| Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-10-18 20:40 -0400 (Fri, 18 Oct 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
| palomino7 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4500 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4530 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4480 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.10.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz |
| StartedAt: 2024-10-17 06:47:37 -0400 (Thu, 17 Oct 2024) |
| EndedAt: 2024-10-17 06:56:39 -0400 (Thu, 17 Oct 2024) |
| EllapsedTime: 541.5 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: x86_64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.10.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 51.468 1.800 61.499
corr_plot 51.405 1.709 60.029
var_imp 50.818 1.721 61.452
pred_ensembel 24.631 0.471 22.945
calculateTC 4.744 0.460 5.573
enrichfindP 0.914 0.081 15.509
getFASTA 0.122 0.017 10.414
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 99.663387
final value 94.026542
converged
Fitting Repeat 2
# weights: 103
initial value 96.290866
final value 94.026542
converged
Fitting Repeat 3
# weights: 103
initial value 98.836542
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 96.056817
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.286139
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 107.509824
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 103.917125
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 99.859597
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 97.976635
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 99.535888
iter 10 value 94.155594
iter 20 value 94.026571
final value 94.026542
converged
Fitting Repeat 1
# weights: 507
initial value 108.539777
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 127.522054
iter 10 value 94.169184
final value 94.165117
converged
Fitting Repeat 3
# weights: 507
initial value 106.900787
final value 94.026542
converged
Fitting Repeat 4
# weights: 507
initial value 130.640024
iter 10 value 94.026542
iter 10 value 94.026542
iter 10 value 94.026542
final value 94.026542
converged
Fitting Repeat 5
# weights: 507
initial value 98.414666
iter 10 value 93.974645
final value 93.974641
converged
Fitting Repeat 1
# weights: 103
initial value 100.361870
iter 10 value 94.425129
iter 20 value 94.127413
iter 30 value 94.077531
iter 40 value 90.119592
iter 50 value 89.634414
iter 60 value 89.436666
iter 70 value 87.573825
iter 80 value 85.542393
iter 90 value 85.342168
iter 100 value 85.226697
final value 85.226697
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 110.180364
iter 10 value 94.477927
iter 20 value 94.164411
iter 30 value 94.076891
iter 40 value 93.063702
iter 50 value 90.832043
iter 60 value 85.443876
iter 70 value 83.952046
iter 80 value 83.888426
iter 90 value 83.859743
iter 100 value 83.684447
final value 83.684447
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 102.450374
iter 10 value 94.319528
iter 20 value 94.128227
iter 30 value 94.127975
iter 40 value 86.657705
iter 50 value 83.398501
iter 60 value 83.176142
iter 70 value 83.048063
iter 80 value 82.782399
iter 90 value 82.098854
iter 100 value 80.720856
final value 80.720856
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 120.892336
iter 10 value 94.444211
iter 20 value 86.393722
iter 30 value 86.138618
iter 40 value 85.336812
iter 50 value 83.636014
iter 60 value 83.254927
iter 70 value 83.088410
iter 80 value 83.072024
iter 90 value 83.063224
final value 83.062847
converged
Fitting Repeat 5
# weights: 103
initial value 100.622442
iter 10 value 88.020616
iter 20 value 83.400371
iter 30 value 83.007583
iter 40 value 82.740712
iter 50 value 82.672380
final value 82.672365
converged
Fitting Repeat 1
# weights: 305
initial value 105.921585
iter 10 value 95.678643
iter 20 value 94.267267
iter 30 value 93.852246
iter 40 value 93.364653
iter 50 value 92.674723
iter 60 value 88.704900
iter 70 value 85.179953
iter 80 value 82.917163
iter 90 value 81.402489
iter 100 value 79.914601
final value 79.914601
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.229504
iter 10 value 94.735329
iter 20 value 94.428402
iter 30 value 89.056287
iter 40 value 86.968796
iter 50 value 84.378092
iter 60 value 82.735313
iter 70 value 82.582128
iter 80 value 82.478883
iter 90 value 82.462248
iter 100 value 82.384913
final value 82.384913
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 114.456341
iter 10 value 94.429642
iter 20 value 94.131042
iter 30 value 94.011365
iter 40 value 92.367896
iter 50 value 91.725672
iter 60 value 85.829132
iter 70 value 84.664014
iter 80 value 82.567941
iter 90 value 82.036914
iter 100 value 81.770939
final value 81.770939
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.435325
iter 10 value 93.116617
iter 20 value 85.574179
iter 30 value 84.919615
iter 40 value 84.857825
iter 50 value 84.417964
iter 60 value 82.090279
iter 70 value 80.024026
iter 80 value 79.097308
iter 90 value 79.012538
iter 100 value 78.864674
final value 78.864674
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.915376
iter 10 value 94.489282
iter 20 value 94.086427
iter 30 value 85.108521
iter 40 value 82.991461
iter 50 value 81.937538
iter 60 value 81.548015
iter 70 value 80.975661
iter 80 value 80.568479
iter 90 value 80.325841
iter 100 value 80.178829
final value 80.178829
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 122.833303
iter 10 value 94.946866
iter 20 value 90.090587
iter 30 value 83.337959
iter 40 value 80.649592
iter 50 value 80.373968
iter 60 value 80.103065
iter 70 value 80.030860
iter 80 value 79.634356
iter 90 value 79.280914
iter 100 value 79.035430
final value 79.035430
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 117.329113
iter 10 value 94.191074
iter 20 value 92.652657
iter 30 value 85.486039
iter 40 value 84.487899
iter 50 value 83.634427
iter 60 value 80.788696
iter 70 value 80.559913
iter 80 value 80.209378
iter 90 value 79.701741
iter 100 value 79.540163
final value 79.540163
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.183002
iter 10 value 87.547296
iter 20 value 85.525934
iter 30 value 83.600126
iter 40 value 82.677294
iter 50 value 82.519605
iter 60 value 82.329886
iter 70 value 82.240019
iter 80 value 82.157871
iter 90 value 81.790021
iter 100 value 80.702133
