| Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-06-28 17:41 -0400 (Fri, 28 Jun 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4760 |
| palomino3 | Windows Server 2022 Datacenter | x64 | 4.4.0 (2024-04-24 ucrt) -- "Puppy Cup" | 4494 |
| merida1 | macOS 12.7.4 Monterey | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4508 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4466 |
| palomino7 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4362 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.4 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.10.0 |
| Command: F:\biocbuild\bbs-3.19-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.19-bioc\R\library --no-vignettes --timings HPiP_1.10.0.tar.gz |
| StartedAt: 2024-06-27 02:39:00 -0400 (Thu, 27 Jun 2024) |
| EndedAt: 2024-06-27 02:44:02 -0400 (Thu, 27 Jun 2024) |
| EllapsedTime: 301.9 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### F:\biocbuild\bbs-3.19-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.19-bioc\R\library --no-vignettes --timings HPiP_1.10.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'F:/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck'
* using R version 4.4.0 (2024-04-24 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
gcc.exe (GCC) 13.2.0
GNU Fortran (GCC) 13.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.10.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 34.18 2.05 36.36
var_imp 33.50 1.52 35.02
corr_plot 33.03 1.79 34.83
pred_ensembel 14.89 0.84 11.45
enrichfindP 0.61 0.07 14.40
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
Running 'runTests.R'
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
'F:/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log'
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.19-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.19-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.0 (2024-04-24 ucrt) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 96.985759
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 95.503323
iter 10 value 93.815818
final value 93.813958
converged
Fitting Repeat 3
# weights: 103
initial value 96.086269
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 107.015424
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.909605
final value 94.467391
converged
Fitting Repeat 1
# weights: 305
initial value 98.980938
iter 10 value 94.465059
iter 20 value 94.052907
final value 94.052435
converged
Fitting Repeat 2
# weights: 305
initial value 98.648536
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 100.541320
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 97.765678
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 96.464548
final value 94.052434
converged
Fitting Repeat 1
# weights: 507
initial value 95.777684
iter 10 value 94.264859
final value 94.264858
converged
Fitting Repeat 2
# weights: 507
initial value 112.880852
final value 94.467391
converged
Fitting Repeat 3
# weights: 507
initial value 103.638978
final value 94.484206
converged
Fitting Repeat 4
# weights: 507
initial value 99.727656
iter 10 value 94.379748
iter 10 value 94.379747
iter 10 value 94.379747
final value 94.379747
converged
Fitting Repeat 5
# weights: 507
initial value 96.360551
iter 10 value 89.867571
iter 20 value 87.132656
iter 30 value 86.630964
iter 40 value 82.754418
iter 50 value 82.425641
final value 82.425477
converged
Fitting Repeat 1
# weights: 103
initial value 97.137599
iter 10 value 94.504383
iter 20 value 94.488575
iter 30 value 94.116256
iter 40 value 93.928396
iter 50 value 88.354952
iter 60 value 85.329935
iter 70 value 85.059638
iter 80 value 85.015134
iter 90 value 84.611590
iter 100 value 84.489382
final value 84.489382
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.987952
iter 10 value 94.487148
iter 20 value 94.171121
iter 30 value 94.127759
iter 40 value 94.123517
iter 50 value 93.192997
iter 60 value 89.291462
iter 70 value 87.676864
iter 80 value 86.330496
iter 90 value 85.018647
iter 100 value 84.150503
final value 84.150503
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 130.074530
iter 10 value 94.470038
iter 20 value 89.365901
iter 30 value 88.047541
iter 40 value 87.264630
iter 50 value 86.260937
iter 60 value 85.653551
iter 70 value 85.230921
iter 80 value 85.103345
iter 90 value 85.080088
final value 85.078429
converged
Fitting Repeat 4
# weights: 103
initial value 112.377681
iter 10 value 94.573486
iter 20 value 93.704654
iter 30 value 87.048148
iter 40 value 86.611469
iter 50 value 86.147011
iter 60 value 85.505017
iter 70 value 85.489840
final value 85.489670
converged
Fitting Repeat 5
# weights: 103
initial value 97.103526
iter 10 value 94.488600
iter 20 value 94.390895
iter 30 value 92.240677
iter 40 value 86.725942
iter 50 value 86.401047
iter 60 value 86.259943
iter 70 value 86.199429
iter 80 value 85.431396
iter 90 value 84.107902
iter 100 value 83.839985
final value 83.839985
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 108.910782
iter 10 value 94.644419
iter 20 value 93.703915
iter 30 value 90.858897
iter 40 value 90.568428
iter 50 value 90.160440
iter 60 value 88.407810
iter 70 value 86.648501
iter 80 value 84.937777
iter 90 value 84.455381
iter 100 value 83.615378
final value 83.615378
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.115528
iter 10 value 89.021055
iter 20 value 87.132604
iter 30 value 85.788335
iter 40 value 85.068938
iter 50 value 84.926702
iter 60 value 84.199389
iter 70 value 83.921160
iter 80 value 83.854820
iter 90 value 83.601465
iter 100 value 83.470622
final value 83.470622
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 112.136937
iter 10 value 94.251197
iter 20 value 90.256512
iter 30 value 89.126893
iter 40 value 86.790849
iter 50 value 85.236787
iter 60 value 84.923490
iter 70 value 84.914046
iter 80 value 84.899761
iter 90 value 84.721820
iter 100 value 83.543085
final value 83.543085
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.391354
iter 10 value 94.486268
iter 20 value 94.381139
iter 30 value 93.093010
iter 40 value 87.864785
iter 50 value 85.927454
iter 60 value 85.427492
iter 70 value 85.026093
iter 80 value 84.712828
iter 90 value 83.795334
iter 100 value 83.073522
final value 83.073522
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 135.856002
iter 10 value 98.680571
iter 20 value 95.970953
iter 30 value 94.497904
