Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABC[D]EFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-06-19 12:04 -0400 (Thu, 19 Jun 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.2 LTS)x86_644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4810
palomino8Windows Server 2022 Datacenterx644.5.0 (2025-04-11 ucrt) -- "How About a Twenty-Six" 4548
kjohnson3macOS 13.7.1 Venturaarm644.5.0 Patched (2025-04-21 r88169) -- "How About a Twenty-Six" 4528
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4493
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 602/2309HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
DNEA 0.99.12  (landing page)
Christopher Patsalis
Snapshot Date: 2025-06-18 13:25 -0400 (Wed, 18 Jun 2025)
git_url: https://git.bioconductor.org/packages/DNEA
git_branch: devel
git_last_commit: b1dcb9e
git_last_commit_date: 2025-04-23 15:52:26 -0400 (Wed, 23 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for DNEA on kjohnson3

To the developers/maintainers of the DNEA package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/DNEA.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: DNEA
Version: 0.99.12
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:DNEA.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings DNEA_0.99.12.tar.gz
StartedAt: 2025-06-18 19:01:25 -0400 (Wed, 18 Jun 2025)
EndedAt: 2025-06-18 19:04:57 -0400 (Wed, 18 Jun 2025)
EllapsedTime: 212.6 seconds
RetCode: 0
Status:   OK  
CheckDir: DNEA.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:DNEA.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings DNEA_0.99.12.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/DNEA.Rcheck’
* using R version 4.5.0 Patched (2025-04-21 r88169)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘DNEA/DESCRIPTION’ ... OK
* this is package ‘DNEA’ version ‘0.99.12’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Package which this enhances but not available for checking: ‘massdataset’
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘DNEA’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  BICtune-methods.Rd: BiocParallel
  adjacencyGraph-methods.Rd: igraph
  clusterNet.Rd: igraph
  consensusClusteringResults-class.Rd: igraph
  getNetworks.Rd: BiocParallel
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                    user system elapsed
stabilitySelection 7.649  1.710   4.475
BICtune-methods    7.852  0.969   4.517
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/DNEA.Rcheck/00check.log’
for details.


Installation output

DNEA.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL DNEA
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’
* installing *source* package ‘DNEA’ ...
** this is package ‘DNEA’ version ‘0.99.12’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (DNEA)

Tests output

DNEA.Rcheck/tests/testthat.Rout


R version 4.5.0 Patched (2025-04-21 r88169) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
> 
> library(testthat)
> library(DNEA)
> 
> test_check("DNEA")
Optimizing the lambda hyperparameter using Bayesian-Information Criterion outlined in Guo et al. (2011)
A Link to this reference can be found in the function documentation by running ?BICtune() in the console.
The log_scaled_data expression data will be used for analysis.

Provided lambda values will be used for optimization...
Optimizing the lambda hyperparameter using Bayesian-Information Criterion outlined in Guo et al. (2011)
A Link to this reference can be found in the function documentation by running ?BICtune() in the console.
The log_scaled_data expression data will be used for analysis.

Provided lambda values will be used for optimization...
The raw peak intensity data was used for aggregation
The aggregated log-scaled data is in the @assay slot
(The orginal DNEA object can be found in the @original_experiment slot)
Data has been normalized for further analysis. New data can be found in the log_scaled_data assay!
Data diagnostics was performed on log_scaled_data assay. To check a different assay, please specify the assay parameter.
Diagnostic criteria are as follows: 
DNEAinputSummary
  Number of Samples  -  322
  Number of Features  -  83
               min_eigen condition_num
all_data    9.870990e-02  7.028033e+01
DM:control  8.577548e-02  8.229973e+01
DM:case    -2.647761e-15  2.441922e+18
The log_scaled_data expression data will be used for analysis.
The log_scaled_data expression data will be used for analysis.
The log_scaled_data expression data will be used for analysis.
The log_scaled_data expression data will be used for analysis.
Optimizing the lambda hyperparameter using Bayesian-Information Criterion outlined in Guo et al. (2011)
A Link to this reference can be found in the function documentation by running ?BICtune() in the console
NOTE: if your dataset contains fewer than ~500 samples per experimental condition, consider setting  "aprox=TRUE". This will provide more reliable results

TUNING LAMBDA FOR DM:control!:
--------------------------------------------------

Estimating optimal c constant range for asymptotic lambda...
Fine-tuning Lambda...
The optimal Lambda hyper-parameter has been set to: 0.0199548849358947!

