users/biocbuild/bbs-3.6-bioc/meat/aroma.light.Rcheck/00check.log'
for details.
aroma.light.Rcheck/00install.out
install for i386
* installing *source* package 'aroma.light' ...
** R
** inst
** preparing package for lazy loading
** help
*** installing help indices
converting help for package 'aroma.light'
finding HTML links ... done
1._Calibration_and_Normalization html
Non-documented_objects html
aroma.light-package html
averageQuantile html
backtransformAffine html
backtransformPrincipalCurve html
calibrateMultiscan html
callNaiveGenotypes html
distanceBetweenLines html
findPeaksAndValleys html
fitIWPCA html
fitNaiveGenotypes html
fitPrincipalCurve html
fitXYCurve html
iwpca html
likelihood.smooth.spline html
medianPolish html
normalizeAffine html
normalizeAverage html
normalizeCurveFit html
normalizeDifferencesToAverage html
normalizeFragmentLength html
normalizeQuantileRank html
normalizeQuantileRank.matrix html
normalizeQuantileSpline html
normalizeTumorBoost html
pairedAlleleSpecificCopyNumbers html
plotDensity html
plotMvsA html
plotMvsAPairs html
plotMvsMPairs html
plotXYCurve html
print.SmoothSplineLikelihood html
robustSmoothSpline html
sampleCorrelations html
sampleTuples html
wpca html
** building package indices
** testing if installed package can be loaded
In R CMD INSTALL
install for x64
* installing *source* package 'aroma.light' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'aroma.light' as aroma.light_3.8.0.zip
* DONE (aroma.light)
In R CMD INSTALL
In R CMD INSTALL
|
aroma.light.Rcheck/tests_i386/backtransformAffine.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:8, nrow=4, ncol=2)
> X[2,2] <- NA_integer_
>
> print(X)
[,1] [,2]
[1,] 1 5
[2,] 2 NA
[3,] 3 7
[4,] 4 8
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=c(1,5)))
[,1] [,2]
[1,] 0 0
[2,] 1 NA
[3,] 2 2
[4,] 3 3
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, b=c(1,1/2)))
[,1] [,2]
[1,] 1 10
[2,] 2 NA
[3,] 3 14
[4,] 4 16
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:4,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 0 4
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:3,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 3 7
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))
[,1] [,2]
[1,] 0 2
[2,] 0 NA
[3,] 2 3
[4,] 2 3
>
> # Returns a 4x1 matrix
> print(backtransformAffine(X, b=c(1,1/2), project=TRUE))
[,1]
[1,] 2.8
[2,] 1.6
[3,] 5.2
[4,] 6.4
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
> print(X)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> X[,2] <- X[,2]*2; X[,3] <- X[,3]*3
> print(X)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
[4,] 4 8 12
> Y <- backtransformAffine(X, b=c(1,2,3))
> print(Y)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
> proc.time()
user system elapsed
0.42 0.06 0.46
|
aroma.light.Rcheck/tests_x64/backtransformAffine.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:8, nrow=4, ncol=2)
> X[2,2] <- NA_integer_
>
> print(X)
[,1] [,2]
[1,] 1 5
[2,] 2 NA
[3,] 3 7
[4,] 4 8
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=c(1,5)))
[,1] [,2]
[1,] 0 0
[2,] 1 NA
[3,] 2 2
[4,] 3 3
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, b=c(1,1/2)))
[,1] [,2]
[1,] 1 10
[2,] 2 NA
[3,] 3 14
[4,] 4 16
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:4,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 0 4
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:3,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 3 7
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))
[,1] [,2]
[1,] 0 2
[2,] 0 NA
[3,] 2 3
[4,] 2 3
>
> # Returns a 4x1 matrix
> print(backtransformAffine(X, b=c(1,1/2), project=TRUE))
[,1]
[1,] 2.8
[2,] 1.6
[3,] 5.2
[4,] 6.4
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
> print(X)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> X[,2] <- X[,2]*2; X[,3] <- X[,3]*3
> print(X)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
[4,] 4 8 12
> Y <- backtransformAffine(X, b=c(1,2,3))
> print(Y)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
> proc.time()
user system elapsed
0.57 0.01 0.59
|
|
aroma.light.Rcheck/tests_i386/backtransformPrincipalCurve.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Consider the case where K=4 measurements have been done
> # for the same underlying signals 'x'. The different measurements
> # have different systematic variation
> #
> # y_k = f(x_k) + eps_k; k = 1,...,K.
> #
> # In this example, we assume non-linear measurement functions
> #
> # f(x) = a + b*x + x^c + eps(b*x)
> #
> # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
> # We also assume heteroscedastic zero-mean noise with standard
> # deviation proportional to the rescaled underlying signal 'x'.
> #
> # Furthermore, we assume that measurements k=2 and k=3 undergo the
> # same transformation, which may illustrate that the come from
> # the same batch. However, when *fitting* the model below we
> # will assume they are independent.
>
> # Transforms
> a <- c(2, 15, 15, 3)
> b <- c(2, 3, 3, 4)
> c <- c(1, 2, 2, 1/2)
> K <- length(a)
>
> # The true signal
> N <- 1000
> x <- rexp(N)
>
> # The noise
> bX <- outer(b,x)
> E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x))
>
> # The transformed signals with noise
> Xc <- t(sapply(c, FUN=function(c) x^c))
> Y <- a + bX + Xc + E
> Y <- t(Y)
>
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve through Y = (y_1, y_2, ..., y_K)
> fit <- fitPrincipalCurve(Y)
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, Y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
> L <- ncol(fit$s)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform data according to model fit
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform toward the principal curve (the "common scale")
> YN1 <- backtransformPrincipalCurve(Y, fit=fit)
> stopifnot(ncol(YN1) == K)
>
>
> # Backtransform toward the first dimension
> YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
> stopifnot(ncol(YN2) == K)
>
>
> # Backtransform toward the last (fitted) dimension
> YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
> stopifnot(ncol(YN3) == K)
>
>
> # Backtransform toward the third dimension (dimension by dimension)
> # Note, this assumes that K == L.
> YN4 <- Y
> for (cc in 1:L) {
+ YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=cc)
+ }
> stopifnot(identical(YN4, YN2))
>
>
> # Backtransform a subset toward the first dimension
> # Note, this assumes that K == L.
> YN5 <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=2:3)
> stopifnot(identical(YN5, YN2[,2:3]))
> stopifnot(ncol(YN5) == 2)
>
>
> # Extract signals from measurement #2 and backtransform according
> # its model fit. Signals are standardized to target dimension 1.
> y6 <- Y[,2,drop=FALSE]
> yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
+ targetDimension=1)
> stopifnot(identical(yN6, YN2[,2,drop=FALSE]))
> stopifnot(ncol(yN6) == 1)
>
>
> # Extract signals from measurement #2 and backtransform according
> # the the model fit of measurement #3 (because we believe these
> # two have undergone very similar transformations.
> # Signals are standardized to target dimension 1.
> y7 <- Y[,2,drop=FALSE]
> yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
+ targetDimension=1)
> stopifnot(ncol(yN7) == 1)
>
> rho <- cor(yN7, yN6)
> print(rho)
[,1]
[1,] 0.9999932
> stopifnot(rho > 0.999)
>
> proc.time()
user system elapsed
1.42 0.01 1.42
|
aroma.light.Rcheck/tests_x64/backtransformPrincipalCurve.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Consider the case where K=4 measurements have been done
> # for the same underlying signals 'x'. The different measurements
> # have different systematic variation
> #
> # y_k = f(x_k) + eps_k; k = 1,...,K.
> #
> # In this example, we assume non-linear measurement functions
> #
> # f(x) = a + b*x + x^c + eps(b*x)
> #
> # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
> # We also assume heteroscedastic zero-mean noise with standard
> # deviation proportional to the rescaled underlying signal 'x'.
> #
> # Furthermore, we assume that measurements k=2 and k=3 undergo the
> # same transformation, which may illustrate that the come from
> # the same batch. However, when *fitting* the model below we
> # will assume they are independent.
>
> # Transforms
> a <- c(2, 15, 15, 3)
> b <- c(2, 3, 3, 4)
> c <- c(1, 2, 2, 1/2)
> K <- length(a)
>
> # The true signal
> N <- 1000
> x <- rexp(N)
>
> # The noise
> bX <- outer(b,x)
> E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x))
>
> # The transformed signals with noise
> Xc <- t(sapply(c, FUN=function(c) x^c))
> Y <- a + bX + Xc + E
> Y <- t(Y)
>
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve through Y = (y_1, y_2, ..., y_K)
> fit <- fitPrincipalCurve(Y)
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, Y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
> L <- ncol(fit$s)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform data according to model fit
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform toward the principal curve (the "common scale")
> YN1 <- backtransformPrincipalCurve(Y, fit=fit)
> stopifnot(ncol(YN1) == K)
>
>
> # Backtransform toward the first dimension
> YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
> stopifnot(ncol(YN2) == K)
>
>
> # Backtransform toward the last (fitted) dimension
> YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
> stopifnot(ncol(YN3) == K)
>
>
> # Backtransform toward the third dimension (dimension by dimension)
> # Note, this assumes that K == L.
> YN4 <- Y
> for (cc in 1:L) {
+ YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=cc)
+ }
> stopifnot(identical(YN4, YN2))
>
>
> # Backtransform a subset toward the first dimension
> # Note, this assumes that K == L.
> YN5 <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=2:3)
> stopifnot(identical(YN5, YN2[,2:3]))
> stopifnot(ncol(YN5) == 2)
>
>
> # Extract signals from measurement #2 and backtransform according
> # its model fit. Signals are standardized to target dimension 1.
> y6 <- Y[,2,drop=FALSE]
> yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
+ targetDimension=1)
> stopifnot(identical(yN6, YN2[,2,drop=FALSE]))
> stopifnot(ncol(yN6) == 1)
>
>
> # Extract signals from measurement #2 and backtransform according
> # the the model fit of measurement #3 (because we believe these
> # two have undergone very similar transformations.
> # Signals are standardized to target dimension 1.
