| Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2024-04-17 11:37:49 -0400 (Wed, 17 Apr 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4676 |
| palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" | 4414 |
| merida1 | macOS 12.7.1 Monterey | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4437 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 974/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.8.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.1 Ventura / arm64 | see weekly results here | ||||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.8.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.8.0.tar.gz |
| StartedAt: 2024-04-16 04:03:47 -0400 (Tue, 16 Apr 2024) |
| EndedAt: 2024-04-16 04:11:43 -0400 (Tue, 16 Apr 2024) |
| EllapsedTime: 475.8 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.8.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck’
* using R version 4.3.3 (2024-02-29)
* using platform: x86_64-apple-darwin20 (64-bit)
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.8.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 51.743 1.754 57.070
corr_plot 50.389 1.693 54.575
FSmethod 50.251 1.699 54.038
pred_ensembel 23.350 0.427 20.532
calculateTC 4.385 0.451 5.098
enrichfindP 0.870 0.083 14.693
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/Users/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.3 (2024-02-29) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 101.929319
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.389695
iter 10 value 88.879495
iter 20 value 84.192495
final value 84.192382
converged
Fitting Repeat 3
# weights: 103
initial value 97.559395
iter 10 value 91.868688
iter 20 value 91.167198
iter 30 value 91.166113
final value 91.166110
converged
Fitting Repeat 4
# weights: 103
initial value 96.773279
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 94.641565
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.001855
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 111.825202
iter 10 value 94.484211
iter 10 value 94.484211
iter 10 value 94.484211
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 96.401636
final value 94.466823
converged
Fitting Repeat 4
# weights: 305
initial value 109.607396
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 122.606835
final value 94.484210
converged
Fitting Repeat 1
# weights: 507
initial value 97.047147
iter 10 value 94.123745
iter 20 value 87.708404
iter 30 value 86.943321
iter 40 value 86.504150
iter 50 value 85.111358
iter 60 value 84.591409
iter 70 value 83.945380
iter 80 value 83.922481
iter 90 value 83.921932
iter 100 value 83.921897
final value 83.921897
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 99.261099
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 101.816026
final value 94.046703
converged
Fitting Repeat 4
# weights: 507
initial value 98.010266
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 112.998295
final value 94.484209
converged
Fitting Repeat 1
# weights: 103
initial value 103.264797
iter 10 value 94.464337
iter 20 value 87.690019
iter 30 value 84.214486
iter 40 value 84.060483
iter 50 value 83.793106
iter 60 value 83.232102
iter 70 value 83.154559
iter 80 value 82.929854
iter 90 value 82.844927
final value 82.844766
converged
Fitting Repeat 2
# weights: 103
initial value 101.939815
iter 10 value 94.475581
iter 20 value 92.131024
iter 30 value 90.803598
iter 40 value 87.947157
iter 50 value 87.124534
iter 60 value 86.460745
iter 70 value 85.986605
iter 80 value 85.936360
final value 85.936339
converged
Fitting Repeat 3
# weights: 103
initial value 116.020170
iter 10 value 94.503097
iter 20 value 93.973271
iter 30 value 87.261306
iter 40 value 85.798633
iter 50 value 85.541378
iter 60 value 85.213225
iter 70 value 85.092380
iter 80 value 85.042712
iter 90 value 85.039424
iter 90 value 85.039424
iter 90 value 85.039424
final value 85.039424
converged
Fitting Repeat 4
# weights: 103
initial value 97.430120
iter 10 value 94.445962
iter 20 value 93.223807
iter 30 value 92.111001
iter 40 value 90.953394
iter 50 value 90.344517
iter 60 value 86.061664
iter 70 value 85.823884
iter 80 value 85.747447
iter 90 value 85.441874
iter 100 value 85.389953
final value 85.389953
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.847216
iter 10 value 94.489736
iter 20 value 94.402463
iter 30 value 86.569736
iter 40 value 86.055588
iter 50 value 85.639303
iter 60 value 85.423468
iter 70 value 85.418746
iter 80 value 85.391283
final value 85.391064
converged
Fitting Repeat 1
# weights: 305
initial value 100.019791
iter 10 value 93.934428
iter 20 value 86.802934
iter 30 value 86.093065
iter 40 value 85.917724
iter 50 value 84.420546
iter 60 value 83.373598
iter 70 value 82.922694
iter 80 value 82.345007
iter 90 value 82.017699
iter 100 value 81.983546
final value 81.983546
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.733165
iter 10 value 94.397452
iter 20 value 86.372995
iter 30 value 84.631340
iter 40 value 83.451693
iter 50 value 83.163002
iter 60 value 82.501875
iter 70 value 82.355805
iter 80 value 81.886390
iter 90 value 81.863402
iter 100 value 81.825057
final value 81.825057
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.215753
iter 10 value 94.485032
iter 20 value 91.256508
iter 30 value 86.929618
iter 40 value 86.488424
iter 50 value 86.128457
iter 60 value 86.027833
iter 70 value 84.852337
iter 80 value 82.973800
iter 90 value 82.864803
iter 100 value 82.486330
final value 82.486330
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.449317
iter 10 value 91.639045
iter 20 value 89.199578
iter 30 value 89.061816
iter 40 value 86.557823
iter 50 value 85.174798
iter 60 value 85.006652
iter 70 value 84.600186
iter 80 value 84.001672
iter 90 value 82.171460
iter 100 value 81.651351
final value 81.651351
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.501429
iter 10 value 93.882835
iter 20 value 90.904616
iter 30 value 89.086643
iter 40 value 85.870782
iter 50 value 84.057965
iter 60 value 83.641034
iter 70 value 83.107174
iter 80 value 82.598940
iter 90 value 82.418597
iter 100 value 82.271604
final value 82.271604
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.879341
iter 10 value 87.453467
iter 20 value 85.465769
iter 30 value 84.078941
iter 40 value 83.197372
iter 50 value 81.659425
iter 60 value 81.306220
iter 70 value 81.231538
iter 80 value 81.137454
