Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-10-04 12:04 -0400 (Sat, 04 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4853
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4640
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4585
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4576
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2015/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.19.2  (landing page)
Joshua David Campbell
Snapshot Date: 2025-10-03 13:45 -0400 (Fri, 03 Oct 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 238aed05
git_last_commit_date: 2025-09-26 08:22:06 -0400 (Fri, 26 Sep 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    ERROR  
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    ERROR    OK  
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    ERROR    OK  
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on nebbiolo2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.19.2
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.19.2.tar.gz
StartedAt: 2025-10-04 04:21:24 -0400 (Sat, 04 Oct 2025)
EndedAt: 2025-10-04 04:37:27 -0400 (Sat, 04 Oct 2025)
EllapsedTime: 963.8 seconds
RetCode: 1
Status:   ERROR  
CheckDir: singleCellTK.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.19.2.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.1 Patched (2025-08-23 r88802)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.19.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... ERROR
Running examples in ‘singleCellTK-Ex.R’ failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: runGSVA
> ### Title: Run GSVA analysis on a SingleCellExperiment object
> ### Aliases: runGSVA
> 
> ### ** Examples
> 
> data(scExample, package = "singleCellTK")
> sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
> sce <- scaterlogNormCounts(sce, assayName = "logcounts")
> gs1 <- rownames(sce)[seq(10)]
> gs2 <- rownames(sce)[seq(11,20)]
> gs <- list("geneset1" = gs1, "geneset2" = gs2)
> 
> sce <- importGeneSetsFromList(inSCE = sce,geneSetList = gs,
+                                            by = "rownames")
> sce <- runGSVA(inSCE = sce, 
+                geneSetCollectionName = "GeneSetCollection", 
+                useAssay = "logcounts")
Sat Oct  4 04:31:40 2025 ... Running GSVA
ℹ GSVA version 2.3.2
ℹ Calculating GSVA ranks
ℹ kcdf='auto' (default)
ℹ GSVA dense (classical) algorithm
ℹ Row-wise ECDF estimation with Gaussian kernels
ℹ Calculating GSVA column ranks
Error in (function (cond)  : 
  error in evaluating the argument 'x' in selecting a method for function 't': ✖ No identifiers in the gene sets could be matched to the identifiers in
  the expression data.
Calls: runGSVA ... <Anonymous> -> signal_abort -> signalCondition -> <Anonymous>
Execution halted
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   63.903  0.587  31.526
importGeneSetsFromMSigDB 46.692  1.008  47.701
plotDoubletFinderResults 38.915  0.281  39.274
runDoubletFinder         32.765  0.029  32.797
importExampleData        13.550  2.077  16.076
plotBatchCorrCompare     13.639  0.165  13.983
plotScdsHybridResults    12.045  0.156  10.872
plotBcdsResults          10.764  0.188   9.189
plotDecontXResults        9.079  0.145   9.223
runDecontX                7.713  0.129   7.841
plotCxdsResults           7.779  0.052   7.910
plotUMAP                  7.339  0.034   7.456
detectCellOutlier         6.677  0.080   6.758
plotEmptyDropsResults     6.613  0.009   6.621
plotEmptyDropsScatter     6.536  0.003   6.540
runEmptyDrops             6.239  0.000   6.240
plotDEGViolin             5.473  0.082   5.533
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 ERROR
Running the tests in ‘tests/testthat.R’ failed.
Last 13 lines of output:
    5. │   └─GSVA (local) .local(param, ...)
    6. │     ├─GSVA::gsvaScores(param = rankspar, verbose = verbose, BPPARAM = BPPARAM)
    7. │     └─GSVA::gsvaScores(param = rankspar, verbose = verbose, BPPARAM = BPPARAM)
    8. │       └─GSVA (local) .local(param, ...)
    9. │         └─GSVA:::.filterAndMapGeneSets(...)
   10. │           └─GSVA:::.mapGeneSetsToFeatures(geneSets, rownames(filteredDataMatrix))
   11. │             └─cli::cli_abort(c(x = msg))
   12. │               └─rlang::abort(...)
