Back to Multiple platform build/check report for BioC 3.23:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2026-01-14 11:34 -0500 (Wed, 14 Jan 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences" 4848
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4627
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2016/2343HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.21.1  (landing page)
Joshua David Campbell
Snapshot Date: 2026-01-13 13:40 -0500 (Tue, 13 Jan 2026)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 15d4a13
git_last_commit_date: 2026-01-11 08:42:53 -0500 (Sun, 11 Jan 2026)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'batchelor' which is only available as a source package that needs compilation


CHECK results for singleCellTK on nebbiolo1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.21.1
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.1.tar.gz
StartedAt: 2026-01-14 04:12:51 -0500 (Wed, 14 Jan 2026)
EndedAt: 2026-01-14 04:29:59 -0500 (Wed, 14 Jan 2026)
EllapsedTime: 1028.2 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2025-12-22 r89219)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.21.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  5.6Mb
  sub-directories of 1Mb or more:
    R       1.0Mb
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 44.975  0.765  45.741
plotDoubletFinderResults 38.784  0.325  39.111
runDoubletFinder         34.165  0.297  34.463
runSeuratSCTransform     29.028  0.163  29.195
plotScDblFinderResults   27.916  0.786  28.674
runScDblFinder           17.571  0.294  17.838
plotBatchCorrCompare     13.725  0.182  13.906
importExampleData        10.805  0.559  11.726
plotScdsHybridResults     9.930  0.078   9.454
plotDecontXResults        8.643  0.060   8.703
plotBcdsResults           8.523  0.144   8.111
runDecontX                7.665  0.044   7.709
plotUMAP                  7.325  0.077   7.402
plotCxdsResults           7.273  0.094   7.366
runUMAP                   7.224  0.114   7.337
plotEmptyDropsResults     6.606  0.010   6.617
plotEmptyDropsScatter     6.509  0.007   6.516
runEmptyDrops             6.243  0.010   6.253
detectCellOutlier         5.402  0.164   5.566
plotDEGViolin             5.261  0.054   5.309
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.21.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.186   0.040   0.215 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[04:27:40] WARNING: src/learner.cc:790: 
Parameters: { "nthreads" } are not used.

[04:27:41] WARNING: src/learner.cc:790: 
Parameters: { "nthreads" } are not used.

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 19 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 19 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
333.394   6.317 343.813 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0010.002
SEG0.0000.0020.003
calcEffectSizes0.1520.0160.169
combineSCE0.7120.0250.738
computeZScore0.2300.0070.237
convertSCEToSeurat4.2910.1544.446
convertSeuratToSCE0.3380.0080.347
dedupRowNames0.0520.0000.053
detectCellOutlier5.4020.1645.566