iter 90 value 81.099663
iter 100 value 81.048071
final value 81.048071
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.069908
iter 10 value 94.652070
iter 20 value 90.114660
iter 30 value 88.287114
iter 40 value 85.752486
iter 50 value 84.095274
iter 60 value 83.054525
iter 70 value 82.297643
iter 80 value 81.921062
iter 90 value 81.856098
iter 100 value 81.571141
final value 81.571141
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.296051
iter 10 value 94.525265
iter 20 value 93.400016
iter 30 value 87.122620
iter 40 value 84.188409
iter 50 value 83.663185
iter 60 value 82.358888
iter 70 value 81.482315
iter 80 value 81.306702
iter 90 value 81.170988
iter 100 value 81.146703
final value 81.146703
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.543549
iter 10 value 92.550553
iter 20 value 90.527558
iter 30 value 85.509685
iter 40 value 82.905927
iter 50 value 82.061621
iter 60 value 81.885185
iter 70 value 81.763616
iter 80 value 81.599674
iter 90 value 81.468173
iter 100 value 81.306066
final value 81.306066
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.518241
iter 10 value 90.201015
iter 20 value 89.214424
iter 30 value 87.286120
iter 40 value 85.501051
iter 50 value 84.878614
iter 60 value 84.521098
iter 70 value 83.951848
iter 80 value 82.929031
iter 90 value 81.744362
iter 100 value 81.601440
final value 81.601440
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 105.122638
final value 94.485894
converged
Fitting Repeat 2
# weights: 103
initial value 97.367810
final value 94.468275
converged
Fitting Repeat 3
# weights: 103
initial value 99.998164
final value 94.485824
converged
Fitting Repeat 4
# weights: 103
initial value 94.537418
iter 10 value 92.100272
iter 20 value 91.426124
iter 30 value 90.806239
iter 40 value 86.167420
iter 50 value 85.615593
iter 60 value 85.383619
iter 70 value 85.338702
iter 80 value 85.338224
iter 90 value 85.337730
iter 100 value 85.337499
final value 85.337499
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 101.605048
final value 94.486061
converged
Fitting Repeat 1
# weights: 305
initial value 95.385515
iter 10 value 94.471217
iter 20 value 94.466909
iter 30 value 86.748278
iter 40 value 85.760591
iter 50 value 85.397629
final value 85.045105
converged
Fitting Repeat 2
# weights: 305
initial value 102.348507
iter 10 value 94.329152
iter 20 value 90.347537
iter 30 value 89.206920
iter 40 value 88.590382
iter 50 value 87.943275
iter 60 value 87.942528
iter 70 value 87.941437
final value 87.941430
converged
Fitting Repeat 3
# weights: 305
initial value 105.396896
iter 10 value 94.489643
iter 20 value 94.485587
iter 30 value 94.061344
iter 40 value 91.341986
iter 50 value 88.340776
iter 60 value 88.206275
final value 88.205551
converged
Fitting Repeat 4
# weights: 305
initial value 98.205091
iter 10 value 94.471121
iter 20 value 93.879199
iter 30 value 90.792775
iter 40 value 90.780028
iter 50 value 90.778238
iter 60 value 89.745030
iter 70 value 89.228155
iter 80 value 88.330100
iter 90 value 88.307292
iter 100 value 88.252323
final value 88.252323
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.635755
iter 10 value 94.488993
iter 20 value 94.462295
iter 30 value 85.800923
final value 85.754243
converged
Fitting Repeat 1
# weights: 507
initial value 98.409233
iter 10 value 94.055089
iter 20 value 93.976643
iter 30 value 89.121605
iter 40 value 85.291357
iter 50 value 85.260452
iter 60 value 85.194826
iter 70 value 85.184872
iter 80 value 85.183435
iter 90 value 85.183137
final value 85.183035
converged
Fitting Repeat 2
# weights: 507
initial value 114.532993
iter 10 value 94.044676
iter 20 value 94.039104
final value 94.037013
converged
Fitting Repeat 3
# weights: 507
initial value 106.801273
iter 10 value 94.492753
iter 20 value 92.107331
iter 30 value 85.235648
iter 40 value 83.414165
iter 50 value 81.703741
iter 60 value 81.125558
iter 70 value 81.011266
iter 80 value 80.685004
iter 90 value 80.610626
iter 100 value 80.569146
final value 80.569146
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 115.338689
iter 10 value 89.421159
iter 20 value 88.604993
iter 30 value 88.597930
iter 40 value 88.589912
final value 88.588608
converged
Fitting Repeat 5
# weights: 507
initial value 100.337597
iter 10 value 89.872819
iter 20 value 85.762391
iter 30 value 85.058491
iter 40 value 84.880392
iter 50 value 84.879135
iter 60 value 84.874556
iter 70 value 84.845153
iter 80 value 84.164677
iter 90 value 83.888826
iter 100 value 83.884457
final value 83.884457
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.683581
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 103.361072
final value 93.637379
converged
Fitting Repeat 3
# weights: 103
initial value 101.279769
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.415656
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 94.590064
final value 94.484213
converged
Fitting Repeat 1
# weights: 305
initial value 95.005315
iter 10 value 94.026542
iter 10 value 94.026542
iter 10 value 94.026542
final value 94.026542
converged
Fitting Repeat 2
# weights: 305
initial value 101.888337
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 98.836982
final value 94.026542
converged
Fitting Repeat 4
# weights: 305
initial value 95.335455
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 96.124348
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 95.669377
iter 10 value 91.904440
iter 20 value 84.323906
iter 30 value 84.289750
iter 40 value 84.289045
final value 84.289042
converged
Fitting Repeat 2
# weights: 507
initial value 101.012803
iter 10 value 93.508987
iter 20 value 91.872101
final value 91.858965
converged
Fitting Repeat 3
# weights: 507
initial value 95.597901
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 99.229254
iter 10 value 94.026543
final value 94.026542
converged
Fitting Repeat 5
# weights: 507
initial value 104.845271
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 97.578423
iter 10 value 94.094095
iter 20 value 88.361171
iter 30 value 85.396010
iter 40 value 84.220559
iter 50 value 83.350958
iter 60 value 82.069219
iter 70 value 80.984875
iter 80 value 80.921086
final value 80.863667
converged
Fitting Repeat 2
# weights: 103
initial value 109.439174
iter 10 value 93.483036
iter 20 value 89.402577
iter 30 value 83.702442
iter 40 value 82.896285
iter 50 value 82.843696
iter 60 value 82.769290
