| Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-12-25 11:59 -0500 (Thu, 25 Dec 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble" | 4883 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4671 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 2135/2361 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| STATegRa 1.46.0 (landing page) David Gomez-Cabrero
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the STATegRa package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
| Package: STATegRa |
| Version: 1.46.0 |
| Command: /home/biocbuild/R/R/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings STATegRa_1.46.0.tar.gz |
| StartedAt: 2025-12-23 15:26:42 -0000 (Tue, 23 Dec 2025) |
| EndedAt: 2025-12-23 15:31:32 -0000 (Tue, 23 Dec 2025) |
| EllapsedTime: 289.3 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: STATegRa.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/R/R/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings STATegRa_1.46.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/STATegRa.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘STATegRa/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘STATegRa’ version ‘1.46.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘STATegRa’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
variable ‘components’
modelSelection,list-numeric-character: no visible binding for global
variable ‘mylabel’
plotVAF,caClass: no visible binding for global variable ‘comp’
plotVAF,caClass: no visible binding for global variable ‘VAF’
plotVAF,caClass: no visible binding for global variable ‘block’
selectCommonComps,list-numeric: no visible binding for global variable
‘comps’
selectCommonComps,list-numeric: no visible binding for global variable
‘block’
selectCommonComps,list-numeric: no visible binding for global variable
‘comp’
selectCommonComps,list-numeric: no visible binding for global variable
‘ratio’
Undefined global functions or variables:
VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
modelSelection.Rd: ggplot
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘STATEgRa_Example.omicsCLUST.R’
Running ‘STATEgRa_Example.omicsPCA.R’
Running ‘STATegRa_Example.omicsNPC.R’
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/home/biocbuild/bbs-3.22-bioc/meat/STATegRa.Rcheck/00check.log’
for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.5.0/site-library’ * installing *source* package ‘STATegRa’ ... ** this is package ‘STATegRa’ version ‘1.46.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Tue Dec 23 15:31:25 2025
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
3.848 0.187 4.596
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: generics
Attaching package: 'generics'
The following objects are masked from 'package:base':
as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
setequal, union
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
56.264 0.388 56.712
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
96.705 0.512 97.746
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 0.0781575728 -0.0431546761
sample2 -0.1192221392 0.0294023175
sample3 -0.0531408769 -0.0746837615
sample4 0.0292971985 -0.0006033234
sample5 0.0202091031 0.0110453886
sample6 0.1226088254 0.1053492824
sample7 0.1078931185 -0.0322419867