final value 80.702133
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.302327
iter 10 value 94.727860
iter 20 value 94.161875
iter 30 value 89.570137
iter 40 value 87.692297
iter 50 value 84.323363
iter 60 value 81.133973
iter 70 value 79.996986
iter 80 value 79.555144
iter 90 value 79.419499
iter 100 value 79.126544
final value 79.126544
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.189019
iter 10 value 94.066949
iter 20 value 92.167098
iter 30 value 90.970448
iter 40 value 89.524913
iter 50 value 82.675641
iter 60 value 82.216404
iter 70 value 82.025301
iter 80 value 81.690021
iter 90 value 81.166767
iter 100 value 80.570587
final value 80.570587
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.959062
final value 94.485735
converged
Fitting Repeat 2
# weights: 103
initial value 110.323998
iter 10 value 94.485966
final value 94.484331
converged
Fitting Repeat 3
# weights: 103
initial value 109.749610
final value 94.485923
converged
Fitting Repeat 4
# weights: 103
initial value 94.594059
iter 10 value 94.485803
iter 20 value 94.461984
iter 30 value 84.533533
iter 40 value 84.402700
iter 50 value 84.353768
iter 60 value 84.082165
iter 70 value 82.400439
final value 82.256264
converged
Fitting Repeat 5
# weights: 103
initial value 98.749874
final value 94.485943
converged
Fitting Repeat 1
# weights: 305
initial value 118.871893
iter 10 value 94.489315
iter 20 value 94.484423
iter 30 value 94.068815
final value 93.974941
converged
Fitting Repeat 2
# weights: 305
initial value 106.325803
iter 10 value 93.960546
iter 20 value 93.882245
iter 30 value 93.708544
iter 40 value 93.676061
final value 93.675985
converged
Fitting Repeat 3
# weights: 305
initial value 110.696481
iter 10 value 94.170075
iter 20 value 94.088476
final value 93.974982
converged
Fitting Repeat 4
# weights: 305
initial value 99.066523
iter 10 value 94.488464
iter 20 value 94.484322
iter 30 value 94.186131
final value 94.165232
converged
Fitting Repeat 5
# weights: 305
initial value 104.910667
iter 10 value 94.488588
iter 20 value 93.418566
iter 30 value 91.740551
iter 40 value 80.535572
iter 50 value 80.386433
iter 60 value 80.384191
iter 70 value 80.330075
iter 80 value 80.327466
final value 80.326165
converged
Fitting Repeat 1
# weights: 507
initial value 98.354663
iter 10 value 94.456317
iter 20 value 94.448233
iter 20 value 94.448233
iter 20 value 94.448232
final value 94.448232
converged
Fitting Repeat 2
# weights: 507
initial value 121.284491
iter 10 value 93.417096
iter 20 value 90.299301
iter 30 value 90.280684
iter 40 value 90.125769
iter 50 value 89.388613
iter 60 value 89.372325
iter 70 value 89.371220
final value 89.370854
converged
Fitting Repeat 3
# weights: 507
initial value 95.903053
iter 10 value 92.742687
iter 20 value 92.723120
iter 30 value 92.715875
iter 40 value 92.694428
iter 50 value 92.291476
iter 60 value 85.382162
final value 84.793822
converged
Fitting Repeat 4
# weights: 507
initial value 142.917281
iter 10 value 94.036231
iter 20 value 94.027961
iter 30 value 93.157986
iter 40 value 89.700503
iter 50 value 88.675878
iter 60 value 87.975649
iter 70 value 84.444167
iter 80 value 84.257006
iter 90 value 84.250549
iter 100 value 84.249995
final value 84.249995
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 95.696180
iter 10 value 94.034701
iter 20 value 94.028172
iter 30 value 93.975508
final value 93.975117
converged
Fitting Repeat 1
# weights: 103
initial value 105.600718
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 106.093470
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 99.233896
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 95.273291
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.130840
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.762705
final value 94.032967
converged
Fitting Repeat 2
# weights: 305
initial value 97.139078
iter 10 value 94.038342
iter 20 value 93.465590
iter 30 value 92.363276
iter 40 value 92.358142
final value 92.358089
converged
Fitting Repeat 3
# weights: 305
initial value 95.661667
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 98.142882
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 96.607473
iter 10 value 94.051407
iter 20 value 94.034652
final value 94.032967
converged
Fitting Repeat 1
# weights: 507
initial value 98.167587
iter 10 value 90.947443
iter 20 value 90.658907
final value 90.658894
converged
Fitting Repeat 2
# weights: 507
initial value 104.364889
final value 94.032967
converged
Fitting Repeat 3
# weights: 507
initial value 101.005196
iter 10 value 88.703015
iter 20 value 85.112621
iter 30 value 84.991839
final value 84.948891
converged
Fitting Repeat 4
# weights: 507
initial value 95.652123
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 99.694905
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 95.964968
iter 10 value 93.883401
iter 20 value 86.827606
iter 30 value 83.139628
iter 40 value 81.434236
iter 50 value 81.093730
iter 60 value 80.624864
iter 70 value 79.794420
iter 80 value 79.575354
iter 90 value 79.556449
final value 79.556436
converged
Fitting Repeat 2
# weights: 103
initial value 107.897321
iter 10 value 94.080054
iter 20 value 90.886891
iter 30 value 85.800720
iter 40 value 84.200194
iter 50 value 84.001400
iter 60 value 83.271123
iter 70 value 83.234767
iter 80 value 83.159773
iter 90 value 82.517217
iter 100 value 81.371494
final value 81.371494
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.254861
iter 10 value 94.071654
iter 20 value 94.054866
iter 30 value 88.309764
iter 40 value 85.101449
iter 50 value 84.692086
iter 60 value 83.627073
iter 70 value 82.716066
iter 80 value 82.540879
iter 90 value 82.458631
iter 100 value 82.402783
final value 82.402783
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 103.743822
iter 10 value 92.037686
iter 20 value 84.074021
iter 30 value 83.911893
iter 40 value 83.290833
iter 50 value 82.588918
iter 60 value 82.043326
iter 70 value 81.975982
iter 80 value 81.969818
final value 81.969343
converged
Fitting Repeat 5
# weights: 103
initial value 97.231193
iter 10 value 94.056478
iter 20 value 88.099139
iter 30 value 83.845065
iter 40 value 82.686736
iter 50 value 82.310828
iter 60 value 81.923487
iter 70 value 81.272974
iter 80 value 80.976633
final value 80.973965
converged
Fitting Repeat 1
# weights: 305
initial value 100.235741