iter 70 value 82.671266
iter 80 value 82.650699
iter 80 value 82.650699
iter 80 value 82.650699
final value 82.650699
converged
Fitting Repeat 3
# weights: 103
initial value 96.615173
iter 10 value 89.005658
iter 20 value 84.428812
iter 30 value 82.933394
iter 40 value 81.739131
iter 50 value 81.080784
iter 60 value 80.948188
iter 70 value 80.765342
iter 80 value 80.629730
final value 80.629711
converged
Fitting Repeat 4
# weights: 103
initial value 102.034703
iter 10 value 94.486471
iter 20 value 94.151290
iter 30 value 94.125506
iter 40 value 93.686701
iter 50 value 92.155156
iter 60 value 86.195343
iter 70 value 82.755818
iter 80 value 82.721834
iter 90 value 82.666250
iter 100 value 82.650741
final value 82.650741
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.095703
iter 10 value 94.455113
iter 20 value 90.477617
iter 30 value 85.935999
iter 40 value 83.404127
iter 50 value 82.052045
iter 60 value 80.894556
iter 70 value 80.801344
final value 80.801330
converged
Fitting Repeat 1
# weights: 305
initial value 104.619823
iter 10 value 94.379522
iter 20 value 87.956503
iter 30 value 86.561318
iter 40 value 84.217657
iter 50 value 83.320899
iter 60 value 81.586800
iter 70 value 80.711427
iter 80 value 79.917241
iter 90 value 79.629339
iter 100 value 79.591485
final value 79.591485
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.414665
iter 10 value 94.489297
iter 20 value 84.383800
iter 30 value 83.836954
iter 40 value 83.249545
iter 50 value 82.307074
iter 60 value 81.946453
iter 70 value 81.435460
iter 80 value 81.263436
iter 90 value 80.988599
iter 100 value 80.883074
final value 80.883074
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.805411
iter 10 value 94.518101
iter 20 value 85.027759
iter 30 value 81.646716
iter 40 value 81.059585
iter 50 value 80.755891
iter 60 value 80.632440
iter 70 value 80.461964
iter 80 value 80.121037
iter 90 value 79.633303
iter 100 value 79.395125
final value 79.395125
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.881106
iter 10 value 94.298964
iter 20 value 93.707926
iter 30 value 93.343582
iter 40 value 89.699295
iter 50 value 88.621833
iter 60 value 88.310386
iter 70 value 85.938419
iter 80 value 83.062753
iter 90 value 81.321781
iter 100 value 80.184992
final value 80.184992
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.202317
iter 10 value 96.068542
iter 20 value 85.913955
iter 30 value 84.303728
iter 40 value 84.139485
iter 50 value 82.553217
iter 60 value 81.652479
iter 70 value 81.316120
iter 80 value 81.232213
iter 90 value 80.954909
iter 100 value 80.571695
final value 80.571695
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.900631
iter 10 value 94.939324
iter 20 value 86.604700
iter 30 value 83.464016
iter 40 value 80.888449
iter 50 value 79.954413
iter 60 value 79.664196
iter 70 value 79.477392
iter 80 value 79.342067
iter 90 value 79.250644
iter 100 value 79.113637
final value 79.113637
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 122.749890
iter 10 value 94.452253
iter 20 value 90.999053
iter 30 value 84.071337
iter 40 value 80.689722
iter 50 value 80.066243
iter 60 value 79.911734
iter 70 value 79.810987
iter 80 value 79.533915
iter 90 value 79.454431
iter 100 value 79.378452
final value 79.378452
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.723323
iter 10 value 90.415956
iter 20 value 85.254608
iter 30 value 84.554910
iter 40 value 83.015376
iter 50 value 81.273090
iter 60 value 80.759006
iter 70 value 80.268446
iter 80 value 79.645013
iter 90 value 79.535663
iter 100 value 79.329050
final value 79.329050
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 127.528190
iter 10 value 93.953318
iter 20 value 87.954054
iter 30 value 83.975072
iter 40 value 83.228932
iter 50 value 82.515768
iter 60 value 80.418010
iter 70 value 79.667018
iter 80 value 79.489927
iter 90 value 79.303595
iter 100 value 79.277802
final value 79.277802
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 137.105625
iter 10 value 95.189046
iter 20 value 94.539819
iter 30 value 87.968621
iter 40 value 86.900352
iter 50 value 85.288933
iter 60 value 82.089992
iter 70 value 80.622061
iter 80 value 79.795411
iter 90 value 79.645099
iter 100 value 79.549434
final value 79.549434
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.759336
iter 10 value 94.486045
iter 20 value 94.479288
iter 30 value 93.638132
final value 93.638129
converged
Fitting Repeat 2
# weights: 103
initial value 106.055155
iter 10 value 94.485798
iter 20 value 94.484228
final value 94.484218
converged
Fitting Repeat 3
# weights: 103
initial value 107.833583
iter 10 value 94.486064
iter 20 value 94.484315
final value 94.484215
converged
Fitting Repeat 4
# weights: 103
initial value 103.058165
final value 94.486009
converged
Fitting Repeat 5
# weights: 103
initial value 103.966986
iter 10 value 94.485788
iter 20 value 94.484272
final value 94.484215
converged
Fitting Repeat 1
# weights: 305
initial value 134.231892
iter 10 value 94.489248
iter 20 value 94.484293
iter 30 value 93.277437
iter 40 value 83.358670
iter 50 value 82.608614
iter 60 value 81.159845
iter 70 value 80.905280
iter 80 value 80.879587
iter 90 value 80.526088
iter 100 value 79.477164
final value 79.477164
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.767204
iter 10 value 94.032138
iter 20 value 94.030282
iter 30 value 94.027138
iter 40 value 93.230843
iter 50 value 88.172742
iter 60 value 88.147129
iter 70 value 88.146598
iter 70 value 88.146597
final value 88.146553
converged
Fitting Repeat 3
# weights: 305
initial value 101.560647
iter 10 value 94.488961
iter 20 value 94.317004
iter 30 value 84.882437
iter 40 value 84.544160
iter 50 value 83.466567
final value 83.465624
converged
Fitting Repeat 4
# weights: 305
initial value 99.490939
iter 10 value 94.031639
iter 20 value 94.027075
iter 30 value 83.624789
iter 40 value 83.465664
iter 50 value 83.201503
iter 60 value 83.166920
iter 70 value 83.108015
iter 80 value 82.115517
iter 90 value 80.760997
iter 100 value 80.670495
final value 80.670495
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 98.220269
iter 10 value 94.488643
iter 20 value 94.292883
iter 30 value 83.183170
iter 40 value 83.131966
iter 50 value 83.131378
final value 83.131367
converged
Fitting Repeat 1
# weights: 507
initial value 102.502675
iter 10 value 94.113704
iter 20 value 94.107016
iter 30 value 93.760317