   13. │                 └─rlang:::signal_abort(cnd, .file)
   14. │                   └─base::signalCondition(cnd)
   15. └─base (local) `<fn>`(`<rlng_rrr>`)
  
  [ FAIL 2 | WARN 22 | SKIP 0 | PASS 222 ]
  Error: Test failures
  Execution halted
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 ERRORs, 1 NOTE
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.19.2’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.134   0.042   0.163 

singleCellTK.Rcheck/tests/testthat.Rout.fail


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[1]	train-logloss:0.452540 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320237 
[3]	train-logloss:0.237326 
[4]	train-logloss:0.182355 
[5]	train-logloss:0.144099 
[6]	train-logloss:0.117553 
[7]	train-logloss:0.098814 
[8]	train-logloss:0.084978 
[9]	train-logloss:0.075063 
[10]	train-logloss:0.067483 
[11]	train-logloss:0.061861 
[12]	train-logloss:0.057362 
[13]	train-logloss:0.053725 
[14]	train-logloss:0.050620 
[15]	train-logloss:0.047937 
[16]	train-logloss:0.045355 
[17]	train-logloss:0.043608 
[18]	train-logloss:0.042678 
[1]	train-logloss:0.452932 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320861 
[3]	train-logloss:0.238138 
[4]	train-logloss:0.183327 
[5]	train-logloss:0.145234 
[6]	train-logloss:0.118471 
[7]	train-logloss:0.099668 
[8]	train-logloss:0.085972 
[9]	train-logloss:0.076338 
[10]	train-logloss:0.068629 
[11]	train-logloss:0.062967 
[12]	train-logloss:0.057971 
[13]	train-logloss:0.053386 
[14]	train-logloss:0.050623 
[1]	train-logloss:0.453030 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.321019 
[3]	train-logloss:0.238344 
[4]	train-logloss:0.183572 
[5]	train-logloss:0.145515 
[6]	train-logloss:0.118784 
[7]	train-logloss:0.100283 
[8]	train-logloss:0.086178 
[9]	train-logloss:0.076766 
[10]	train-logloss:0.069198 
[11]	train-logloss:0.063614 
[12]	train-logloss:0.059085 
[13]	train-logloss:0.055346 
[14]	train-logloss:0.052474 
[15]	train-logloss:0.049706 
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 2 | WARN 22 | SKIP 0 | PASS 222 ]

══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-misc.R:64:3'): Testing runGSVA ─────────────────────────────────
Error in `(function (cond) 
.Internal(C_tryCatchHelper(addr, 1L, cond)))(structure(list(message = c(x = "No identifiers in the gene sets could be matched to the identifiers in the expression data."), 
    trace = structure(list(call = list(runGSVA(inSCE = sce, geneSetCollectionName = "H", 
        useAssay = "logcounts"), t(GSVA::gsva(gsvaPar)), GSVA::gsva(gsvaPar), 
        GSVA::gsva(gsvaPar), .local(param, ...), gsvaScores(param = rankspar, 
            verbose = verbose, BPPARAM = BPPARAM), gsvaScores(param = rankspar, 
            verbose = verbose, BPPARAM = BPPARAM), .local(param, 
            ...), .filterAndMapGeneSets(param = param, filteredDataMatrix = filteredDataMatrix, 
            verbose = verbose), .mapGeneSetsToFeatures(geneSets, 
            rownames(filteredDataMatrix)), cli_abort(c(x = msg)), 
        rlang::abort(message, ..., call = call, use_cli_format = TRUE, 
            .frame = .frame)), parent = c(0L, 1L, 1L, 1L, 4L, 
    5L, 5L, 7L, 8L, 9L, 10L, 11L), visible = c(TRUE, TRUE, TRUE, 
    TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE), 
        namespace = c("singleCellTK", "base", "GSVA", "GSVA", 
        "GSVA", "GSVA", "GSVA", "GSVA", "GSVA", "GSVA", "cli", 
        "rlang"), scope = c("::", "::", "::", "::", "local", 
        "::", "::", "local", ":::", ":::", "::", "::"), error_frame = c(FALSE, 
        FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
        TRUE, FALSE, FALSE)), row.names = c(NA, -12L), version = 2L, class = c("rlang_trace", 
    "rlib_trace", "tbl", "data.frame")), parent = NULL, rlang = list(
        inherit = TRUE), call = .mapGeneSetsToFeatures(geneSets, 
        rownames(filteredDataMatrix)), use_cli_format = TRUE), class = c("rlang_error", 
"error", "condition")))`: error in evaluating the argument 'x' in selecting a method for function 't': ✖ No identifiers in the gene sets could be matched to the identifiers in
  the expression data.