iter 10 value 93.512802
iter 20 value 82.015213
iter 30 value 81.178654
iter 40 value 79.270904
iter 50 value 78.535459
iter 60 value 78.409477
iter 70 value 78.335516
iter 80 value 78.289165
iter 90 value 78.286330
iter 100 value 78.280036
final value 78.280036
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.913847
iter 10 value 95.253751
iter 20 value 86.008900
iter 30 value 85.514321
iter 40 value 84.991963
iter 50 value 83.455228
iter 60 value 83.018469
iter 70 value 81.580468
iter 80 value 81.305290
iter 90 value 80.621287
iter 100 value 79.948563
final value 79.948563
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.914093
iter 10 value 94.066784
iter 20 value 93.614738
iter 30 value 83.486348
iter 40 value 82.565806
iter 50 value 81.243518
iter 60 value 80.207500
iter 70 value 79.205594
iter 80 value 78.845355
iter 90 value 78.255095
iter 100 value 78.126475
final value 78.126475
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.059284
iter 10 value 94.711070
iter 20 value 94.067400
iter 30 value 93.818485
iter 40 value 93.629281
iter 50 value 88.501274
iter 60 value 86.486315
iter 70 value 82.094467
iter 80 value 79.719093
iter 90 value 79.319263
iter 100 value 78.829869
final value 78.829869
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.231420
iter 10 value 94.067929
iter 20 value 88.373842
iter 30 value 84.618769
iter 40 value 84.075784
iter 50 value 83.402148
iter 60 value 82.517002
iter 70 value 82.134547
iter 80 value 81.977231
iter 90 value 81.849814
iter 100 value 81.581815
final value 81.581815
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.439006
iter 10 value 94.071296
iter 20 value 84.138670
iter 30 value 82.955229
iter 40 value 82.564607
iter 50 value 81.089437
iter 60 value 80.326050
iter 70 value 79.169691
iter 80 value 78.658257
iter 90 value 78.405248
iter 100 value 78.346212
final value 78.346212
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 122.229075
iter 10 value 94.137150
iter 20 value 91.472034
iter 30 value 83.809927
iter 40 value 80.906107
iter 50 value 79.367160
iter 60 value 78.622778
iter 70 value 78.142805
iter 80 value 77.997675
iter 90 value 77.955851
iter 100 value 77.901130
final value 77.901130
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.815881
iter 10 value 96.570440
iter 20 value 91.528838
iter 30 value 86.690022
iter 40 value 84.740198
iter 50 value 81.654624
iter 60 value 79.016368
iter 70 value 78.665546
iter 80 value 78.329557
iter 90 value 78.207945
iter 100 value 78.174139
final value 78.174139
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.629727
iter 10 value 90.960344
iter 20 value 83.197596
iter 30 value 81.620539
iter 40 value 79.449391
iter 50 value 79.200350
iter 60 value 78.851328
iter 70 value 78.397652
iter 80 value 78.335711
iter 90 value 78.321530
iter 100 value 78.249765
final value 78.249765
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.200341
iter 10 value 94.227774
iter 20 value 87.163884
iter 30 value 84.817888
iter 40 value 83.907313
iter 50 value 83.152548
iter 60 value 82.385710
iter 70 value 81.000379
iter 80 value 80.231660
iter 90 value 79.179668
iter 100 value 78.506599
final value 78.506599
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.459720
iter 10 value 94.054566
iter 20 value 94.052908
iter 30 value 83.958601
iter 40 value 82.418628
iter 50 value 82.392071
final value 82.392049
converged
Fitting Repeat 2
# weights: 103
initial value 102.335939
final value 94.054676
converged
Fitting Repeat 3
# weights: 103
initial value 95.545507
iter 10 value 94.054679
iter 20 value 94.050135
iter 30 value 82.853010
iter 40 value 82.390307
iter 50 value 82.169576
iter 60 value 81.919409
final value 81.842896
converged
Fitting Repeat 4
# weights: 103
initial value 103.282588
iter 10 value 94.054637
iter 20 value 94.052610
iter 30 value 89.666798
iter 40 value 89.018161
iter 40 value 89.018161
iter 40 value 89.018161
final value 89.018161
converged
Fitting Repeat 5
# weights: 103
initial value 95.472453
iter 10 value 91.845466
iter 20 value 91.255321
iter 30 value 91.181281
iter 40 value 91.181106
iter 50 value 91.179732
iter 60 value 91.168487
iter 70 value 91.166787
iter 80 value 91.165754
iter 90 value 87.196486
iter 100 value 83.016182
final value 83.016182
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 97.191364
iter 10 value 93.609809
iter 20 value 93.604346
iter 30 value 91.384008
iter 40 value 86.439295
iter 50 value 86.211876
iter 60 value 86.198974
iter 70 value 86.197471
iter 80 value 86.120694
iter 90 value 79.424938
iter 100 value 79.140814
final value 79.140814
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.452466
iter 10 value 94.058281
iter 20 value 94.050291
iter 30 value 92.094731
iter 40 value 90.954088
iter 50 value 90.774685
iter 60 value 90.769378
final value 90.769274
converged
Fitting Repeat 3
# weights: 305
initial value 96.997212
iter 10 value 94.057522
iter 20 value 94.048135
iter 30 value 83.204007
iter 40 value 82.506246
iter 50 value 82.348901
iter 60 value 77.898534
iter 70 value 77.125093
iter 80 value 77.117557
iter 90 value 77.070676
iter 100 value 76.951635
final value 76.951635
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 94.210373
iter 10 value 87.331220
iter 20 value 86.626642
iter 30 value 86.620140
iter 40 value 86.374836
iter 50 value 83.566955
iter 60 value 83.566291
iter 70 value 83.519337
iter 80 value 83.514028
final value 83.513995
converged
Fitting Repeat 5
# weights: 305
initial value 105.429111
iter 10 value 94.058124
iter 20 value 93.972532
iter 30 value 92.008416
iter 40 value 91.139270
iter 50 value 91.138626
iter 60 value 91.137998
iter 70 value 90.904202
iter 80 value 90.798670
iter 90 value 90.653655
final value 90.652807
converged
Fitting Repeat 1
# weights: 507
initial value 96.387166
iter 10 value 93.756351
iter 20 value 88.413713
iter 30 value 88.391447
iter 40 value 88.379986
iter 50 value 86.900440
iter 60 value 86.497315
iter 70 value 85.755858
iter 80 value 81.509512
iter 90 value 78.671791
iter 100 value 77.503910
final value 77.503910
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.599529
iter 10 value 94.061234
iter 20 value 94.010444
iter 30 value 91.355241
iter 40 value 87.714851
iter 50 value 82.751335
iter 60 value 82.706192
iter 70 value 82.545516
iter 80 value 82.545005