iter 40 value 92.557164
iter 50 value 83.776245
final value 83.464417
converged
Fitting Repeat 2
# weights: 507
initial value 100.596510
iter 10 value 94.492444
iter 20 value 91.096875
iter 30 value 84.203064
iter 40 value 84.151343
iter 50 value 84.125674
iter 60 value 84.103947
iter 70 value 84.103535
final value 84.099978
converged
Fitting Repeat 3
# weights: 507
initial value 114.232761
iter 10 value 94.078423
iter 20 value 94.031192
iter 30 value 94.025319
iter 40 value 93.629554
iter 50 value 93.347777
iter 60 value 93.346305
iter 70 value 92.641937
final value 92.636901
converged
Fitting Repeat 4
# weights: 507
initial value 98.916746
iter 10 value 94.034727
iter 20 value 94.030197
iter 30 value 94.016653
final value 93.550503
converged
Fitting Repeat 5
# weights: 507
initial value 95.593994
iter 10 value 86.385174
iter 20 value 82.983763
iter 30 value 82.977917
iter 40 value 82.976214
iter 50 value 82.381529
iter 60 value 81.610670
iter 70 value 81.517092
iter 80 value 81.512431
iter 90 value 81.237152
iter 100 value 79.528049
final value 79.528049
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.568072
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.556520
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 96.858431
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 112.378578
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 101.709611
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 97.160157
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 100.233927
final value 93.395952
converged
Fitting Repeat 3
# weights: 305
initial value 99.071499
final value 94.008696
converged
Fitting Repeat 4
# weights: 305
initial value 98.619163
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 95.345686
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 102.221110
iter 10 value 93.506090
iter 20 value 93.471195
final value 93.470905
converged
Fitting Repeat 2
# weights: 507
initial value 97.397538
iter 10 value 94.081189
final value 94.008696
converged
Fitting Repeat 3
# weights: 507
initial value 95.900908
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 101.811506
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 103.042444
final value 94.008696
converged
Fitting Repeat 1
# weights: 103
initial value 100.902112
iter 10 value 94.157234
iter 20 value 94.050079
iter 30 value 90.589379
iter 40 value 87.702628
iter 50 value 87.039304
iter 60 value 85.734073
iter 70 value 84.111300
iter 80 value 83.621894
iter 90 value 83.003520
iter 100 value 82.946322
final value 82.946322
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 100.770582
iter 10 value 94.056924
iter 20 value 94.048036
iter 30 value 93.244212
iter 40 value 88.181597
iter 50 value 87.894077
iter 60 value 85.771309
iter 70 value 85.168415
iter 80 value 84.921282
iter 90 value 84.863939
final value 84.863928
converged
Fitting Repeat 3
# weights: 103
initial value 106.183894
iter 10 value 94.056476
iter 20 value 93.775195
iter 30 value 88.302061
iter 40 value 86.078637
iter 50 value 85.966662
iter 60 value 85.885626
iter 70 value 85.806199
final value 85.805254
converged
Fitting Repeat 4
# weights: 103
initial value 101.562260
iter 10 value 94.056133
iter 20 value 94.028484
iter 30 value 89.079418
iter 40 value 88.433330
iter 50 value 88.403342
iter 60 value 86.396716
iter 70 value 85.378146
iter 80 value 85.366967
iter 90 value 85.317516
iter 100 value 85.257686
final value 85.257686
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 109.273115
iter 10 value 94.054871
iter 20 value 91.201408
iter 30 value 86.324207
iter 40 value 85.506517
iter 50 value 85.372849
iter 60 value 85.262504
iter 70 value 85.221648
final value 85.219624
converged
Fitting Repeat 1
# weights: 305
initial value 103.507489
iter 10 value 94.030995
iter 20 value 92.347439
iter 30 value 90.055094
iter 40 value 87.771054
iter 50 value 84.993122
iter 60 value 83.276958
iter 70 value 83.190378
iter 80 value 82.930353
iter 90 value 82.855312
iter 100 value 82.623415
final value 82.623415
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.971903
iter 10 value 94.280712
iter 20 value 94.054620
iter 30 value 92.349545
iter 40 value 91.136713
iter 50 value 88.489442
iter 60 value 85.466660
iter 70 value 84.043664
iter 80 value 83.744229
iter 90 value 83.226943
iter 100 value 83.057521
final value 83.057521
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.514662
iter 10 value 94.087955
iter 20 value 93.980968
iter 30 value 92.007454
iter 40 value 91.340110
iter 50 value 89.782696
iter 60 value 87.699259
iter 70 value 86.143113
iter 80 value 85.188368
iter 90 value 84.666485
iter 100 value 83.789826
final value 83.789826
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 125.072753
iter 10 value 94.106765
iter 20 value 92.404498
iter 30 value 86.895090
iter 40 value 84.336109
iter 50 value 82.686852
iter 60 value 82.586962
iter 70 value 82.487862
iter 80 value 82.331380
iter 90 value 81.938773
iter 100 value 81.687916
final value 81.687916
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.963387
iter 10 value 93.794060
iter 20 value 91.477490
iter 30 value 88.695906
iter 40 value 86.529841
iter 50 value 84.412090
iter 60 value 83.180238
iter 70 value 82.907253
iter 80 value 82.749578
iter 90 value 82.111273
iter 100 value 81.950914
final value 81.950914
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.177257
iter 10 value 93.833379
iter 20 value 87.856080
iter 30 value 86.296582
iter 40 value 85.896093
iter 50 value 84.795603
iter 60 value 83.309213
iter 70 value 82.406819
iter 80 value 81.504455
iter 90 value 81.382703
iter 100 value 81.266807
final value 81.266807
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.904755
iter 10 value 94.056815
iter 20 value 92.614418
iter 30 value 90.299650
iter 40 value 89.816991
iter 50 value 87.691082
iter 60 value 85.580536
iter 70 value 84.746238
iter 80 value 83.458238
iter 90 value 82.725734
iter 100 value 82.158066
final value 82.158066
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.361291
iter 10 value 92.910605
iter 20 value 91.303467
iter 30 value 89.542860
iter 40 value 87.316454
iter 50 value 86.359282
iter 60 value 84.885069
iter 70 value 84.055229
iter 80 value 82.999694
iter 90 value 82.215743
iter 100 value 81.778271
final value 81.778271
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.559217