iter 40 value 94.329795
iter 50 value 91.866745
iter 60 value 90.478835
iter 70 value 87.991631
iter 80 value 85.716395
iter 90 value 84.090491
iter 100 value 83.529022
final value 83.529022
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.452202
iter 10 value 94.501022
iter 20 value 90.110397
iter 30 value 89.304545
iter 40 value 88.946695
iter 50 value 87.171865
iter 60 value 86.236405
iter 70 value 85.602546
iter 80 value 84.920041
iter 90 value 84.376855
iter 100 value 83.603839
final value 83.603839
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 126.526981
iter 10 value 94.190187
iter 20 value 87.183749
iter 30 value 86.441758
iter 40 value 85.447521
iter 50 value 85.207673
iter 60 value 84.996348
iter 70 value 84.432913
iter 80 value 83.551378
iter 90 value 83.122362
iter 100 value 82.715995
final value 82.715995
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.260865
iter 10 value 94.257300
iter 20 value 87.514923
iter 30 value 86.209609
iter 40 value 85.023562
iter 50 value 83.127303
iter 60 value 82.857567
iter 70 value 82.576632
iter 80 value 82.529300
iter 90 value 82.496913
iter 100 value 82.479063
final value 82.479063
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.129422
iter 10 value 96.168633
iter 20 value 90.907092
iter 30 value 87.014069
iter 40 value 86.544249
iter 50 value 85.167154
iter 60 value 84.871831
iter 70 value 84.113314
iter 80 value 83.103647
iter 90 value 82.838063
iter 100 value 82.336738
final value 82.336738
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 113.202046
iter 10 value 94.657395
iter 20 value 94.393884
iter 30 value 88.961351
iter 40 value 86.676987
iter 50 value 86.044611
iter 60 value 85.064013
iter 70 value 84.746588
iter 80 value 83.715932
iter 90 value 82.671702
iter 100 value 82.329430
final value 82.329430
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.632543
final value 94.485807
converged
Fitting Repeat 2
# weights: 103
initial value 95.669968
final value 94.485990
converged
Fitting Repeat 3
# weights: 103
initial value 94.871511
final value 94.486052
converged
Fitting Repeat 4
# weights: 103
initial value 95.849762
final value 94.485978
converged
Fitting Repeat 5
# weights: 103
initial value 94.551378
final value 94.485716
converged
Fitting Repeat 1
# weights: 305
initial value 104.917308
iter 10 value 94.472348
iter 20 value 94.468103
final value 94.467414
converged
Fitting Repeat 2
# weights: 305
initial value 111.329756
iter 10 value 94.270307
iter 20 value 94.266457
iter 30 value 93.070848
iter 40 value 86.338280
iter 50 value 86.181790
iter 60 value 86.178950
iter 70 value 85.525992
final value 85.523948
converged
Fitting Repeat 3
# weights: 305
initial value 102.165747
iter 10 value 94.472734
final value 94.469709
converged
Fitting Repeat 4
# weights: 305
initial value 100.987056
iter 10 value 94.489303
iter 20 value 94.314118
iter 30 value 87.422743
iter 40 value 87.320229
iter 50 value 86.643562
iter 60 value 86.107550
iter 70 value 86.106893
final value 86.105726
converged
Fitting Repeat 5
# weights: 305
initial value 98.406425
iter 10 value 94.485722
iter 20 value 90.129636
iter 30 value 86.282869
iter 40 value 86.266871
iter 50 value 85.323911
iter 60 value 85.213108
final value 85.211734
converged
Fitting Repeat 1
# weights: 507
initial value 118.919955
iter 10 value 94.492568
iter 20 value 94.479696
final value 94.467485
converged
Fitting Repeat 2
# weights: 507
initial value 103.909297
iter 10 value 94.491594
iter 20 value 94.467694
iter 30 value 92.421739
iter 40 value 92.307795
iter 50 value 92.108175
iter 60 value 92.105468
iter 70 value 92.105158
final value 92.105066
converged
Fitting Repeat 3
# weights: 507
initial value 114.105831
iter 10 value 94.488953
iter 20 value 93.865175
iter 30 value 93.852322
final value 93.851283
converged
Fitting Repeat 4
# weights: 507
initial value 105.875755
iter 10 value 94.475596
iter 20 value 94.467741
final value 94.467689
converged
Fitting Repeat 5
# weights: 507
initial value 101.928454
iter 10 value 91.178021
iter 20 value 90.752781
iter 30 value 90.475887
iter 40 value 90.443008
iter 50 value 88.475414
iter 60 value 87.539408
iter 70 value 86.438006
iter 80 value 86.432359
iter 90 value 86.426055
iter 100 value 86.338714
final value 86.338714
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.113155
final value 94.052911
converged
Fitting Repeat 2
# weights: 103
initial value 95.190483
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 98.622078
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 97.328389
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 96.371449
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 98.751902
final value 92.701657
converged
Fitting Repeat 2
# weights: 305
initial value 102.941875
final value 93.473743
converged
Fitting Repeat 3
# weights: 305
initial value 98.469470
iter 10 value 93.994006
iter 10 value 93.994006
iter 10 value 93.994006
final value 93.994006
converged
Fitting Repeat 4
# weights: 305
initial value 103.392713
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 102.822540
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 95.184319
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 98.049432
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 109.571079
iter 10 value 94.052448
iter 10 value 94.052448
iter 10 value 94.052448
final value 94.052448
converged
Fitting Repeat 4
# weights: 507
initial value 100.656316
iter 10 value 88.820249
iter 20 value 86.563862
final value 86.563710
converged
Fitting Repeat 5
# weights: 507
initial value 104.008505
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 96.509637
iter 10 value 94.065760
iter 20 value 92.271372
iter 30 value 89.739046
iter 40 value 87.100732
iter 50 value 85.494474
iter 60 value 85.135428
iter 70 value 85.073108
iter 80 value 85.062017
final value 85.061926
converged
Fitting Repeat 2
# weights: 103
initial value 99.359244
iter 10 value 94.287526
iter 20 value 93.998195
iter 30 value 92.409765
iter 40 value 91.154493
iter 50 value 91.029095
iter 60 value 89.878248
iter 70 value 86.187563
iter 80 value 84.944521
iter 90 value 84.420421
iter 100 value 83.670232
final value 83.670232
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 108.741412
iter 10 value 93.653748
iter 20 value 92.352760
iter 30 value 84.801916
iter 40 value 84.445549
iter 50 value 84.003997