iter 90 value 82.543794
iter 100 value 81.688908
final value 81.688908
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.417776
iter 10 value 94.024451
iter 20 value 91.515621
iter 30 value 87.060977
iter 40 value 86.997217
iter 50 value 85.298190
iter 60 value 84.182324
iter 70 value 84.157762
iter 80 value 84.155883
iter 90 value 83.984408
iter 100 value 81.297353
final value 81.297353
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.410619
iter 10 value 94.041329
iter 20 value 94.038065
iter 30 value 94.036133
iter 40 value 90.436604
iter 50 value 83.405429
iter 60 value 82.560415
iter 70 value 80.761517
iter 80 value 79.038217
iter 90 value 78.796647
iter 100 value 78.748274
final value 78.748274
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 122.397165
iter 10 value 89.434773
iter 20 value 88.529270
iter 30 value 83.848695
iter 40 value 82.931704
iter 50 value 82.371902
iter 60 value 82.322251
final value 82.321859
converged
Fitting Repeat 1
# weights: 103
initial value 96.227449
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 102.980053
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 105.464654
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.174045
iter 10 value 94.119478
iter 20 value 93.976697
iter 30 value 93.923304
final value 93.922611
converged
Fitting Repeat 5
# weights: 103
initial value 96.289376
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 105.031052
iter 10 value 86.467760
iter 20 value 86.440703
final value 86.440679
converged
Fitting Repeat 2
# weights: 305
initial value 101.973197
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 109.828687
iter 10 value 94.305883
iter 10 value 94.305882
iter 10 value 94.305882
final value 94.305882
converged
Fitting Repeat 4
# weights: 305
initial value 109.101367
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 106.201650
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 96.926456
final value 94.354396
converged
Fitting Repeat 2
# weights: 507
initial value 95.847473
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 112.361906
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 96.977407
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 96.040731
final value 94.289216
converged
Fitting Repeat 1
# weights: 103
initial value 96.827332
iter 10 value 94.494809
iter 20 value 87.582413
iter 30 value 86.475885
iter 40 value 85.707199
iter 50 value 85.550353
iter 60 value 85.134287
iter 70 value 84.665397
iter 80 value 84.471175
iter 90 value 83.395597
iter 100 value 82.051926
final value 82.051926
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.273291
iter 10 value 94.486513
iter 20 value 94.097892
iter 30 value 94.041667
iter 40 value 85.224751
iter 50 value 84.050867
iter 60 value 83.139136
iter 70 value 82.985279
iter 80 value 82.962878
iter 90 value 82.932546
final value 82.932143
converged
Fitting Repeat 3
# weights: 103
initial value 97.326581
iter 10 value 94.495364
iter 20 value 94.129601
iter 30 value 92.964388
iter 40 value 89.244216
iter 50 value 88.803073
iter 60 value 87.845280
iter 70 value 83.896909
iter 80 value 83.090443
iter 90 value 82.935230
iter 100 value 82.933918
final value 82.933918
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 102.634268
iter 10 value 94.458885
iter 20 value 92.343622
iter 30 value 85.958169
iter 40 value 83.122912
iter 50 value 82.037979
iter 60 value 81.779621
iter 70 value 81.428411
iter 80 value 81.247646
final value 81.247569
converged
Fitting Repeat 5
# weights: 103
initial value 97.509450
iter 10 value 94.488782
iter 20 value 94.062112
iter 30 value 86.672928
iter 40 value 84.977195
iter 50 value 84.900957
iter 60 value 84.588642
iter 70 value 83.587250
iter 80 value 82.958732
iter 90 value 81.950492
iter 100 value 81.498888
final value 81.498888
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 101.684715
iter 10 value 94.408767
iter 20 value 85.680862
iter 30 value 83.816565
iter 40 value 83.673292
iter 50 value 82.960828
iter 60 value 81.030409
iter 70 value 80.471252
iter 80 value 80.264459
iter 90 value 80.124332
iter 100 value 79.736162
final value 79.736162
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.331885
iter 10 value 93.882514
iter 20 value 92.031854
iter 30 value 85.340835
iter 40 value 84.139608
iter 50 value 83.447322
iter 60 value 81.751884
iter 70 value 80.578890
iter 80 value 80.308104
iter 90 value 79.939186
iter 100 value 79.620754
final value 79.620754
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.239567
iter 10 value 94.388097
iter 20 value 85.152704
iter 30 value 83.628439
iter 40 value 82.659179
iter 50 value 82.186285
iter 60 value 81.891004
iter 70 value 81.859252
iter 80 value 81.247805
iter 90 value 80.619809
iter 100 value 80.127546
final value 80.127546
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 115.074750
iter 10 value 91.049139
iter 20 value 84.365141
iter 30 value 83.354758
iter 40 value 82.863524
iter 50 value 81.588733
iter 60 value 80.450335
iter 70 value 80.005422
iter 80 value 79.970814
iter 90 value 79.927997
iter 100 value 79.828946
final value 79.828946
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.710579
iter 10 value 95.135448
iter 20 value 94.487380
iter 30 value 94.212996
iter 40 value 89.994140
iter 50 value 85.730298
iter 60 value 83.830852
iter 70 value 83.697055
iter 80 value 82.950942
iter 90 value 82.659747
iter 100 value 82.655655
final value 82.655655
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.489999
iter 10 value 100.063777
iter 20 value 90.601020
iter 30 value 87.717134
iter 40 value 84.808045
iter 50 value 84.288414
iter 60 value 82.939261
iter 70 value 80.672212
iter 80 value 80.363032
iter 90 value 80.152868
iter 100 value 79.594965
final value 79.594965
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 115.752867
iter 10 value 94.552586
iter 20 value 88.471176
iter 30 value 87.851068
iter 40 value 84.718991
iter 50 value 83.719205
iter 60 value 82.823675
iter 70 value 81.148359
iter 80 value 80.091745
iter 90 value 80.023100
iter 100 value 79.971668
final value 79.971668
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.343305
iter 10 value 94.490459
iter 20 value 94.174658
iter 30 value 89.195065
iter 40 value 85.400040
iter 50 value 83.403999
iter 60 value 83.191673
iter 70 value 82.042828
iter 80 value 81.540416