iter 10 value 94.110155
iter 20 value 93.291413
iter 30 value 85.984523
iter 40 value 84.718709
iter 50 value 84.488668
iter 60 value 84.393278
iter 70 value 83.186657
iter 80 value 82.839885
iter 90 value 82.671077
iter 100 value 82.553580
final value 82.553580
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.186186
iter 10 value 95.500339
iter 20 value 93.111721
iter 30 value 88.317893
iter 40 value 84.605899
iter 50 value 83.720885
iter 60 value 83.170480
iter 70 value 82.682436
iter 80 value 82.648149
iter 90 value 82.593169
iter 100 value 82.397659
final value 82.397659
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.169142
final value 94.054608
converged
Fitting Repeat 2
# weights: 103
initial value 95.955851
iter 10 value 94.010316
iter 20 value 93.882244
iter 30 value 85.707827
iter 40 value 84.592948
iter 50 value 84.550312
iter 60 value 84.403337
iter 70 value 84.403252
final value 84.403224
converged
Fitting Repeat 3
# weights: 103
initial value 95.175497
final value 94.054446
converged
Fitting Repeat 4
# weights: 103
initial value 94.588871
iter 10 value 94.010267
iter 20 value 94.009855
iter 30 value 94.008807
final value 94.008751
converged
Fitting Repeat 5
# weights: 103
initial value 96.762212
iter 10 value 94.054636
iter 20 value 94.052970
final value 94.052916
converged
Fitting Repeat 1
# weights: 305
initial value 117.610938
iter 10 value 94.057592
iter 20 value 93.652233
iter 30 value 85.732238
final value 85.106619
converged
Fitting Repeat 2
# weights: 305
initial value 133.198362
iter 10 value 94.058894
iter 20 value 93.992289
iter 30 value 85.139261
iter 40 value 82.872257
iter 50 value 82.805316
final value 82.805246
converged
Fitting Repeat 3
# weights: 305
initial value 104.739231
iter 10 value 94.057992
iter 20 value 93.739926
iter 30 value 88.852280
iter 40 value 88.208817
iter 50 value 88.208442
final value 88.208353
converged
Fitting Repeat 4
# weights: 305
initial value 100.100380
iter 10 value 94.057222
iter 20 value 93.659322
iter 30 value 88.212866
iter 40 value 88.210897
iter 50 value 88.209500
iter 60 value 88.204407
iter 70 value 88.089709
iter 80 value 87.776495
iter 90 value 83.637159
iter 100 value 83.552238
final value 83.552238
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.383398
iter 10 value 94.057851
iter 20 value 94.052931
iter 30 value 93.979780
iter 40 value 93.810339
iter 50 value 93.757856
iter 60 value 87.575105
iter 70 value 87.544650
iter 70 value 87.544649
iter 70 value 87.544649
final value 87.544649
converged
Fitting Repeat 1
# weights: 507
initial value 127.215646
iter 10 value 94.061516
iter 20 value 94.051870
iter 30 value 93.724580
iter 40 value 93.444033
iter 50 value 92.037613
iter 60 value 86.391564
iter 70 value 85.883795
iter 80 value 85.838767
iter 90 value 85.838216
final value 85.837442
converged
Fitting Repeat 2
# weights: 507
initial value 101.883140
iter 10 value 94.037343
iter 20 value 94.016063
iter 30 value 93.835932
iter 40 value 85.554890
iter 50 value 85.089288
iter 60 value 83.609309
iter 70 value 81.839941
iter 80 value 81.829320
iter 90 value 81.828512
final value 81.827294
converged
Fitting Repeat 3
# weights: 507
initial value 101.286577
iter 10 value 93.645168
iter 20 value 93.639576
iter 30 value 90.209193
iter 40 value 87.004817
iter 50 value 84.356580
iter 60 value 84.259307
iter 70 value 84.259050
iter 80 value 84.257210
final value 84.257075
converged
Fitting Repeat 4
# weights: 507
initial value 100.278339
iter 10 value 94.017185
iter 20 value 93.918993
iter 30 value 92.604851
iter 40 value 84.659207
iter 50 value 84.145970
iter 60 value 84.117302
final value 84.117237
converged
Fitting Repeat 5
# weights: 507
initial value 111.481393
iter 10 value 94.060430
iter 20 value 92.371377
iter 30 value 88.283868
iter 40 value 86.966625
iter 50 value 86.954492
iter 60 value 86.953644
final value 86.950976
converged
Fitting Repeat 1
# weights: 103
initial value 102.781600
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 103.734353
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.340930
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 103.786414
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.075047
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 96.076821
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 94.530142
iter 10 value 94.213603
iter 20 value 87.244797
iter 30 value 85.320176
final value 84.267099
converged
Fitting Repeat 3
# weights: 305
initial value 116.349979
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 105.608175
iter 10 value 83.510858
iter 20 value 81.762073
iter 30 value 81.742768
final value 81.739033
converged
Fitting Repeat 5
# weights: 305
initial value 93.539989
iter 10 value 82.303170
iter 20 value 80.292145
iter 30 value 80.282842
final value 80.279601
converged
Fitting Repeat 1
# weights: 507
initial value 103.400561
final value 94.466823
converged
Fitting Repeat 2
# weights: 507
initial value 107.558998
final value 94.480519
converged
Fitting Repeat 3
# weights: 507
initial value 110.039439
iter 10 value 93.947376
final value 93.947313
converged
Fitting Repeat 4
# weights: 507
initial value 116.741651
iter 10 value 94.482932
iter 10 value 94.482932
iter 10 value 94.482932
final value 94.482932
converged
Fitting Repeat 5
# weights: 507
initial value 108.433664
final value 94.443243
converged
Fitting Repeat 1
# weights: 103
initial value 103.755583
iter 10 value 94.411858
iter 20 value 90.890909
iter 30 value 86.449677
iter 40 value 82.745208
iter 50 value 82.101890
iter 60 value 81.730504
iter 70 value 80.231568
iter 80 value 79.662053
iter 90 value 79.519269
iter 100 value 79.293522
final value 79.293522
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.868929
iter 10 value 93.858737
iter 20 value 85.855642
iter 30 value 83.276982
iter 40 value 82.730690
iter 50 value 81.553082
iter 60 value 81.219490
final value 81.200415
converged
Fitting Repeat 3
# weights: 103
initial value 98.366431
iter 10 value 94.486612
iter 20 value 83.576489
iter 30 value 83.299287
iter 40 value 82.770692
iter 50 value 81.225806
iter 60 value 80.921121
iter 70 value 80.913742
final value 80.913121
converged
Fitting Repeat 4
# weights: 103
initial value 103.718684
iter 10 value 94.560720
iter 20 value 94.044498
iter 30 value 83.865256
iter 40 value 83.009996
iter 50 value 81.474837
iter 60 value 80.756858
iter 70 value 80.273940