> y7 <- Y[,2,drop=FALSE]
> yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
+ targetDimension=1)
> stopifnot(ncol(yN7) == 1)
>
> rho <- cor(yN7, yN6)
> print(rho)
[,1]
[1,] 0.9999744
> stopifnot(rho > 0.999)
>
> proc.time()
user system elapsed
0.87 0.07 0.95
|
|
aroma.light.Rcheck/tests_i386/callNaiveGenotypes.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A bimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.1)
> xBB <- rnorm(n=10000, mean=1, sd=0.1)
> x <- c(xAA,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.002188928 1.676298158
2 valley 0.509786264 0.000800196
3 peak 0.996162696 1.688621023
> calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
Calling genotypes from allele B fractions (BAFs)...
Fitting naive genotype model...
Fitting naive genotype model from normal allele B fractions (BAFs)...
Flavor: density
Censoring BAFs...
Before:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.3713364 0.0000859 0.4550761 0.4992924 0.9999029 1.4293070
[1] 20000
After:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf 0.0000859 0.4550761 0.9999029 Inf
[1] 16880
Censoring BAFs...done
Copy number level #1 (C=1) of 1...
Identified extreme points in density of BAF:
type x density
1 peak 0.01483987 1.624452260
2 valley 0.49830882 0.004569431
3 peak 0.98177776 1.642757807
Local minimas ("valleys") in BAF:
type x density
2 valley 0.4983088 0.004569431
Copy number level #1 (C=1) of 1...done
Fitting naive genotype model from normal allele B fractions (BAFs)...done
[[1]]
[[1]]$flavor
[1] "density"
[[1]]$cn
[1] 1
[[1]]$nbrOfGenotypeGroups
[1] 2
[[1]]$tau
[1] 0.4983088
[[1]]$n
[1] 16880
[[1]]$fit
type x density
1 peak 0.01483987 1.624452260
2 valley 0.49830882 0.004569431
3 peak 0.98177776 1.642757807
[[1]]$fitValleys
type x density
2 valley 0.4983088 0.004569431
attr(,"class")
[1] "NaiveGenotypeModelFit" "list"
Fitting naive genotype model...done
Copy number level #1 (C=1) of 1...
Model fit:
$flavor
[1] "density"
$cn
[1] 1
$nbrOfGenotypeGroups
[1] 2
$tau
[1] 0.4983088
$n
[1] 16880
$fit
type x density
1 peak 0.01483987 1.624452260
2 valley 0.49830882 0.004569431
3 peak 0.98177776 1.642757807
$fitValleys
type x density
2 valley 0.4983088 0.004569431
Genotype threshholds [1]: 0.498308815016393
TCN=1 => BAF in {0,1}.
Call regions: A = (-Inf,0.498], B = (0.498,+Inf)
Copy number level #1 (C=1) of 1...done
Calling genotypes from allele B fractions (BAFs)...done
> xc <- split(x, calls)
> print(table(calls))
calls
0 1
10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with missing values
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAB <- rnorm(n=10000, mean=1/2, sd=0.1)
> x <- c(xAA,xAB,xBB)
> x[sample(length(x), size=0.05*length(x))] <- NA_real_
> x[sample(length(x), size=0.01*length(x))] <- -Inf
> x[sample(length(x), size=0.01*length(x))] <- +Inf
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.001438101 1.1630165
2 valley 0.248413864 0.1884735
3 peak 0.494169896 1.1638674
4 valley 0.744021861 0.1898981
5 peak 0.997969760 1.1778230
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
9597 9340 9596
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.02)
> xAB <- rnorm(n=10000, mean=1/2, sd=0.02)
> xBB <- rnorm(n=10000, mean=1, sd=0.02)
> x <- c(xAA,xAB,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.002238128 2.607035e+00
2 valley 0.246840117 3.498432e-05
3 peak 0.495918361 2.610500e+00
4 valley 0.747827041 2.985999e-05
5 peak 0.996905286 2.605269e+00
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
10000 10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
1.31 0.01 1.31
|
aroma.light.Rcheck/tests_x64/callNaiveGenotypes.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A bimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.1)
> xBB <- rnorm(n=10000, mean=1, sd=0.1)
> x <- c(xAA,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.005282709 1.6906722789
2 valley 0.496936509 0.0003843036
3 peak 0.994788603 1.7009769144
> calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
Calling genotypes from allele B fractions (BAFs)...
Fitting naive genotype model...
Fitting naive genotype model from normal allele B fractions (BAFs)...
Flavor: density
Censoring BAFs...
Before:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.3393948 -0.0009121 0.5026117 0.4996330 1.0001427 1.5123198
[1] 20000
After:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf -0.0009121 0.5026117 1.0001427 Inf
[1] 16835
Censoring BAFs...done
Copy number level #1 (C=1) of 1...
Identified extreme points in density of BAF:
type x density
1 peak 0.01459639 1.637099279
2 valley 0.49827969 0.004068534
3 peak 0.98196299 1.647951923
Local minimas ("valleys") in BAF:
type x density
2 valley 0.4982797 0.004068534
Copy number level #1 (C=1) of 1...done
Fitting naive genotype model from normal allele B fractions (BAFs)...done
[[1]]
[[1]]$flavor
[1] "density"
[[1]]$cn
[1] 1
[[1]]$nbrOfGenotypeGroups
[1] 2
[[1]]$tau
[1] 0.4982797
[[1]]$n
[1] 16835
[[1]]$fit
type x density
1 peak 0.01459639 1.637099279
2 valley 0.49827969 0.004068534
3 peak 0.98196299 1.647951923
[[1]]$fitValleys
type x density
2 valley 0.4982797 0.004068534
attr(,"class")
[1] "NaiveGenotypeModelFit" "list"
Fitting naive genotype model...done
Copy number level #1 (C=1) of 1...
Model fit:
$flavor
[1] "density"
$cn
[1] 1
$nbrOfGenotypeGroups
[1] 2
$tau
[1] 0.4982797
$n
[1] 16835
$fit
type x density
1 peak 0.01459639 1.637099279
2 valley 0.49827969 0.004068534
3 peak 0.98196299 1.647951923
$fitValleys
type x density
2 valley 0.4982797 0.004068534
Genotype threshholds [1]: 0.498279691476766
TCN=1 => BAF in {0,1}.
Call regions: A = (-Inf,0.498], B = (0.498,+Inf)
Copy number level #1 (C=1) of 1...done
Calling genotypes from allele B fractions (BAFs)...done
> xc <- split(x, calls)
> print(table(calls))
calls
0 1
10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with missing values
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAB <- rnorm(n=10000, mean=1/2, sd=0.1)
> x <- c(xAA,xAB,xBB)
> x[sample(length(x), size=0.05*length(x))] <- NA_real_
> x[sample(length(x), size=0.01*length(x))] <- -Inf
> x[sample(length(x), size=0.01*length(x))] <- +Inf
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.003194278 1.1738384447
2 valley 0.244419618 0.1902396318
3 peak 0.496230360 1.1768106003
4 valley 0.748041103 0.1873532613
5 peak 0.995654999 1.1809315818
6 valley 1.453111181 0.0002164676
7 peak 1.507670175 0.0002866653
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
9589 9339 9600
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.02)
> xAB <- rnorm(n=10000, mean=1/2, sd=0.02)
> xBB <- rnorm(n=10000, mean=1, sd=0.02)
> x <- c(xAA,xAB,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.002135931 2.602844e+00
2 valley 0.246639696 3.334657e-05
3 peak 0.498210555 2.605159e+00
4 valley 0.746986182 3.386202e-05
5 peak 0.998557041 2.603070e+00
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
10000 10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
1.54 0.06 1.59
|
|
aroma.light.Rcheck/tests_i386/distanceBetweenLines.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))
+
+ ############################################################
+ # Lines in two-dimensions
+ ############################################################
+ x <- list(a=c(1,0), b=c(1,2))
+ y <- list(a=c(0,2), b=c(1,1))
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- c(-1,8)
+ plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)
+
+ # Highlight the offset coordinates for both lines
+ points(t(x$a), pch="+", col="red")
+ text(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points(t(y$a), pch="+", col="blue")
+ text(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ v <- c(-1,1)*10
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v)
+
+ lines(xv, col="red")
+ lines(yv, col="blue")
+
+ points(t(fit$xs), cex=2.0, col="red")
+ text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points(t(fit$yt), cex=1.5, col="blue")
+ text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ print(fit)
+
+
+ ############################################################
+ # Lines in three-dimensions
+ ############################################################
+ x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal'
+ y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- zlim <- c(-1,3)
+ dummy <- t(c(1,1,1))*100
+
+ # Coordinates for the lines in 3d
+ v <- seq(-10,10, by=1)
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)
+
+ for (theta in seq(30,140,length.out=3)) {
+ plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
+ xlim=ylim, ylim=ylim, zlim=zlim)
+
+ # Highlight the offset coordinates for both lines
+ points3d(t(x$a), pch="+", col="red")
+ text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points3d(t(y$a), pch="+", col="blue")
+ text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ # Draw the lines
+ lines3d(xv, col="red")
+ lines3d(yv, col="blue")
+
+ # Draw the two points that are closest to each other
+ points3d(t(fit$xs), cex=2.0, col="red")
+ text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points3d(t(fit$yt), cex=1.5, col="blue")
+ text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+
+ # Draw the distance between the two points
+ lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2)
+ }
+
+ print(fit)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.87 0.09 0.95
|
aroma.light.Rcheck/tests_x64/distanceBetweenLines.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))
+
+ ############################################################
+ # Lines in two-dimensions
+ ############################################################
+ x <- list(a=c(1,0), b=c(1,2))
+ y <- list(a=c(0,2), b=c(1,1))
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- c(-1,8)
+ plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)
+
+ # Highlight the offset coordinates for both lines
+ points(t(x$a), pch="+", col="red")
+ text(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points(t(y$a), pch="+", col="blue")
+ text(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ v <- c(-1,1)*10
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v)
+
+ lines(xv, col="red")
+ lines(yv, col="blue")
+
+ points(t(fit$xs), cex=2.0, col="red")
+ text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points(t(fit$yt), cex=1.5, col="blue")
+ text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ print(fit)
+
+
+ ############################################################
+ # Lines in three-dimensions
+ ############################################################
+ x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal'