iter 60 value 82.974880
iter 70 value 82.062866
iter 80 value 81.333379
iter 90 value 81.210742
iter 100 value 81.210535
final value 81.210535
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.112835
iter 10 value 94.003512
iter 20 value 90.620505
iter 30 value 88.120355
iter 40 value 87.755890
iter 50 value 87.173779
iter 60 value 85.739079
iter 70 value 85.491915
iter 80 value 85.181728
iter 90 value 85.069491
iter 100 value 85.061959
final value 85.061959
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 102.536404
iter 10 value 94.045965
iter 20 value 93.557950
iter 30 value 92.425994
iter 40 value 86.627194
iter 50 value 83.075647
iter 60 value 82.720538
iter 70 value 82.518742
iter 80 value 82.454063
iter 90 value 82.369307
iter 100 value 82.095782
final value 82.095782
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 101.683394
iter 10 value 94.085380
iter 20 value 93.986233
iter 30 value 89.644604
iter 40 value 88.807751
iter 50 value 86.068102
iter 60 value 85.132582
iter 70 value 84.011199
iter 80 value 83.189342
iter 90 value 82.769572
iter 100 value 82.686424
final value 82.686424
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.071612
iter 10 value 94.038069
iter 20 value 93.563223
iter 30 value 93.537389
iter 40 value 92.201065
iter 50 value 86.449419
iter 60 value 85.813814
iter 70 value 85.083278
iter 80 value 83.776263
iter 90 value 82.928390
iter 100 value 80.574264
final value 80.574264
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.042179
iter 10 value 94.043879
iter 20 value 91.397492
iter 30 value 87.954420
iter 40 value 85.595101
iter 50 value 85.462533
iter 60 value 85.109786
iter 70 value 84.440652
iter 80 value 83.278515
iter 90 value 82.953350
iter 100 value 82.592482
final value 82.592482
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.720622
iter 10 value 93.620575
iter 20 value 92.780473
iter 30 value 85.195150
iter 40 value 84.061824
iter 50 value 82.745167
iter 60 value 81.993452
iter 70 value 80.944937
iter 80 value 80.509223
iter 90 value 80.467714
iter 100 value 80.427215
final value 80.427215
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.399444
iter 10 value 94.450700
iter 20 value 91.424737
iter 30 value 90.865815
iter 40 value 90.630347
iter 50 value 88.937368
iter 60 value 84.533047
iter 70 value 83.406588
iter 80 value 81.231523
iter 90 value 80.465139
iter 100 value 80.187617
final value 80.187617
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.608192
iter 10 value 93.962315
iter 20 value 93.435453
iter 30 value 93.412175
iter 40 value 92.259046
iter 50 value 88.254695
iter 60 value 85.083219
iter 70 value 84.614538
iter 80 value 84.376775
iter 90 value 83.885092
iter 100 value 82.275836
final value 82.275836
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 115.787650
iter 10 value 91.765165
iter 20 value 85.651341
iter 30 value 85.423674
iter 40 value 84.664714
iter 50 value 83.278047
iter 60 value 83.049788
iter 70 value 82.763215
iter 80 value 82.473329
iter 90 value 81.556403
iter 100 value 81.151866
final value 81.151866
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.500408
iter 10 value 94.243864
iter 20 value 90.173262
iter 30 value 85.506008
iter 40 value 85.069718
iter 50 value 84.150692
iter 60 value 82.094383
iter 70 value 81.104205
iter 80 value 80.969253
iter 90 value 80.699418
iter 100 value 80.463073
final value 80.463073
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.067302
iter 10 value 94.241549
iter 20 value 93.365709
iter 30 value 86.816193
iter 40 value 85.533483
iter 50 value 85.238825
iter 60 value 83.857391
iter 70 value 81.399734
iter 80 value 80.514472
iter 90 value 80.056494
iter 100 value 79.914480
final value 79.914480
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 120.017351
iter 10 value 93.588980
iter 20 value 91.369891
iter 30 value 86.560426
iter 40 value 86.362997
iter 50 value 85.416930
iter 60 value 85.118959
iter 70 value 82.900469
iter 80 value 82.414556
iter 90 value 81.767104
iter 100 value 81.340226
final value 81.340226
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.849065
final value 94.054456
converged
Fitting Repeat 2
# weights: 103
initial value 103.280216
iter 10 value 93.283744
iter 20 value 93.276115
iter 30 value 93.275259
final value 93.274475
converged
Fitting Repeat 3
# weights: 103
initial value 103.494922
final value 94.054377
converged
Fitting Repeat 4
# weights: 103
initial value 100.955890
iter 10 value 93.330487
iter 20 value 93.328944
iter 30 value 93.328544
iter 40 value 93.286853
iter 50 value 92.205582
iter 60 value 86.107304
iter 70 value 86.101366
iter 80 value 86.093318
iter 90 value 86.092350
iter 100 value 86.088982
final value 86.088982
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 95.330831
final value 94.054682
converged
Fitting Repeat 1
# weights: 305
initial value 108.742484
iter 10 value 94.057848
iter 20 value 94.014902
final value 93.328683
converged
Fitting Repeat 2
# weights: 305
initial value 103.746287
iter 10 value 94.057661
iter 20 value 94.052942
final value 94.052927
converged
Fitting Repeat 3
# weights: 305
initial value 101.132826
iter 10 value 93.333585
iter 20 value 93.331540
iter 30 value 93.328914
iter 40 value 89.805910
iter 50 value 88.078927
iter 60 value 88.067621
iter 70 value 87.207465
iter 80 value 86.340017
iter 90 value 86.159742
iter 100 value 85.953337
final value 85.953337
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.760974
iter 10 value 94.011949
iter 20 value 93.960885
iter 30 value 93.958930
iter 40 value 93.874180
iter 50 value 93.871731
iter 60 value 93.354189
iter 70 value 93.291642
iter 80 value 92.098433
iter 90 value 92.093808
final value 92.093686
converged
Fitting Repeat 5
# weights: 305
initial value 98.824543
iter 10 value 94.057752
final value 94.052932
converged
Fitting Repeat 1
# weights: 507
initial value 96.554339
iter 10 value 93.883833
iter 20 value 93.197985
iter 30 value 93.189059
iter 40 value 93.011184
iter 50 value 92.827498
iter 60 value 92.793767
iter 70 value 92.792551
iter 80 value 92.792135
iter 90 value 92.790203
iter 100 value 92.790124
final value 92.790124
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 100.242533
iter 10 value 93.338472
iter 20 value 93.335290
iter 30 value 93.328664
final value 93.325275
converged
Fitting Repeat 3
# weights: 507
initial value 107.776103
iter 10 value 93.337530