sample8 0.1782890991 0.1449331660
sample9 0.0468697616 -0.0455172137
sample10 -0.0036032441 0.0420077394
sample11 -0.0035566120 -0.0566285394
sample12 0.1006129565 0.0641395881
sample13 -0.1174412976 0.0907476184
sample14 0.0981203354 0.0617763374
sample15 0.0085337275 -0.0086956321
sample16 0.0783146733 0.1581333386
sample17 -0.1483610817 0.0638580701
sample18 -0.0963084704 0.0556687452
sample19 -0.0217242931 -0.0720128768
sample20 -0.0635633933 -0.0779610447
sample21 -0.0201843895 0.1566381137
sample22 0.0218273622 -0.0764056209
sample23 0.0852039324 -0.0032764020
sample24 -0.1287181388 0.1924429592
sample25 -0.0430575527 -0.0456638136
sample26 -0.1453899849 0.0541461398
sample27 -0.0197483692 -0.1185594207
sample28 -0.1025339440 0.0650656657
sample29 0.0706022423 -0.0682932046
sample30 -0.1295623291 -0.0066679768
sample31 0.1147449049 0.1232727026
sample32 -0.0374308295 0.0380247805
sample33 0.0599520388 0.0136935224
sample34 -0.0984199374 0.0375364062
sample35 -0.0543096608 -0.0378036298
sample36 0.1403627815 -0.0343642078
sample37 0.0228947239 -0.0732693382
sample38 -0.0222073150 -0.0962566296
sample39 -0.0941739152 0.0215181070
sample40 0.0643806643 -0.0687723330
sample41 -0.0327634926 -0.1232187393
sample42 -0.0500431661 -0.0292513467
sample43 -0.0184497142 0.0233042906
sample44 0.1487889469 0.1171212834
sample45 -0.1050778694 0.1123141336
sample46 -0.1151191743 -0.1093995963
sample47 -0.0962591634 -0.0288418170
sample48 0.0004833036 -0.0310377933
sample49 0.1135203727 0.1213936539
sample50 -0.0123549654 -0.1740761663
sample51 0.0550527616 0.1258929179
sample52 0.0499118777 0.0728579120
sample53 0.1119772522 0.1588063863
sample54 -0.0360055676 0.0228584488
sample55 0.0210419082 0.0006749367
sample56 -0.0434171333 0.0633130361
sample57 0.0197820973 0.1150752321
sample58 0.0030440593 0.0326126915
sample59 0.0500256488 0.0129519590
sample60 0.0184280022 0.0136216540
sample61 0.0150299088 0.0635095080
sample62 -0.0304759113 -0.0201236816
sample63 0.1102250090 0.1285970203
sample64 0.1552586777 0.0971186366
sample65 -0.0058503617 0.0207102756
sample66 -0.0025607306 0.0424283700
sample67 0.1546638408 -0.0661580962
sample68 0.0536374082 -0.0923605840
sample69 0.0640332809 0.0082004323
sample70 0.0163521544 -0.0663226065
sample71 -0.0102536027 -0.1345964456
sample72 -0.0654191927 -0.0196038246
sample73 -0.1048553322 0.0220999339
sample74 0.0123800599 0.0586155389
sample75 0.0392079849 -0.0209726992
sample76 0.0648954332 -0.0524760303
sample77 0.1172922361 -0.0201200999
sample78 -0.1463072759 0.0708401373
sample79 0.0265209154 -0.1603424096
sample80 0.0279739442 -0.0214153978
sample81 0.0079212193 -0.0738494960
sample82 -0.1544234938 -0.0361450212
sample83 -0.0494205727 -0.0049940903
sample84 -0.0259039418 -0.0346592288
sample85 0.1116487106 -0.0031406253
sample86 -0.1306479398 -0.0377156501
sample87 -0.0554777843 -0.0459741017
sample88 -0.0301626507 0.0382205118
sample89 -0.1016866263 0.0694077147
sample90 0.0086821452 -0.0201324004
sample91 0.1578629942 -0.2097789570
sample92 0.0170933788 -0.1655934460
sample93 -0.0979805173 -0.0121499827
sample94 0.0131486135 -0.0114928512
sample95 0.0315682547 -0.0758915978
sample96 0.0024125917 -0.0470184440
sample97 0.0634545803 0.0270304553
sample98 -0.0359372579 -0.0135466336
sample99 -0.1009167674 0.1124714244