+ y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- zlim <- c(-1,3)
+ dummy <- t(c(1,1,1))*100
+
+ # Coordinates for the lines in 3d
+ v <- seq(-10,10, by=1)
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)
+
+ for (theta in seq(30,140,length.out=3)) {
+ plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
+ xlim=ylim, ylim=ylim, zlim=zlim)
+
+ # Highlight the offset coordinates for both lines
+ points3d(t(x$a), pch="+", col="red")
+ text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points3d(t(y$a), pch="+", col="blue")
+ text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ # Draw the lines
+ lines3d(xv, col="red")
+ lines3d(yv, col="blue")
+
+ # Draw the two points that are closest to each other
+ points3d(t(fit$xs), cex=2.0, col="red")
+ text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points3d(t(fit$yt), cex=1.5, col="blue")
+ text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+
+ # Draw the distance between the two points
+ lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2)
+ }
+
+ print(fit)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.59 0.03 0.61
|
|
aroma.light.Rcheck/tests_i386/findPeaksAndValleys.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A unimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1 <- rnorm(n=10000, mean=0, sd=1)
> x <- x1
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak 0.02732202 0.4019657
> plot(density(x), lwd=2, main="x1")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x2 <- rnorm(n=10000, mean=4, sd=1)
> x3 <- rnorm(n=10000, mean=8, sd=1)
> x <- c(x1,x2,x3)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.04852021 0.12345768
2 valley 1.96606961 0.04537246
3 peak 3.94531576 0.12301518
4 valley 5.95990558 0.04432972
5 peak 7.97449540 0.12560822
> plot(density(x), lwd=2, main="c(x1,x2,x3)")
> abline(v=fit$x)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1b <- rnorm(n=10000, mean=0, sd=0.1)
> x2b <- rnorm(n=10000, mean=4, sd=0.1)
> x3b <- rnorm(n=10000, mean=8, sd=0.1)
> x <- c(x1b,x2b,x3b)
>
> # Illustrating explicit usage of density()
> d <- density(x)
> fit <- findPeaksAndValleys(d, tol=0)
> print(fit)
type x density
1 peak -0.01519814 3.426746e-01
2 valley 1.96794674 1.281662e-06
3 peak 3.97264754 3.423194e-01
4 valley 5.97734834 1.215527e-06
5 peak 7.98204915 3.423693e-01
> plot(d, lwd=2, main="c(x1b,x2b,x3b)")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.48 0.07 0.54
|
aroma.light.Rcheck/tests_x64/findPeaksAndValleys.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A unimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1 <- rnorm(n=10000, mean=0, sd=1)
> x <- x1
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.31425642 0.3775719
2 valley -0.21921813 0.3770382
3 peak -0.02914155 0.3793083
> plot(density(x), lwd=2, main="x1")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x2 <- rnorm(n=10000, mean=4, sd=1)
> x3 <- rnorm(n=10000, mean=8, sd=1)
> x <- c(x1,x2,x3)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.07880834 0.12180093
2 valley 1.95703908 0.04382985
3 peak 3.92268486 0.12141572
4 valley 5.99363309 0.04385566
5 peak 7.92417806 0.12417407
> plot(density(x), lwd=2, main="c(x1,x2,x3)")
> abline(v=fit$x)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1b <- rnorm(n=10000, mean=0, sd=0.1)
> x2b <- rnorm(n=10000, mean=4, sd=0.1)
> x3b <- rnorm(n=10000, mean=8, sd=0.1)
> x <- c(x1b,x2b,x3b)
>
> # Illustrating explicit usage of density()
> d <- density(x)
> fit <- findPeaksAndValleys(d, tol=0)
> print(fit)
type x density
1 peak -0.01400349 3.428345e-01
2 valley 1.97553367 1.227633e-06
3 peak 3.98646370 3.429289e-01
4 valley 5.97600086 1.252347e-06
5 peak 7.98693089 3.427970e-01
> plot(d, lwd=2, main="c(x1b,x2b,x3b)")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.68 0.04 0.73
|
|
aroma.light.Rcheck/tests_i386/fitPrincipalCurve.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> J <- 1000
> x <- rexp(J)
> a <- c(2,15,3)
> b <- c(2,3,4)
> c <- c(1,2,1/2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
> y <- a + bx + xc + eps
> y <- t(y)
>
> # Fit principal curve through (y_1, y_2, y_3)
> fit <- fitPrincipalCurve(y, verbose=TRUE)
Fitting principal curve...
Data size: 1000x3
Identifying missing values...
Identifying missing values...done
Data size after removing non-finite data points: 1000x3
Calling principal.curve()...
Starting curve---distance^2: 1597960
Iteration 1---distance^2: 407.6607
Iteration 2---distance^2: 406.8072
Iteration 3---distance^2: 406.8089
Converged: TRUE
Number of iterations: 3
Processing time/iteration: 0.2s (0.1s/iteration)
Calling principal.curve()...done
Fitting principal curve...done
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
>
> # Backtransform (y_1, y_2, y_3) to be proportional to each other
> yN <- backtransformPrincipalCurve(y, fit=fit)
>
> # Same backtransformation dimension by dimension
> yN2 <- y
> for (cc in 1:ncol(y)) {
+ yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)
+ }
> stopifnot(identical(yN2, yN))
>
>
> xlim <- c(0, 1.04*max(x))
> ylim <- range(c(y,yN), na.rm=TRUE)
>
>
> # Pairwise signals vs x before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (cc in 1:3) {
+ ylab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
+ abline(h=a[cc], lty=3)
+ mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]),
+ cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
+ points(x, y[,cc])
+ points(x, yN[,cc], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
> title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2)
>
>
> # Pairwise signals before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (rr in 3:2) {
+ ylab <- substitute(y[c], env=list(c=rr))
+ for (cc in 1:2) {
+ if (cc == rr) {
+ plot.new()
+ next
+ }
+ xlab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
+ abline(a=0, b=1, lty=2)
+ points(y[,c(cc,rr)])
+ points(yN[,c(cc,rr)], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
+ }
> title(main="Pairwise signals before and after transform", outer=TRUE, line=-2)
>
> proc.time()
user system elapsed
1.23 0.04 1.26
|
aroma.light.Rcheck/tests_x64/fitPrincipalCurve.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> J <- 1000
> x <- rexp(J)
> a <- c(2,15,3)
> b <- c(2,3,4)
> c <- c(1,2,1/2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
> y <- a + bx + xc + eps
> y <- t(y)
>
> # Fit principal curve through (y_1, y_2, y_3)
> fit <- fitPrincipalCurve(y, verbose=TRUE)
Fitting principal curve...
Data size: 1000x3
Identifying missing values...
Identifying missing values...done
Data size after removing non-finite data points: 1000x3
Calling principal.curve()...
Starting curve---distance^2: 1369727
Iteration 1---distance^2: 389.3221
Iteration 2---distance^2: 388.8174
Iteration 3---distance^2: 388.8199
Converged: TRUE
Number of iterations: 3
Processing time/iteration: 0.1s (0.0s/iteration)
Calling principal.curve()...done
Fitting principal curve...done
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
>
> # Backtransform (y_1, y_2, y_3) to be proportional to each other
> yN <- backtransformPrincipalCurve(y, fit=fit)
>
> # Same backtransformation dimension by dimension
> yN2 <- y
> for (cc in 1:ncol(y)) {
+ yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)
+ }
> stopifnot(identical(yN2, yN))
>
>
> xlim <- c(0, 1.04*max(x))
> ylim <- range(c(y,yN), na.rm=TRUE)
>
>
> # Pairwise signals vs x before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (cc in 1:3) {
+ ylab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
+ abline(h=a[cc], lty=3)
+ mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]),
+ cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
+ points(x, y[,cc])
+ points(x, yN[,cc], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
> title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2)
>
>
> # Pairwise signals before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (rr in 3:2) {
+ ylab <- substitute(y[c], env=list(c=rr))
+ for (cc in 1:2) {
+ if (cc == rr) {
+ plot.new()
+ next
+ }
+ xlab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
+ abline(a=0, b=1, lty=2)
+ points(y[,c(cc,rr)])
+ points(yN[,c(cc,rr)], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
+ }
> title(main="Pairwise signals before and after transform", outer=TRUE, line=-2)
>
> proc.time()
user system elapsed
1.15 0.09 1.23
|
|
aroma.light.Rcheck/tests_i386/fitXYCurve.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> x <- rexp(1000)
> a <- c(2,15)
> b <- c(2,1)
> c <- c(1,2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
> Y <- a + bx + xc + eps
> Y <- t(Y)
>
> lim <- c(0,70)
> plot(Y, xlim=lim, ylim=lim)
>
> # Fit principal curve through a subset of (y_1, y_2)
> subset <- sample(nrow(Y), size=0.3*nrow(Y))
> fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
>
> lines(fit, col="red", lwd=2)
>
> # Backtransform (y_1, y_2) keeping y_1 unchanged
> YN <- backtransformXYCurve(Y, fit=fit)
> points(YN, col="blue")
> abline(a=0, b=1, col="red", lwd=2)
>
> proc.time()
user system elapsed
0.48 0.06 0.54
|
aroma.light.Rcheck/tests_x64/fitXYCurve.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> x <- rexp(1000)
> a <- c(2,15)
> b <- c(2,1)
> c <- c(1,2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
> Y <- a + bx + xc + eps
> Y <- t(Y)
>
> lim <- c(0,70)
> plot(Y, xlim=lim, ylim=lim)
>
> # Fit principal curve through a subset of (y_1, y_2)
> subset <- sample(nrow(Y), size=0.3*nrow(Y))
> fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
>
> lines(fit, col="red", lwd=2)
>
> # Backtransform (y_1, y_2) keeping y_1 unchanged
> YN <- backtransformXYCurve(Y, fit=fit)
> points(YN, col="blue")
> abline(a=0, b=1, col="red", lwd=2)
>
> proc.time()
user system elapsed
0.57 0.07 0.64
|
|
aroma.light.Rcheck/tests_i386/iwpca.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,4)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/10 of the observations
+ idx <- sample(1:nrow(y), size=1/10*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Plot the data with fitted lines at four different view points
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ N <- 4
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ theta <- seq(0,270,length.out=N)
+ phi <- rep(20, length.out=N)
+ xlim <- ylim <- zlim <- c(0,45)
+ persp <- list()
+ for (kk in seq_along(theta)) {
+ # Plot the data
+ persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)
+ }
+
+ # Weights on the observations
+ # Example a: Equal weights
+ w <- NULL
+ # Example b: More weight on the outliers (uncomment to test)
+ w <- rep(1, length(x)); w[idx] <- 0.8
+
+ # ...and show all iterations too with different colors.