iter 20 value 93.335675
iter 30 value 87.636013
iter 40 value 84.404407
iter 50 value 84.134792
iter 60 value 84.028354
iter 70 value 84.027525
iter 80 value 83.015172
iter 90 value 81.020032
iter 100 value 80.340204
final value 80.340204
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 96.471650
iter 10 value 94.060485
iter 20 value 94.057110
iter 30 value 93.910683
iter 40 value 93.410950
iter 50 value 93.294140
final value 93.274867
converged
Fitting Repeat 5
# weights: 507
initial value 102.224880
iter 10 value 93.438951
iter 20 value 93.337592
iter 30 value 93.330651
iter 40 value 93.330433
iter 50 value 93.286900
iter 60 value 93.269789
final value 93.269787
converged
Fitting Repeat 1
# weights: 103
initial value 104.109440
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.303579
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 106.431234
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 102.417432
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.751340
iter 10 value 85.842660
iter 20 value 85.840152
final value 85.840146
converged
Fitting Repeat 1
# weights: 305
initial value 101.853395
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 100.136442
final value 94.088889
converged
Fitting Repeat 3
# weights: 305
initial value 95.110085
iter 10 value 94.469963
final value 94.466832
converged
Fitting Repeat 4
# weights: 305
initial value 101.312440
iter 10 value 88.419573
iter 20 value 88.251664
iter 30 value 88.250780
final value 88.250778
converged
Fitting Repeat 5
# weights: 305
initial value 100.666058
iter 10 value 94.448481
iter 20 value 94.433727
final value 94.381461
converged
Fitting Repeat 1
# weights: 507
initial value 97.572033
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 107.612513
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 103.311498
final value 94.482478
converged
Fitting Repeat 4
# weights: 507
initial value 99.995994
iter 10 value 94.430300
final value 94.430236
converged
Fitting Repeat 5
# weights: 507
initial value 111.720056
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 98.951566
iter 10 value 94.484449
iter 20 value 88.232764
iter 30 value 86.011868
iter 40 value 85.749816
iter 50 value 85.696021
iter 60 value 85.610548
iter 70 value 85.247980
iter 80 value 85.174479
iter 90 value 85.158805
final value 85.157743
converged
Fitting Repeat 2
# weights: 103
initial value 99.377328
iter 10 value 94.518068
iter 20 value 94.486430
iter 30 value 92.570462
iter 40 value 90.774827
iter 50 value 84.494612
iter 60 value 84.134314
iter 70 value 84.085477
iter 80 value 83.792794
iter 90 value 83.380015
iter 100 value 83.369076
final value 83.369076
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.742972
iter 10 value 94.470391
iter 20 value 93.216780
iter 30 value 93.123147
iter 40 value 92.828014
iter 50 value 92.777472
iter 60 value 91.572263
iter 70 value 91.321078
iter 80 value 91.309679
final value 91.309676
converged
Fitting Repeat 4
# weights: 103
initial value 101.341855
iter 10 value 94.389208
iter 20 value 89.307990
iter 30 value 87.474617
iter 40 value 86.056796
iter 50 value 85.924515
iter 60 value 85.763334
iter 70 value 85.680125
iter 80 value 85.652862
iter 80 value 85.652862
iter 80 value 85.652862
final value 85.652862
converged
Fitting Repeat 5
# weights: 103
initial value 109.683917
iter 10 value 94.311779
iter 20 value 88.482677
iter 30 value 85.349777
iter 40 value 84.744114
iter 50 value 84.141462
iter 60 value 83.637838
iter 70 value 83.504911
iter 80 value 83.451365
iter 90 value 83.392216
iter 100 value 83.367835
final value 83.367835
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 110.261583
iter 10 value 94.415819
iter 20 value 92.151172
iter 30 value 89.981287
iter 40 value 85.934530
iter 50 value 84.543349
iter 60 value 84.416443
iter 70 value 84.296560
iter 80 value 83.240516
iter 90 value 82.665545
iter 100 value 82.575804
final value 82.575804
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.144731
iter 10 value 95.895926
iter 20 value 89.897208
iter 30 value 85.993392
iter 40 value 85.039996
iter 50 value 84.096921
iter 60 value 83.159403
iter 70 value 82.808386
iter 80 value 82.749182
iter 90 value 82.685216
iter 100 value 82.624726
final value 82.624726
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 120.544648
iter 10 value 95.405060
iter 20 value 94.362138
iter 30 value 87.119578
iter 40 value 86.635206
iter 50 value 85.790319
iter 60 value 85.483091
iter 70 value 85.226524
iter 80 value 83.743977
iter 90 value 83.290559
iter 100 value 82.988988
final value 82.988988
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.597397
iter 10 value 88.364174
iter 20 value 86.556720
iter 30 value 85.748923
iter 40 value 85.469284
iter 50 value 85.418310
iter 60 value 85.366789
iter 70 value 85.120348
iter 80 value 83.554492
iter 90 value 82.850486
iter 100 value 82.347261
final value 82.347261
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.561296
iter 10 value 94.625784
iter 20 value 92.044821
iter 30 value 87.960847
iter 40 value 86.820992
iter 50 value 85.624833
iter 60 value 83.780347
iter 70 value 83.494213
iter 80 value 83.386127
iter 90 value 83.181269
iter 100 value 82.992845
final value 82.992845
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.260024
iter 10 value 90.424206
iter 20 value 85.848314
iter 30 value 83.325686
iter 40 value 83.143364
iter 50 value 82.465179
iter 60 value 82.444961
iter 70 value 82.407811
iter 80 value 82.388887
iter 90 value 82.375870
iter 100 value 82.298368
final value 82.298368
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 140.595566
iter 10 value 95.249281
iter 20 value 93.712427
iter 30 value 92.532615
iter 40 value 87.147709
iter 50 value 84.047156
iter 60 value 83.111330
iter 70 value 82.878886
iter 80 value 82.546462
iter 90 value 82.331172
iter 100 value 82.272262
final value 82.272262
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.588771
iter 10 value 93.862320
iter 20 value 87.424545
iter 30 value 83.454960
iter 40 value 82.489686
iter 50 value 82.341604
iter 60 value 82.143710
iter 70 value 82.121860
iter 80 value 82.112638
iter 90 value 82.028833
iter 100 value 81.908112
final value 81.908112
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.733690
iter 10 value 94.832913
iter 20 value 86.364128
iter 30 value 85.870692
iter 40 value 85.387456
