Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-11-07 12:00 -0500 (Fri, 07 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4902
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4638
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 257/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.74.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-11-06 13:45 -0500 (Thu, 06 Nov 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_22
git_last_commit: d2ce144
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on kjohnson3

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.74.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.74.0.tar.gz
StartedAt: 2025-11-06 18:47:18 -0500 (Thu, 06 Nov 2025)
EndedAt: 2025-11-06 18:47:34 -0500 (Thu, 06 Nov 2025)
EllapsedTime: 16.3 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.74.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.7
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.74.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.74.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch arm64 -std=gnu2x -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.111   0.040   0.147 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480828 25.7    1056614 56.5         NA   634360 33.9
Vcells 891019  6.8    8388608 64.0     196608  2109493 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Nov  6 18:47:27 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Nov  6 18:47:27 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600001bd48a0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Nov  6 18:47:28 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Nov  6 18:47:28 2025"
> 
> ColMode(tmp2)
<pointer: 0x600001bd48a0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]        [,3]       [,4]
[1,] 99.5151732 -1.4368338 -1.06844651 -0.4353788
[2,]  1.0413020  0.1701687  0.46078650 -1.6985959
[3,] -0.6918085  0.2004154  0.00359057  0.8377006
[4,] -0.9646774  0.6567192 -0.13761227  0.6969410
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]       [,3]      [,4]
[1,] 99.5151732 1.4368338 1.06844651 0.4353788
[2,]  1.0413020 0.1701687 0.46078650 1.6985959
[3,]  0.6918085 0.2004154 0.00359057 0.8377006
[4,]  0.9646774 0.6567192 0.13761227 0.6969410
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]       [,3]      [,4]
[1,] 9.9757292 1.1986800 1.03365686 0.6598324
[2,] 1.0204421 0.4125151 0.67881257 1.3033019
[3,] 0.8317502 0.4476778 0.05992136 0.9152598
[4,] 0.9821799 0.8103821 0.37096128 0.8348299
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.27247 38.42363 36.40502 32.03370
[2,]  36.24572 29.29532 32.24891 39.73162
[3,]  34.00931 29.67719 25.60280 34.99030
[4,]  35.78648 33.76054 28.84723 34.04524
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600001bd85a0>
> exp(tmp5)
<pointer: 0x600001bd85a0>
> log(tmp5,2)
<pointer: 0x600001bd85a0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.7938
> Min(tmp5)
[1] 53.28888
> mean(tmp5)
[1] 73.13931
> Sum(tmp5)
[1] 14627.86
> Var(tmp5)
[1] 856.0025
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.65698 71.10223 69.24304 70.28735 73.51813 71.29176 72.31423 73.55974
 [9] 70.27679 68.14284
> rowSums(tmp5)
 [1] 1833.140 1422.045 1384.861 1405.747 1470.363 1425.835 1446.285 1471.195
 [9] 1405.536 1362.857
> rowVars(tmp5)
 [1] 7877.74028   98.38595   56.05211   60.47438   52.85631   98.13178
 [7]   48.21081   93.35129   89.68618   61.19855
> rowSd(tmp5)
 [1] 88.756635  9.918969  7.486796  7.776528  7.270235  9.906149  6.943401
 [8]  9.661847  9.470279  7.822950
> rowMax(tmp5)
 [1] 466.79375  94.11291  82.53443  87.38711  86.24254  85.81626  81.82992
 [8]  87.65294  86.34123  88.37358
> rowMin(tmp5)
 [1] 58.38429 56.79624 53.28888 57.66553 59.74899 54.29166 58.45566 56.68455
 [9] 54.55648 55.84578
> 
> colMeans(tmp5)
 [1] 112.04586  69.74336  68.21102  72.39428  71.86603  69.56846  72.40145
 [8]  72.18433  73.24681  68.86509  68.64167  72.40704  75.39210  66.83467
[15]  74.11056  74.77149  72.29722  69.88752  67.79396  70.12326
> colSums(tmp5)
 [1] 1120.4586  697.4336  682.1102  723.9428  718.6603  695.6846  724.0145
 [8]  721.8433  732.4681  688.6509  686.4167  724.0704  753.9210  668.3467
[15]  741.1056  747.7149  722.9722  698.8752  677.9396  701.2326
> colVars(tmp5)
 [1] 15556.52938    69.41519   119.31420    34.67691    94.66425    63.49095
 [7]   133.17517   109.14841    58.76520    82.78216    39.44641    68.85540
[13]   128.57592    48.67158   100.97892    56.75863    71.66617    72.07922
[19]    77.39953    49.26942
> colSd(tmp5)
 [1] 124.725817   8.331578  10.923104   5.888710   9.729556   7.968121
 [7]  11.540155  10.447411   7.665846   9.098470   6.280638   8.297915
[13]  11.339132   6.976502  10.048827   7.533832   8.465588   8.489948
[19]   8.797700   7.019218
> colMax(tmp5)
 [1] 466.79375  80.84109  85.06921  82.69615  88.29282  83.52276  94.11291
 [8]  91.36925  86.34123  79.93887  83.40826  86.24254  88.37358  79.77903
[15]  87.65294  87.38711  83.10968  81.03996  83.66592  80.77049
> colMin(tmp5)
 [1] 62.62092 55.84578 53.28888 64.12797 59.03031 61.23549 56.68455 57.27780
 [9] 61.31751 54.29166 63.04745 58.38429 56.28204 57.47959 59.67626 64.32441
[17] 54.53214 57.97492 55.14475 56.79624
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.65698       NA 69.24304 70.28735 73.51813 71.29176 72.31423 73.55974
 [9] 70.27679 68.14284
> rowSums(tmp5)
 [1] 1833.140       NA 1384.861 1405.747 1470.363 1425.835 1446.285 1471.195
 [9] 1405.536 1362.857
> rowVars(tmp5)
 [1] 7877.74028  103.52879   56.05211   60.47438   52.85631   98.13178
 [7]   48.21081   93.35129   89.68618   61.19855
> rowSd(tmp5)
 [1] 88.756635 10.174910  7.486796  7.776528  7.270235  9.906149  6.943401