sample100 0.0551753867 0.0246502815
sample101 -0.0080115926 -0.1627404967
sample102 -0.0046450797 0.0095474692
sample103 -0.0472520819 -0.0940383580
sample104 0.0198157715 -0.0591146988
sample105 -0.0400238847 -0.0160950299
sample106 -0.0923810163 0.0369004025
sample107 -0.1019372443 0.0224967559
sample108 -0.0877091513 -0.0128849220
sample109 0.0864820588 -0.0901077776
sample110 -0.1223116489 -0.0096108167
sample111 0.0257352809 -0.0936279437
sample112 -0.0765285971 0.0270378601
sample113 0.0258800136 0.0377438931
sample114 0.0021141113 -0.0882039772
sample115 0.0303455620 -0.0723732041
sample116 0.0780504498 -0.0685160252
sample117 0.0536894325 -0.0912024831
sample118 0.0666649812 -0.0236259870
sample119 0.1021872806 -0.2324999942
sample120 0.0750216227 0.0243346917
sample121 -0.0756937863 0.0942971298
sample122 -0.0259631843 0.0731921466
sample123 -0.1037844770 -0.0369179662
sample124 0.0611205205 0.0421649076
sample125 -0.0738472606 0.0066942940
sample126 0.0972918933 0.0762699689
sample127 0.0824699292 -0.0096643472
sample128 -0.1249411465 0.0929256108
sample129 -0.0734063915 -0.0434314815
sample130 -0.0003500364 -0.0309857403
sample131 0.0930183911 0.0155970105
sample132 0.0736220625 0.0732973532
sample133 -0.0498398181 -0.0462456701
sample134 0.1644872535 0.0720046941
sample135 -0.0752295118 0.0003869076
sample136 0.0227149824 -0.0495469533
sample137 0.0564721435 -0.0288861295
sample138 0.0255986631 -0.0610929670
sample139 0.0621218485 0.0235856042
sample140 -0.0604148934 -0.0435532970
sample141 0.0246743096 0.0532629807
sample142 -0.0409563648 0.0316233924
sample143 -0.0077356216 -0.0476909778
sample144 0.0173241152 -0.0156786159
sample145 0.0485468006 0.1202737668
sample146 0.0419649805 -0.0811241055
sample147 -0.0977304954 -0.0274773166
sample148 0.0368253442 0.0803968291
sample149 -0.0072864818 -0.1533017158
sample150 0.1020825353 0.0624821885
sample151 0.0305397366 -0.0289336613
sample152 -0.0533595102 -0.0638333183
sample153 -0.0891639176 0.1799457154
sample154 -0.0727554499 -0.0834129826
sample155 -0.0880665815 -0.0220771735
sample156 -0.0276558670 -0.0326602093
sample157 -0.1155031639 0.0183635865
sample158 -0.0281506559 -0.0104912929
sample159 0.0663233705 0.0443809636
sample160 -0.0302643814 0.0404299501
sample161 0.0114713144 -0.0591083034
sample162 -0.1337091046 0.1398132991
sample163 0.1330120662 0.1688770840
sample164 -0.0150337900 0.0028374807
sample165 0.0076519138 -0.0164146968
sample166 0.0367791472 0.0630615093
sample167 0.1111989761 0.0030066743
sample168 -0.0672983050 0.0446266382
sample169 -0.0413003705 0.0224446039
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 0.0420465397 0.0867866026
sample2 0.0820848815 -0.0410970101
sample3 -0.0155963713 -0.0195185307
sample4 0.1001342012 -0.0410777717
sample5 0.0153478398 -0.0253258020
sample6 -0.0340242789 -0.0408224003
sample7 -0.0722601554 0.0002325108
sample8 0.0457614699 -0.0370009071
sample9 0.0086218264 0.0820184721
sample10 0.0423629505 -0.0083918559
sample11 -0.0022591283 0.0787764644
sample12 -0.0322075655 0.1479823184
sample13 0.0293967304 -0.0306744206
sample14 -0.0337433134 -0.0367508566
sample15 -0.0815558266 0.1275615031
sample16 -0.0508336143 0.0540603442
sample17 -0.0062556409 0.0041024462
sample18 -0.0705602344 -0.0351052855