Backtrace:
     ▆
  1. ├─singleCellTK::runGSVA(...) at test-misc.R:64:3
  2. │ ├─base::t(GSVA::gsva(gsvaPar))
  3. │ ├─GSVA::gsva(gsvaPar)
  4. │ └─GSVA::gsva(gsvaPar)
  5. │   └─GSVA (local) .local(param, ...)
  6. │     ├─GSVA::gsvaScores(param = rankspar, verbose = verbose, BPPARAM = BPPARAM)
  7. │     └─GSVA::gsvaScores(param = rankspar, verbose = verbose, BPPARAM = BPPARAM)
  8. │       └─GSVA (local) .local(param, ...)
  9. │         └─GSVA:::.filterAndMapGeneSets(...)
 10. │           └─GSVA:::.mapGeneSetsToFeatures(geneSets, rownames(filteredDataMatrix))
 11. │             └─cli::cli_abort(c(x = msg))
 12. │               └─rlang::abort(...)
 13. │                 └─rlang:::signal_abort(cnd, .file)
 14. │                   └─base::signalCondition(cnd)
 15. └─base (local) `<fn>`(`<rlng_rrr>`)
── Error ('test-pathway.R:36:5'): Testing GSVA ─────────────────────────────────
Error in `(function (cond) 
.Internal(C_tryCatchHelper(addr, 1L, cond)))(structure(list(message = c(x = "No identifiers in the gene sets could be matched to the identifiers in the expression data."), 
    trace = structure(list(call = list(runGSVA(sce, geneSetCollectionName = "GeneSetCollection", 
        useAssay = "logcounts"), t(GSVA::gsva(gsvaPar)), GSVA::gsva(gsvaPar), 
        GSVA::gsva(gsvaPar), .local(param, ...), gsvaScores(param = rankspar, 
            verbose = verbose, BPPARAM = BPPARAM), gsvaScores(param = rankspar, 
            verbose = verbose, BPPARAM = BPPARAM), .local(param, 
            ...), .filterAndMapGeneSets(param = param, filteredDataMatrix = filteredDataMatrix, 
            verbose = verbose), .mapGeneSetsToFeatures(geneSets, 
            rownames(filteredDataMatrix)), cli_abort(c(x = msg)), 
        rlang::abort(message, ..., call = call, use_cli_format = TRUE, 
            .frame = .frame)), parent = c(0L, 1L, 1L, 1L, 4L, 
    5L, 5L, 7L, 8L, 9L, 10L, 11L), visible = c(TRUE, TRUE, TRUE, 
    TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE), 
        namespace = c("singleCellTK", "base", "GSVA", "GSVA", 
        "GSVA", "GSVA", "GSVA", "GSVA", "GSVA", "GSVA", "cli", 
        "rlang"), scope = c("::", "::", "::", "::", "local", 
        "::", "::", "local", ":::", ":::", "::", "::"), error_frame = c(FALSE, 
        FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
        TRUE, FALSE, FALSE)), row.names = c(NA, -12L), version = 2L, class = c("rlang_trace", 
    "rlib_trace", "tbl", "data.frame")), parent = NULL, rlang = list(
        inherit = TRUE), call = .mapGeneSetsToFeatures(geneSets, 
        rownames(filteredDataMatrix)), use_cli_format = TRUE), class = c("rlang_error", 
"error", "condition")))`: error in evaluating the argument 'x' in selecting a method for function 't': ✖ No identifiers in the gene sets could be matched to the identifiers in
  the expression data.