 [8]  9.661847  9.470279  7.822950
> rowMax(tmp5)
 [1] 466.79375        NA  82.53443  87.38711  86.24254  85.81626  81.82992
 [8]  87.65294  86.34123  88.37358
> rowMin(tmp5)
 [1] 58.38429       NA 53.28888 57.66553 59.74899 54.29166 58.45566 56.68455
 [9] 54.55648 55.84578
> 
> colMeans(tmp5)
 [1] 112.04586  69.74336  68.21102  72.39428  71.86603  69.56846  72.40145
 [8]  72.18433        NA  68.86509  68.64167  72.40704  75.39210  66.83467
[15]  74.11056  74.77149  72.29722  69.88752  67.79396  70.12326
> colSums(tmp5)
 [1] 1120.4586  697.4336  682.1102  723.9428  718.6603  695.6846  724.0145
 [8]  721.8433        NA  688.6509  686.4167  724.0704  753.9210  668.3467
[15]  741.1056  747.7149  722.9722  698.8752  677.9396  701.2326
> colVars(tmp5)
 [1] 15556.52938    69.41519   119.31420    34.67691    94.66425    63.49095
 [7]   133.17517   109.14841          NA    82.78216    39.44641    68.85540
[13]   128.57592    48.67158   100.97892    56.75863    71.66617    72.07922
[19]    77.39953    49.26942
> colSd(tmp5)
 [1] 124.725817   8.331578  10.923104   5.888710   9.729556   7.968121
 [7]  11.540155  10.447411         NA   9.098470   6.280638   8.297915
[13]  11.339132   6.976502  10.048827   7.533832   8.465588   8.489948
[19]   8.797700   7.019218
> colMax(tmp5)
 [1] 466.79375  80.84109  85.06921  82.69615  88.29282  83.52276  94.11291
 [8]  91.36925        NA  79.93887  83.40826  86.24254  88.37358  79.77903
[15]  87.65294  87.38711  83.10968  81.03996  83.66592  80.77049
> colMin(tmp5)
 [1] 62.62092 55.84578 53.28888 64.12797 59.03031 61.23549 56.68455 57.27780
 [9]       NA 54.29166 63.04745 58.38429 56.28204 57.47959 59.67626 64.32441
[17] 54.53214 57.97492 55.14475 56.79624
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.7938
> Min(tmp5,na.rm=TRUE)
[1] 53.28888
> mean(tmp5,na.rm=TRUE)
[1] 73.16136
> Sum(tmp5,na.rm=TRUE)
[1] 14559.11
> Var(tmp5,na.rm=TRUE)
[1] 860.228
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.65698 71.22594 69.24304 70.28735 73.51813 71.29176 72.31423 73.55974
 [9] 70.27679 68.14284
> rowSums(tmp5,na.rm=TRUE)
 [1] 1833.140 1353.293 1384.861 1405.747 1470.363 1425.835 1446.285 1471.195
 [9] 1405.536 1362.857
> rowVars(tmp5,na.rm=TRUE)
 [1] 7877.74028  103.52879   56.05211   60.47438   52.85631   98.13178
 [7]   48.21081   93.35129   89.68618   61.19855
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.756635 10.174910  7.486796  7.776528  7.270235  9.906149  6.943401
 [8]  9.661847  9.470279  7.822950
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.79375  94.11291  82.53443  87.38711  86.24254  85.81626  81.82992
 [8]  87.65294  86.34123  88.37358
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.38429 56.79624 53.28888 57.66553 59.74899 54.29166 58.45566 56.68455
 [9] 54.55648 55.84578
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.04586  69.74336  68.21102  72.39428  71.86603  69.56846  72.40145
 [8]  72.18433  73.74624  68.86509  68.64167  72.40704  75.39210  66.83467
[15]  74.11056  74.77149  72.29722  69.88752  67.79396  70.12326
> colSums(tmp5,na.rm=TRUE)
 [1] 1120.4586  697.4336  682.1102  723.9428  718.6603  695.6846  724.0145
 [8]  721.8433  663.7162  688.6509  686.4167  724.0704  753.9210  668.3467
[15]  741.1056  747.7149  722.9722  698.8752  677.9396  701.2326
> colVars(tmp5,na.rm=TRUE)
 [1] 15556.52938    69.41519   119.31420    34.67691    94.66425    63.49095
 [7]   133.17517   109.14841    63.30470    82.78216    39.44641    68.85540
[13]   128.57592    48.67158   100.97892    56.75863    71.66617    72.07922
[19]    77.39953    49.26942
> colSd(tmp5,na.rm=TRUE)
 [1] 124.725817   8.331578  10.923104   5.888710   9.729556   7.968121
 [7]  11.540155  10.447411   7.956425   9.098470   6.280638   8.297915
[13]  11.339132   6.976502  10.048827   7.533832   8.465588   8.489948
[19]   8.797700   7.019218
> colMax(tmp5,na.rm=TRUE)
 [1] 466.79375  80.84109  85.06921  82.69615  88.29282  83.52276  94.11291
 [8]  91.36925  86.34123  79.93887  83.40826  86.24254  88.37358  79.77903
[15]  87.65294  87.38711  83.10968  81.03996  83.66592  80.77049
> colMin(tmp5,na.rm=TRUE)
 [1] 62.62092 55.84578 53.28888 64.12797 59.03031 61.23549 56.68455 57.27780
 [9] 61.31751 54.29166 63.04745 58.38429 56.28204 57.47959 59.67626 64.32441
[17] 54.53214 57.97492 55.14475 56.79624
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.65698      NaN 69.24304 70.28735 73.51813 71.29176 72.31423 73.55974
 [9] 70.27679 68.14284
> rowSums(tmp5,na.rm=TRUE)
 [1] 1833.140    0.000 1384.861 1405.747 1470.363 1425.835 1446.285 1471.195
 [9] 1405.536 1362.857
> rowVars(tmp5,na.rm=TRUE)
 [1] 7877.74028         NA   56.05211   60.47438   52.85631   98.13178
 [7]   48.21081   93.35129   89.68618   61.19855
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.756635        NA  7.486796  7.776528  7.270235  9.906149  6.943401
 [8]  9.661847  9.470279  7.822950
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.79375        NA  82.53443  87.38711  86.24254  85.81626  81.82992
 [8]  87.65294  86.34123  88.37358
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.38429       NA 53.28888 57.66553 59.74899 54.29166 58.45566 56.68455
 [9] 54.55648 55.84578
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 116.11310  70.71770  68.33204  71.24963  70.04083  69.90072  69.98907
 [8]  73.63270       NaN  67.63467  68.44280  71.96736  76.74593  66.65791
[15]  73.79953  75.93228  71.89953  70.60396  68.30297  71.60404
> colSums(tmp5,na.rm=TRUE)
 [1] 1045.0179  636.4593  614.9883  641.2467  630.3674  629.1065  629.9016
 [8]  662.6943    0.0000  608.7121  615.9852  647.7062  690.7134  599.9211
[15]  664.1958  683.3905  647.0958  635.4357  614.7268  644.4363
> colVars(tmp5,na.rm=TRUE)