iter 50 value 84.595732
iter 60 value 84.130696
iter 70 value 83.466324
iter 80 value 83.026457
iter 90 value 82.559295
iter 100 value 82.480551
final value 82.480551
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.052727
iter 10 value 94.602594
iter 20 value 89.702355
iter 30 value 87.740681
iter 40 value 85.693847
iter 50 value 85.241875
iter 60 value 83.663281
iter 70 value 82.967859
iter 80 value 82.768254
iter 90 value 82.625410
iter 100 value 82.490060
final value 82.490060
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.373698
final value 94.485749
converged
Fitting Repeat 2
# weights: 103
initial value 100.131113
final value 94.486081
converged
Fitting Repeat 3
# weights: 103
initial value 96.236120
final value 94.485888
converged
Fitting Repeat 4
# weights: 103
initial value 95.347922
final value 94.485544
converged
Fitting Repeat 5
# weights: 103
initial value 98.791336
final value 94.486020
converged
Fitting Repeat 1
# weights: 305
initial value 104.030330
iter 10 value 94.489531
iter 20 value 94.484342
iter 30 value 94.325853
iter 40 value 94.203670
iter 50 value 91.311465
iter 60 value 87.533744
final value 87.533661
converged
Fitting Repeat 2
# weights: 305
initial value 100.188295
iter 10 value 94.359466
iter 20 value 94.354517
iter 30 value 92.376904
iter 40 value 85.327046
iter 50 value 83.269863
iter 60 value 82.903186
iter 70 value 82.620913
iter 80 value 82.605322
iter 90 value 82.583645
iter 100 value 82.557847
final value 82.557847
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 96.271461
iter 10 value 94.489095
iter 20 value 94.217763
iter 30 value 92.224324
iter 40 value 91.290732
final value 91.278460
converged
Fitting Repeat 4
# weights: 305
initial value 102.636748
iter 10 value 94.489235
iter 20 value 94.482744
iter 30 value 93.925707
iter 40 value 87.979091
iter 50 value 87.966376
iter 60 value 85.836969
iter 70 value 84.826501
iter 80 value 84.813494
iter 90 value 84.547800
iter 100 value 84.533028
final value 84.533028
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 96.369596
iter 10 value 94.489124
iter 20 value 94.484272
iter 30 value 86.914448
iter 40 value 86.385427
iter 50 value 86.335948
iter 60 value 86.331998
final value 86.331783
converged
Fitting Repeat 1
# weights: 507
initial value 98.205030
iter 10 value 94.490743
iter 20 value 94.482613
iter 30 value 88.937083
iter 40 value 87.060467
iter 50 value 86.244522
iter 60 value 84.284227
iter 70 value 84.278753
final value 84.278129
converged
Fitting Repeat 2
# weights: 507
initial value 100.563257
iter 10 value 94.492210
iter 20 value 94.464397
iter 30 value 87.158525
iter 40 value 83.759943
iter 50 value 82.135099
iter 60 value 81.542605
iter 70 value 81.464459
iter 80 value 81.120475
iter 90 value 81.014989
iter 100 value 80.970075
final value 80.970075
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 96.817665
iter 10 value 94.492496
iter 20 value 94.484727
iter 30 value 92.216337
iter 40 value 87.865589
iter 50 value 87.824273
iter 60 value 87.785584
iter 70 value 87.734311
iter 80 value 85.911124
iter 90 value 85.484916
iter 100 value 85.046150
final value 85.046150
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 97.963277
iter 10 value 94.491240
iter 20 value 88.105021
iter 30 value 87.518862
iter 40 value 86.489639
iter 50 value 86.467114
iter 60 value 86.467002
iter 70 value 86.459107
iter 80 value 85.408825
iter 90 value 85.379597
iter 100 value 85.379469
final value 85.379469
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.326475
iter 10 value 94.492639
iter 20 value 94.461565
iter 30 value 92.588774
iter 40 value 92.588179
iter 40 value 92.588178
iter 40 value 92.588178
final value 92.588178
converged
Fitting Repeat 1
# weights: 103
initial value 102.424510
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.625474
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 95.066511
final value 94.484207
converged
Fitting Repeat 4
# weights: 103
initial value 108.279417
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.033048
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 101.567234
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.956121
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 94.139296
iter 10 value 90.599074
iter 20 value 90.433077
iter 30 value 90.369813
final value 90.369812
converged
Fitting Repeat 4
# weights: 305
initial value 101.140097
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 102.964706
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 97.394927
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 102.235258
iter 10 value 94.482954
iter 10 value 94.482954
iter 10 value 94.482954
final value 94.482954
converged
Fitting Repeat 3
# weights: 507
initial value 98.079515
iter 10 value 85.126779
iter 20 value 85.097494
iter 30 value 84.751155
iter 40 value 84.569742
iter 50 value 84.364424
final value 84.351004
converged
Fitting Repeat 4
# weights: 507
initial value 103.440546
iter 10 value 94.186667
iter 10 value 94.186667
iter 10 value 94.186667
final value 94.186667
converged
Fitting Repeat 5
# weights: 507
initial value 97.955678
iter 10 value 87.196092
iter 20 value 86.464909
final value 86.464077
converged
Fitting Repeat 1
# weights: 103
initial value 102.761336
iter 10 value 94.416782
iter 20 value 93.208071
iter 30 value 84.975263
iter 40 value 82.886892
iter 50 value 82.282621
iter 60 value 82.259569
iter 70 value 81.415935
iter 80 value 80.000697
iter 90 value 79.628565
iter 100 value 79.595020
final value 79.595020
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 101.135638
iter 10 value 94.502660
iter 20 value 89.168783
iter 30 value 87.886271
iter 40 value 86.649604
iter 50 value 84.424330
iter 60 value 84.261481
iter 70 value 83.167990
iter 80 value 80.363160
iter 90 value 80.251523
iter 100 value 79.931474
final value 79.931474
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.941144
iter 10 value 94.488221
iter 20 value 94.007746
iter 30 value 92.199380
iter 40 value 85.415002
iter 50 value 84.394602
iter 60 value 84.269648
iter 70 value 80.181102
iter 80 value 79.600213
iter 90 value 79.571640
final value 79.557711
converged
Fitting Repeat 4
# weights: 103
initial value 98.834025
iter 10 value 94.333726
iter 20 value 94.329063
iter 30 value 92.865813
iter 40 value 85.779477
iter 50 value 82.656090
iter 60 value 82.192373
iter 70 value 81.523370