+ maxIter <- c(seq(1,20,length.out=10),Inf)
+ col <- topo.colors(length(maxIter))
+ # Show the fitted value for every iteration
+ for (ii in seq_along(maxIter)) {
+ # Fit a line using IWPCA through data
+ fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)
+
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ for (kk in seq_along(theta)) {
+ # Set pane to draw in
+ par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1)
+ # Set the viewpoint of the pane
+ options(persp.matrix=persp[[kk]])
+
+ # Get the first principal component
+ points3d(t(ymid), col=col[ii])
+ lines3d(t(yline), col=col[ii])
+
+ # Highlight the last one
+ if (ii == length(maxIter))
+ lines3d(t(yline), col="red", lwd=3)
+ }
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.78 0.07 0.84
|
aroma.light.Rcheck/tests_x64/iwpca.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,4)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/10 of the observations
+ idx <- sample(1:nrow(y), size=1/10*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Plot the data with fitted lines at four different view points
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ N <- 4
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ theta <- seq(0,270,length.out=N)
+ phi <- rep(20, length.out=N)
+ xlim <- ylim <- zlim <- c(0,45)
+ persp <- list()
+ for (kk in seq_along(theta)) {
+ # Plot the data
+ persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)
+ }
+
+ # Weights on the observations
+ # Example a: Equal weights
+ w <- NULL
+ # Example b: More weight on the outliers (uncomment to test)
+ w <- rep(1, length(x)); w[idx] <- 0.8
+
+ # ...and show all iterations too with different colors.
+ maxIter <- c(seq(1,20,length.out=10),Inf)
+ col <- topo.colors(length(maxIter))
+ # Show the fitted value for every iteration
+ for (ii in seq_along(maxIter)) {
+ # Fit a line using IWPCA through data
+ fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)
+
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ for (kk in seq_along(theta)) {
+ # Set pane to draw in
+ par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1)
+ # Set the viewpoint of the pane
+ options(persp.matrix=persp[[kk]])
+
+ # Get the first principal component
+ points3d(t(ymid), col=col[ii])
+ lines3d(t(yline), col=col[ii])
+
+ # Highlight the last one
+ if (ii == length(maxIter))
+ lines3d(t(yline), col="red", lwd=3)
+ }
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.60 0.01 0.62
|
|
aroma.light.Rcheck/tests_i386/likelihood.smooth.spline.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Define f(x)
> f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x))
>
> # Simulate data from this function in the range [a,b]
> a <- -2; b <- 5
> x <- seq(a, b, length.out=3000)
> y <- eval(f)
>
> # Add some noise to the data
> y <- y + rnorm(length(y), 0, 10)
>
> # Plot the function and its second derivative
> plot(x,y, type="l", lwd=4)
>
> # Fit a cubic smoothing spline and plot it
> g <- smooth.spline(x,y, df=16)
> lines(g, col="yellow", lwd=2, lty=2)
>
> # Calculating the (log) likelihood of the fitted spline
> l <- likelihood(g)
>
> cat("Log likelihood with unique x values:\n")
Log likelihood with unique x values:
> print(l)
Likelihood of smoothing spline: -294361.4
Log base: 2.718282
Weighted residuals sum of square: 294361.5
Penalty: -0.1195492
Smoothing parameter lambda: 0.0009257147
Roughness score: 129.1426
>
> # Note that this is not the same as the log likelihood of the
> # data on the fitted spline iff the x values are non-unique
> x[1:5] <- x[1] # Non-unique x values
> g <- smooth.spline(x,y, df=16)
> l <- likelihood(g)
>
> cat("\nLog likelihood of the *spline* data set:\n")
Log likelihood of the *spline* data set:
> print(l)
Likelihood of smoothing spline: -292891
Log base: 2.718282
Weighted residuals sum of square: 292891.1
Penalty: -0.1194972
Smoothing parameter lambda: 0.0009261969
Roughness score: 129.0192
>
> # In cases with non unique x values one has to proceed as
> # below if one want to get the log likelihood for the original
> # data.
> l <- likelihood(g, x=x, y=y)
> cat("\nLog likelihood of the *original* data set:\n")
Log likelihood of the *original* data set:
> print(l)
Likelihood of smoothing spline: -294366.4
Log base: 2.718282
Weighted residuals sum of square: 294366.5
Penalty: -0.1194974
Smoothing parameter lambda: 0.0009261969
Roughness score: 129.0195
>
>
>
>
>
>
> proc.time()
user system elapsed
1.01 0.04 1.04
|
aroma.light.Rcheck/tests_x64/likelihood.smooth.spline.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Define f(x)
> f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x))
>
> # Simulate data from this function in the range [a,b]
> a <- -2; b <- 5
> x <- seq(a, b, length.out=3000)
> y <- eval(f)
>
> # Add some noise to the data
> y <- y + rnorm(length(y), 0, 10)
>
> # Plot the function and its second derivative
> plot(x,y, type="l", lwd=4)
>
> # Fit a cubic smoothing spline and plot it
> g <- smooth.spline(x,y, df=16)
> lines(g, col="yellow", lwd=2, lty=2)
>
> # Calculating the (log) likelihood of the fitted spline
> l <- likelihood(g)
>
> cat("Log likelihood with unique x values:\n")
Log likelihood with unique x values:
> print(l)
Likelihood of smoothing spline: -302406.5
Log base: 2.718282
Weighted residuals sum of square: 302406.6
Penalty: -0.1097639
Smoothing parameter lambda: 0.0009257147
Roughness score: 118.572
>
> # Note that this is not the same as the log likelihood of the
> # data on the fitted spline iff the x values are non-unique
> x[1:5] <- x[1] # Non-unique x values
> g <- smooth.spline(x,y, df=16)
> l <- likelihood(g)
>
> cat("\nLog likelihood of the *spline* data set:\n")
Log likelihood of the *spline* data set:
> print(l)
Likelihood of smoothing spline: -301668.6
Log base: 2.718282
Weighted residuals sum of square: 301668.8
Penalty: -0.1097469
Smoothing parameter lambda: 0.0009261969
Roughness score: 118.492
>
> # In cases with non unique x values one has to proceed as
> # below if one want to get the log likelihood for the original
> # data.
> l <- likelihood(g, x=x, y=y)
> cat("\nLog likelihood of the *original* data set:\n")
Log likelihood of the *original* data set:
> print(l)
Likelihood of smoothing spline: -302408
Log base: 2.718282
Weighted residuals sum of square: 302408.1
Penalty: -0.1097469
Smoothing parameter lambda: 0.0009261969
Roughness score: 118.492
>
>
>
>
>
>
> proc.time()
user system elapsed
0.67 0.03 0.70
|
|
aroma.light.Rcheck/tests_i386/medianPolish.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Deaths from sport parachuting; from ABC of EDA, p.224:
> deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
> rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
> colnames(deaths) <- 1973:1975
>
> print(deaths)
1973 1974 1975
1-24 14 15 14
25-74 7 4 7
75-199 8 2 10
200++ 15 9 10
NA 0 2 0
>
> mp <- medianPolish(deaths)
> mp1 <- medpolish(deaths, trace=FALSE)
> print(mp)
Median Polish Results (Dataset: "deaths")
Overall: 8
Row Effects:
1-24 25-74 75-199 200++ NA
6 -1 0 2 -8
Column Effects:
1973 1974 1975
0 -1 0
Residuals:
1973 1974 1975
1-24 0 2 0
25-74 0 -2 0
75-199 0 -5 2
200++ 5 0 0
NA 0 3 0
>
> ff <- c("overall", "row", "col", "residuals")
> stopifnot(all.equal(mp[ff], mp1[ff]))
>
> # Validate decomposition:
> stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid))
>
> proc.time()
user system elapsed
0.40 0.12 0.53
|
aroma.light.Rcheck/tests_x64/medianPolish.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Deaths from sport parachuting; from ABC of EDA, p.224:
> deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
> rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
> colnames(deaths) <- 1973:1975
>
> print(deaths)
1973 1974 1975
1-24 14 15 14
25-74 7 4 7
75-199 8 2 10
200++ 15 9 10
NA 0 2 0
>
> mp <- medianPolish(deaths)
> mp1 <- medpolish(deaths, trace=FALSE)
> print(mp)
Median Polish Results (Dataset: "deaths")
Overall: 8
Row Effects:
1-24 25-74 75-199 200++ NA
6 -1 0 2 -8
Column Effects:
1973 1974 1975
0 -1 0
Residuals:
1973 1974 1975
1-24 0 2 0
25-74 0 -2 0
75-199 0 -5 2
200++ 5 0 0
NA 0 3 0
>
> ff <- c("overall", "row", "col", "residuals")
> stopifnot(all.equal(mp[ff], mp1[ff]))
>
> # Validate decomposition:
> stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid))
>
> proc.time()
user system elapsed
0.45 0.04 0.50
|
|
aroma.light.Rcheck/tests_i386/normalizeAffine.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> rgC <- rg
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg, channel=channel)
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC, channel=channel)
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
There were 50 or more warnings (use warnings() to see the first 50)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
> colnames(rgCA) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
+ }
>
> plotMvsA(rgCA)
> title(main="Average calibrated")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The affine normalized average calibrated data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Create a matrix where the columns represent the channels
> # to be normalized.
> rgCAN <- rgCA
> # Affine normalization of channels
> rgCAN <- normalizeAffine(rgCAN)
>
> plotMvsA(rgCAN)
> title(main="Affine normalized A.C.")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCAN <- rgCAN * 2^5
> plotMvsA(rgCAN)
> title(main="Rescaled normalized")
>
>
>
> proc.time()
user system elapsed
4.15 0.10 4.25
|
aroma.light.Rcheck/tests_x64/normalizeAffine.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> rgC <- rg
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg, channel=channel)
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC, channel=channel)
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
There were 50 or more warnings (use warnings() to see the first 50)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
> colnames(rgCA) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
+ }
>
> plotMvsA(rgCA)
> title(main="Average calibrated")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The affine normalized average calibrated data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Create a matrix where the columns represent the channels
> # to be normalized.