 [1] 17314.99329    67.41219   134.06372    24.27144    69.01957    70.18536
 [7]    84.35160    99.19183          NA    76.09818    43.93229    75.28749
[13]   124.02827    54.40401   112.51296    48.69491    78.84522    75.31456
[19]    84.15959    30.76012
> colSd(tmp5,na.rm=TRUE)
 [1] 131.586448   8.210493  11.578589   4.926606   8.307802   8.377670
 [7]   9.184313   9.959509         NA   8.723427   6.628144   8.676836
[13]  11.136798   7.375907  10.607213   6.978174   8.879483   8.678396
[19]   9.173854   5.546180
> colMax(tmp5,na.rm=TRUE)
 [1] 466.79375  80.84109  85.06921  79.72099  79.40529  83.52276  81.82992
 [8]  91.36925      -Inf  79.17780  83.40826  86.24254  88.37358  79.77903
[15]  87.65294  87.38711  83.10968  81.03996  83.66592  80.77049
> colMin(tmp5,na.rm=TRUE)
 [1] 62.62092 55.84578 53.28888 64.12797 59.03031 61.23549 56.68455 57.27780
 [9]      Inf 54.29166 63.04745 58.38429 56.28204 57.47959 59.67626 68.91438
[17] 54.53214 57.97492 55.14475 64.64254
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 280.55216 295.62956 342.69150 184.17276 181.12080 191.63271 258.90569
 [8]  75.40344 258.63204 249.44917
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 280.55216 295.62956 342.69150 184.17276 181.12080 191.63271 258.90569
 [8]  75.40344 258.63204 249.44917
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  1.705303e-13 -5.684342e-14 -2.842171e-14  2.557954e-13  0.000000e+00
 [6]  2.842171e-14 -1.705303e-13  2.842171e-14  2.273737e-13 -5.684342e-14
[11]  0.000000e+00  1.705303e-13  1.421085e-13 -5.684342e-14 -1.705303e-13
[16] -1.705303e-13  1.705303e-13  0.000000e+00 -8.526513e-14  1.421085e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
9   8 
9   5 
10   3 
3   7 
3   2 
10   2 
10   12 
5   6 
1   18 
5   11 
8   8 
8   8 
7   19 
6   17 
4   8 
8   6 
5   9 
10   7 
5   14 
8   16 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.268877
> Min(tmp)
[1] -3.716979
> mean(tmp)
[1] -0.07252912
> Sum(tmp)
[1] -7.252912
> Var(tmp)
[1] 1.159435
> 
> rowMeans(tmp)
[1] -0.07252912
> rowSums(tmp)
[1] -7.252912
> rowVars(tmp)
[1] 1.159435
> rowSd(tmp)
[1] 1.076771
> rowMax(tmp)
[1] 2.268877
> rowMin(tmp)
[1] -3.716979
> 
> colMeans(tmp)
  [1]  0.691420583  0.498411244 -0.189262650  0.416950928 -1.923083549
  [6]  1.032620693 -0.253259269  0.358585460  0.239281476 -0.463453744
 [11]  1.586277862  1.205729160  0.580123447  2.268877402 -0.484824875
 [16] -0.106966732  1.037583537  0.268788376 -0.327640428 -1.294483299
 [21] -0.544710411  0.655813199  1.037281072 -1.095086659  0.977913617
 [26] -0.342112656 -0.670413052  1.460943521 -0.327289944  1.007455627
 [31]  0.709156906  2.056097430 -1.347124001 -0.015334259 -2.095608422
 [36] -0.457850121 -0.831700002 -0.322790129 -0.389426679 -0.799142328
 [41]  0.522504900  0.111770261 -1.565450745 -3.716979075  1.247353017
 [46] -1.143164012 -2.377068644  0.682267898 -0.312437876 -0.105484761
 [51] -0.605077864 -0.184380733 -0.900279758 -0.006787933  0.384679863
 [56] -0.400101718  1.267350099 -1.060708490  0.571575285 -0.827715988
 [61] -0.825914706 -0.150589348 -1.978188205 -1.650241223 -1.440982080
 [66] -1.379882951  0.507764649  0.137778541 -1.321938181 -0.007442038
 [71]  0.439810384 -0.616763088 -0.523202989 -0.297094658  0.400083023
 [76]  0.695420346  1.836241456 -1.710645954 -0.710110575 -0.814279700
 [81]  1.124530224  1.012374113 -0.425351951  0.833348045 -0.629251841
 [86] -0.449619672 -1.147550943  1.952013591 -0.475212372  0.152135693
 [91]  1.002014426  0.260859195 -0.638781014  1.608471514  2.174754449
 [96] -0.798041830  0.467136891  0.952479747 -1.326073627  1.117418597
> colSums(tmp)
  [1]  0.691420583  0.498411244 -0.189262650  0.416950928 -1.923083549
  [6]  1.032620693 -0.253259269  0.358585460  0.239281476 -0.463453744
 [11]  1.586277862  1.205729160  0.580123447  2.268877402 -0.484824875
 [16] -0.106966732  1.037583537  0.268788376 -0.327640428 -1.294483299
 [21] -0.544710411  0.655813199  1.037281072 -1.095086659  0.977913617
 [26] -0.342112656 -0.670413052  1.460943521 -0.327289944  1.007455627
 [31]  0.709156906  2.056097430 -1.347124001 -0.015334259 -2.095608422
 [36] -0.457850121 -0.831700002 -0.322790129 -0.389426679 -0.799142328
 [41]  0.522504900  0.111770261 -1.565450745 -3.716979075  1.247353017
 [46] -1.143164012 -2.377068644  0.682267898 -0.312437876 -0.105484761
 [51] -0.605077864 -0.184380733 -0.900279758 -0.006787933  0.384679863
 [56] -0.400101718  1.267350099 -1.060708490  0.571575285 -0.827715988
 [61] -0.825914706 -0.150589348 -1.978188205 -1.650241223 -1.440982080
 [66] -1.379882951  0.507764649  0.137778541 -1.321938181 -0.007442038
 [71]  0.439810384 -0.616763088 -0.523202989 -0.297094658  0.400083023
 [76]  0.695420346  1.836241456 -1.710645954 -0.710110575 -0.814279700
 [81]  1.124530224  1.012374113 -0.425351951  0.833348045 -0.629251841
 [86] -0.449619672 -1.147550943  1.952013591 -0.475212372  0.152135693
 [91]  1.002014426  0.260859195 -0.638781014  1.608471514  2.174754449
 [96] -0.798041830  0.467136891  0.952479747 -1.326073627  1.117418597
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.691420583  0.498411244 -0.189262650  0.416950928 -1.923083549
  [6]  1.032620693 -0.253259269  0.358585460  0.239281476 -0.463453744
 [11]  1.586277862  1.205729160  0.580123447  2.268877402 -0.484824875
 [16] -0.106966732  1.037583537  0.268788376 -0.327640428 -1.294483299
 [21] -0.544710411  0.655813199  1.037281072 -1.095086659  0.977913617
 [26] -0.342112656 -0.670413052  1.460943521 -0.327289944  1.007455627
 [31]  0.709156906  2.056097430 -1.347124001 -0.015334259 -2.095608422
 [36] -0.457850121 -0.831700002 -0.322790129 -0.389426679 -0.799142328
 [41]  0.522504900  0.111770261 -1.565450745 -3.716979075  1.247353017