iter 90 value 80.502080
iter 100 value 79.955967
final value 79.955967
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.615288
iter 10 value 95.781976
iter 20 value 94.625802
iter 30 value 93.803065
iter 40 value 87.248085
iter 50 value 84.311325
iter 60 value 82.131486
iter 70 value 81.492063
iter 80 value 80.629509
iter 90 value 80.449288
iter 100 value 80.355050
final value 80.355050
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.221564
iter 10 value 94.483505
iter 20 value 85.156026
iter 30 value 84.875005
iter 40 value 83.970352
iter 50 value 83.579732
iter 60 value 81.894607
iter 70 value 81.463663
iter 80 value 80.645067
iter 90 value 80.267797
iter 100 value 79.937641
final value 79.937641
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.097446
iter 10 value 94.298166
iter 20 value 94.090255
iter 30 value 86.817691
iter 40 value 84.016457
iter 50 value 83.983578
iter 60 value 82.579162
iter 70 value 82.520780
final value 82.520735
converged
Fitting Repeat 2
# weights: 103
initial value 106.045664
final value 94.485783
converged
Fitting Repeat 3
# weights: 103
initial value 98.116542
final value 94.485749
converged
Fitting Repeat 4
# weights: 103
initial value 101.309565
final value 94.485659
converged
Fitting Repeat 5
# weights: 103
initial value 99.576818
iter 10 value 94.485885
iter 20 value 94.482615
final value 94.354437
converged
Fitting Repeat 1
# weights: 305
initial value 103.568180
iter 10 value 94.057467
iter 20 value 93.978164
iter 30 value 93.974436
iter 40 value 88.732796
iter 50 value 85.992984
iter 60 value 85.992167
iter 70 value 84.734091
iter 80 value 84.323460
iter 90 value 84.320982
final value 84.320327
converged
Fitting Repeat 2
# weights: 305
initial value 103.012784
iter 10 value 93.556346
iter 20 value 85.101110
iter 30 value 85.089778
iter 40 value 84.964734
iter 50 value 83.530514
iter 60 value 82.184952
iter 70 value 80.907596
iter 80 value 80.906444
iter 80 value 80.906443
final value 80.906443
converged
Fitting Repeat 3
# weights: 305
initial value 105.859490
iter 10 value 94.489076
iter 20 value 94.484233
iter 30 value 94.060906
final value 93.974019
converged
Fitting Repeat 4
# weights: 305
initial value 103.510435
iter 10 value 94.488743
iter 20 value 94.447197
iter 30 value 89.876963
iter 40 value 86.968269
iter 50 value 86.960418
iter 60 value 86.945995
iter 70 value 86.940533
iter 80 value 86.799394
iter 90 value 86.351256
iter 100 value 80.866800
final value 80.866800
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 94.604624
iter 10 value 94.359499
iter 20 value 91.713991
iter 30 value 82.475080
iter 40 value 82.474799
iter 50 value 82.465601
iter 60 value 82.464863
iter 70 value 82.382421
iter 80 value 82.339781
iter 90 value 82.339714
iter 100 value 82.069403
final value 82.069403
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 138.645790
iter 10 value 89.005078
iter 20 value 87.601197
iter 30 value 87.594675
iter 40 value 87.592652
final value 87.592598
converged
Fitting Repeat 2
# weights: 507
initial value 104.591278
iter 10 value 94.492517
iter 20 value 94.397668
iter 30 value 91.249423
iter 40 value 87.448874
iter 50 value 86.326025
iter 60 value 83.789000
iter 70 value 83.717826
iter 80 value 83.715414
iter 90 value 83.708840
iter 100 value 83.707620
final value 83.707620
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.967313
iter 10 value 94.489410
iter 20 value 94.064015
final value 94.057429
converged
Fitting Repeat 4
# weights: 507
initial value 102.336690
iter 10 value 94.363471
iter 20 value 94.355638
iter 30 value 93.104263
iter 40 value 90.689458
final value 90.687761
converged
Fitting Repeat 5
# weights: 507
initial value 100.303521
iter 10 value 93.993352
iter 20 value 93.981442
iter 30 value 93.975104
iter 40 value 92.978190
iter 50 value 83.548987
iter 60 value 80.498813
iter 70 value 79.618173
iter 80 value 79.615895
iter 90 value 79.607638
iter 100 value 79.605862
final value 79.605862
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.722435
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 104.535480
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 98.919873
final value 93.671508
converged
Fitting Repeat 4
# weights: 103
initial value 98.794017
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 104.110586
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 101.547269
final value 94.050051
converged
Fitting Repeat 2
# weights: 305
initial value 107.452454
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 108.606911
final value 94.038251
converged
Fitting Repeat 4
# weights: 305
initial value 97.297839
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 95.549895
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 103.343383
iter 10 value 87.848180
iter 20 value 87.098425
final value 87.097089
converged
Fitting Repeat 2
# weights: 507
initial value 101.079871
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 95.070341
iter 10 value 92.458327
iter 20 value 91.702995
iter 30 value 89.373269
iter 40 value 89.160206
iter 50 value 89.104082
iter 60 value 88.974788
iter 70 value 88.963174
iter 80 value 88.963087
final value 88.963083
converged
Fitting Repeat 4
# weights: 507
initial value 100.918559
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 94.761959
iter 10 value 93.137669
iter 20 value 93.134753
final value 93.134731
converged
Fitting Repeat 1
# weights: 103
initial value 106.191142
iter 10 value 94.056655
iter 10 value 94.056654
iter 20 value 88.139583
iter 30 value 86.397184
iter 40 value 86.004028
iter 50 value 85.859275
iter 60 value 85.010604
iter 70 value 84.697855
iter 80 value 84.693316
iter 80 value 84.693316
iter 80 value 84.693316
final value 84.693316
converged
Fitting Repeat 2
# weights: 103
initial value 96.762727
iter 10 value 94.064582
iter 20 value 94.049421
iter 30 value 93.802960
iter 40 value 93.007450
iter 50 value 92.937362
iter 60 value 92.897630
iter 70 value 92.837726
final value 92.836375
converged
Fitting Repeat 3
# weights: 103
initial value 102.696247
iter 10 value 94.058156
iter 20 value 94.056723
iter 30 value 94.029462
iter 40 value 87.936518
iter 50 value 87.765953
iter 60 value 87.294425
iter 70 value 86.978377
iter 80 value 86.208977
iter 90 value 86.148920
final value 86.147159
converged
Fitting Repeat 4
# weights: 103
initial value 97.156606