> rgCAN <- rgCA
> # Affine normalization of channels
> rgCAN <- normalizeAffine(rgCAN)
>
> plotMvsA(rgCAN)
> title(main="Affine normalized A.C.")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCAN <- rgCAN * 2^5
> plotMvsA(rgCAN)
> title(main="Rescaled normalized")
>
>
>
> proc.time()
user system elapsed
3.73 0.07 3.79
|
|
aroma.light.Rcheck/tests_i386/normalizeAverage.list.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.95 0.06 1.00
|
aroma.light.Rcheck/tests_x64/normalizeAverage.list.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.82 0.06 0.87
|
|
aroma.light.Rcheck/tests_i386/normalizeAverage.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.59 0.06 0.64
|
aroma.light.Rcheck/tests_x64/normalizeAverage.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.57 0.03 0.60
|
|
aroma.light.Rcheck/tests_i386/normalizeCurveFit.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> rgC <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg[,sidx])
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC[,sidx])
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
+ }
>
> rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
> colnames(rgCAavg) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
+ }
>
> # Add some "fake" outliers
> outliers <- 1:600
> rgCAavg[outliers,"G"] <- 50000
>
> plotMvsA(rgCAavg)
> title(main="Average calibrated (AC)")
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Normalize data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Weight-down outliers when normalizing
> weights <- rep(1, nrow(rgCAavg))
> weights[outliers] <- 0.001
>
> # Affine normalization of channels
> rgCANa <- normalizeAffine(rgCAavg, weights=weights)
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> rgCANa <- rgCANa *2^1.4
> plotMvsA(rgCANa)
> title(main="Normalized AC")
>
> # Curve-fit (lowess) normalization
> rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
Warning message:
In normalizeCurveFit.matrix(X, method = "lowess", ...) :
Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights.
> plotMvsA(rgCANlw, col="orange", add=TRUE)
>
> # Curve-fit (loess) normalization
> rgCANl <- normalizeLoess(rgCAavg, weights=weights)
> plotMvsA(rgCANl, col="red", add=TRUE)
>
> # Curve-fit (robust spline) normalization
> rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
> plotMvsA(rgCANrs, col="blue", add=TRUE)
>
> legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
+ col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
> title(main="Normalized AC")
> plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
> plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
> abline(a=0, b=1, lty=2)
> legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
+ col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> proc.time()
user system elapsed
8.56 0.09 8.64
|
aroma.light.Rcheck/tests_x64/normalizeCurveFit.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> rgC <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg[,sidx])
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC[,sidx])
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
+ }
>
> rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
> colnames(rgCAavg) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
+ }
>
> # Add some "fake" outliers
> outliers <- 1:600
> rgCAavg[outliers,"G"] <- 50000
>
> plotMvsA(rgCAavg)
> title(main="Average calibrated (AC)")
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Normalize data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Weight-down outliers when normalizing
> weights <- rep(1, nrow(rgCAavg))
> weights[outliers] <- 0.001
>
> # Affine normalization of channels
> rgCANa <- normalizeAffine(rgCAavg, weights=weights)
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> rgCANa <- rgCANa *2^1.4
> plotMvsA(rgCANa)
> title(main="Normalized AC")
>
> # Curve-fit (lowess) normalization
> rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
Warning message:
In normalizeCurveFit.matrix(X, method = "lowess", ...) :
Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights.
> plotMvsA(rgCANlw, col="orange", add=TRUE)
>
> # Curve-fit (loess) normalization
> rgCANl <- normalizeLoess(rgCAavg, weights=weights)
> plotMvsA(rgCANl, col="red", add=TRUE)
>
> # Curve-fit (robust spline) normalization
> rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
> plotMvsA(rgCANrs, col="blue", add=TRUE)
>
> legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
+ col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
> title(main="Normalized AC")
> plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
> plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
> abline(a=0, b=1, lty=2)
> legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
+ col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> proc.time()
user system elapsed
7.85 0.03 7.87
|
|
aroma.light.Rcheck/tests_i386/normalizeDifferencesToAverage.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate three shifted tracks of different lengths with same profiles
> ns <- c(A=2, B=1, C=0.25)*1000
> xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
> zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n))
>
> yy <- list(
+ A = rnorm(ns["A"], mean=0, sd=0.5),
+ B = rnorm(ns["B"], mean=5, sd=0.4),
+ C = rnorm(ns["C"], mean=-5, sd=1.1)
+ )
> yy <- lapply(yy, FUN=function(y) {
+ n <- length(y)
+ y[1:(n/2)] <- y[1:(n/2)] + 2
+ y[1:(n/4)] <- y[1:(n/4)] - 4
+ y
+ })
>
> # Shift all tracks toward the first track
> yyN <- normalizeDifferencesToAverage(yy, baseline=1)
>
> # The baseline channel is not changed
> stopifnot(identical(yy[[1]], yyN[[1]]))
>
> # Get the estimated parameters
> fit <- attr(yyN, "fit")
>
> # Plot the tracks
> layout(matrix(1:2, ncol=1))
> x <- unlist(xx)
> col <- unlist(zz)
> y <- unlist(yy)
> yN <- unlist(yyN)
> plot(x, y, col=col, ylim=c(-10,10))
> plot(x, yN, col=col, ylim=c(-10,10))
>
> proc.time()
user system elapsed
0.54 0.07 0.60
|
aroma.light.Rcheck/tests_x64/normalizeDifferencesToAverage.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate three shifted tracks of different lengths with same profiles
> ns <- c(A=2, B=1, C=0.25)*1000
> xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
> zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n))
>
> yy <- list(
+ A = rnorm(ns["A"], mean=0, sd=0.5),
+ B = rnorm(ns["B"], mean=5, sd=0.4),
+ C = rnorm(ns["C"], mean=-5, sd=1.1)
+ )
> yy <- lapply(yy, FUN=function(y) {
+ n <- length(y)
+ y[1:(n/2)] <- y[1:(n/2)] + 2
+ y[1:(n/4)] <- y[1:(n/4)] - 4
+ y
+ })
>
> # Shift all tracks toward the first track
> yyN <- normalizeDifferencesToAverage(yy, baseline=1)
>
> # The baseline channel is not changed
> stopifnot(identical(yy[[1]], yyN[[1]]))
>
> # Get the estimated parameters
> fit <- attr(yyN, "fit")
>
> # Plot the tracks
> layout(matrix(1:2, ncol=1))
> x <- unlist(xx)
> col <- unlist(zz)
> y <- unlist(yy)
> yN <- unlist(yyN)
> plot(x, y, col=col, ylim=c(-10,10))
> plot(x, yN, col=col, ylim=c(-10,10))
>
> proc.time()
user system elapsed
0.57 0.03 0.60
|
|
aroma.light.Rcheck/tests_i386/normalizeFragmentLength-ex1.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 1: Single-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Number samples
> I <- 9
>
> # Number of loci
> J <- 1000
>
> # Fragment lengths
> fl <- seq(from=100, to=1000, length.out=J)
>
> # Simulate data points with unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=50)
> fl[hasUnknownFL] <- NA_real_
>
> # Simulate data
> y <- matrix(0, nrow=J, ncol=I)
> maxY <- 12
> for (kk in 1:I) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- function(fl) {
+ mu <- rep(maxY, length(fl))
+ ok <- !is.na(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+ eps <- rnorm(J, mean=0, sd=1)
+ y[,kk] <- mu(fl) + eps
+ }
>
> # Normalize data (to a zero baseline)
> yN <- apply(y, MARGIN=2, FUN=function(y) {
+ normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
+ })
>
> # The correction factors
> rho <- y-yN
> print(summary(rho))
V1 V2 V3 V4
Min. :6.214 Min. :7.617 Min. :7.727 Min. :6.617
1st Qu.:6.611 1st Qu.:8.020 1st Qu.:7.966 1st Qu.:6.920
Median :6.970 Median :8.353 Median :8.269 Median :7.254
Mean :7.151 Mean :8.331 Mean :8.319 Mean :7.432
3rd Qu.:7.647 3rd Qu.:8.621 3rd Qu.:8.631 3rd Qu.:7.921
Max. :8.652 Max. :9.058 Max. :9.151 Max. :8.745
V5 V6 V7 V8
Min. :3.312 Min. :7.649 Min. :2.899 Min. :6.437
1st Qu.:4.073 1st Qu.:7.935 1st Qu.:3.663 1st Qu.:6.805
Median :4.917 Median :8.282 Median :4.633 Median :7.199
Mean :5.069 Mean :8.309 Mean :4.784 Mean :7.310
3rd Qu.:6.015 3rd Qu.:8.666 3rd Qu.:5.832 3rd Qu.:7.785
Max. :7.349 Max. :9.091 Max. :7.272 Max. :8.546
V9
Min. :6.210
1st Qu.:6.732
Median :7.188
Mean :7.258
3rd Qu.:7.767
Max. :8.557
> # The correction for units with unknown fragment lengths
> # equals the median correction factor of all other units
> print(summary(rho[hasUnknownFL,]))
V1 V2 V3 V4 V5
Min. :6.97 Min. :8.353 Min. :8.269 Min. :7.254 Min. :4.917
1st Qu.:6.97 1st Qu.:8.353 1st Qu.:8.269 1st Qu.:7.254 1st Qu.:4.917
Median :6.97 Median :8.353 Median :8.269 Median :7.254 Median :4.917
Mean :6.97 Mean :8.353 Mean :8.269 Mean :7.254 Mean :4.917
3rd Qu.:6.97 3rd Qu.:8.353 3rd Qu.:8.269 3rd Qu.:7.254 3rd Qu.:4.917
Max. :6.97 Max. :8.353 Max. :8.269 Max. :7.254 Max. :4.917
V6 V7 V8 V9
Min. :8.282 Min. :4.633 Min. :7.199 Min. :7.188
1st Qu.:8.282 1st Qu.:4.633 1st Qu.:7.199 1st Qu.:7.188
Median :8.282 Median :4.633 Median :7.199 Median :7.188
Mean :8.282 Mean :4.633 Mean :7.199 Mean :7.188
3rd Qu.:8.282 3rd Qu.:4.633 3rd Qu.:7.199 3rd Qu.:7.188
Max. :8.282 Max. :4.633 Max. :7.199 Max. :7.188
>
> # Plot raw data
> layout(matrix(1:9, ncol=3))
> xlim <- c(0,max(fl, na.rm=TRUE))
> ylim <- c(0,max(y, na.rm=TRUE))
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> for (kk in 1:I) {
+ plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
+ }
>
> # Plot normalized data
> layout(matrix(1:9, ncol=3))
> ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
> for (kk in 1:I) {
+ plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
+ }
>
> proc.time()
user system elapsed
0.79 0.07 0.87
|
aroma.light.Rcheck/tests_x64/normalizeFragmentLength-ex1.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 1: Single-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Number samples
> I <- 9
>
> # Number of loci
> J <- 1000
>
> # Fragment lengths
> fl <- seq(from=100, to=1000, length.out=J)
>
> # Simulate data points with unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=50)
> fl[hasUnknownFL] <- NA_real_
>
> # Simulate data
> y <- matrix(0, nrow=J, ncol=I)
> maxY <- 12
> for (kk in 1:I) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- function(fl) {
+ mu <- rep(maxY, length(fl))
+ ok <- !is.na(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+ eps <- rnorm(J, mean=0, sd=1)
+ y[,kk] <- mu(fl) + eps
+ }
>
> # Normalize data (to a zero baseline)
> yN <- apply(y, MARGIN=2, FUN=function(y) {
+ normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
+ })
>
> # The correction factors
> rho <- y-yN
> print(summary(rho))
V1 V2 V3 V4
Min. :6.913 Min. :7.542 Min. :8.025 Min. :2.821
1st Qu.:7.288 1st Qu.:7.745 1st Qu.:8.209 1st Qu.:3.650
Median :7.679 Median :7.999 Median :8.484 Median :4.502
Mean :7.715 Mean :8.108 Mean :8.537 Mean :4.722
3rd Qu.:8.096 3rd Qu.:8.453 3rd Qu.:8.837 3rd Qu.:5.738
Max. :8.744 Max. :9.004 Max. :9.252 Max. :7.320
V5 V6 V7 V8
Min. :7.904 Min. :6.098 Min. :6.575 Min. :6.892
1st Qu.:8.269 1st Qu.:6.358 1st Qu.:6.964 1st Qu.:7.179
Median :8.492 Median :6.786 Median :7.380 Median :7.528
Mean :8.540 Mean :6.969 Mean :7.481 Mean :7.679
3rd Qu.:8.790 3rd Qu.:7.509 3rd Qu.:7.971 3rd Qu.:8.145
Max. :9.338 Max. :8.505 Max. :8.715 Max. :8.927
V9
Min. :7.605
1st Qu.:8.032
Median :8.290
Mean :8.374
3rd Qu.:8.711
Max. :9.350
> # The correction for units with unknown fragment lengths
> # equals the median correction factor of all other units
> print(summary(rho[hasUnknownFL,]))
V1 V2 V3 V4
Min. :7.679 Min. :7.999 Min. :8.484 Min. :4.502
1st Qu.:7.679 1st Qu.:7.999 1st Qu.:8.484 1st Qu.:4.502
Median :7.679 Median :7.999 Median :8.484 Median :4.502
Mean :7.679 Mean :7.999 Mean :8.484 Mean :4.502
3rd Qu.:7.679 3rd Qu.:7.999 3rd Qu.:8.484 3rd Qu.:4.502
Max. :7.679 Max. :7.999 Max. :8.484 Max. :4.502
V5 V6 V7 V8 V9
Min. :8.492 Min. :6.786 Min. :7.38 Min. :7.528 Min. :8.29
1st Qu.:8.492 1st Qu.:6.786 1st Qu.:7.38 1st Qu.:7.528 1st Qu.:8.29
Median :8.492 Median :6.786 Median :7.38 Median :7.528 Median :8.29
Mean :8.492 Mean :6.786 Mean :7.38 Mean :7.528 Mean :8.29
3rd Qu.:8.492 3rd Qu.:6.786 3rd Qu.:7.38 3rd Qu.:7.528 3rd Qu.:8.29
Max. :8.492 Max. :6.786 Max. :7.38 Max. :7.528 Max. :8.29
>
> # Plot raw data
> layout(matrix(1:9, ncol=3))
> xlim <- c(0,max(fl, na.rm=TRUE))
> ylim <- c(0,max(y, na.rm=TRUE))
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> for (kk in 1:I) {
+ plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
+ }
>
> # Plot normalized data
> layout(matrix(1:9, ncol=3))
> ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
> for (kk in 1:I) {
+ plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
+ }
>
> proc.time()
user system elapsed
0.89 0.09 0.98
|
|
aroma.light.Rcheck/tests_i386/normalizeFragmentLength-ex2.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 2: Two-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> set.seed(0xbeef)
>
> # Number samples
> I <- 5
>
> # Number of loci
> J <- 3000
>
> # Fragment lengths (two enzymes)
> fl <- matrix(0, nrow=J, ncol=2)
> fl[,1] <- seq(from=100, to=1000, length.out=J)
> fl[,2] <- seq(from=1000, to=100, length.out=J)
>
> # Let 1/2 of the units be on both enzymes
> fl[seq(from=1, to=J, by=4),1] <- NA_real_
> fl[seq(from=2, to=J, by=4),2] <- NA_real_
>
> # Let some have unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=15)
> fl[hasUnknownFL,] <- NA_real_
>
> # Sty/Nsp mixing proportions:
> rho <- rep(1, I)
> rho[1] <- 1/3; # Less Sty in 1st sample
> rho[3] <- 3/2; # More Sty in 3rd sample
>
>
> # Simulate data
> z <- array(0, dim=c(J,2,I))
> maxLog2Theta <- 12
> for (ii in 1:I) {
+ # Common effect for both enzymes
+ mu <- function(fl) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- rep(maxLog2Theta, length(fl))
+ ok <- is.finite(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+
+ # Calculate the effect for each data point
+ for (ee in 1:2) {
+ z[,ee,ii] <- mu(fl[,ee])
+ }
+
+ # Update the Sty/Nsp mixing proportions
+ ee <- 2
+ z[,ee,ii] <- rho[ii]*z[,ee,ii]
+
+ # Add random errors
+ for (ee in 1:2) {
+ eps <- rnorm(J, mean=0, sd=1/sqrt(2))
+ z[,ee,ii] <- z[,ee,ii] + eps
+ }
+ }
>
>
> hasFl <- is.finite(fl)
>
> unitSets <- list(
+ nsp = which( hasFl[,1] & !hasFl[,2]),
+ sty = which(!hasFl[,1] & hasFl[,2]),
+ both = which( hasFl[,1] & hasFl[,2]),
+ none = which(!hasFl[,1] & !hasFl[,2])
+ )
>
> # The observed data is a mix of two enzymes
> theta <- matrix(NA_real_, nrow=J, ncol=I)
>
> # Single-enzyme units
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ theta[uu,] <- 2^z[uu,ee,]
+ }
>
> # Both-enzyme units (sum on intensity scale)
> uu <- unitSets$both
> theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
>
> # Missing units (sample from the others)
> uu <- unitSets$none
> theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
>
> # Calculate target array
> thetaT <- rowMeans(theta, na.rm=TRUE)
> targetFcns <- list()
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
+ class(fit) <- "lowess"
+ targetFcns[[ee]] <- function(fl, ...) {
+ predict(fit, newdata=fl)
+ }
+ }
>
>
> # Fit model only to a subset of the data
> subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
>
> # Normalize data (to a target baseline)
> thetaN <- matrix(NA_real_, nrow=J, ncol=I)
> fits <- vector("list", I)
> for (ii in 1:I) {
+ lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
+ fragmentLengths=fl, onMissing="median",
+ subsetToFit=subsetToFit, .returnFit=TRUE)
+ fits[[ii]] <- attr(lthetaNi, "modelFit")
+ thetaN[,ii] <- 2^lthetaNi
+ }
>
>
> # Plot raw data
> xlim <- c(0, max(fl, na.rm=TRUE))
> ylim <- c(0, max(log2(theta), na.rm=TRUE))
> Mlim <- c(-1,1)*4
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> Mlab <- expression(M==log[2](theta/theta[R]))
>
> layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
+
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The raw data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
+ }
+
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
+
+ for (ee in 1:2) {
+ # The true effects
+ uu <- unitSets[[ee]]
+ lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
+
+ # The estimated effects
+ fit <- fits[[ii]][[ee]]$fit
+ lines(fit, col="orange", lwd=3)
+
+ muT <- targetFcns[[ee]](fl[uu,ee])
+ lines(fl[uu,ee], muT, col="cyan", lwd=1)
+ }
+ }
>
> # Calculate log-ratios
> thetaR <- rowMeans(thetaN, na.rm=TRUE)
> M <- log2(thetaN/thetaR)
>
> # Plot normalized data
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], M[uu,ii], col=ee+1)
+ }
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], M[uu,ii], col=3+1)
+ }
>
> ylim <- c(0,1.5)
> for (ii in 1:I) {
+ data <- list()
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ data[[ee]] <- M[uu,ii]
+ }
+ uu <- unitSets$both
+ if (length(uu) > 0)
+ data[[3]] <- M[uu,ii]
+
+ uu <- unitSets$none
+ if (length(uu) > 0)
+ data[[4]] <- M[uu,ii]
+
+ cols <- seq_along(data)+1
+ plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
+
+ abline(v=0, lty=2)
+ }
>
>
> proc.time()
user system elapsed
1.00 0.06 1.04
|
aroma.light.Rcheck/tests_x64/normalizeFragmentLength-ex2.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 2: Two-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> set.seed(0xbeef)
>
> # Number samples
> I <- 5
>
> # Number of loci
> J <- 3000
>
> # Fragment lengths (two enzymes)
> fl <- matrix(0, nrow=J, ncol=2)
> fl[,1] <- seq(from=100, to=1000, length.out=J)
> fl[,2] <- seq(from=1000, to=100, length.out=J)
>
> # Let 1/2 of the units be on both enzymes
> fl[seq(from=1, to=J, by=4),1] <- NA_real_
> fl[seq(from=2, to=J, by=4),2] <- NA_real_
>
> # Let some have unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=15)
> fl[hasUnknownFL,] <- NA_real_
>
> # Sty/Nsp mixing proportions:
> rho <- rep(1, I)
> rho[1] <- 1/3; # Less Sty in 1st sample
> rho[3] <- 3/2; # More Sty in 3rd sample
>
>
> # Simulate data
> z <- array(0, dim=c(J,2,I))
> maxLog2Theta <- 12
> for (ii in 1:I) {
+ # Common effect for both enzymes
+ mu <- function(fl) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- rep(maxLog2Theta, length(fl))
+ ok <- is.finite(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+
+ # Calculate the effect for each data point
+ for (ee in 1:2) {
+ z[,ee,ii] <- mu(fl[,ee])
+ }
+
+ # Update the Sty/Nsp mixing proportions
+ ee <- 2
+ z[,ee,ii] <- rho[ii]*z[,ee,ii]
+
+ # Add random errors
+ for (ee in 1:2) {
+ eps <- rnorm(J, mean=0, sd=1/sqrt(2))
+ z[,ee,ii] <- z[,ee,ii] + eps
+ }
+ }
>
>
> hasFl <- is.finite(fl)
>
> unitSets <- list(
+ nsp = which( hasFl[,1] & !hasFl[,2]),
+ sty = which(!hasFl[,1] & hasFl[,2]),
+ both = which( hasFl[,1] & hasFl[,2]),
+ none = which(!hasFl[,1] & !hasFl[,2])
+ )
>
> # The observed data is a mix of two enzymes
> theta <- matrix(NA_real_, nrow=J, ncol=I)
>
> # Single-enzyme units
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ theta[uu,] <- 2^z[uu,ee,]
+ }
>
> # Both-enzyme units (sum on intensity scale)
> uu <- unitSets$both
> theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
>
> # Missing units (sample from the others)
> uu <- unitSets$none
> theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