 [46] -1.143164012 -2.377068644  0.682267898 -0.312437876 -0.105484761
 [51] -0.605077864 -0.184380733 -0.900279758 -0.006787933  0.384679863
 [56] -0.400101718  1.267350099 -1.060708490  0.571575285 -0.827715988
 [61] -0.825914706 -0.150589348 -1.978188205 -1.650241223 -1.440982080
 [66] -1.379882951  0.507764649  0.137778541 -1.321938181 -0.007442038
 [71]  0.439810384 -0.616763088 -0.523202989 -0.297094658  0.400083023
 [76]  0.695420346  1.836241456 -1.710645954 -0.710110575 -0.814279700
 [81]  1.124530224  1.012374113 -0.425351951  0.833348045 -0.629251841
 [86] -0.449619672 -1.147550943  1.952013591 -0.475212372  0.152135693
 [91]  1.002014426  0.260859195 -0.638781014  1.608471514  2.174754449
 [96] -0.798041830  0.467136891  0.952479747 -1.326073627  1.117418597
> colMin(tmp)
  [1]  0.691420583  0.498411244 -0.189262650  0.416950928 -1.923083549
  [6]  1.032620693 -0.253259269  0.358585460  0.239281476 -0.463453744
 [11]  1.586277862  1.205729160  0.580123447  2.268877402 -0.484824875
 [16] -0.106966732  1.037583537  0.268788376 -0.327640428 -1.294483299
 [21] -0.544710411  0.655813199  1.037281072 -1.095086659  0.977913617
 [26] -0.342112656 -0.670413052  1.460943521 -0.327289944  1.007455627
 [31]  0.709156906  2.056097430 -1.347124001 -0.015334259 -2.095608422
 [36] -0.457850121 -0.831700002 -0.322790129 -0.389426679 -0.799142328
 [41]  0.522504900  0.111770261 -1.565450745 -3.716979075  1.247353017
 [46] -1.143164012 -2.377068644  0.682267898 -0.312437876 -0.105484761
 [51] -0.605077864 -0.184380733 -0.900279758 -0.006787933  0.384679863
 [56] -0.400101718  1.267350099 -1.060708490  0.571575285 -0.827715988
 [61] -0.825914706 -0.150589348 -1.978188205 -1.650241223 -1.440982080
 [66] -1.379882951  0.507764649  0.137778541 -1.321938181 -0.007442038
 [71]  0.439810384 -0.616763088 -0.523202989 -0.297094658  0.400083023
 [76]  0.695420346  1.836241456 -1.710645954 -0.710110575 -0.814279700
 [81]  1.124530224  1.012374113 -0.425351951  0.833348045 -0.629251841
 [86] -0.449619672 -1.147550943  1.952013591 -0.475212372  0.152135693
 [91]  1.002014426  0.260859195 -0.638781014  1.608471514  2.174754449
 [96] -0.798041830  0.467136891  0.952479747 -1.326073627  1.117418597
> colMedians(tmp)
  [1]  0.691420583  0.498411244 -0.189262650  0.416950928 -1.923083549
  [6]  1.032620693 -0.253259269  0.358585460  0.239281476 -0.463453744
 [11]  1.586277862  1.205729160  0.580123447  2.268877402 -0.484824875
 [16] -0.106966732  1.037583537  0.268788376 -0.327640428 -1.294483299
 [21] -0.544710411  0.655813199  1.037281072 -1.095086659  0.977913617
 [26] -0.342112656 -0.670413052  1.460943521 -0.327289944  1.007455627
 [31]  0.709156906  2.056097430 -1.347124001 -0.015334259 -2.095608422
 [36] -0.457850121 -0.831700002 -0.322790129 -0.389426679 -0.799142328
 [41]  0.522504900  0.111770261 -1.565450745 -3.716979075  1.247353017
 [46] -1.143164012 -2.377068644  0.682267898 -0.312437876 -0.105484761
 [51] -0.605077864 -0.184380733 -0.900279758 -0.006787933  0.384679863
 [56] -0.400101718  1.267350099 -1.060708490  0.571575285 -0.827715988
 [61] -0.825914706 -0.150589348 -1.978188205 -1.650241223 -1.440982080
 [66] -1.379882951  0.507764649  0.137778541 -1.321938181 -0.007442038
 [71]  0.439810384 -0.616763088 -0.523202989 -0.297094658  0.400083023
 [76]  0.695420346  1.836241456 -1.710645954 -0.710110575 -0.814279700
 [81]  1.124530224  1.012374113 -0.425351951  0.833348045 -0.629251841
 [86] -0.449619672 -1.147550943  1.952013591 -0.475212372  0.152135693
 [91]  1.002014426  0.260859195 -0.638781014  1.608471514  2.174754449
 [96] -0.798041830  0.467136891  0.952479747 -1.326073627  1.117418597
> colRanges(tmp)
          [,1]      [,2]       [,3]      [,4]      [,5]     [,6]       [,7]
[1,] 0.6914206 0.4984112 -0.1892626 0.4169509 -1.923084 1.032621 -0.2532593
[2,] 0.6914206 0.4984112 -0.1892626 0.4169509 -1.923084 1.032621 -0.2532593
          [,8]      [,9]      [,10]    [,11]    [,12]     [,13]    [,14]
[1,] 0.3585855 0.2392815 -0.4634537 1.586278 1.205729 0.5801234 2.268877
[2,] 0.3585855 0.2392815 -0.4634537 1.586278 1.205729 0.5801234 2.268877
          [,15]      [,16]    [,17]     [,18]      [,19]     [,20]      [,21]
[1,] -0.4848249 -0.1069667 1.037584 0.2687884 -0.3276404 -1.294483 -0.5447104
[2,] -0.4848249 -0.1069667 1.037584 0.2687884 -0.3276404 -1.294483 -0.5447104
         [,22]    [,23]     [,24]     [,25]      [,26]      [,27]    [,28]
[1,] 0.6558132 1.037281 -1.095087 0.9779136 -0.3421127 -0.6704131 1.460944
[2,] 0.6558132 1.037281 -1.095087 0.9779136 -0.3421127 -0.6704131 1.460944
          [,29]    [,30]     [,31]    [,32]     [,33]       [,34]     [,35]
[1,] -0.3272899 1.007456 0.7091569 2.056097 -1.347124 -0.01533426 -2.095608
[2,] -0.3272899 1.007456 0.7091569 2.056097 -1.347124 -0.01533426 -2.095608
          [,36]   [,37]      [,38]      [,39]      [,40]     [,41]     [,42]
[1,] -0.4578501 -0.8317 -0.3227901 -0.3894267 -0.7991423 0.5225049 0.1117703
[2,] -0.4578501 -0.8317 -0.3227901 -0.3894267 -0.7991423 0.5225049 0.1117703
         [,43]     [,44]    [,45]     [,46]     [,47]     [,48]      [,49]
[1,] -1.565451 -3.716979 1.247353 -1.143164 -2.377069 0.6822679 -0.3124379
[2,] -1.565451 -3.716979 1.247353 -1.143164 -2.377069 0.6822679 -0.3124379
          [,50]      [,51]      [,52]      [,53]        [,54]     [,55]
[1,] -0.1054848 -0.6050779 -0.1843807 -0.9002798 -0.006787933 0.3846799
[2,] -0.1054848 -0.6050779 -0.1843807 -0.9002798 -0.006787933 0.3846799
          [,56]   [,57]     [,58]     [,59]     [,60]      [,61]      [,62]
[1,] -0.4001017 1.26735 -1.060708 0.5715753 -0.827716 -0.8259147 -0.1505893
[2,] -0.4001017 1.26735 -1.060708 0.5715753 -0.827716 -0.8259147 -0.1505893