diffAbundanceFET0.0510.0040.055
discreteColorPalette0.0060.0000.005
distinctColors0.0030.0000.002
downSampleCells0.4960.0590.555
downSampleDepth0.3900.0040.394
expData-ANY-character-method0.1210.0010.122
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1570.0010.157
expData-set0.1430.0010.144
expData0.1190.0020.121
expDataNames-ANY-method0.1100.0010.111
expDataNames0.1090.0010.110
expDeleteDataTag0.0300.0020.032
expSetDataTag0.0210.0010.022
expTaggedData0.0240.0000.024
exportSCE0.0210.0000.021
exportSCEtoAnnData0.0930.0040.096
exportSCEtoFlatFile0.0920.0040.096
featureIndex0.0340.0030.037
generateSimulatedData0.0500.0020.052
getBiomarker0.0560.0040.061
getDEGTopTable0.670.120.79
getDiffAbundanceResults0.0480.0020.049
getEnrichRResult0.5520.0303.700
getFindMarkerTopTable1.5380.0271.564
getMSigDBTable0.0030.0010.004
getPathwayResultNames0.0210.0010.021
getSampleSummaryStatsTable0.1850.0070.191
getSoupX000
getTSCANResults0.9480.0370.986
getTopHVG0.8210.0050.827
importAnnData0.0010.0000.002
importBUStools0.1400.0010.141
importCellRanger0.7810.0090.791
importCellRangerV2Sample0.1340.0020.136
importCellRangerV3Sample0.2490.0030.253
importDropEst0.1900.0000.192
importExampleData10.805 0.55911.726
importGeneSetsFromCollection1.7780.1041.882
importGeneSetsFromGMT0.0610.0000.061
importGeneSetsFromList0.1220.0010.124
importGeneSetsFromMSigDB44.975 0.76545.741
importMitoGeneSet0.0500.0050.055
importOptimus0.0010.0010.002
importSEQC0.1380.0240.163
importSTARsolo0.1730.0310.205
iterateSimulations0.1700.0280.198
listSampleSummaryStatsTables0.2440.0360.280
mergeSCEColData0.3720.0170.389
mouseBrainSubsetSCE0.0370.0000.038
msigdb_table0.0020.0000.001
plotBarcodeRankDropsResults0.8620.0110.873
plotBarcodeRankScatter0.8510.0030.854
plotBatchCorrCompare13.725 0.18213.906
plotBatchVariance0.4660.0100.475
plotBcdsResults8.5230.1448.111
plotBubble0.7510.0010.752
plotClusterAbundance1.3440.0031.348
plotCxdsResults7.2730.0947.366
plotDEGHeatmap2.0700.0092.079
plotDEGRegression4.1910.0224.207
plotDEGViolin5.2610.0545.309
plotDEGVolcano0.9300.0050.936
plotDecontXResults8.6430.0608.703
plotDimRed0.2800.0030.284
plotDoubletFinderResults38.784 0.32539.111
plotEmptyDropsResults6.6060.0106.617
plotEmptyDropsScatter6.5090.0076.516
plotFindMarkerHeatmap3.7140.0073.721
plotMASTThresholdGenes1.2800.0121.292
plotPCA0.3700.0020.373
plotPathway0.6990.0020.702
plotRunPerCellQCResults2.8900.0062.895
plotSCEBarAssayData0.2760.0040.280
plotSCEBarColData0.2690.0010.271
plotSCEBatchFeatureMean0.3770.0000.378
plotSCEDensity0.3030.0000.302
plotSCEDensityAssayData0.2710.0030.274
plotSCEDensityColData0.3450.0000.345
plotSCEDimReduceColData0.7680.0150.783
plotSCEDimReduceFeatures0.4010.0030.404
plotSCEHeatmap0.4860.0090.496
plotSCEScatter0.3490.0000.349
plotSCEViolin0.3690.0010.369
plotSCEViolinAssayData0.4430.0000.444
plotSCEViolinColData0.3590.0020.362
plotScDblFinderResults27.916 0.78628.674
plotScanpyDotPlot0.0210.0010.022
plotScanpyEmbedding0.0220.0000.022
plotScanpyHVG0.0210.0010.022
plotScanpyHeatmap0.0210.0010.022
plotScanpyMarkerGenes0.0220.0000.022
plotScanpyMarkerGenesDotPlot0.0220.0000.022