Backtrace:
     ▆
  1. ├─singleCellTK::runGSVA(...) at test-pathway.R:36:5
  2. │ ├─base::t(GSVA::gsva(gsvaPar))
  3. │ ├─GSVA::gsva(gsvaPar)
  4. │ └─GSVA::gsva(gsvaPar)
  5. │   └─GSVA (local) .local(param, ...)
  6. │     ├─GSVA::gsvaScores(param = rankspar, verbose = verbose, BPPARAM = BPPARAM)
  7. │     └─GSVA::gsvaScores(param = rankspar, verbose = verbose, BPPARAM = BPPARAM)
  8. │       └─GSVA (local) .local(param, ...)
  9. │         └─GSVA:::.filterAndMapGeneSets(...)
 10. │           └─GSVA:::.mapGeneSetsToFeatures(geneSets, rownames(filteredDataMatrix))
 11. │             └─cli::cli_abort(c(x = msg))
 12. │               └─rlang::abort(...)
 13. │                 └─rlang:::signal_abort(cnd, .file)
 14. │                   └─base::signalCondition(cnd)
 15. └─base (local) `<fn>`(`<rlng_rrr>`)

[ FAIL 2 | WARN 22 | SKIP 0 | PASS 222 ]
Error: Test failures
Execution halted

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0000.002
SEG0.0020.0000.003
calcEffectSizes0.2010.0130.214
combineSCE0.7550.0010.756
computeZScore0.2450.0060.251
convertSCEToSeurat4.3280.0814.410
convertSeuratToSCE0.3300.0020.332
dedupRowNames0.0550.0030.058
detectCellOutlier6.6770.0806.758
diffAbundanceFET0.0520.0010.053
discreteColorPalette0.0050.0000.006
distinctColors0.0020.0000.002
downSampleCells0.4700.0720.541
downSampleDepth0.3920.0090.401
expData-ANY-character-method0.1230.0000.123
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1590.0120.171
expData-set0.1500.0070.158
expData0.1270.0110.138
expDataNames-ANY-method0.1150.0000.115
expDataNames0.1140.0030.117
expDeleteDataTag0.0330.0020.034
expSetDataTag0.0260.0000.027
expTaggedData0.0250.0010.026
exportSCE0.0210.0020.023
exportSCEtoAnnData0.0910.0080.099
exportSCEtoFlatFile0.0880.0110.098
featureIndex0.0300.0060.036
generateSimulatedData0.0500.0050.055
getBiomarker0.0590.0030.061
getDEGTopTable0.6600.0360.697
getDiffAbundanceResults0.0490.0000.049
getEnrichRResult0.4930.0662.953
getFindMarkerTopTable1.5510.1311.682
getMSigDBTable0.0030.0010.003
getPathwayResultNames0.0220.0080.030
getSampleSummaryStatsTable0.1820.0190.202
getSoupX000
getTSCANResults1.1050.1321.236
getTopHVG0.8330.0350.868
importAnnData0.0010.0000.002
importBUStools0.1440.0000.145
importCellRanger0.7190.0210.742
importCellRangerV2Sample0.1460.0030.149
importCellRangerV3Sample0.2590.0290.288
importDropEst0.1970.0120.209
importExampleData13.550 2.07716.076
importGeneSetsFromCollection2.0410.1402.181
importGeneSetsFromGMT0.0630.0010.065
importGeneSetsFromList0.1230.0000.123
importGeneSetsFromMSigDB46.692 1.00847.701
importMitoGeneSet0.0490.0060.055
importOptimus0.0020.0000.001
importSEQC0.1330.0110.145
importSTARsolo0.1490.0040.153
iterateSimulations0.1730.0170.190
listSampleSummaryStatsTables0.3010.0160.317
mergeSCEColData0.3320.0020.335
mouseBrainSubsetSCE0.0380.0000.038
msigdb_table0.0010.0010.002
plotBarcodeRankDropsResults0.8650.0080.873