         [,63]     [,64]     [,65]     [,66]     [,67]     [,68]     [,69]
[1,] -1.978188 -1.650241 -1.440982 -1.379883 0.5077646 0.1377785 -1.321938
[2,] -1.978188 -1.650241 -1.440982 -1.379883 0.5077646 0.1377785 -1.321938
            [,70]     [,71]      [,72]     [,73]      [,74]    [,75]     [,76]
[1,] -0.007442038 0.4398104 -0.6167631 -0.523203 -0.2970947 0.400083 0.6954203
[2,] -0.007442038 0.4398104 -0.6167631 -0.523203 -0.2970947 0.400083 0.6954203
        [,77]     [,78]      [,79]      [,80]   [,81]    [,82]     [,83]
[1,] 1.836241 -1.710646 -0.7101106 -0.8142797 1.12453 1.012374 -0.425352
[2,] 1.836241 -1.710646 -0.7101106 -0.8142797 1.12453 1.012374 -0.425352
        [,84]      [,85]      [,86]     [,87]    [,88]      [,89]     [,90]
[1,] 0.833348 -0.6292518 -0.4496197 -1.147551 1.952014 -0.4752124 0.1521357
[2,] 0.833348 -0.6292518 -0.4496197 -1.147551 1.952014 -0.4752124 0.1521357
        [,91]     [,92]     [,93]    [,94]    [,95]      [,96]     [,97]
[1,] 1.002014 0.2608592 -0.638781 1.608472 2.174754 -0.7980418 0.4671369
[2,] 1.002014 0.2608592 -0.638781 1.608472 2.174754 -0.7980418 0.4671369
         [,98]     [,99]   [,100]
[1,] 0.9524797 -1.326074 1.117419
[2,] 0.9524797 -1.326074 1.117419
> 
> 
> Max(tmp2)
[1] 2.251298
> Min(tmp2)
[1] -1.914136
> mean(tmp2)
[1] 0.1165342
> Sum(tmp2)
[1] 11.65342
> Var(tmp2)
[1] 0.9264143
> 
> rowMeans(tmp2)
  [1]  1.162266945  0.298011579  1.007866199 -0.619164153  0.367759211
  [6] -0.719084903 -0.443592468  1.246596981  1.622538412  1.760128255
 [11]  0.710597859  0.291004325 -1.030917793 -1.067123356  1.050961518
 [16] -1.695523949  1.203678555  1.041927121 -0.191967357 -0.084871503
 [21] -0.665206057 -0.102708076  0.888317233  0.064138545  0.405074539
 [26] -0.630210010  2.251297639 -1.362332269 -1.312255144 -1.598309699
 [31]  0.036048723  0.527803782  1.071452942  0.942115245 -0.447228788
 [36] -1.409263262  2.071764394  0.816322272  1.266289751 -0.645828590
 [41] -0.076327312  2.226377428 -0.348349790  0.021604828  0.341696081
 [46] -0.348928881 -0.788200233  0.416326902 -0.977649352  0.556908000
 [51]  1.368699487  0.661228421  0.503879095  0.846983943  0.399374893
 [56] -0.761977480  1.415598195  1.933941113  1.049511178 -0.000206435
 [61] -1.482259233  0.032848190  0.644879833  0.191274026  0.041413270
 [66] -1.466003776 -0.002479934 -0.444409188 -0.229243551 -1.483395810
 [71] -0.458287341  0.390794127 -1.285386032 -0.395189210  0.923496841
 [76] -0.801652606 -0.841348032  0.102821960 -0.039822724  1.103663199
 [81] -1.914135549  0.793333670  1.194879175  0.165711446 -0.570843393
 [86]  0.547841875 -0.253207862  0.806833987  0.517591112 -0.591360975
 [91] -1.335622072 -0.951139341 -0.329169360 -1.389223727  1.613862433
 [96]  0.875731398  0.924129540 -0.170377514  0.015463056  0.682545077
> rowSums(tmp2)
  [1]  1.162266945  0.298011579  1.007866199 -0.619164153  0.367759211
  [6] -0.719084903 -0.443592468  1.246596981  1.622538412  1.760128255
 [11]  0.710597859  0.291004325 -1.030917793 -1.067123356  1.050961518
 [16] -1.695523949  1.203678555  1.041927121 -0.191967357 -0.084871503
 [21] -0.665206057 -0.102708076  0.888317233  0.064138545  0.405074539
 [26] -0.630210010  2.251297639 -1.362332269 -1.312255144 -1.598309699
 [31]  0.036048723  0.527803782  1.071452942  0.942115245 -0.447228788
 [36] -1.409263262  2.071764394  0.816322272  1.266289751 -0.645828590
 [41] -0.076327312  2.226377428 -0.348349790  0.021604828  0.341696081
 [46] -0.348928881 -0.788200233  0.416326902 -0.977649352  0.556908000
 [51]  1.368699487  0.661228421  0.503879095  0.846983943  0.399374893
 [56] -0.761977480  1.415598195  1.933941113  1.049511178 -0.000206435
 [61] -1.482259233  0.032848190  0.644879833  0.191274026  0.041413270
 [66] -1.466003776 -0.002479934 -0.444409188 -0.229243551 -1.483395810
 [71] -0.458287341  0.390794127 -1.285386032 -0.395189210  0.923496841
 [76] -0.801652606 -0.841348032  0.102821960 -0.039822724  1.103663199
 [81] -1.914135549  0.793333670  1.194879175  0.165711446 -0.570843393
 [86]  0.547841875 -0.253207862  0.806833987  0.517591112 -0.591360975
 [91] -1.335622072 -0.951139341 -0.329169360 -1.389223727  1.613862433
 [96]  0.875731398  0.924129540 -0.170377514  0.015463056  0.682545077
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.162266945  0.298011579  1.007866199 -0.619164153  0.367759211
  [6] -0.719084903 -0.443592468  1.246596981  1.622538412  1.760128255
 [11]  0.710597859  0.291004325 -1.030917793 -1.067123356  1.050961518
 [16] -1.695523949  1.203678555  1.041927121 -0.191967357 -0.084871503
 [21] -0.665206057 -0.102708076  0.888317233  0.064138545  0.405074539
 [26] -0.630210010  2.251297639 -1.362332269 -1.312255144 -1.598309699
 [31]  0.036048723  0.527803782  1.071452942  0.942115245 -0.447228788
 [36] -1.409263262  2.071764394  0.816322272  1.266289751 -0.645828590
 [41] -0.076327312  2.226377428 -0.348349790  0.021604828  0.341696081
 [46] -0.348928881 -0.788200233  0.416326902 -0.977649352  0.556908000
 [51]  1.368699487  0.661228421  0.503879095  0.846983943  0.399374893
 [56] -0.761977480  1.415598195  1.933941113  1.049511178 -0.000206435
 [61] -1.482259233  0.032848190  0.644879833  0.191274026  0.041413270
 [66] -1.466003776 -0.002479934 -0.444409188 -0.229243551 -1.483395810
 [71] -0.458287341  0.390794127 -1.285386032 -0.395189210  0.923496841
 [76] -0.801652606 -0.841348032  0.102821960 -0.039822724  1.103663199
 [81] -1.914135549  0.793333670  1.194879175  0.165711446 -0.570843393
 [86]  0.547841875 -0.253207862  0.806833987  0.517591112 -0.591360975
 [91] -1.335622072 -0.951139341 -0.329169360 -1.389223727  1.613862433
 [96]  0.875731398  0.924129540 -0.170377514  0.015463056  0.682545077
> rowMin(tmp2)
  [1]  1.162266945  0.298011579  1.007866199 -0.619164153  0.367759211