sample19 0.0476785268 -0.0509595279
sample20 -0.0523023944 0.0715515499
sample21 0.0119245628 -0.0376088695
sample22 -0.0724455436 -0.0095633182
sample23 0.0992529505 0.0134297650
sample24 0.1595261047 0.0728680223
sample25 0.0920661605 -0.0749749975
sample26 0.0595567355 0.0848972445
sample27 -0.0826573688 -0.0086745312
sample28 0.0384832607 0.0440971629
sample29 -0.0777736510 0.1735300125
sample30 -0.1229474833 -0.0819016680
sample31 -0.0579754339 -0.0238647319
sample32 -0.0970367071 -0.0111434153
sample33 -0.1017580817 -0.0630451341
sample34 -0.0637903024 0.0377936792
sample35 -0.0790002717 -0.0229731162
sample36 -0.1224934754 -0.1274966676
sample37 -0.1798848002 -0.1673445137
sample38 -0.0466389309 0.0888154743
sample39 0.0168694907 0.0421535717
sample40 -0.1756418402 -0.1526659570
sample41 -0.0042465570 0.0004925843
sample42 0.0447825952 -0.0651501597
sample43 -0.0482293165 -0.0253533043
sample44 0.1986815025 -0.0545757663
sample45 0.0741915082 0.0054712272
sample46 -0.0478858370 -0.0007078633
sample47 -0.0608214866 0.0481616549
sample48 0.1381466011 0.0578299476
sample49 0.0530625364 -0.1405525528
sample50 0.0173653894 0.1602387586
sample51 -0.0462460895 0.0303472367
sample52 -0.0279999061 0.0280387422
sample53 -0.0667503291 0.0237699436
sample54 -0.0121813221 -0.0521354912
sample55 -0.0182392655 0.0221326852
sample56 0.0001306582 0.0030908697
sample57 -0.0316578742 0.0530189847
sample58 -0.0393892336 -0.0297801577
sample59 -0.1278272725 -0.0546539116
sample60 -0.1486964525 0.1069143449
sample61 -0.0793069604 0.0569790764
sample62 -0.1172820898 -0.0149209405
sample63 0.0028810676 0.1300522814
sample64 -0.0237297877 0.1073287654
sample65 0.0126543607 0.0589810042
sample66 0.0468231298 -0.0771067568
sample67 -0.1494286017 -0.0769875118
sample68 -0.0978021685 -0.0577361738
sample69 -0.0403090039 0.0156038727
sample70 -0.0221594740 0.0315437617
sample71 0.0546333898 -0.0272394369
sample72 -0.1107501069 -0.0537329682
sample73 -0.0906756271 0.0579958972
sample74 -0.0586515329 0.0121417724
sample75 -0.0390511861 0.0349278925
sample76 0.0022938959 -0.1676559711
sample77 0.0232099470 -0.2067301137
sample78 0.0929807822 -0.0434929766
sample79 0.1619384925 -0.0378103131
sample80 -0.0680390763 0.1424656997
sample81 0.0530727547 -0.0358347627
sample82 -0.0266849257 -0.0577448330
sample83 -0.1517242128 -0.0448567991
sample84 0.0570943471 -0.0273808820
sample85 -0.1086273387 -0.1228129134
sample86 -0.0833890374 -0.0442923282
sample87 -0.0022040905 -0.0943908041
sample88 0.0078273537 -0.1140505081
sample89 -0.0611008007 -0.0094589164
sample90 -0.0022941801 -0.0936254598
sample91 -0.0433762916 0.3205974464
sample92 0.1815222103 -0.0334667580
sample93 -0.0267652326 0.0614426369
sample94 -0.0181899802 0.0605088573
sample95 0.0720316768 -0.0013040788
sample96 0.0559674228 -0.0118787358
sample97 0.0217420453 0.0195416728
sample98 -0.0379197809 0.0588353447
sample99 0.0792505280 -0.0151264373
sample100 -0.0222100700 -0.0023322903
sample101 0.0387091289 0.1224226264
sample102 0.2094624895 -0.0516423656
sample103 -0.0138554694 0.0301048732
sample104 0.0807949141 -0.0162712927
sample105 0.0520490481 -0.1229660817
sample106 0.0192641787 -0.0185235724
sample107 -0.0319013923 0.0405120923
sample108 0.0140675131 0.0163422359
sample109 0.1831860409 0.0613022058