plotBarcodeRankScatter0.8270.0030.831
plotBatchCorrCompare13.639 0.16513.983
plotBatchVariance0.4390.0020.441
plotBcdsResults10.764 0.188 9.189
plotBubble0.8090.0040.813
plotClusterAbundance1.4080.0521.460
plotCxdsResults7.7790.0527.910
plotDEGHeatmap2.1080.0082.117
plotDEGRegression4.3820.0094.364
plotDEGViolin5.4730.0825.533
plotDEGVolcano0.9050.0040.910
plotDecontXResults9.0790.1459.223
plotDimRed0.3240.0060.330
plotDoubletFinderResults38.915 0.28139.274
plotEmptyDropsResults6.6130.0096.621
plotEmptyDropsScatter6.5360.0036.540
plotFindMarkerHeatmap3.6730.0013.674
plotMASTThresholdGenes1.2710.0101.281
plotPCA0.3720.0030.375
plotPathway0.650.000.65
plotRunPerCellQCResults3.0970.0043.100
plotSCEBarAssayData0.3180.0000.318
plotSCEBarColData0.2310.0010.232
plotSCEBatchFeatureMean0.3880.0010.389
plotSCEDensity0.3170.0000.317
plotSCEDensityAssayData0.3100.0020.312
plotSCEDensityColData0.3150.0000.315
plotSCEDimReduceColData0.7890.0010.790
plotSCEDimReduceFeatures0.3690.0010.370
plotSCEHeatmap0.4100.0010.411
plotSCEScatter2.0430.0172.061
plotSCEViolin0.3630.0020.365
plotSCEViolinAssayData0.3880.0020.390
plotSCEViolinColData0.3730.0000.374
plotScDblFinderResults63.903 0.58731.526
plotScanpyDotPlot0.0200.0010.022
plotScanpyEmbedding0.0210.0010.021
plotScanpyHVG0.0200.0010.021
plotScanpyHeatmap0.0210.0000.021
plotScanpyMarkerGenes0.0200.0010.021
plotScanpyMarkerGenesDotPlot0.0210.0000.021
plotScanpyMarkerGenesHeatmap0.0220.0000.021
plotScanpyMarkerGenesMatrixPlot0.0210.0000.021
plotScanpyMarkerGenesViolin0.0210.0000.021
plotScanpyMatrixPlot0.0200.0010.021
plotScanpyPCA0.0200.0010.021
plotScanpyPCAGeneRanking0.0220.0000.022
plotScanpyPCAVariance0.0210.0000.021
plotScanpyViolin0.0210.0000.022
plotScdsHybridResults12.045 0.15610.872
plotScrubletResults0.0240.0000.023
plotSeuratElbow0.0220.0000.022
plotSeuratHVG0.0220.0000.022
plotSeuratJackStraw0.0220.0010.022
plotSeuratReduction0.0220.0000.022
plotSoupXResults000
plotTSCANClusterDEG4.9610.0094.971
plotTSCANClusterPseudo1.3380.0041.342
plotTSCANDimReduceFeatures1.3880.0021.391
plotTSCANPseudotimeGenes1.6400.0031.643
plotTSCANPseudotimeHeatmap1.2860.0031.289
plotTSCANResults1.2230.0001.223
plotTSNE0.3830.0010.383
plotTopHVG0.6330.0010.634
plotUMAP7.3390.0347.456
readSingleCellMatrix0.0060.0000.006
reportCellQC0.0790.0010.080
reportDropletQC0.0200.0010.021
reportQCTool0.0830.0000.083
retrieveSCEIndex0.030.000.03
runBBKNN000
runBarcodeRankDrops0.2140.0000.214
runBcds2.8700.0541.250
runCellQC0.0830.0020.084
runClusterSummaryMetrics0.3760.0020.378
runComBatSeq0.4300.0020.432
runCxds0.3260.0100.336
runCxdsBcdsHybrid2.9760.0741.251
runDEAnalysis0.4390.0030.442
runDecontX7.7130.1297.841
runDimReduce0.2570.0030.259
runDoubletFinder32.765 0.02932.797
runDropletQC0.0220.0000.022
runEmptyDrops6.2390.0006.240
runEnrichR0.5320.0382.775
runFastMNN1.6240.0021.626
runFeatureSelection0.2060.0000.207
runFindMarker1.3320.0141.346