  [6] -0.719084903 -0.443592468  1.246596981  1.622538412  1.760128255
 [11]  0.710597859  0.291004325 -1.030917793 -1.067123356  1.050961518
 [16] -1.695523949  1.203678555  1.041927121 -0.191967357 -0.084871503
 [21] -0.665206057 -0.102708076  0.888317233  0.064138545  0.405074539
 [26] -0.630210010  2.251297639 -1.362332269 -1.312255144 -1.598309699
 [31]  0.036048723  0.527803782  1.071452942  0.942115245 -0.447228788
 [36] -1.409263262  2.071764394  0.816322272  1.266289751 -0.645828590
 [41] -0.076327312  2.226377428 -0.348349790  0.021604828  0.341696081
 [46] -0.348928881 -0.788200233  0.416326902 -0.977649352  0.556908000
 [51]  1.368699487  0.661228421  0.503879095  0.846983943  0.399374893
 [56] -0.761977480  1.415598195  1.933941113  1.049511178 -0.000206435
 [61] -1.482259233  0.032848190  0.644879833  0.191274026  0.041413270
 [66] -1.466003776 -0.002479934 -0.444409188 -0.229243551 -1.483395810
 [71] -0.458287341  0.390794127 -1.285386032 -0.395189210  0.923496841
 [76] -0.801652606 -0.841348032  0.102821960 -0.039822724  1.103663199
 [81] -1.914135549  0.793333670  1.194879175  0.165711446 -0.570843393
 [86]  0.547841875 -0.253207862  0.806833987  0.517591112 -0.591360975
 [91] -1.335622072 -0.951139341 -0.329169360 -1.389223727  1.613862433
 [96]  0.875731398  0.924129540 -0.170377514  0.015463056  0.682545077
> 
> colMeans(tmp2)
[1] 0.1165342
> colSums(tmp2)
[1] 11.65342
> colVars(tmp2)
[1] 0.9264143
> colSd(tmp2)
[1] 0.9625042
> colMax(tmp2)
[1] 2.251298
> colMin(tmp2)
[1] -1.914136
> colMedians(tmp2)
[1] 0.05277591
> colRanges(tmp2)
          [,1]
[1,] -1.914136
[2,]  2.251298
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.5003961 -4.1020650 -8.1193304 -1.0873919  1.7419923  3.9340138
 [7] -1.1799575  0.7778949 -3.5672486 -4.7928943
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.61883271
[2,] -0.06846097
[3,]  0.37478104
[4,]  0.77746262
[5,]  1.32122094
> 
> rowApply(tmp,sum)
 [1] -1.5692434  4.9380439  3.5942003  0.4159217 -0.3749886 -3.4758789
 [7] -0.3634022 -2.6952558 -6.8490139 -7.5149734
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    8    5    3    8   10    2    4   10    9     8
 [2,]    7    8    7    2    3    1    7    7    1     4
 [3,]    1    6    8    7    1    5    1    8    3     2
 [4,]    9    4    5    4    6    4    9    2    6     3
 [5,]    5    2    6    5    9   10    6    4    8     7
 [6,]    4    9    4    3    5    9    5    9   10     9
 [7,]    2   10    9    1    8    8    2    6    7     6
 [8,]    6    7    1   10    4    7   10    3    2    10
 [9,]    3    3    2    6    7    3    3    5    5     5
[10,]   10    1   10    9    2    6    8    1    4     1
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  6.4781709  2.3929483 -4.0494159 -0.2104712  1.3606853 -1.4903997
 [7] -2.9196228  3.0954959  2.3855789  1.3579621 -0.5022347 -2.6412160
[13] -0.9136582  0.5457315 -1.8837634 -3.3760784 -4.8378528  0.8654785
[19]  3.1170595 -1.2486513
> colApply(tmp,quantile)[,1]
          [,1]
[1,] 0.2714483
[2,] 0.2898258
[3,] 1.4663334
[4,] 1.7373664
[5,] 2.7131971
> 
> rowApply(tmp,sum)
[1]  2.046972  3.198850 -4.133948 -1.364604 -2.221523
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   20   20   14   19   13
[2,]   15    9   16    7   19
[3,]    2    1   11   11    6
[4,]    6   15    2   15   15
[5,]   16   18   10    3   12
> 
> 
> as.matrix(tmp)
          [,1]       [,2]       [,3]       [,4]         [,5]       [,6]
[1,] 1.4663334  0.5229348 -1.2511248 -0.4171735  1.091533951  0.1668721
[2,] 2.7131971  0.1667312 -1.8043561  0.8564975  1.313897575 -1.2057124
[3,] 0.2714483  0.3867156  0.1266673 -1.6853036  0.004017881  0.1433178
[4,] 1.7373664 -0.6057552 -0.1302917  0.4396161 -1.038952231  0.4869645
[5,] 0.2898258  1.9223219 -0.9903106  0.5958923 -0.009811923 -1.0818417
           [,7]        [,8]       [,9]      [,10]      [,11]      [,12]
[1,] -1.1859223 -0.35828496  0.1886416  0.1854596  0.4376092 -0.4308377
[2,]  0.2350431  0.21524955  1.8805646  1.2687273 -0.4375471 -0.8981710
[3,] -1.2830432 -0.07527051  1.3742172  0.3332823 -0.9143104 -1.1723043
[4,] -1.4488079  0.76263868 -0.7986994  0.6769663 -0.9888707  0.0190503
[5,]  0.7631075  2.55116311 -0.2591451 -1.1064734  1.4008843 -0.1589533
           [,13]      [,14]       [,15]      [,16]      [,17]      [,18]
[1,] -0.06909044 -1.4352323  0.04439654 -0.8614985  0.1892309  1.4011772
[2,]  0.27773499  0.5561425 -0.18241606 -0.9862215 -0.8725655 -1.2355361
[3,] -0.20754673  1.0568454  0.38745179 -0.2792303 -1.9102086  0.2492295
[4,]  0.07024765 -0.4210506 -1.76672687 -0.6981920 -0.1502823  2.6047103
[5,] -0.98500365  0.7890266 -0.36646879 -0.5509361 -2.0940274 -2.1541024
         [,19]      [,20]
[1,] 1.2609817  1.1009652
[2,] 0.4341687  0.9034212
[3,] 0.5581332 -1.4980566
[4,] 0.3099837 -0.4245190
[5,] 0.5537922 -1.3304622
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  650  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1     col2     col3     col4       col5     col6       col7
row1 -0.2083392 -1.06257 1.175468 1.007415 -0.5901154 1.408286 -0.1617668
           col8       col9    col10     col11    col12     col13     col14
row1 -0.9772991 -0.3901417 -0.83931 0.7851213 1.114918 -0.121367 0.7111743
          col15     col16     col17     col18     col19    col20
row1 -0.6163336 0.3486319 -1.484186 0.4080424 0.2453772 1.554363
> tmp[,"col10"]
          col10
row1 -0.8393100
row2  0.1782911
row3  0.3881843
row4 -1.1435330
row5 -1.1538220
> tmp[c("row1","row5"),]
           col1       col2       col3      col4       col5       col6
row1 -0.2083392 -1.0625702  1.1754683 1.0074147 -0.5901154  1.4082856
row5  1.2382076  0.2512235 -0.3827113 0.7579231 -0.2147809 -0.1628437