sample110 0.0292782937 -0.0199846704
sample111 0.1423176914 0.0327351141
sample112 -0.0426314037 -0.0029086698
sample113 0.0771931032 0.0268741384
sample114 0.0241570606 -0.0184080069
sample115 0.1958958878 0.0460146679
sample116 0.1394438609 -0.0530794835
sample117 0.1672312133 -0.1386523358
sample118 0.0448332191 -0.0117618455
sample119 0.0910202386 0.2217436591
sample120 0.0331404617 -0.0057270983
sample121 -0.0307517129 0.1392505745
sample122 0.0839835351 -0.0291985332
sample123 -0.0239675003 -0.0642166667
sample124 0.0909175789 0.0130428553
sample125 0.0065360835 -0.1092631066
sample126 -0.0935273071 0.1368277325
sample127 -0.0035404623 0.0292755155
sample128 0.0660349778 0.1018574156
sample129 -0.0693670604 -0.0695428863
sample130 -0.0008516916 -0.0669705029
sample131 -0.0431012096 0.0174061344
sample132 0.0637087589 0.0029382021
sample133 0.0289464929 -0.0390817206
sample134 -0.0446143508 0.0456332016
sample135 -0.0712343004 0.0521628572
sample136 -0.0596316753 0.0197292982
sample137 -0.0793175020 -0.0380635985
sample138 0.0973506389 -0.0454210820
sample139 -0.0539868620 -0.1534331725
sample140 -0.0850869928 0.0955806006
sample141 0.0192721917 -0.0554447168
sample142 0.0672292767 -0.0461314234
sample143 0.0303707047 -0.0519258540
sample144 0.0089350880 0.0145815421
sample145 0.0638873495 0.0122266624
sample146 -0.0585920466 0.0063076413
sample147 -0.0894147276 -0.1124624313
sample148 0.0216436551 -0.0615963470
sample149 0.0515318681 -0.0839902136
sample150 -0.0568230477 -0.0124472699
sample151 0.0789513759 -0.0261824700
sample152 0.0330696512 0.1306445156
sample153 0.1752063206 0.1497751443
sample154 -0.0421487764 -0.0037015748
sample155 -0.0680198230 0.0095704690
sample156 -0.0388948346 0.1057558837
sample157 -0.0314764452 0.0561364960
sample158 -0.0329629915 0.0353944168
sample159 0.0398459388 -0.1007369264
sample160 -0.0424907078 0.0108493254
sample161 0.0888340331 -0.0679693485
sample162 0.0027569684 0.1237846972
sample163 0.0126226713 0.0725439034
sample164 0.0566786201 -0.0458319014
sample165 0.0315330975 -0.0236359841
sample166 0.0612107509 -0.0425226226
sample167 -0.0142729408 0.0179307093
sample168 0.0169541259 -0.0769615458
sample169 -0.0675063771 0.0131499746
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 -0.0012331308 -1.635716e-01
sample2 -0.0724352468 -6.022136e-03
sample3 -0.0188460063 -1.080029e-01
sample4 0.0390143424 3.106859e-04
sample5 0.1774810870 -2.996421e-02
sample6 -0.0451445756 -3.455899e-02
sample7 -0.0226464140 -7.019246e-03
sample8 -0.1033683447 -9.857950e-03
sample9 0.1350013409 8.979119e-02
sample10 0.1259885134 -5.097930e-02
sample11 0.0979790147 7.086570e-02
sample12 -0.0863020373 -8.620324e-02
sample13 -0.1381401574 1.827998e-01
sample14 -0.0615074386 -2.642810e-02
sample15 0.0381600343 -3.101601e-02
sample16 -0.0048778403 1.271056e-03
sample17 -0.0788482420 -1.547607e-02
sample18 -0.0884188964 -3.795481e-02
sample19 0.0703043592 -1.084003e-01
sample20 -0.0025582418 7.975967e-02
sample21 0.0941598176 -4.126885e-02
sample22 -0.0550271440 -7.806623e-02
sample23 0.0679493171 -4.102072e-02
sample24 -0.1310967817 1.649283e-01
sample25 0.0113583770 -4.426899e-02
sample26 -0.1402948121 2.016457e-02
sample27 0.0261564814 1.589922e-03
sample28 -0.0724200208 5.850510e-02
sample29 -0.0330055733 2.062041e-03