TUNING LAMBDA FOR DM:case!:
--------------------------------------------------

Estimating optimal c constant range for asymptotic lambda...
Fine-tuning Lambda...
The optimal Lambda hyper-parameter has been set to: 0.0495095483188967!
selection_probabilites from stability selection will be used in glasso model!

Estimating model for DM:control...using 0.0199548849358947 for lambda...
model estimated!

Estimating model for DM:case...using 0.0495095483188967 for lambda...
model estimated!

DM:control network specific edges: 463
DM:case network specific edges: 423
-----------------------------------
Number of edges shared by both networks: 434
Total number of edges in dataset: 1320
The log_scaled_data expression data will be used for analysis.
Optimizing the lambda hyperparameter using Bayesian-Information Criterion outlined in Guo et al. (2011)
A Link to this reference can be found in the function documentation by running ?BICtune() in the console
NOTE: if your dataset contains fewer than ~500 samples per experimental condition, consider setting  "aprox=TRUE". This will provide more reliable results

TUNING LAMBDA FOR DM:control!:
--------------------------------------------------

Estimating optimal c constant range for asymptotic lambda...
Fine-tuning Lambda...
The optimal Lambda hyper-parameter has been set to: 0.0199548849358947!

TUNING LAMBDA FOR DM:case!:
--------------------------------------------------

Estimating optimal c constant range for asymptotic lambda...
Fine-tuning Lambda...
The optimal Lambda hyper-parameter has been set to: 0.0495095483188967!
selection_probabilites from stability selection will be used in glasso model!

Estimating model for DM:control...using 0.0199548849358947 for lambda...
model estimated!

Estimating model for DM:case...using 0.0495095483188967 for lambda...
model estimated!

DM:control network specific edges: 463
DM:case network specific edges: 423
-----------------------------------
Number of edges shared by both networks: 434
Total number of edges in dataset: 1320
The log_input_data expression data will be used for analysis.
The log_input_data expression data will be used for analysis.
Vectors to compare are not the same length!
Vectors to compare are not the same length!
DM:control network specific edges: 11
DM:case network specific edges: 7
-----------------------------------
Number of edges shared by both networks: 10
Total number of edges in dataset: 28
DM:control network specific edges: 11
DM:case network specific edges: 7
-----------------------------------
Number of edges shared by both networks: 10
Total number of edges in dataset: 28
[ FAIL 0 | WARN 1 | SKIP 0 | PASS 53 ]

[ FAIL 0 | WARN 1 | SKIP 0 | PASS 53 ]
> 
> proc.time()
   user  system elapsed 
220.199   9.645 106.868 

Example timings

DNEA.Rcheck/DNEA-Ex.timings

nameusersystemelapsed
BICscores-methods0.0810.0090.092
BICtune-methods7.8520.9694.517
CCsummary-methods0.0780.0060.084
DNEA-class0.2580.0270.285
DNEAinputSummary-class0.2560.0170.274
addExpressionData0.2810.0170.298
adjacencyGraph-methods0.0820.0030.085
adjacencyMatrix-methods0.1030.0630.166
aggregateFeatures0.6690.0200.696
clusterNet1.2080.0211.230
collapsed_DNEA-class0.6570.0190.677
createDNEAobject0.2670.0070.276
datasetSummary-methods0.2570.0080.267
diagnostics-methods0.2630.0070.271
edgeList-methods0.0770.0030.080
expressionData-methods0.3650.2400.609
featureNames-methods0.2630.0050.267
filterNetworks-methods0.0960.0030.099
getNetworkFiles0.0790.0030.083
getNetworks0.1650.0050.170
includeMetadata0.2590.0050.265
lambdas2Test-methods0.5660.0600.626
massDataset2DNEA0.0270.0030.030
metaData-methods0.2590.0070.266
netGSAresults-methods0.0780.0030.081
networkGroupIDs-methods0.2540.0090.263
networkGroups-methods0.2580.0060.264
nodeList-methods0.2540.0080.263
numFeatures-methods0.2580.0070.265
numSamples-methods0.2590.0030.263
optimizedLambda-methods0.2670.0080.273
plotNetworks0.1090.0030.112
projectName-methods0.2580.0040.261
runNetGSA0.8410.0750.917
sampleNames-methods0.2630.0060.270
selectionProbabilities-methods0.1160.0730.189
selectionResults-methods0.1080.0470.156
stabilitySelection7.6491.7104.475
subnetworkMembership-methods0.0850.0110.096
sumExp2DNEA1.1120.0841.199