>
> # Calculate target array
> thetaT <- rowMeans(theta, na.rm=TRUE)
> targetFcns <- list()
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
+ class(fit) <- "lowess"
+ targetFcns[[ee]] <- function(fl, ...) {
+ predict(fit, newdata=fl)
+ }
+ }
>
>
> # Fit model only to a subset of the data
> subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
>
> # Normalize data (to a target baseline)
> thetaN <- matrix(NA_real_, nrow=J, ncol=I)
> fits <- vector("list", I)
> for (ii in 1:I) {
+ lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
+ fragmentLengths=fl, onMissing="median",
+ subsetToFit=subsetToFit, .returnFit=TRUE)
+ fits[[ii]] <- attr(lthetaNi, "modelFit")
+ thetaN[,ii] <- 2^lthetaNi
+ }
>
>
> # Plot raw data
> xlim <- c(0, max(fl, na.rm=TRUE))
> ylim <- c(0, max(log2(theta), na.rm=TRUE))
> Mlim <- c(-1,1)*4
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> Mlab <- expression(M==log[2](theta/theta[R]))
>
> layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
+
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The raw data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
+ }
+
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
+
+ for (ee in 1:2) {
+ # The true effects
+ uu <- unitSets[[ee]]
+ lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
+
+ # The estimated effects
+ fit <- fits[[ii]][[ee]]$fit
+ lines(fit, col="orange", lwd=3)
+
+ muT <- targetFcns[[ee]](fl[uu,ee])
+ lines(fl[uu,ee], muT, col="cyan", lwd=1)
+ }
+ }
>
> # Calculate log-ratios
> thetaR <- rowMeans(thetaN, na.rm=TRUE)
> M <- log2(thetaN/thetaR)
>
> # Plot normalized data
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], M[uu,ii], col=ee+1)
+ }
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], M[uu,ii], col=3+1)
+ }
>
> ylim <- c(0,1.5)
> for (ii in 1:I) {
+ data <- list()
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ data[[ee]] <- M[uu,ii]
+ }
+ uu <- unitSets$both
+ if (length(uu) > 0)
+ data[[3]] <- M[uu,ii]
+
+ uu <- unitSets$none
+ if (length(uu) > 0)
+ data[[4]] <- M[uu,ii]
+
+ cols <- seq_along(data)+1
+ plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
+
+ abline(v=0, lty=2)
+ }
>
>
> proc.time()
user system elapsed
1.04 0.07 1.10
|
|
aroma.light.Rcheck/tests_i386/normalizeQuantileRank.list.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.64 0.06 0.68
|
aroma.light.Rcheck/tests_x64/normalizeQuantileRank.list.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.73 0.04 0.78
|
|
aroma.light.Rcheck/tests_i386/normalizeQuantileRank.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.54 0.04 0.57
|
aroma.light.Rcheck/tests_x64/normalizeQuantileRank.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.82 0.03 0.85
|
|
aroma.light.Rcheck/tests_i386/normalizeQuantileSpline.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Plot the data
> layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
>
> Xn <- normalizeQuantile(X)
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions")
>
> Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
> plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
1.65 0.01 1.67
|
aroma.light.Rcheck/tests_x64/normalizeQuantileSpline.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Plot the data
> layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
>
> Xn <- normalizeQuantile(X)
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions")
>
> Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
> plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
2.26 0.06 2.32
|
|
aroma.light.Rcheck/tests_i386/normalizeTumorBoost.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.21.0 (2016-10-30) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.6.0 (2017-11-04) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, parse, warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> attachLocally(data)
> pos <- position/1e6
> muN <- genotypeN
>
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
>
> # Allele B fractions for the normal sample
> plot(pos, betaN, col=col, ylim=ylim)
>
> # Allele B fractions for the tumor sample
> plot(pos, betaT, col=col, ylim=ylim)
>
> # TumorBoost w/ naive genotype calls
> betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
> plot(pos, betaTN, col=col, ylim=ylim)
>
> # TumorBoost w/ external multi-sample genotype calls
> betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
> plot(pos, betaTNx, col=col, ylim=ylim)
>
> proc.time()
user system elapsed
0.87 0.01 0.87
|
aroma.light.Rcheck/tests_x64/normalizeTumorBoost.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.21.0 (2016-10-30) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.6.0 (2017-11-04) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, parse, warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> attachLocally(data)
> pos <- position/1e6
> muN <- genotypeN
>
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
>
> # Allele B fractions for the normal sample
> plot(pos, betaN, col=col, ylim=ylim)
>
> # Allele B fractions for the tumor sample
> plot(pos, betaT, col=col, ylim=ylim)
>
> # TumorBoost w/ naive genotype calls
> betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
> plot(pos, betaTN, col=col, ylim=ylim)
>
> # TumorBoost w/ external multi-sample genotype calls
> betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
> plot(pos, betaTNx, col=col, ylim=ylim)
>
> proc.time()
user system elapsed
0.92 0.03 0.93
|
|
aroma.light.Rcheck/tests_i386/normalizeTumorBoost,flavors.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.21.0 (2016-10-30) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.6.0 (2017-11-04) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, parse, warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
>
> # Drop loci with missing values
> data <- na.omit(data)
>
> attachLocally(data)
> pos <- position/1e6
>
> # Call naive genotypes
> muN <- callNaiveGenotypes(betaN)
>
> # Genotype classes
> isAA <- (muN == 0)
> isAB <- (muN == 1/2)
> isBB <- (muN == 1)
>
> # Sanity checks
> stopifnot(all(muN[isAA] == 0))
> stopifnot(all(muN[isAB] == 1/2))
> stopifnot(all(muN[isBB] == 1))
>
> # TumorBoost normalization with different flavors
> betaTNs <- list()
> for (flavor in c("v1", "v2", "v3", "v4")) {
+ betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor)
+
+ # Assert that no non-finite values are introduced
+ stopifnot(all(is.finite(betaTN)))
+
+ # Assert that nothing is flipped
+ stopifnot(all(betaTN[isAA] < 1/2))
+ stopifnot(all(betaTN[isBB] > 1/2))
+
+ betaTNs[[flavor]] <- betaTN
+ }
>
> # Plot
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> for (flavor in names(betaTNs)) {
+ betaTN <- betaTNs[[flavor]]
+ ylab <- sprintf("betaTN[%s]", flavor)
+ plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab)
+ }
>
> proc.time()
user system elapsed
0.95 0.07 1.01
|
aroma.light.Rcheck/tests_x64/normalizeTumorBoost,flavors.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.21.0 (2016-10-30) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.6.0 (2017-11-04) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, parse, warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
>
> # Drop loci with missing values
> data <- na.omit(data)
>
> attachLocally(data)
> pos <- position/1e6
>
> # Call naive genotypes
> muN <- callNaiveGenotypes(betaN)
>
> # Genotype classes
> isAA <- (muN == 0)
> isAB <- (muN == 1/2)
> isBB <- (muN == 1)
>
> # Sanity checks
> stopifnot(all(muN[isAA] == 0))
> stopifnot(all(muN[isAB] == 1/2))
> stopifnot(all(muN[isBB] == 1))
>
> # TumorBoost normalization with different flavors
> betaTNs <- list()
> for (flavor in c("v1", "v2", "v3", "v4")) {
+ betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor)
+
+ # Assert that no non-finite values are introduced
+ stopifnot(all(is.finite(betaTN)))
+
+ # Assert that nothing is flipped
+ stopifnot(all(betaTN[isAA] < 1/2))
+ stopifnot(all(betaTN[isBB] > 1/2))
+
+ betaTNs[[flavor]] <- betaTN
+ }
>
> # Plot
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> for (flavor in names(betaTNs)) {
+ betaTN <- betaTNs[[flavor]]
+ ylab <- sprintf("betaTN[%s]", flavor)
+ plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab)
+ }
>
> proc.time()
user system elapsed
1.07 0.07 1.15
|
|
aroma.light.Rcheck/tests_i386/robustSmoothSpline.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars) & robust smoothing splines")
>
> # Fit a smoothing spline using L_2 norm
> cars.spl <- smooth.spline(speed, dist)
> lines(cars.spl, col = "blue")
>
> # Fit a smoothing spline using L_1 norm
> cars.rspl <- robustSmoothSpline(speed, dist)
Warning message:
In stats.smooth.spline(g$x, g$yin, w = w, ..., tol = tol) :
smoothing parameter value too large
setting df = 1 __use with care!__
> lines(cars.rspl, col = "red")
>
> # Fit a smoothing spline using L_2 norm with 10 degrees of freedom
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue")
>
> # Fit a smoothing spline using L_1 norm with 10 degrees of freedom
> lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red")
>
> legend(5,120, c(
+ paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
+ paste("robustSmoothSpline [C.V.] => df =",round(cars.rspl$df,1)),
+ "standard with s( * , df = 10)", "robust with s( * , df = 10)"
+ ), col = c("blue","red","blue","red"), lty = c(1,1,2,2), bg='bisque')
>
> proc.time()
user system elapsed
0.60 0.06 0.65
|
aroma.light.Rcheck/tests_x64/robustSmoothSpline.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars) & robust smoothing splines")
>
> # Fit a smoothing spline using L_2 norm
> cars.spl <- smooth.spline(speed, dist)
> lines(cars.spl, col = "blue")
>
> # Fit a smoothing spline using L_1 norm
> cars.rspl <- robustSmoothSpline(speed, dist)
> lines(cars.rspl, col = "red")
>
> # Fit a smoothing spline using L_2 norm with 10 degrees of freedom