iter 80 value 80.064028
iter 90 value 79.694016
iter 100 value 79.310864
final value 79.310864
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 107.427755
iter 10 value 94.510264
iter 20 value 94.485592
iter 30 value 94.307632
iter 40 value 89.197303
iter 50 value 88.770621
iter 60 value 86.907264
iter 70 value 85.373422
iter 80 value 84.197428
iter 90 value 84.081868
iter 100 value 82.890791
final value 82.890791
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 107.428935
iter 10 value 94.483152
iter 20 value 88.203674
iter 30 value 84.446526
iter 40 value 80.127179
iter 50 value 78.742684
iter 60 value 78.542984
iter 70 value 78.431374
iter 80 value 78.151674
iter 90 value 78.023275
iter 100 value 77.916892
final value 77.916892
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.746821
iter 10 value 94.055343
iter 20 value 84.100479
iter 30 value 83.273115
iter 40 value 82.625197
iter 50 value 81.746732
iter 60 value 81.393448
iter 70 value 80.324071
iter 80 value 79.059687
iter 90 value 78.033570
iter 100 value 77.540405
final value 77.540405
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 124.264858
iter 10 value 95.035491
iter 20 value 92.452444
iter 30 value 88.361344
iter 40 value 85.730934
iter 50 value 81.888290
iter 60 value 79.122100
iter 70 value 78.545706
iter 80 value 77.892373
iter 90 value 77.762926
iter 100 value 77.622310
final value 77.622310
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 113.653593
iter 10 value 94.960987
iter 20 value 86.901550
iter 30 value 83.561584
iter 40 value 82.644071
iter 50 value 81.668766
iter 60 value 81.503209
iter 70 value 79.883196
iter 80 value 78.680129
iter 90 value 78.196807
iter 100 value 78.141122
final value 78.141122
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.343668
iter 10 value 94.444502
iter 20 value 88.708946
iter 30 value 83.593796
iter 40 value 83.382031
iter 50 value 80.080681
iter 60 value 79.671140
iter 70 value 79.349489
iter 80 value 78.508648
iter 90 value 78.092271
iter 100 value 77.626649
final value 77.626649
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.129445
iter 10 value 94.185322
iter 20 value 83.313849
iter 30 value 82.729364
iter 40 value 82.160846
iter 50 value 81.537468
iter 60 value 81.103583
iter 70 value 80.692652
iter 80 value 78.147274
iter 90 value 77.415408
iter 100 value 77.323034
final value 77.323034
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 115.796666
iter 10 value 95.116650
iter 20 value 88.532190
iter 30 value 84.191283
iter 40 value 83.927416
iter 50 value 81.864942
iter 60 value 80.132789
iter 70 value 79.353796
iter 80 value 78.408289
iter 90 value 77.344990
iter 100 value 77.132273
final value 77.132273
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.919307
iter 10 value 94.124387
iter 20 value 89.561967
iter 30 value 88.791140
iter 40 value 83.743833
iter 50 value 81.652767
iter 60 value 79.984747
iter 70 value 78.691824
iter 80 value 77.906875
iter 90 value 77.716201
iter 100 value 77.665816
final value 77.665816
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.520893
iter 10 value 93.809324
iter 20 value 83.983046
iter 30 value 82.043439
iter 40 value 81.438819
iter 50 value 81.384909
iter 60 value 81.144913
iter 70 value 79.897969
iter 80 value 78.346996
iter 90 value 77.761560
iter 100 value 77.594905
final value 77.594905
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 142.576320
iter 10 value 94.520893
iter 20 value 91.968324
iter 30 value 83.618834
iter 40 value 83.490313
iter 50 value 82.627354
iter 60 value 80.935791
iter 70 value 79.355417
iter 80 value 77.935721
iter 90 value 77.514081
iter 100 value 77.296286
final value 77.296286
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.614719
final value 94.468682
converged
Fitting Repeat 2
# weights: 103
initial value 94.666853
final value 94.486070
converged
Fitting Repeat 3
# weights: 103
initial value 93.408422
iter 10 value 85.959349
iter 20 value 84.841767
iter 30 value 83.857852
iter 40 value 83.414365
iter 50 value 83.403203
iter 60 value 83.402834
iter 70 value 83.402067
iter 80 value 81.125944
iter 90 value 80.180772
iter 100 value 80.103473
final value 80.103473
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 108.620865
final value 94.486130
converged
Fitting Repeat 5
# weights: 103
initial value 101.000210
final value 93.703322
converged
Fitting Repeat 1
# weights: 305
initial value 95.491942
iter 10 value 94.480646
iter 20 value 94.471881
iter 30 value 94.469968
iter 40 value 94.429448
iter 50 value 94.429202
final value 94.429180
converged
Fitting Repeat 2
# weights: 305
initial value 107.660101
iter 10 value 94.454259
iter 20 value 88.803389
iter 30 value 85.360458
iter 30 value 85.360458
iter 30 value 85.360458
final value 85.360458
converged
Fitting Repeat 3
# weights: 305
initial value 95.655368
iter 10 value 94.488599
iter 20 value 87.711467
final value 87.353899
converged
Fitting Repeat 4
# weights: 305
initial value 104.331985
iter 10 value 94.577661
iter 20 value 94.377328
iter 30 value 91.129418
iter 40 value 80.225230
iter 50 value 79.053329
iter 60 value 79.052818
iter 70 value 79.052153
iter 80 value 79.051679
iter 90 value 79.051599
final value 79.050739
converged
Fitting Repeat 5
# weights: 305
initial value 107.129379
iter 10 value 94.489035
iter 20 value 94.299368
iter 30 value 85.796449
iter 40 value 84.230232
iter 50 value 83.455377
iter 60 value 82.806401
iter 70 value 82.804578
final value 82.804564
converged
Fitting Repeat 1
# weights: 507
initial value 109.315529
iter 10 value 94.492498
iter 20 value 94.293962
iter 30 value 84.337694
iter 40 value 83.988156
iter 50 value 83.975085
iter 60 value 83.684492
iter 70 value 83.676297
iter 80 value 83.407936
iter 90 value 83.406183
iter 100 value 83.403187
final value 83.403187
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 96.420421
iter 10 value 93.628985
iter 20 value 93.178929
iter 30 value 93.116237
iter 40 value 93.093977
final value 93.093494
converged
Fitting Repeat 3
# weights: 507
initial value 143.785331
iter 10 value 94.168933
iter 20 value 82.934362
iter 30 value 82.649374
iter 40 value 81.618135
iter 50 value 81.197805
iter 60 value 81.195002
iter 70 value 81.165894
iter 80 value 81.059800
iter 90 value 80.851196
iter 100 value 80.849085
final value 80.849085
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.357492