           col7       col8       col9     col10     col11    col12      col13
row1 -0.1617668 -0.9772991 -0.3901417 -0.839310 0.7851213 1.114918 -0.1213670
row5  1.3603930 -0.8318188  1.0608816 -1.153822 1.5809337 1.105780  0.7774316
         col14      col15     col16     col17     col18      col19    col20
row1 0.7111743 -0.6163336 0.3486319 -1.484186 0.4080424  0.2453772 1.554363
row5 1.8497689 -1.0085540 0.8722443 -1.277395 0.8355878 -0.1450431 0.663887
> tmp[,c("col6","col20")]
           col6      col20
row1  1.4082856  1.5543635
row2 -0.7069830 -1.0980924
row3  2.2924531  0.9322458
row4  1.6964877  1.9330027
row5 -0.1628437  0.6638870
> tmp[c("row1","row5"),c("col6","col20")]
           col6    col20
row1  1.4082856 1.554363
row5 -0.1628437 0.663887
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5   col6    col7     col8
row1 49.82327 51.01083 49.05951 50.05163 50.48915 103.84 50.3752 50.09511
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.38754 49.85964 49.23472 50.60889 50.33355 51.64869 51.04888 48.28495
        col17    col18    col19    col20
row1 49.09517 50.42205 49.10972 104.8828
> tmp[,"col10"]
        col10
row1 49.85964
row2 28.45677
row3 28.70904
row4 29.66528
row5 50.47271
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.82327 51.01083 49.05951 50.05163 50.48915 103.8400 50.37520 50.09511
row5 49.73838 50.91207 49.89489 48.66268 50.18187 103.6018 51.21194 48.92231
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.38754 49.85964 49.23472 50.60889 50.33355 51.64869 51.04888 48.28495
row5 49.27214 50.47271 49.23149 49.56042 50.24870 51.09021 49.79870 49.59452
        col17    col18    col19    col20
row1 49.09517 50.42205 49.10972 104.8828
row5 50.83955 49.88065 47.07354 105.8153
> tmp[,c("col6","col20")]
          col6     col20
row1 103.84000 104.88284
row2  75.38747  75.40708
row3  76.43706  72.87717
row4  73.81497  73.17401
row5 103.60180 105.81532
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 103.8400 104.8828
row5 103.6018 105.8153
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 103.8400 104.8828
row5 103.6018 105.8153
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.3157695
[2,]  0.1778216
[3,] -1.6480484
[4,]  0.6445210
[5,] -0.5482774
> tmp[,c("col17","col7")]
            col17       col7
[1,]  0.315551475  1.5819552
[2,] -0.007979103 -1.1468083
[3,] -1.553712541 -2.4603690
[4,]  0.543835184 -0.3677807
[5,] -0.676005656 -1.1379812
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,] -0.61081067  0.7723863
[2,]  0.54631085 -1.1054676
[3,]  1.57253519  2.2262981
[4,]  0.49718227  0.5662918
[5,]  0.05267943  1.0527164
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.6108107
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.6108107
[2,]  0.5463109
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]        [,2]       [,3]       [,4]       [,5]       [,6]
row3  0.2718662 -0.09770956 -1.4798974 -0.5689798 -0.1696538 -1.0173073
row1 -0.2789506  0.23876209  0.5218729 -0.8572970  0.4830365  0.4166058
          [,7]      [,8]       [,9]      [,10]     [,11]      [,12]      [,13]
row3 0.5066281 1.0938739 -0.4022576 -1.8849579 1.0664639 -0.8049014 -0.8153694
row1 0.6294961 0.1310265 -1.2826816  0.4690083 0.1904976 -1.2685195 -0.7930024
           [,14]     [,15]      [,16]      [,17]      [,18]     [,19]
row3 0.001780493 0.5193560  2.4471467  0.3958985 -0.3239863 0.1126838
row1 1.423043751 0.9060282 -0.6681675 -1.1596412 -0.1422530 1.0127626
          [,20]
row3 -0.4465125
row1  1.3907785
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]      [,2]       [,3]       [,4]      [,5]       [,6]     [,7]
row2 -0.2782744 0.2490509 -0.6228061 -0.0381957 0.9127651 -0.7722916 1.172314
           [,8]      [,9]     [,10]
row2 -0.6226096 0.5765279 -1.331206
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]       [,2]       [,3]     [,4]     [,5]      [,6]      [,7]
row5 -0.3564055 -0.4300583 -0.1931194 1.302972 1.159907 -2.226902 0.8247109
        [,8]       [,9]     [,10]      [,11]      [,12]     [,13]     [,14]
row5 1.21557 0.08148465 0.0204208 -0.7434147 -0.1502703 -1.548575 0.3962075
         [,15]     [,16]     [,17]     [,18]     [,19]     [,20]
row5 0.8152095 0.2062928 -1.121444 -2.033291 0.3270349 -1.141858
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600001bdc300>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f20136ddc"
 [2] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f5b9196f7"
 [3] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f334e6118"
 [4] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f5ec888f8"
 [5] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f3f988265"
 [6] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f3598d581"
 [7] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f44e923a4"
 [8] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f26230754"
 [9] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f45b62f5b"
[10] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f3bdf231e"
[11] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f367aa547"
[12] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f2df8f442"
[13] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f336c30a2"
[14] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f3ecf60e" 
[15] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMec3f3a0e1325"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600001bf8240>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600001bf8240>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600001bf8240>
> rowMedians(tmp)
  [1] -0.073314170 -0.123730920  0.194843820 -0.180294760  0.212263321
  [6] -0.065381617  0.167382261  0.022188978  0.036340553 -0.120963427