sample30 -0.0228750510 -2.015348e-02
sample31 -0.0635069492 -6.670370e-02
sample32 0.0685100254 -4.955244e-02
sample33 -0.0777764713 -1.272071e-01
sample34 0.0157842457 -3.024310e-02
sample35 -0.0529629065 1.500981e-01
sample36 0.0070906201 2.025320e-01
sample37 -0.0442413813 1.802108e-01
sample38 -0.0781509142 -3.676305e-02
sample39 0.0120330594 -3.388882e-02
sample40 -0.0473285723 1.471581e-01
sample41 0.0228191331 -2.673461e-02
sample42 -0.0245361522 -7.960879e-02
sample43 0.1036362421 -8.229574e-02
sample44 -0.1012233669 7.049243e-02
sample45 0.0013728143 -2.451064e-02
sample46 -0.0558507343 2.948521e-03
sample47 -0.0380479206 4.554234e-02
sample48 0.0784340469 4.888897e-02
sample49 -0.0605167013 -1.162471e-02
sample50 0.0530081670 -2.737815e-02
sample51 0.1514645894 5.678269e-02
sample52 0.1860935900 1.246712e-01
sample53 -0.0064178697 -2.701057e-02
sample54 0.0697037869 -2.308409e-02
sample55 0.1633577555 1.366439e-02
sample56 0.1011484387 4.682140e-02
sample57 0.1730374519 1.609595e-01
sample58 -0.0071384688 -1.666951e-02
sample59 -0.0030459011 3.005373e-02
sample60 0.0215840617 2.665887e-01
sample61 0.1510585127 1.002384e-01
sample62 -0.0925531897 -4.845735e-02
sample63 -0.0596314384 -4.137107e-02
sample64 -0.0449226812 -2.600952e-03
sample65 0.0939382654 -4.406945e-02
sample66 0.1063398500 -5.710072e-02
sample67 -0.0201583117 2.361745e-01
sample68 0.0037207111 2.418537e-02
sample69 -0.0645161678 -1.155618e-01
sample70 -0.1013439820 -1.351781e-01
sample71 -0.0016466875 -2.976776e-02
sample72 0.0328895095 -2.835773e-02
sample73 0.0275080641 -5.148152e-02
sample74 0.1341718963 -7.895297e-02
sample75 0.0951576440 -3.943145e-02
sample76 -0.0864720588 3.035047e-02
sample77 -0.1035749651 -2.545331e-02
sample78 -0.1575646942 4.939472e-02
sample79 0.0189137370 4.874689e-02
sample80 0.1384142304 4.319963e-05
sample81 -0.0118846826 -6.357910e-02
sample82 -0.1675306926 3.533960e-02
sample83 -0.0065671301 -7.812501e-02
sample84 0.1486890748 -3.109089e-02
sample85 -0.0532721228 7.417982e-02
sample86 -0.1138475300 -1.828127e-05
sample87 0.0432865401 6.080499e-02
sample88 0.0433450996 1.402486e-01
sample89 0.0331205384 -1.395426e-02
sample90 -0.0607413288 -8.610390e-02
sample91 -0.0566266459 1.303769e-01
sample92 -0.0359581910 1.061605e-01
sample93 -0.0433646307 -4.443612e-02
sample94 -0.0477291859 -1.059571e-01
sample95 -0.0249596180 -3.980511e-02
sample96 0.0035217781 -9.293931e-02
sample97 -0.0066051156 -1.527234e-01
sample98 0.0020367113 -5.579516e-02
sample99 -0.0886620208 -3.728373e-02
sample100 -0.1091259412 -3.560406e-02
sample101 -0.0739724851 -4.317891e-02
sample102 0.0574456643 -2.784079e-02
sample103 0.0142732960 9.706331e-03
sample104 0.0710395171 4.068334e-02
sample105 0.0980830212 -3.452992e-02
sample106 -0.0254260129 3.628934e-02
sample107 -0.0160654413 -9.173398e-02
sample108 -0.0200988128 -2.379699e-02
sample109 -0.0389782265 1.692312e-02
sample110 -0.0326305159 2.988086e-02
sample111 0.0676935874 -6.038246e-02
sample112 0.0167883686 5.336931e-03
sample113 0.0969214607 -2.757696e-02
sample114 -0.0026398226 -9.209104e-02
sample115 -0.0308049604 1.603745e-02
sample116 -0.1240307140 1.272997e-01
sample117 0.0334728175 5.392663e-02
sample118 -0.1037152570 6.252435e-02
sample119 -0.1064172879 1.196216e-01
sample120 -0.0771357083 -1.004935e-01