iter 10 value 94.056710
iter 20 value 90.212490
iter 30 value 87.762220
iter 40 value 86.636580
iter 50 value 85.734064
iter 60 value 85.320505
iter 70 value 85.151686
iter 80 value 85.113528
final value 85.113488
converged
Fitting Repeat 5
# weights: 103
initial value 104.885233
iter 10 value 94.058174
iter 20 value 91.194910
iter 30 value 88.978771
iter 40 value 88.646913
iter 50 value 88.068981
iter 60 value 88.020986
iter 70 value 88.010844
iter 80 value 88.002532
iter 90 value 84.937001
iter 100 value 84.282423
final value 84.282423
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 109.865802
iter 10 value 94.010861
iter 20 value 90.980165
iter 30 value 86.614928
iter 40 value 84.746919
iter 50 value 84.216948
iter 60 value 82.653626
iter 70 value 81.613204
iter 80 value 81.396586
iter 90 value 81.313793
iter 100 value 81.222076
final value 81.222076
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.144270
iter 10 value 93.595063
iter 20 value 88.363231
iter 30 value 87.848744
iter 40 value 85.687296
iter 50 value 83.380360
iter 60 value 81.502974
iter 70 value 81.432202
iter 80 value 81.350673
iter 90 value 81.083845
iter 100 value 80.668641
final value 80.668641
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.615036
iter 10 value 94.033921
iter 20 value 92.631059
iter 30 value 87.165163
iter 40 value 85.973445
iter 50 value 84.825072
iter 60 value 82.150951
iter 70 value 81.884131
iter 80 value 81.547290
iter 90 value 80.893776
iter 100 value 80.413556
final value 80.413556
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.090574
iter 10 value 93.375427
iter 20 value 87.266301
iter 30 value 85.850828
iter 40 value 85.023369
iter 50 value 84.378156
iter 60 value 84.211922
iter 70 value 84.183391
iter 80 value 83.555352
iter 90 value 82.417823
iter 100 value 81.834830
final value 81.834830
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 113.924272
iter 10 value 93.734552
iter 20 value 87.887979
iter 30 value 86.785415
iter 40 value 86.101852
iter 50 value 84.834080
iter 60 value 83.098634
iter 70 value 81.927218
iter 80 value 81.315582
iter 90 value 81.156010
iter 100 value 81.114180
final value 81.114180
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.118748
iter 10 value 92.718181
iter 20 value 89.991285
iter 30 value 85.510711
iter 40 value 83.561444
iter 50 value 81.361798
iter 60 value 81.090728
iter 70 value 80.876188
iter 80 value 80.844245
iter 90 value 80.781750
iter 100 value 80.669205
final value 80.669205
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.794073
iter 10 value 94.864835
iter 20 value 93.956096
iter 30 value 87.751696
iter 40 value 87.474904
iter 50 value 85.539815
iter 60 value 84.392159
iter 70 value 83.045545
iter 80 value 82.284945
iter 90 value 81.884091
iter 100 value 81.237156
final value 81.237156
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.232928
iter 10 value 94.359865
iter 20 value 91.484230
iter 30 value 87.758745
iter 40 value 86.101960
iter 50 value 83.047110
iter 60 value 82.204311
iter 70 value 81.758838
iter 80 value 81.548154
iter 90 value 80.887715
iter 100 value 80.638657
final value 80.638657
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.636370
iter 10 value 94.424298
iter 20 value 94.061858
iter 30 value 91.229694
iter 40 value 90.636402
iter 50 value 88.023576
iter 60 value 85.423573
iter 70 value 84.710682
iter 80 value 84.288143
iter 90 value 83.780805
iter 100 value 83.116924
final value 83.116924
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.383588
iter 10 value 93.301648
iter 20 value 92.645390
iter 30 value 92.150153
iter 40 value 90.992527
iter 50 value 90.773036
iter 60 value 90.615940
iter 70 value 87.902920
iter 80 value 83.800234
iter 90 value 82.851174
iter 100 value 82.493780
final value 82.493780
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.532283
final value 94.054628
converged
Fitting Repeat 2
# weights: 103
initial value 107.217538
final value 94.054552
converged
Fitting Repeat 3
# weights: 103
initial value 100.866659
iter 10 value 94.054492
iter 20 value 94.053003
final value 94.052916
converged
Fitting Repeat 4
# weights: 103
initial value 99.169258
final value 94.054572
converged
Fitting Repeat 5
# weights: 103
initial value 98.539865
final value 94.054642
converged
Fitting Repeat 1
# weights: 305
initial value 103.135867
iter 10 value 94.057238
iter 20 value 94.052097
iter 30 value 92.580849
iter 40 value 92.541682
iter 50 value 92.540864
iter 60 value 92.521135
iter 70 value 92.477313
iter 80 value 92.476976
final value 92.476911
converged
Fitting Repeat 2
# weights: 305
initial value 106.188017
iter 10 value 94.057791
iter 20 value 94.055328
iter 30 value 94.043045
iter 40 value 94.040610
final value 94.039068
converged
Fitting Repeat 3
# weights: 305
initial value 100.551463
iter 10 value 94.043587
iter 20 value 94.039551
final value 94.039476
converged
Fitting Repeat 4
# weights: 305
initial value 101.702216
iter 10 value 94.043141
iter 20 value 94.038461
iter 30 value 92.688294
iter 40 value 85.267189
iter 50 value 82.401484
iter 60 value 81.979734
iter 70 value 81.894213
final value 81.893954
converged
Fitting Repeat 5
# weights: 305
initial value 98.174204
iter 10 value 94.058084
iter 20 value 93.597437
iter 30 value 86.177915
final value 86.176903
converged
Fitting Repeat 1
# weights: 507
initial value 97.795458
iter 10 value 94.059126
iter 20 value 93.889512
iter 30 value 90.477839
iter 40 value 89.492746
iter 50 value 89.156185
iter 60 value 89.123567
iter 70 value 88.453246
iter 80 value 86.915234
iter 90 value 86.900534
final value 86.900501
converged
Fitting Repeat 2
# weights: 507
initial value 100.006373
iter 10 value 94.047166
iter 20 value 94.039008
iter 30 value 93.703892
iter 40 value 88.455231
iter 50 value 87.899995
iter 60 value 87.829168
iter 70 value 87.744035
iter 80 value 87.741586
iter 90 value 87.741498
iter 100 value 87.740451
final value 87.740451
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 95.484272
iter 10 value 94.054565
iter 20 value 90.667404
iter 30 value 89.345029
final value 89.344927
converged
Fitting Repeat 4
# weights: 507
initial value 100.683143
iter 10 value 94.045958
iter 20 value 94.038902
iter 30 value 94.010810
iter 40 value 93.197211
iter 50 value 92.912001
iter 60 value 91.674820
iter 70 value 83.761093