 [11]  0.117470774  0.326074262  0.391859669  0.262085928  0.225715112
 [16] -0.101774066 -0.353801484 -0.247318987 -0.206067275 -0.155031979
 [21] -0.084647884 -0.401504024  0.162583171 -0.666426644  0.256460269
 [26]  0.445424216  0.103092269 -0.102855512  0.231235786 -0.217433287
 [31] -0.206148912 -0.017044226 -0.427490192  0.501641163  0.109251201
 [36]  0.182156496 -0.361617920 -0.155355792 -0.446698104  0.370677951
 [41]  0.419902398 -0.156653110  0.094279065 -0.281782524  0.471058980
 [46]  0.051453064  0.444231616 -0.196697624  0.401990491  0.105043701
 [51] -0.046186889 -0.054722823 -0.769290842  0.030920970 -0.174008899
 [56] -0.425423424 -0.565181989 -0.254092268 -0.045145237  0.249916293
 [61]  0.171121816 -0.014152393 -0.348887812  0.292899599  0.302701091
 [66]  0.116455095 -0.012098597 -0.095522861 -0.271348391  0.172564877
 [71] -0.449564472  0.066385802 -0.442852187 -0.238069158  0.075463511
 [76] -0.244212342 -0.289224449  0.624197972 -0.242235603  0.094412194
 [81] -0.372708000 -0.009773880  0.041975138 -0.890576141 -0.014321401
 [86] -0.302495610 -0.135362139  0.019700247  0.061826786  0.187585609
 [91] -0.556241360 -0.702389464  0.223738608 -0.284247391  0.424648892
 [96]  0.039260919  0.034989692  0.128016422 -0.117821864  0.286712239
[101] -0.209856889  0.327018179 -0.041686382 -0.003106938 -0.044462074
[106]  0.321129677 -0.199815618 -0.027755778 -0.219999451  0.365336598
[111]  0.159212360  0.544467621 -0.345145400 -0.625710477 -0.154409398
[116] -0.290803466  0.322273672 -0.246930027 -0.062023833 -0.020942653
[121] -0.357797268 -0.240788198  0.235299864 -0.159643985 -0.145676973
[126]  0.258741913 -0.161668736  0.115462564 -0.382062534  0.418444236
[131]  0.048028075  0.274240122 -0.130593355 -0.005576016 -0.311854908
[136]  0.098218718  0.051577528 -0.331692770  0.016142113 -0.276561432
[141] -0.288837173 -0.154175211 -1.030469367  0.051790073 -0.334472479
[146] -0.676735894  0.317080668 -0.003911490 -0.246859457  0.001665231
[151] -0.213072814 -0.077471406 -0.067359583  0.215420194  0.339534346
[156]  0.365847692 -0.315682903 -0.124257479  0.908307766 -0.144810723
[161] -0.182236712  0.202351849  0.230158506 -0.219660657 -0.298026324
[166]  0.133264749  0.491656615 -0.151023632  0.075951960  0.217102052
[171]  0.243288964  0.351500633  0.217894769 -0.035659085  0.635042233
[176] -0.209118815 -0.318010633 -0.410216052  0.035436468 -0.051452595
[181] -0.213403687  0.472847470  0.036202619 -0.160062043  0.239128342
[186]  0.098769276  0.024676433 -0.016242453 -0.351330497 -0.708003536
[191] -0.138903870  0.090687731  0.166241959  0.012384513 -0.531025746
[196]  0.203218753 -0.146564709  0.128511564  0.441312919  0.219133634
[201] -0.571470353 -0.013867437 -0.090285759  0.663025672  0.122487277
[206] -0.163202514 -0.016546123 -0.180656035  0.045467014  0.400381178
[211] -0.232955215  0.284991507  0.052368851  0.373123808  0.052305329
[216] -0.271521945  0.252196620  0.054825010  0.611213899 -0.168013624
[221] -0.134897068  0.494878141 -0.336120888 -0.282215435  0.389216069
[226]  0.334478884  0.045566454 -0.004509903  0.132556523  0.157745550
> 
> proc.time()
   user  system elapsed 
  0.636   2.947   3.775 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60000175c120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60000175c120>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60000175c120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x60000175c120>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x60000174c360>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000174c360>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x60000174c360>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000174c360>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60000174c360>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000017588a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000017588a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000017588a0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000017588a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000017588a0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6000017588a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000017588a0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6000017588a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000017588a0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001740060>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600001740060>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001740060>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001740060>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFileee503a88e212" "BufferedMatrixFileee5070b229c3"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFileee503a88e212" "BufferedMatrixFileee5070b229c3"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001754720>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001754720>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001754720>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001754720>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600001754720>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600001754720>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001754900>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001754900>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001754900>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600001754900>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001754ae0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001754ae0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.109   0.040   0.145 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.109   0.024   0.130 

Example timings