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue")
>
> # Fit a smoothing spline using L_1 norm with 10 degrees of freedom
> lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red")
>
> legend(5,120, c(
+ paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
+ paste("robustSmoothSpline [C.V.] => df =",round(cars.rspl$df,1)),
+ "standard with s( * , df = 10)", "robust with s( * , df = 10)"
+ ), col = c("blue","red","blue","red"), lty = c(1,1,2,2), bg='bisque')
>
> proc.time()
user system elapsed
0.78 0.01 0.78
|
|
aroma.light.Rcheck/tests_i386/rowAverages.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:30, nrow=5L, ncol=6L)
> mu <- rowMeans(X)
> sd <- apply(X, MARGIN=1L, FUN=sd)
>
> y <- rowAverages(X)
> stopifnot(all(y == mu))
> stopifnot(all(attr(y,"deviance") == sd))
> stopifnot(all(attr(y,"df") == ncol(X)))
>
> proc.time()
user system elapsed
0.40 0.04 0.43
|
aroma.light.Rcheck/tests_x64/rowAverages.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:30, nrow=5L, ncol=6L)
> mu <- rowMeans(X)
> sd <- apply(X, MARGIN=1L, FUN=sd)
>
> y <- rowAverages(X)
> stopifnot(all(y == mu))
> stopifnot(all(attr(y,"deviance") == sd))
> stopifnot(all(attr(y,"df") == ncol(X)))
>
> proc.time()
user system elapsed
0.54 0.04 0.57
|
|
aroma.light.Rcheck/tests_i386/sampleCorrelations.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate 20000 genes with 10 observations each
> X <- matrix(rnorm(n=20000), ncol=10)
>
> # Calculate the correlation for 5000 random gene pairs
> cor <- sampleCorrelations(X, npairs=5000)
> print(summary(cor))
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.902409 -0.251713 -0.003641 -0.004366 0.230668 0.920603
>
>
> proc.time()
user system elapsed
0.68 0.06 0.73
|
aroma.light.Rcheck/tests_x64/sampleCorrelations.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # Simulate 20000 genes with 10 observations each
> X <- matrix(rnorm(n=20000), ncol=10)
>
> # Calculate the correlation for 5000 random gene pairs
> cor <- sampleCorrelations(X, npairs=5000)
> print(summary(cor))
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.918214 -0.238918 0.002590 0.002827 0.245609 0.872033
>
>
> proc.time()
user system elapsed
0.96 0.01 0.98
|
|
aroma.light.Rcheck/tests_i386/sampleTuples.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> pairs <- sampleTuples(1:10, size=5, length=2)
> print(pairs)
[,1] [,2]
[1,] 1 5
[2,] 5 8
[3,] 4 1
[4,] 4 6
[5,] 8 1
>
> triples <- sampleTuples(1:10, size=5, length=3)
> print(triples)
[,1] [,2] [,3]
[1,] 5 6 1
[2,] 3 8 4
[3,] 7 10 5
[4,] 3 1 2
[5,] 7 8 5
>
> # Allow tuples with repeated elements
> quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
> print(quadruples)
[,1] [,2] [,3] [,4]
[1,] 1 1 2 1
[2,] 1 1 3 3
[3,] 3 2 1 2
[4,] 3 1 3 3
[5,] 1 3 1 1
>
> proc.time()
user system elapsed
0.56 0.00 0.56
|
aroma.light.Rcheck/tests_x64/sampleTuples.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> pairs <- sampleTuples(1:10, size=5, length=2)
> print(pairs)
[,1] [,2]
[1,] 1 4
[2,] 7 10
[3,] 6 10
[4,] 10 8
[5,] 1 4
>
> triples <- sampleTuples(1:10, size=5, length=3)
> print(triples)
[,1] [,2] [,3]
[1,] 1 6 8
[2,] 2 5 4
[3,] 5 3 2
[4,] 7 3 4
[5,] 5 1 8
>
> # Allow tuples with repeated elements
> quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
> print(quadruples)
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 3 3 2 3
[3,] 3 1 2 3
[4,] 3 2 1 1
[5,] 3 1 1 1
>
> proc.time()
user system elapsed
0.42 0.07 0.50
|
|
aroma.light.Rcheck/tests_i386/wpca.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # -------------------------------------------------------------
+ # A first example
+ # -------------------------------------------------------------
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,15)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/3 of the observations
+ idx <- sample(1:nrow(y), size=1/3*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Down-weight the outliers W times to demonstrate how weights are used
+ W <- 10
+
+ # Plot the data with fitted lines at four different view points
+ N <- 4
+ theta <- seq(0,180,length.out=N)
+ phi <- rep(30, length.out=N)
+
+ # Use a different color for each set of weights
+ col <- topo.colors(W)
+
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ for (kk in seq(theta)) {
+ # Plot the data
+ plot3d(y, theta=theta[kk], phi=phi[kk])
+
+ # First, same weights for all observations
+ w <- rep(1, length=nrow(y))
+
+ for (ww in 1:W) {
+ # Fit a line using IWPCA through data
+ fit <- wpca(y, w=w, swapDirections=TRUE)
+
+ # Get the first principal component
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ points3d(t(ymid), col=col)
+ lines3d(t(yline), col=col)
+
+ # Down-weight outliers only, because here we know which they are.
+ w[idx] <- w[idx]/2
+ }
+
+ # Highlight the last one
+ lines3d(t(yline), col="red", lwd=3)
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.43 0.03 0.45
|
aroma.light.Rcheck/tests_x64/wpca.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # -------------------------------------------------------------
+ # A first example
+ # -------------------------------------------------------------
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,15)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/3 of the observations
+ idx <- sample(1:nrow(y), size=1/3*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Down-weight the outliers W times to demonstrate how weights are used
+ W <- 10
+
+ # Plot the data with fitted lines at four different view points
+ N <- 4
+ theta <- seq(0,180,length.out=N)
+ phi <- rep(30, length.out=N)
+
+ # Use a different color for each set of weights
+ col <- topo.colors(W)
+
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ for (kk in seq(theta)) {
+ # Plot the data
+ plot3d(y, theta=theta[kk], phi=phi[kk])
+
+ # First, same weights for all observations
+ w <- rep(1, length=nrow(y))
+
+ for (ww in 1:W) {
+ # Fit a line using IWPCA through data
+ fit <- wpca(y, w=w, swapDirections=TRUE)
+
+ # Get the first principal component
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ points3d(t(ymid), col=col)
+ lines3d(t(yline), col=col)
+
+ # Down-weight outliers only, because here we know which they are.
+ w[idx] <- w[idx]/2
+ }
+
+ # Highlight the last one
+ lines3d(t(yline), col="red", lwd=3)
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.51 0.03 0.53
|
|
aroma.light.Rcheck/tests_i386/wpca2.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # -------------------------------------------------------------
> # A second example
> # -------------------------------------------------------------
> # Data
> x <- c(1,2,3,4,5)
> y <- c(2,4,3,3,6)
>
> opar <- par(bty="L")
> opalette <- palette(c("blue", "red", "black"))
> xlim <- ylim <- c(0,6)
>
> # Plot the data and the center mass
> plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
> points(mean(x), mean(y), cex=2, lwd=2, col="blue")
>
>
> # Linear regression y ˜ x
> fit <- lm(y ˜ x)
> abline(fit, lty=1, col=1)
>
> # Linear regression y ˜ x through without intercept
> fit <- lm(y ˜ x - 1)
> abline(fit, lty=2, col=1)
>
>
> # Linear regression x ˜ y
> fit <- lm(x ˜ y)
> c <- coefficients(fit)
> b <- 1/c[2]
> a <- -b*c[1]
> abline(a=a, b=b, lty=1, col=2)
>
> # Linear regression x ˜ y through without intercept
> fit <- lm(x ˜ y - 1)
> b <- 1/coefficients(fit)
> abline(a=0, b=b, lty=2, col=2)
>
>
> # Orthogonal linear "regression"
> fit <- wpca(cbind(x,y))
>
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lwd=2, col=3)
>
> # Orthogonal linear "regression" without intercept
> fit <- wpca(cbind(x,y), center=FALSE)
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lty=2, lwd=2, col=3)
>
> legend(xlim[1],ylim[2], legend=c("lm(y˜x)", "lm(y˜x-1)", "lm(x˜y)",
+ "lm(x˜y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3),
+ lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))
>
> palette(opalette)
> par(opar)
>
> proc.time()
user system elapsed
0.65 0.04 0.68
|
aroma.light.Rcheck/tests_x64/wpca2.matrix.Rout
R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.8.0 (2017-04-14) successfully loaded. See ?aroma.light for help.
>
> # -------------------------------------------------------------
> # A second example
> # -------------------------------------------------------------
> # Data
> x <- c(1,2,3,4,5)
> y <- c(2,4,3,3,6)
>
> opar <- par(bty="L")
> opalette <- palette(c("blue", "red", "black"))
> xlim <- ylim <- c(0,6)
>
> # Plot the data and the center mass
> plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
> points(mean(x), mean(y), cex=2, lwd=2, col="blue")
>
>
> # Linear regression y ˜ x
> fit <- lm(y ˜ x)
> abline(fit, lty=1, col=1)
>
> # Linear regression y ˜ x through without intercept
> fit <- lm(y ˜ x - 1)
> abline(fit, lty=2, col=1)
>
>
> # Linear regression x ˜ y
> fit <- lm(x ˜ y)
> c <- coefficients(fit)
> b <- 1/c[2]
> a <- -b*c[1]
> abline(a=a, b=b, lty=1, col=2)
>
> # Linear regression x ˜ y through without intercept
> fit <- lm(x ˜ y - 1)
> b <- 1/coefficients(fit)
> abline(a=0, b=b, lty=2, col=2)
>
>
> # Orthogonal linear "regression"
> fit <- wpca(cbind(x,y))
>
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lwd=2, col=3)
>
> # Orthogonal linear "regression" without intercept
> fit <- wpca(cbind(x,y), center=FALSE)
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lty=2, lwd=2, col=3)
>
> legend(xlim[1],ylim[2], legend=c("lm(y˜x)", "lm(y˜x-1)", "lm(x˜y)",
+ "lm(x˜y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3),
+ lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))
>
> palette(opalette)
> par(opar)
>
> proc.time()
user system elapsed
0.64 0.07 0.70
|
|
aroma.light.Rcheck/examples_i386/aroma.light-Ex.timings
|
aroma.light.Rcheck/examples_x64/aroma.light-Ex.timings
|