sample121 -0.0129351672 3.181917e-02
sample122 0.0847488736 -5.568456e-02
sample123 -0.0041335766 7.693531e-03
sample124 -0.0583461280 -8.396475e-02
sample125 0.0634843682 -5.232565e-02
sample126 -0.0662581494 -1.091730e-01
sample127 -0.0865025373 -1.094173e-01
sample128 -0.0627820781 -1.471090e-02
sample129 -0.0336274892 -4.007779e-02
sample130 -0.0293518021 -8.046089e-02
sample131 -0.0469196955 -2.209411e-03
sample132 -0.0241744391 -1.248608e-01
sample133 0.0907303539 1.466701e-02
sample134 -0.0350841383 7.539659e-02
sample135 0.0001334714 9.185808e-03
sample136 -0.0335875037 -9.860186e-02
sample137 -0.0640147548 -7.554377e-02
sample138 0.0060963920 -1.742782e-02
sample139 -0.0592083082 5.615002e-02
sample140 0.0427988086 -1.099466e-02
sample141 0.0618794143 -9.301098e-02
sample142 0.0898552920 3.573330e-02
sample143 0.0817390413 8.880530e-02
sample144 0.0787754511 -3.821392e-02
sample145 0.1085819973 1.569462e-01
sample146 -0.0589555755 -4.373243e-02
sample147 -0.0495328314 7.278002e-03
sample148 0.1161591132 9.078211e-03
sample149 -0.0121576905 7.788457e-02
sample150 -0.0314511973 3.520219e-02
sample151 0.0575381019 -1.945389e-02
sample152 -0.0494540997 7.025563e-02
sample153 -0.0941337236 2.153271e-01
sample154 -0.0335929637 2.078820e-02
sample155 0.0690458885 -2.780360e-02
sample156 0.1039902204 -6.292485e-02
sample157 -0.0408645654 8.065518e-03
sample158 0.1018106149 7.817058e-03
sample159 -0.0281732069 -1.207260e-02
sample160 0.1643053084 2.977886e-03
sample161 0.0374329526 8.524590e-02
sample162 -0.0804537257 8.349637e-02
sample163 -0.0743231116 -1.406344e-02
sample164 0.1208804622 -2.139517e-02
sample165 0.1608115832 2.025166e-02
sample166 -0.0425947139 -2.660799e-02
sample167 -0.0226849520 -4.464259e-02
sample168 -0.0180736822 -7.471485e-04
sample169 0.0190780109 2.645427e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
Warning message:
`aes_string()` was deprecated in ggplot2 3.0.0.
ℹ Please use tidy evaluation idioms with `aes()`.
ℹ See also `vignette("ggplot2-in-packages")` for more information.
ℹ The deprecated feature was likely used in the STATegRa package.
Please report the issue to the authors.
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
19.044 0.307 19.382
STATegRa.Rcheck/STATegRa-Ex.timings
| name | user | system | elapsed | |
| STATegRaUsersGuide | 0.001 | 0.000 | 0.001 | |
| STATegRa_data | 0.176 | 0.012 | 0.188 | |
| STATegRa_data_TCGA_BRCA | 0.002 | 0.000 | 0.001 | |
| bioDist | 0.577 | 0.028 | 0.606 | |
| bioDistFeature | 0.452 | 0.028 | 0.481 | |
| bioDistFeaturePlot | 0.440 | 0.000 | 0.441 | |
| bioDistW | 0.434 | 0.016 | 0.451 | |
| bioDistWPlot | 0.446 | 0.004 | 0.451 | |
| bioMap | 0.003 | 0.000 | 0.003 | |
| combiningMappings | 0.013 | 0.000 | 0.013 | |
| createOmicsExpressionSet | 0.131 | 0.000 | 0.131 | |
| getInitialData | 0.950 | 0.020 | 0.972 | |
| getLoadings | 0.964 | 0.020 | 0.985 | |
| getMethodInfo | 1.067 | 0.004 | 1.074 | |
| getPreprocessing | 1.100 | 0.112 | 1.214 | |
| getScores | 1.082 | 0.040 | 1.124 | |
| getVAF | 0.960 | 0.000 | 0.961 | |
| holistOmics | 0.002 | 0.000 | 0.002 | |
| modelSelection | 1.855 | 0.304 | 2.162 | |
| omicsCompAnalysis | 2.861 | 0.016 | 2.882 | |
| omicsNPC | 0.002 | 0.000 | 0.002 | |
| plotRes | 4.828 | 0.012 | 4.847 | |
| plotVAF | 4.350 | 0.004 | 4.361 | |