plotScanpyMarkerGenesHeatmap0.0210.0000.021
plotScanpyMarkerGenesMatrixPlot0.0210.0010.022
plotScanpyMarkerGenesViolin0.0220.0000.022
plotScanpyMatrixPlot0.0210.0000.021
plotScanpyPCA0.0210.0000.021
plotScanpyPCAGeneRanking0.0220.0000.022
plotScanpyPCAVariance0.0220.0000.022
plotScanpyViolin0.0200.0010.021
plotScdsHybridResults9.9300.0789.454
plotScrubletResults0.0210.0020.023
plotSeuratElbow0.0220.0000.022
plotSeuratHVG0.0200.0010.021
plotSeuratJackStraw0.0190.0020.021
plotSeuratReduction0.0220.0000.022
plotSoupXResults0.0010.0000.001
plotTSCANClusterDEG4.7100.0184.728
plotTSCANClusterPseudo1.2890.0051.294
plotTSCANDimReduceFeatures1.3150.0081.324
plotTSCANPseudotimeGenes1.5940.0021.597
plotTSCANPseudotimeHeatmap1.2840.0081.292
plotTSCANResults1.2080.0051.213
plotTSNE0.3590.0020.360
plotTopHVG0.6560.0020.657
plotUMAP7.3250.0777.402
readSingleCellMatrix0.0030.0020.005
reportCellQC0.0800.0000.081
reportDropletQC0.0230.0000.022
reportQCTool0.0820.0010.084
retrieveSCEIndex0.030.000.03
runBBKNN000
runBarcodeRankDrops0.2240.0010.226
runBcds1.4340.0350.928
runCellQC0.0830.0000.084
runClusterSummaryMetrics0.3680.0010.368
runComBatSeq0.4250.0050.430
runCxds0.3180.0010.319
runCxdsBcdsHybrid1.4320.0010.911
runDEAnalysis0.4270.0070.435
runDecontX7.6650.0447.709
runDimReduce0.2730.0110.285
runDoubletFinder34.165 0.29734.463
runDropletQC0.0210.0010.023
runEmptyDrops6.2430.0106.253
runEnrichR0.5160.0222.536
runFastMNN1.6640.0711.734
runFeatureSelection0.2100.0010.211
runFindMarker1.3860.0061.391
runGSVA0.7790.0220.801
runHarmony0.1150.0010.116
runKMeans0.1700.0020.173
runLimmaBC0.0750.0000.075
runMNNCorrect0.3830.0000.383
runModelGeneVar0.2790.0010.279
runNormalization2.480.122.60
runPerCellQC0.3220.0020.325
runSCANORAMA000
runSCMerge0.0040.0000.004
runScDblFinder17.571 0.29417.838
runScanpyFindClusters0.0240.0010.024
runScanpyFindHVG0.0220.0000.022
runScanpyFindMarkers0.0220.0000.022
runScanpyNormalizeData0.0980.0000.098
runScanpyPCA0.0220.0000.022
runScanpyScaleData0.0220.0000.021
runScanpyTSNE0.0210.0010.022
runScanpyUMAP0.0210.0010.021
runScranSNN0.2770.0020.280
runScrublet0.0210.0010.022
runSeuratFindClusters0.0210.0000.022
runSeuratFindHVG0.4460.0010.447
runSeuratHeatmap0.0210.0010.022
runSeuratICA0.0220.0000.022
runSeuratJackStraw0.0210.0000.022
runSeuratNormalizeData0.0220.0000.021
runSeuratPCA0.0200.0020.022
runSeuratSCTransform29.028 0.16329.195
runSeuratScaleData0.0210.0010.022
runSeuratUMAP0.0220.0000.023
runSingleR0.0360.0010.038
runSoupX0.0010.0000.001
runTSCAN0.6420.0030.645
runTSCANClusterDEAnalysis0.7280.0110.739
runTSCANDEG0.7560.0120.769
runTSNE0.7100.0000.711
runUMAP7.2240.1147.337
runVAM0.2890.0030.292
runZINBWaVE0.0040.0000.005
sampleSummaryStats0.1990.0000.200
scaterCPM0.1330.0050.138
scaterPCA0.4430.0040.447
scaterlogNormCounts0.2350.0030.238
sce0.0200.0010.021
sctkListGeneSetCollections0.0790.0000.079
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0810.0020.084
setSCTKDisplayRow0.4210.0010.422
singleCellTK000
subDiffEx0.3100.0020.312
subsetSCECols0.0760.0010.077
subsetSCERows0.2500.0010.251
summarizeSCE0.0640.0010.065
trimCounts0.2040.0080.213