iter 80 value 81.239654
iter 90 value 81.096470
iter 100 value 80.569711
final value 80.569711
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 104.754691
iter 10 value 94.491173
iter 20 value 86.824872
iter 30 value 86.437630
iter 40 value 86.024819
iter 50 value 83.726850
iter 60 value 82.366312
iter 70 value 82.215697
iter 80 value 82.205801
iter 90 value 82.186816
final value 82.185220
converged
Fitting Repeat 1
# weights: 305
initial value 104.777809
iter 10 value 94.572539
iter 20 value 87.227500
iter 30 value 83.510542
iter 40 value 81.691396
iter 50 value 80.254122
iter 60 value 79.930277
iter 70 value 79.805490
iter 80 value 79.782532
iter 90 value 79.711302
iter 100 value 79.306486
final value 79.306486
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.458750
iter 10 value 94.509279
iter 20 value 94.160214
iter 30 value 93.868849
iter 40 value 93.136187
iter 50 value 87.492877
iter 60 value 86.651395
iter 70 value 85.498708
iter 80 value 81.059654
iter 90 value 79.349502
iter 100 value 78.942130
final value 78.942130
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 98.436241
iter 10 value 87.158287
iter 20 value 82.739676
iter 30 value 80.311978
iter 40 value 78.917279
iter 50 value 78.377693
iter 60 value 78.233472
iter 70 value 77.979034
iter 80 value 77.891187
iter 90 value 77.878280
iter 100 value 77.876153
final value 77.876153
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.413501
iter 10 value 94.121832
iter 20 value 92.868702
iter 30 value 86.643682
iter 40 value 85.821973
iter 50 value 85.548861
iter 60 value 82.719047
iter 70 value 82.234539
iter 80 value 82.097482
iter 90 value 81.167157
iter 100 value 80.217827
final value 80.217827
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 112.512072
iter 10 value 94.420658
iter 20 value 85.972375
iter 30 value 84.571015
iter 40 value 84.373561
iter 50 value 83.087279
iter 60 value 80.323719
iter 70 value 79.451249
iter 80 value 79.192933
iter 90 value 78.935521
iter 100 value 78.544450
final value 78.544450
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.220810
iter 10 value 95.602868
iter 20 value 94.037011
iter 30 value 93.899651
iter 40 value 92.922272
iter 50 value 87.261475
iter 60 value 83.177224
iter 70 value 80.181283
iter 80 value 79.245940
iter 90 value 78.677437
iter 100 value 78.438647
final value 78.438647
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 122.105076
iter 10 value 94.506052
iter 20 value 94.326293
iter 30 value 90.067328
iter 40 value 87.664965
iter 50 value 85.199881
iter 60 value 81.171367
iter 70 value 80.039052
iter 80 value 79.304909
iter 90 value 78.741922
iter 100 value 78.587395
final value 78.587395
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 118.584677
iter 10 value 94.365417
iter 20 value 89.329294
iter 30 value 86.161007
iter 40 value 84.873994
iter 50 value 84.652829
iter 60 value 82.135963
iter 70 value 81.588233
iter 80 value 79.898891
iter 90 value 79.210983
iter 100 value 78.886845
final value 78.886845
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 128.793936
iter 10 value 94.954010
iter 20 value 94.258950
iter 30 value 88.008533
iter 40 value 86.859279
iter 50 value 86.105945
iter 60 value 81.433345
iter 70 value 80.233032
iter 80 value 78.661442
iter 90 value 78.020939
iter 100 value 77.826901
final value 77.826901
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.605207
iter 10 value 94.843189
iter 20 value 94.095219
iter 30 value 93.472627
iter 40 value 87.566014
iter 50 value 84.417371
iter 60 value 79.737938
iter 70 value 79.373874
iter 80 value 79.062951
iter 90 value 78.505758
iter 100 value 78.274648
final value 78.274648
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 106.658725
iter 10 value 94.485907
iter 10 value 94.485907
iter 10 value 94.485906
final value 94.485906
converged
Fitting Repeat 2
# weights: 103
initial value 96.696426
final value 94.485828
converged
Fitting Repeat 3
# weights: 103
initial value 96.280425
iter 10 value 88.843260
iter 20 value 85.193227
iter 30 value 85.146585
iter 40 value 85.142815
iter 50 value 85.121714
iter 60 value 84.844654
iter 70 value 84.770416
iter 80 value 84.767622
iter 90 value 84.763648
final value 84.762930
converged
Fitting Repeat 4
# weights: 103
initial value 101.524485
iter 10 value 94.277111
iter 20 value 94.186035
iter 30 value 92.163042
iter 40 value 92.162230
final value 92.161873
converged
Fitting Repeat 5
# weights: 103
initial value 97.758137
final value 94.277065
converged
Fitting Repeat 1
# weights: 305
initial value 110.074911
iter 10 value 94.489216
iter 20 value 94.478107
iter 30 value 88.760359
iter 40 value 86.202862
iter 50 value 84.906791
iter 60 value 84.876201
iter 70 value 84.868930
iter 80 value 84.786293
iter 90 value 82.885295
iter 100 value 82.767151
final value 82.767151
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.576425
iter 10 value 93.894200
iter 20 value 93.891903
iter 30 value 89.254784
iter 40 value 88.801202
final value 88.793845
converged
Fitting Repeat 3
# weights: 305
initial value 95.752178
iter 10 value 94.489062
iter 20 value 94.351142
iter 30 value 94.240700
iter 40 value 92.794620
iter 50 value 91.985418
iter 60 value 90.832449
iter 70 value 90.675210
iter 70 value 90.675209
iter 70 value 90.675209
final value 90.675209
converged
Fitting Repeat 4
# weights: 305
initial value 99.508141
iter 10 value 94.488983
iter 20 value 94.484212
iter 30 value 93.874656
iter 40 value 93.739941
final value 93.739538
converged
Fitting Repeat 5
# weights: 305
initial value 108.310819
iter 10 value 94.170270
iter 20 value 93.795214
iter 30 value 92.902389
iter 40 value 92.874401
iter 50 value 92.871492
iter 60 value 92.871285
iter 70 value 92.871027
final value 92.870925
converged
Fitting Repeat 1
# weights: 507
initial value 115.804455
iter 10 value 94.486546
iter 20 value 94.366174
iter 30 value 84.660245
iter 40 value 82.647288
iter 50 value 82.462224
iter 60 value 82.431950
final value 82.430212
converged
Fitting Repeat 2
# weights: 507
initial value 116.703133
iter 10 value 94.331739
iter 20 value 94.328018
iter 30 value 83.958046
iter 40 value 83.580524
iter 50 value 83.223123
iter 60 value 83.204980
iter 70 value 82.397717
iter 80 value 81.045960
iter 90 value 80.990790
iter 100 value 80.990483
final value 80.990483
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.207558