iter 10 value 94.375509
iter 20 value 94.197840
iter 30 value 93.955092
iter 40 value 93.057648
iter 50 value 91.615008
iter 60 value 91.576507
iter 70 value 83.422980
iter 80 value 80.095653
iter 90 value 78.115950
iter 100 value 77.988510
final value 77.988510
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.943201
iter 10 value 94.472500
iter 20 value 93.221349
iter 30 value 87.519721
iter 40 value 87.323058
iter 50 value 87.321462
iter 60 value 87.319118
iter 70 value 87.317750
iter 80 value 87.166089
iter 90 value 83.417205
iter 100 value 81.048828
final value 81.048828
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 113.341462
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 97.084005
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.399114
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 99.841605
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 105.699797
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 111.272697
iter 10 value 90.406212
iter 20 value 89.039807
iter 30 value 88.989773
iter 40 value 83.945738
iter 50 value 83.214465
iter 60 value 82.786184
iter 70 value 82.779131
final value 82.779051
converged
Fitting Repeat 2
# weights: 305
initial value 96.207657
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 95.653489
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 101.523390
final value 93.836066
converged
Fitting Repeat 5
# weights: 305
initial value 99.940838
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 100.535913
final value 93.912644
converged
Fitting Repeat 2
# weights: 507
initial value 102.375665
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 99.990136
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 104.891586
iter 10 value 93.553229
iter 20 value 93.013829
iter 30 value 91.070766
iter 40 value 91.067133
final value 91.067082
converged
Fitting Repeat 5
# weights: 507
initial value 101.180904
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 103.558716
iter 10 value 93.789427
iter 20 value 89.961019
iter 30 value 85.642704
iter 40 value 84.887036
iter 50 value 84.444338
iter 60 value 84.033064
iter 70 value 83.889130
iter 80 value 83.825115
final value 83.824149
converged
Fitting Repeat 2
# weights: 103
initial value 102.333340
iter 10 value 94.056741
iter 20 value 94.039423
iter 30 value 93.954948
iter 40 value 93.943825
iter 50 value 93.766908
iter 60 value 93.442461
iter 70 value 93.173599
iter 80 value 92.220256
iter 90 value 85.974597
iter 100 value 84.617567
final value 84.617567
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 109.330623
iter 10 value 93.984734
iter 20 value 91.541394
iter 30 value 84.930963
iter 40 value 84.628400
iter 50 value 84.513445
iter 60 value 84.497529
iter 60 value 84.497529
iter 60 value 84.497529
final value 84.497529
converged
Fitting Repeat 4
# weights: 103
initial value 96.970387
iter 10 value 94.056832
iter 20 value 93.549040
iter 30 value 93.465037
iter 40 value 93.403499
iter 50 value 93.267280
iter 60 value 88.052730
iter 70 value 85.572406
iter 80 value 85.450727
iter 90 value 85.358913
iter 100 value 84.864037
final value 84.864037
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 101.163230
iter 10 value 94.024306
iter 20 value 89.265557
iter 30 value 84.156005
iter 40 value 83.458247
iter 50 value 83.317970
iter 60 value 83.065041
iter 70 value 81.990995
iter 80 value 81.867093
iter 90 value 81.817694
final value 81.817396
converged
Fitting Repeat 1
# weights: 305
initial value 104.158921
iter 10 value 94.054933
iter 20 value 92.908858
iter 30 value 91.392363
iter 40 value 91.326695
iter 50 value 89.252451
iter 60 value 85.609805
iter 70 value 84.141602
iter 80 value 82.648636
iter 90 value 82.172884
iter 100 value 80.950861
final value 80.950861
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 98.103960
iter 10 value 89.481120
iter 20 value 87.620878
iter 30 value 86.763081
iter 40 value 84.102689
iter 50 value 81.500992
iter 60 value 80.704573
iter 70 value 80.097028
iter 80 value 79.995456
iter 90 value 79.979771
iter 100 value 79.902755
final value 79.902755
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.510646
iter 10 value 94.045882
iter 20 value 88.309894
iter 30 value 86.866897
iter 40 value 86.227447
iter 50 value 83.803972
iter 60 value 83.089058
iter 70 value 82.796157
iter 80 value 82.631300
iter 90 value 82.137592
iter 100 value 82.042433
final value 82.042433
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 111.279719
iter 10 value 94.057137
iter 20 value 92.012890
iter 30 value 85.946996
iter 40 value 84.442795
iter 50 value 82.369955
iter 60 value 81.963295
iter 70 value 81.393117
iter 80 value 81.163966
iter 90 value 81.029069
iter 100 value 80.853524
final value 80.853524
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 113.527701
iter 10 value 94.217593
iter 20 value 88.982653
iter 30 value 87.772238
iter 40 value 85.008869
iter 50 value 84.359632
iter 60 value 83.830644
iter 70 value 83.305756
iter 80 value 82.200727
iter 90 value 81.629993
iter 100 value 81.606026
final value 81.606026
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 126.173568
iter 10 value 94.334192
iter 20 value 93.664496
iter 30 value 88.314237
iter 40 value 87.341708
iter 50 value 87.235777
iter 60 value 87.006566
iter 70 value 86.308369
iter 80 value 85.866516
iter 90 value 83.927467
iter 100 value 82.473094
final value 82.473094
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.150642
iter 10 value 94.161041
iter 20 value 87.555054
iter 30 value 86.429704
iter 40 value 84.857018
iter 50 value 82.408562
iter 60 value 81.389047
iter 70 value 80.937929
iter 80 value 80.734380
iter 90 value 80.678990
iter 100 value 80.556521
final value 80.556521
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 117.579213
iter 10 value 94.086320
iter 20 value 90.192585
iter 30 value 86.637504
iter 40 value 85.866960
iter 50 value 82.329893
iter 60 value 80.699402
iter 70 value 80.614565
iter 80 value 80.284163
iter 90 value 80.134521
iter 100 value 79.987441
final value 79.987441
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 131.000902
iter 10 value 93.617112
iter 20 value 87.001423
iter 30 value 85.824871
iter 40 value 84.298038
iter 50 value 82.670748
iter 60 value 81.339037
iter 70 value 80.955833
iter 80 value 80.709412
iter 90 value 80.267636
iter 100 value 80.226148