iter 80 value 83.470229
final value 83.470196
converged
Fitting Repeat 5
# weights: 507
initial value 113.977758
iter 10 value 94.046690
iter 20 value 94.040625
iter 30 value 90.970126
iter 40 value 86.447492
iter 50 value 86.445889
iter 60 value 86.444621
final value 86.444608
converged
Fitting Repeat 1
# weights: 103
initial value 96.161288
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 115.798800
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 95.015178
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 101.605913
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 99.241634
iter 10 value 94.112903
iter 10 value 94.112903
iter 10 value 94.112903
final value 94.112903
converged
Fitting Repeat 1
# weights: 305
initial value 97.362808
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 101.844707
final value 94.354286
converged
Fitting Repeat 3
# weights: 305
initial value 100.888864
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 103.584760
iter 10 value 94.359327
final value 94.354293
converged
Fitting Repeat 5
# weights: 305
initial value 94.728728
iter 10 value 93.921936
iter 20 value 93.889246
final value 93.888889
converged
Fitting Repeat 1
# weights: 507
initial value 104.084060
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 98.175148
iter 10 value 93.950049
final value 93.950035
converged
Fitting Repeat 3
# weights: 507
initial value 111.179188
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 100.570222
iter 10 value 93.761394
final value 93.756277
converged
Fitting Repeat 5
# weights: 507
initial value 108.873948
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 99.473134
iter 10 value 94.489122
iter 20 value 94.032605
iter 30 value 92.656062
iter 40 value 90.673004
iter 50 value 87.171304
iter 60 value 85.642354
iter 70 value 85.603938
iter 80 value 85.596625
iter 90 value 85.592781
iter 100 value 85.373900
final value 85.373900
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.026912
iter 10 value 94.494285
iter 20 value 94.151632
iter 30 value 90.000890
iter 40 value 88.735162
iter 50 value 86.666796
iter 60 value 86.369056
iter 70 value 83.695912
iter 80 value 82.894067
iter 90 value 82.778156
iter 100 value 82.058816
final value 82.058816
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 100.044751
iter 10 value 94.349824
iter 20 value 93.985580
iter 30 value 93.973228
iter 40 value 93.936777
iter 50 value 91.957631
iter 60 value 89.402435
iter 70 value 85.770848
iter 80 value 85.387199
iter 90 value 85.234527
iter 100 value 84.936338
final value 84.936338
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 106.917222
iter 10 value 94.483231
iter 20 value 94.239259
iter 30 value 94.038233
iter 40 value 93.755182
iter 50 value 92.147096
iter 60 value 87.910161
iter 70 value 87.312797
iter 80 value 85.221736
iter 90 value 83.578119
iter 100 value 82.743438
final value 82.743438
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.708438
iter 10 value 94.486489
iter 20 value 94.239888
iter 30 value 91.493045
iter 40 value 87.886969
iter 50 value 87.172376
iter 60 value 84.740484
iter 70 value 82.986693
iter 80 value 82.551255
iter 90 value 82.190187
iter 100 value 82.164732
final value 82.164732
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 110.458275
iter 10 value 94.292703
iter 20 value 91.093445
iter 30 value 90.553039
iter 40 value 88.425098
iter 50 value 84.639494
iter 60 value 81.728353
iter 70 value 80.811646
iter 80 value 80.686288
iter 90 value 80.607492
iter 100 value 80.556629
final value 80.556629
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.582164
iter 10 value 96.806749
iter 20 value 94.169805
iter 30 value 92.077575
iter 40 value 91.453887
iter 50 value 91.397629
iter 60 value 90.752244
iter 70 value 90.306498
iter 80 value 89.938840
iter 90 value 84.704872
iter 100 value 84.079131
final value 84.079131
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.733614
iter 10 value 96.908318
iter 20 value 88.499732
iter 30 value 85.997870
iter 40 value 85.301533
iter 50 value 84.512482
iter 60 value 83.365988
iter 70 value 82.745111
iter 80 value 82.454971
iter 90 value 82.424949
iter 100 value 82.371508
final value 82.371508
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.041949
iter 10 value 94.573821
iter 20 value 86.496713
iter 30 value 86.166099
iter 40 value 85.906360
iter 50 value 85.167898
iter 60 value 85.008578
iter 70 value 84.796167
iter 80 value 83.232208
iter 90 value 82.656814
iter 100 value 82.607393
final value 82.607393
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.654557
iter 10 value 90.896267
iter 20 value 86.533327
iter 30 value 85.697796
iter 40 value 83.953075
iter 50 value 82.147652
iter 60 value 81.690399
iter 70 value 81.120418
iter 80 value 80.988224
iter 90 value 80.980977
iter 100 value 80.975424
final value 80.975424
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 123.769562
iter 10 value 94.566347
iter 20 value 92.505346
iter 30 value 86.179668
iter 40 value 85.001778
iter 50 value 84.668912
iter 60 value 84.374783
iter 70 value 83.859781
iter 80 value 83.429769
iter 90 value 83.036349
iter 100 value 82.767677
final value 82.767677
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 130.085830
iter 10 value 94.994255
iter 20 value 86.442021
iter 30 value 83.946263
iter 40 value 82.536093
iter 50 value 81.760739
iter 60 value 81.459506
iter 70 value 81.398404
iter 80 value 81.364115
iter 90 value 81.159285
iter 100 value 80.722461
final value 80.722461
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.663513
iter 10 value 94.754433
iter 20 value 90.177867
iter 30 value 85.685788
iter 40 value 84.405796
iter 50 value 84.181156
iter 60 value 83.797928
iter 70 value 83.379026
iter 80 value 83.274552
iter 90 value 82.973376
iter 100 value 82.752586
final value 82.752586
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 119.163509
iter 10 value 94.170617
iter 20 value 89.137637
iter 30 value 87.694856
iter 40 value 86.800254
iter 50 value 86.178515
iter 60 value 85.217768
iter 70 value 84.622250
iter 80 value 83.353220
iter 90 value 81.966984
iter 100 value 81.473574
final value 81.473574
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.770625
iter 10 value 94.683978
iter 20 value 93.636718
iter 30 value 88.186032
iter 40 value 83.450786
iter 50 value 83.232012