iter 10 value 93.880332
iter 20 value 93.875148
iter 30 value 93.772632
iter 40 value 93.754070
iter 50 value 93.753505
iter 60 value 93.751857
iter 70 value 93.737853
iter 80 value 93.221682
iter 90 value 84.521155
iter 100 value 83.404673
final value 83.404673
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.351851
iter 10 value 93.823136
iter 20 value 93.780887
iter 30 value 88.147593
iter 40 value 86.874434
iter 50 value 86.832676
iter 60 value 86.729309
iter 70 value 86.619874
iter 80 value 86.540554
iter 90 value 86.372798
iter 100 value 86.332727
final value 86.332727
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 116.301910
iter 10 value 94.492978
iter 20 value 94.452033
iter 30 value 90.789806
iter 40 value 87.341612
iter 50 value 87.299721
iter 60 value 85.438571
iter 70 value 85.305729
iter 80 value 85.305027
final value 85.305026
converged
Fitting Repeat 1
# weights: 103
initial value 99.938309
final value 94.052878
converged
Fitting Repeat 2
# weights: 103
initial value 95.752369
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 99.735077
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 96.233273
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 97.984703
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.280150
iter 10 value 89.845074
iter 20 value 81.909958
iter 30 value 79.494765
iter 40 value 79.147633
iter 50 value 79.117885
iter 60 value 78.194895
final value 78.194863
converged
Fitting Repeat 2
# weights: 305
initial value 104.056820
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 109.918678
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 101.958934
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 97.662584
final value 94.032967
converged
Fitting Repeat 1
# weights: 507
initial value 113.659926
iter 10 value 94.001767
iter 20 value 93.674745
iter 30 value 93.578708
final value 93.578654
converged
Fitting Repeat 2
# weights: 507
initial value 101.978537
iter 10 value 91.253389
iter 20 value 89.336393
iter 30 value 89.335036
iter 40 value 89.334969
final value 89.334957
converged
Fitting Repeat 3
# weights: 507
initial value 129.611112
final value 94.032967
converged
Fitting Repeat 4
# weights: 507
initial value 95.933107
iter 10 value 91.077750
iter 20 value 85.867984
iter 30 value 85.858909
final value 85.858892
converged
Fitting Repeat 5
# weights: 507
initial value 120.772863
iter 10 value 93.426574
iter 10 value 93.426573
iter 10 value 93.426573
final value 93.426573
converged
Fitting Repeat 1
# weights: 103
initial value 100.296953
iter 10 value 94.027865
iter 20 value 93.439493
iter 30 value 93.178420
iter 40 value 92.117679
iter 50 value 83.474436
iter 60 value 80.128963
iter 70 value 80.034003
iter 80 value 79.969608
iter 90 value 79.505904
iter 100 value 78.454428
final value 78.454428
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.612163
iter 10 value 94.058144
iter 20 value 93.183675
iter 30 value 86.067505
iter 40 value 85.542100
iter 50 value 85.243915
iter 60 value 84.671948
iter 70 value 80.282806
iter 80 value 80.275282
final value 80.275146
converged
Fitting Repeat 3
# weights: 103
initial value 98.397497
iter 10 value 86.499427
iter 20 value 82.025871
iter 30 value 81.253344
iter 40 value 79.966557
iter 50 value 79.618518
iter 60 value 79.153803
iter 70 value 79.110628
final value 79.110625
converged
Fitting Repeat 4
# weights: 103
initial value 105.667161
iter 10 value 93.924208
iter 20 value 81.478009
iter 30 value 80.485095
iter 40 value 79.616821
iter 50 value 79.329321
final value 79.329224
converged
Fitting Repeat 5
# weights: 103
initial value 99.665670
iter 10 value 94.005936
iter 20 value 83.032157
iter 30 value 80.853857
iter 40 value 80.257170
iter 50 value 79.558123
iter 60 value 79.110642
final value 79.110625
converged
Fitting Repeat 1
# weights: 305
initial value 120.239342
iter 10 value 90.729597
iter 20 value 81.588306
iter 30 value 79.441110
iter 40 value 78.315823
iter 50 value 77.442877
iter 60 value 76.816347
iter 70 value 76.638314
iter 80 value 76.290631
iter 90 value 75.984847
iter 100 value 75.781126
final value 75.781126
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.520347
iter 10 value 94.709907
iter 20 value 85.825618
iter 30 value 85.120928
iter 40 value 84.859088
iter 50 value 79.620677
iter 60 value 77.165948
iter 70 value 76.470324
iter 80 value 76.315073
iter 90 value 76.221928
iter 100 value 75.812556
final value 75.812556
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.187405
iter 10 value 93.929113
iter 20 value 86.043884
iter 30 value 83.999975
iter 40 value 79.394207
iter 50 value 78.616569
iter 60 value 78.347612
iter 70 value 76.942797
iter 80 value 76.185397
iter 90 value 76.006768
iter 100 value 75.873035
final value 75.873035
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 117.612519
iter 10 value 93.033170
iter 20 value 81.259033
iter 30 value 80.840633
iter 40 value 80.555760
iter 50 value 80.273469
iter 60 value 79.227579
iter 70 value 79.125463
iter 80 value 78.564117
iter 90 value 77.672885
iter 100 value 77.477441
final value 77.477441
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 117.626516
iter 10 value 92.824476
iter 20 value 89.680851
iter 30 value 88.803347
iter 40 value 86.309573
iter 50 value 80.752951
iter 60 value 80.506130
iter 70 value 79.544240
iter 80 value 78.169031
iter 90 value 77.941585
iter 100 value 76.972301
final value 76.972301
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 116.908227
iter 10 value 94.092712
iter 20 value 86.238199
iter 30 value 85.407499
iter 40 value 85.198765
iter 50 value 81.085791
iter 60 value 78.307182
iter 70 value 76.970632
iter 80 value 76.244384
iter 90 value 76.209788
iter 100 value 76.169001
final value 76.169001
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 122.808660
iter 10 value 94.354078
iter 20 value 83.672432
iter 30 value 82.048960
iter 40 value 81.317795
iter 50 value 80.820529
iter 60 value 79.605630
iter 70 value 79.234954
iter 80 value 79.077327
iter 90 value 78.146716
iter 100 value 76.617517
final value 76.617517
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 112.259616
iter 10 value 93.854964
iter 20 value 91.316223
iter 30 value 89.994329
iter 40 value 83.374523
iter 50 value 82.212310
iter 60 value 80.296789
iter 70 value 77.861713
iter 80 value 77.644267
iter 90 value 77.425293
iter 100 value 77.244965