final value 80.226148
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.680013
iter 10 value 93.820067
iter 20 value 84.220382
iter 30 value 82.503708
iter 40 value 81.282869
iter 50 value 80.554482
iter 60 value 80.268047
iter 70 value 80.183873
iter 80 value 80.116740
iter 90 value 79.881985
iter 100 value 79.641260
final value 79.641260
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.333378
final value 94.054509
converged
Fitting Repeat 2
# weights: 103
initial value 94.557012
final value 94.054683
converged
Fitting Repeat 3
# weights: 103
initial value 97.727589
iter 10 value 94.054706
iter 20 value 94.052661
iter 30 value 93.412969
final value 93.412740
converged
Fitting Repeat 4
# weights: 103
initial value 99.841333
final value 94.054846
converged
Fitting Repeat 5
# weights: 103
initial value 101.388057
iter 10 value 93.688425
iter 20 value 93.673052
iter 30 value 93.671682
iter 40 value 93.487066
iter 50 value 91.898591
iter 60 value 86.563320
iter 70 value 82.569739
iter 80 value 82.414126
iter 90 value 82.410368
iter 100 value 82.333632
final value 82.333632
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.750145
iter 10 value 94.057739
iter 20 value 93.880481
iter 30 value 89.261937
iter 40 value 88.592637
iter 50 value 88.558519
iter 60 value 88.354646
final value 88.354536
converged
Fitting Repeat 2
# weights: 305
initial value 124.461304
iter 10 value 94.057466
iter 20 value 94.031026
iter 30 value 93.290767
final value 93.290763
converged
Fitting Repeat 3
# weights: 305
initial value 104.590148
iter 10 value 94.058081
iter 20 value 94.026934
iter 30 value 93.836434
final value 93.836433
converged
Fitting Repeat 4
# weights: 305
initial value 113.577582
iter 10 value 93.415302
iter 20 value 93.409644
iter 30 value 93.290672
final value 93.290628
converged
Fitting Repeat 5
# weights: 305
initial value 98.738123
iter 10 value 94.057534
iter 20 value 94.049934
iter 30 value 93.079866
iter 40 value 92.809798
final value 92.809453
converged
Fitting Repeat 1
# weights: 507
initial value 109.857184
iter 10 value 93.844166
iter 20 value 87.354267
iter 30 value 87.053436
iter 40 value 86.920053
iter 50 value 86.596545
iter 60 value 86.595905
final value 86.592182
converged
Fitting Repeat 2
# weights: 507
initial value 101.500151
iter 10 value 94.059697
iter 20 value 94.055514
iter 30 value 93.911185
iter 40 value 93.448431
iter 50 value 93.290845
iter 60 value 93.202535
iter 70 value 93.010449
final value 92.986792
converged
Fitting Repeat 3
# weights: 507
initial value 124.580344
iter 10 value 93.844665
iter 20 value 93.816095
iter 30 value 93.325151
iter 40 value 93.258728
iter 50 value 93.258030
iter 60 value 93.257779
iter 70 value 93.257577
final value 93.257454
converged
Fitting Repeat 4
# weights: 507
initial value 106.532235
iter 10 value 94.060935
iter 20 value 94.029824
iter 30 value 87.669757
iter 40 value 86.849005
iter 50 value 85.086139
iter 60 value 83.401916
iter 70 value 83.162929
iter 70 value 83.162928
final value 83.162927
converged
Fitting Repeat 5
# weights: 507
initial value 108.830351
iter 10 value 93.845378
iter 20 value 93.841153
iter 30 value 93.488468
iter 40 value 84.878867
iter 50 value 84.520197
iter 60 value 83.872129
iter 70 value 80.993824
iter 80 value 79.603381
iter 90 value 78.843251
iter 100 value 78.203034
final value 78.203034
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 140.342845
iter 10 value 117.795446
iter 20 value 115.901146
iter 30 value 108.898249
iter 40 value 105.619217
iter 50 value 105.230406
iter 60 value 104.641185
iter 70 value 103.304518
iter 80 value 102.706035
iter 90 value 102.346467
iter 100 value 101.537206
final value 101.537206
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 135.884909
iter 10 value 117.906572
iter 20 value 117.770252
iter 30 value 117.349512
iter 40 value 109.985511
iter 50 value 109.271935
iter 60 value 106.501215
iter 70 value 105.579572
iter 80 value 105.369092
iter 90 value 104.588728
iter 100 value 104.101182
final value 104.101182
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 124.545671
iter 10 value 117.902400
iter 20 value 110.370391
iter 30 value 107.330870
iter 40 value 105.181561
iter 50 value 102.987741
iter 60 value 102.232738
iter 70 value 102.084623
iter 80 value 101.970316
iter 90 value 101.432356
iter 100 value 101.207093
final value 101.207093
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 136.375757
iter 10 value 117.869938
iter 20 value 117.611539
iter 30 value 109.038069
iter 40 value 107.835518
iter 50 value 106.965682
iter 60 value 102.452006
iter 70 value 101.085296
iter 80 value 100.894359
iter 90 value 100.882931
iter 100 value 100.824405
final value 100.824405
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 146.445584
iter 10 value 117.595779
iter 20 value 110.814535
iter 30 value 107.791123
iter 40 value 107.573512
iter 50 value 103.881894
iter 60 value 102.204223
iter 70 value 101.883235
iter 80 value 101.785552
iter 90 value 101.673047
iter 100 value 101.658993
final value 101.658993
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Apr 16 04:11:29 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
69.596 2.060 78.439
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 50.251 | 1.699 | 54.038 | |
| FreqInteractors | 0.460 | 0.020 | 0.484 | |
| calculateAAC | 0.070 | 0.013 | 0.086 | |
| calculateAutocor | 0.826 | 0.099 | 0.971 | |
| calculateCTDC | 0.149 | 0.007 | 0.162 | |
| calculateCTDD | 1.205 | 0.036 | 1.296 | |
| calculateCTDT | 0.428 | 0.019 | 0.466 | |
| calculateCTriad | 0.705 | 0.038 | 0.778 | |
| calculateDC | 0.230 | 0.027 | 0.274 | |
| calculateF | 0.608 | 0.018 | 0.640 | |
| calculateKSAAP | 0.265 | 0.022 | 0.299 | |
| calculateQD_Sm | 3.404 | 0.181 | 3.869 | |
| calculateTC | 4.385 | 0.451 | 5.098 | |
| calculateTC_Sm | 0.509 | 0.024 | 0.555 | |
| corr_plot | 50.389 | 1.693 | 54.575 | |
| enrichfindP | 0.870 | 0.083 | 14.693 | |
| enrichfind_hp | 0.124 | 0.027 | 1.136 | |
| enrichplot | 0.758 | 0.011 | 0.813 | |
| filter_missing_values | 0.002 | 0.001 | 0.003 | |
| getFASTA | 0.122 | 0.016 | 4.230 | |
| getHPI | 0.001 | 0.001 | 0.002 | |
| get_negativePPI | 0.003 | 0.001 | 0.003 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.002 | 0.001 | 0.004 | |
| plotPPI | 0.136 | 0.003 | 0.145 | |
| pred_ensembel | 23.350 | 0.427 | 20.532 | |
| var_imp | 51.743 | 1.754 | 57.070 | |