iter 60 value 82.775320
iter 70 value 82.402123
iter 80 value 81.841164
iter 90 value 81.563939
iter 100 value 81.463629
final value 81.463629
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.614374
iter 10 value 94.486012
iter 20 value 94.484225
final value 94.484216
converged
Fitting Repeat 2
# weights: 103
initial value 101.439845
final value 94.485872
converged
Fitting Repeat 3
# weights: 103
initial value 97.699919
final value 94.485868
converged
Fitting Repeat 4
# weights: 103
initial value 98.887494
final value 94.486249
converged
Fitting Repeat 5
# weights: 103
initial value 95.406472
final value 94.485877
converged
Fitting Repeat 1
# weights: 305
initial value 108.474990
iter 10 value 94.489023
iter 20 value 88.416370
iter 30 value 85.489897
iter 40 value 85.038594
iter 50 value 84.211026
iter 60 value 81.970006
iter 70 value 81.593610
iter 80 value 81.409823
iter 90 value 80.845748
iter 100 value 80.743489
final value 80.743489
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 119.793675
iter 10 value 94.489549
iter 20 value 93.855755
iter 30 value 85.174062
iter 40 value 84.559922
final value 84.555521
converged
Fitting Repeat 3
# weights: 305
initial value 95.669804
iter 10 value 94.488457
iter 20 value 94.444148
iter 30 value 93.871865
final value 93.871763
converged
Fitting Repeat 4
# weights: 305
initial value 100.061804
iter 10 value 94.121919
iter 20 value 94.117913
iter 30 value 83.307420
iter 40 value 83.133728
iter 50 value 83.128678
iter 50 value 83.128678
final value 83.128678
converged
Fitting Repeat 5
# weights: 305
initial value 110.230190
iter 10 value 93.927277
iter 20 value 93.857748
iter 30 value 88.608555
iter 40 value 88.258023
iter 50 value 87.840127
iter 60 value 85.773910
iter 70 value 85.555960
iter 80 value 85.551796
iter 90 value 85.551612
iter 100 value 85.549811
final value 85.549811
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 102.623698
iter 10 value 94.491827
iter 20 value 94.039219
iter 30 value 91.828081
iter 40 value 91.824858
final value 91.824741
converged
Fitting Repeat 2
# weights: 507
initial value 98.753279
iter 10 value 94.417713
iter 20 value 94.195268
iter 30 value 88.208127
iter 40 value 85.182222
iter 50 value 85.103545
iter 60 value 84.959095
iter 70 value 84.102350
iter 80 value 82.496604
iter 90 value 82.432110
iter 100 value 81.085189
final value 81.085189
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 122.586889
iter 10 value 94.121157
iter 20 value 93.895419
iter 30 value 93.751773
iter 40 value 93.726155
iter 50 value 93.713931
iter 60 value 92.593555
iter 70 value 90.087639
iter 80 value 89.233131
iter 90 value 86.844362
iter 100 value 82.769033
final value 82.769033
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.260140
iter 10 value 93.265816
iter 20 value 87.290464
iter 30 value 86.961712
iter 40 value 86.943157
iter 50 value 86.939439
iter 60 value 86.938638
iter 70 value 86.934136
final value 86.932558
converged
Fitting Repeat 5
# weights: 507
initial value 104.678148
iter 10 value 94.492133
iter 20 value 94.437296
iter 30 value 86.543056
iter 40 value 85.528307
iter 50 value 83.840138
iter 60 value 81.412122
iter 70 value 79.715827
iter 80 value 79.678092
iter 90 value 79.661629
iter 100 value 79.638293
final value 79.638293
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 140.138840
iter 10 value 117.936583
iter 20 value 116.855233
iter 30 value 113.839691
iter 40 value 113.329002
iter 50 value 110.643478
iter 60 value 108.839764
iter 70 value 105.787116
iter 80 value 102.990953
iter 90 value 102.805848
iter 100 value 102.198433
final value 102.198433
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 140.713408
iter 10 value 112.812917
iter 20 value 106.666165
iter 30 value 106.257348
iter 40 value 105.710870
iter 50 value 105.129045
iter 60 value 104.071832
iter 70 value 103.284008
iter 80 value 102.085724
iter 90 value 101.388102
iter 100 value 101.199147
final value 101.199147
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 137.106889
iter 10 value 119.376587
iter 20 value 110.515131
iter 30 value 107.792521
iter 40 value 107.333084
iter 50 value 105.866068
iter 60 value 105.240463
iter 70 value 105.018931
iter 80 value 105.004465
iter 90 value 104.980408
iter 100 value 104.555198
final value 104.555198
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 138.209095
iter 10 value 113.536498
iter 20 value 109.824801
iter 30 value 105.227176
iter 40 value 103.871329
iter 50 value 102.107412
iter 60 value 101.567386
iter 70 value 101.115146
iter 80 value 101.103185
iter 90 value 101.092119
iter 100 value 100.986559
final value 100.986559
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 165.931756
iter 10 value 119.063435
iter 20 value 118.094737
iter 30 value 110.030410
iter 40 value 104.323678
iter 50 value 101.152745
iter 60 value 100.756452
iter 70 value 100.467611
iter 80 value 100.406281
iter 90 value 100.324047
iter 100 value 100.295525
final value 100.295525
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Thu Oct 17 06:56:21 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
73.349 2.223 85.173
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 51.468 | 1.800 | 61.499 | |
| FreqInteractors | 0.493 | 0.030 | 0.585 | |
| calculateAAC | 0.074 | 0.016 | 0.100 | |
| calculateAutocor | 0.858 | 0.108 | 1.070 | |
| calculateCTDC | 0.149 | 0.008 | 0.175 | |
| calculateCTDD | 1.270 | 0.037 | 1.494 | |
| calculateCTDT | 0.439 | 0.013 | 0.500 | |
| calculateCTriad | 0.776 | 0.045 | 0.914 | |
| calculateDC | 0.257 | 0.027 | 0.324 | |
| calculateF | 0.718 | 0.014 | 0.799 | |
| calculateKSAAP | 0.288 | 0.024 | 0.338 | |
| calculateQD_Sm | 3.633 | 0.177 | 4.269 | |
| calculateTC | 4.744 | 0.460 | 5.573 | |
| calculateTC_Sm | 0.533 | 0.028 | 0.623 | |
| corr_plot | 51.405 | 1.709 | 60.029 | |
| enrichfindP | 0.914 | 0.081 | 15.509 | |
| enrichfind_hp | 0.133 | 0.026 | 1.178 | |
| enrichplot | 0.828 | 0.013 | 0.907 | |
| filter_missing_values | 0.003 | 0.001 | 0.004 | |
| getFASTA | 0.122 | 0.017 | 10.414 | |
| getHPI | 0.002 | 0.002 | 0.003 | |
| get_negativePPI | 0.003 | 0.000 | 0.003 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.002 | 0.002 | 0.004 | |
| plotPPI | 0.138 | 0.006 | 0.147 | |
| pred_ensembel | 24.631 | 0.471 | 22.945 | |
| var_imp | 50.818 | 1.721 | 61.452 | |