final value 77.244965
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.383151
iter 10 value 93.969010
iter 20 value 86.944458
iter 30 value 85.381305
iter 40 value 84.255337
iter 50 value 80.602817
iter 60 value 78.408748
iter 70 value 77.269175
iter 80 value 76.506533
iter 90 value 75.929822
iter 100 value 75.524079
final value 75.524079
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.390541
iter 10 value 95.632821
iter 20 value 83.326979
iter 30 value 81.666801
iter 40 value 80.369271
iter 50 value 78.272274
iter 60 value 78.036650
iter 70 value 77.516205
iter 80 value 77.428675
iter 90 value 77.321149
iter 100 value 77.139411
final value 77.139411
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.587793
final value 94.054535
converged
Fitting Repeat 2
# weights: 103
initial value 101.288962
final value 94.054583
converged
Fitting Repeat 3
# weights: 103
initial value 110.450071
final value 94.034696
converged
Fitting Repeat 4
# weights: 103
initial value 101.631827
final value 94.054554
converged
Fitting Repeat 5
# weights: 103
initial value 103.093169
final value 94.054885
converged
Fitting Repeat 1
# weights: 305
initial value 104.899268
iter 10 value 94.057953
iter 20 value 94.044716
iter 30 value 84.378428
iter 40 value 82.872682
iter 50 value 80.549606
final value 80.546822
converged
Fitting Repeat 2
# weights: 305
initial value 98.499267
iter 10 value 94.000020
iter 20 value 93.894900
iter 30 value 93.894011
iter 30 value 93.894010
iter 30 value 93.894010
final value 93.894010
converged
Fitting Repeat 3
# weights: 305
initial value 99.371241
iter 10 value 94.037176
iter 20 value 93.938536
iter 30 value 92.103175
iter 40 value 91.953605
iter 50 value 91.953181
iter 60 value 80.390917
iter 70 value 78.771598
iter 80 value 78.651850
iter 90 value 78.651672
final value 78.651609
converged
Fitting Repeat 4
# weights: 305
initial value 98.605246
iter 10 value 91.164211
iter 20 value 84.131726
iter 30 value 84.123250
iter 40 value 84.094898
iter 50 value 83.287745
iter 60 value 80.596526
iter 70 value 77.770023
iter 80 value 77.750262
iter 90 value 77.749350
iter 100 value 77.739559
final value 77.739559
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 113.622015
iter 10 value 94.059001
iter 20 value 94.035864
iter 30 value 90.903642
iter 40 value 90.826069
iter 50 value 80.476565
iter 60 value 80.386320
iter 70 value 78.879129
iter 80 value 78.560330
iter 90 value 78.455665
iter 100 value 78.449964
final value 78.449964
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 98.648293
iter 10 value 94.057868
iter 20 value 88.169917
iter 30 value 85.446843
iter 40 value 85.444507
iter 50 value 84.232721
iter 60 value 80.106091
iter 70 value 80.094770
iter 80 value 79.404262
iter 90 value 79.312235
iter 100 value 79.310133
final value 79.310133
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 101.319858
iter 10 value 94.041025
iter 20 value 94.033018
iter 30 value 93.975607
iter 40 value 92.680344
final value 92.665803
converged
Fitting Repeat 3
# weights: 507
initial value 97.899249
iter 10 value 93.831529
iter 20 value 93.819151
iter 30 value 92.990879
iter 40 value 85.824866
iter 50 value 85.047879
iter 60 value 83.854023
iter 70 value 83.853354
iter 80 value 83.849205
iter 90 value 83.848803
iter 100 value 83.760865
final value 83.760865
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.527417
iter 10 value 94.041322
iter 20 value 94.038952
iter 30 value 94.020561
iter 40 value 93.796124
iter 50 value 93.270205
iter 60 value 93.107303
iter 70 value 93.086442
iter 80 value 93.082846
iter 90 value 93.052681
iter 100 value 91.483627
final value 91.483627
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.298526
iter 10 value 90.597763
iter 20 value 90.477227
iter 30 value 89.242613
iter 40 value 89.137639
iter 50 value 85.742149
iter 60 value 85.211737
iter 70 value 85.102613
iter 80 value 85.088416
iter 90 value 85.087008
iter 100 value 85.003788
final value 85.003788
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 148.476224
iter 10 value 117.767160
iter 20 value 117.761992
iter 30 value 117.761485
iter 40 value 117.761140
iter 50 value 115.513908
iter 60 value 107.971363
iter 70 value 107.910393
final value 107.910308
converged
Fitting Repeat 2
# weights: 507
initial value 135.690584
iter 10 value 117.767074
iter 20 value 117.725905
iter 30 value 107.614240
iter 40 value 106.825337
iter 50 value 106.784126
iter 60 value 106.764492
final value 106.764266
converged
Fitting Repeat 3
# weights: 507
initial value 141.731115
iter 10 value 117.766963
iter 20 value 117.759688
final value 117.759643
converged
Fitting Repeat 4
# weights: 507
initial value 136.563803
iter 10 value 117.766714
iter 20 value 117.743254
iter 30 value 115.616511
iter 40 value 107.003617
final value 107.002639
converged
Fitting Repeat 5
# weights: 507
initial value 136.422792
iter 10 value 117.898339
iter 20 value 117.864523
iter 30 value 107.876732
iter 40 value 107.010165
iter 50 value 107.009748
iter 60 value 107.007810
iter 70 value 107.004737
iter 80 value 105.768111
iter 90 value 105.346562
iter 100 value 105.326843
final value 105.326843
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Thu Jun 27 02:43:52 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
45.68 1.87 47.89
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 34.18 | 2.05 | 36.36 | |
| FreqInteractors | 0.29 | 0.02 | 0.38 | |
| calculateAAC | 0.02 | 0.03 | 0.05 | |
| calculateAutocor | 0.42 | 0.14 | 0.61 | |
| calculateCTDC | 0.09 | 0.00 | 0.09 | |
| calculateCTDD | 0.75 | 0.08 | 0.85 | |
| calculateCTDT | 0.33 | 0.00 | 0.33 | |
| calculateCTriad | 0.41 | 0.00 | 0.40 | |
| calculateDC | 0.10 | 0.03 | 0.14 | |
| calculateF | 0.49 | 0.00 | 0.50 | |
| calculateKSAAP | 0.11 | 0.00 | 0.11 | |
| calculateQD_Sm | 2.28 | 0.20 | 2.49 | |
| calculateTC | 1.83 | 0.11 | 1.93 | |
| calculateTC_Sm | 0.36 | 0.02 | 0.38 | |
| corr_plot | 33.03 | 1.79 | 34.83 | |
| enrichfindP | 0.61 | 0.07 | 14.40 | |
| enrichfind_hp | 0.11 | 0.00 | 1.02 | |
| enrichplot | 0.29 | 0.03 | 0.33 | |
| filter_missing_values | 0 | 0 | 0 | |
| getFASTA | 0.04 | 0.00 | 2.36 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0 | 0 | 0 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0 | 0 | 0 | |
| plotPPI | 0.06 | 0.01 | 0.10 | |
| pred_ensembel | 14.89 | 0.84 | 11.45 | |
| var_imp | 33.50 | 1.52 | 35.02 | |