Back to Multiple platform build/check report for BioC 3.22:   simplified   long
AB[C]DEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-06-19 12:02 -0400 (Thu, 19 Jun 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.2 LTS)x86_644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4810
palomino8Windows Server 2022 Datacenterx644.5.0 (2025-04-11 ucrt) -- "How About a Twenty-Six" 4548
kjohnson3macOS 13.7.1 Venturaarm644.5.0 Patched (2025-04-21 r88169) -- "How About a Twenty-Six" 4528
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4493
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 438/2309HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
Coralysis 0.99.6  (landing page)
António Sousa
Snapshot Date: 2025-06-18 13:25 -0400 (Wed, 18 Jun 2025)
git_url: https://git.bioconductor.org/packages/Coralysis
git_branch: devel
git_last_commit: 652e7cc
git_last_commit_date: 2025-05-07 08:24:08 -0400 (Wed, 07 May 2025)
nebbiolo2Linux (Ubuntu 24.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  NO, package depends on 'scran' which is only available as a source package that needs compilation
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for Coralysis on nebbiolo2

To the developers/maintainers of the Coralysis package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/Coralysis.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: Coralysis
Version: 0.99.6
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:Coralysis.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings Coralysis_0.99.6.tar.gz
StartedAt: 2025-06-18 22:01:03 -0400 (Wed, 18 Jun 2025)
EndedAt: 2025-06-18 22:18:40 -0400 (Wed, 18 Jun 2025)
EllapsedTime: 1056.9 seconds
RetCode: 0
Status:   OK  
CheckDir: Coralysis.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:Coralysis.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings Coralysis_0.99.6.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/Coralysis.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.2 LTS
* using session charset: UTF-8
* checking for file ‘Coralysis/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘Coralysis’ version ‘0.99.6’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 30 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘Coralysis’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... NOTE
Namespace in Imports field not imported from: ‘utils’
  All declared Imports should be used.
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
PlotDimRed: no visible global function definition for ‘tail’
PlotExpression: no visible global function definition for ‘tail’
PlotDimRed,SingleCellExperiment: no visible global function definition
  for ‘tail’
PlotExpression,SingleCellExperiment: no visible global function
  definition for ‘tail’
Undefined global functions or variables:
  tail
Consider adding
  importFrom("utils", "tail")
to your NAMESPACE file.
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                                     user system elapsed
AggregateDataByBatch               21.568  0.392  30.280
RunUMAP                             6.002  3.434   6.407
PlotClusterTree                     5.934  2.908   5.312
CellClusterProbabilityDistribution  5.472  3.126   4.908
GetFeatureCoefficients              5.103  3.314   4.597
PCAElbowPlot                        4.697  3.668   5.529
SummariseCellClusterProbability     4.682  3.372   4.946
RunParallelDivisiveICP              4.401  3.038   4.607
RunPCA                              4.227  2.955   4.393
ReferenceMapping                    4.535  2.298   4.850
GetCellClusterProbability           3.373  2.907   3.605
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/Coralysis.Rcheck/00check.log’
for details.


Installation output

Coralysis.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL Coralysis
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘Coralysis’ ...
** this is package ‘Coralysis’ version ‘0.99.6’
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
*** copying figures
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (Coralysis)

Tests output

Coralysis.Rcheck/tests/testthat.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
> 
> library(testthat)
> library(Coralysis)
> 
> test_check("Coralysis")
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

WARNING: Setting 'divisive.method' to 'cluster' as 'batch.label=NULL'. 
If 'batch.label=NULL', 'divisive.method' can be one of: 'cluster', 'random'. 

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
Divisive ICP: selecting ICP tables multiple of 1
WARNING: Setting 'divisive.method' to 'cluster' as 'batch.label=NULL'. 
If 'batch.label=NULL', 'divisive.method' can be one of: 'cluster', 'random'. 

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
Divisive ICP: selecting ICP tables multiple of 1

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
Parallelism disabled, because threads = 1

Initializing divisive ICP clustering...

ICP run: 1
ICP run: 2
ICP run: 3
ICP run: 4
ICP run: 5
ICP run: 6
ICP run: 7
ICP run: 8
ICP run: 9
ICP run: 10
ICP run: 11
ICP run: 12
ICP run: 13
ICP run: 14
ICP run: 15
ICP run: 16
ICP run: 17
ICP run: 18
ICP run: 19
ICP run: 20
ICP run: 21
ICP run: 22
ICP run: 23
ICP run: 24
ICP run: 25

Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
WARNING: Setting 'divisive.method' to 'cluster' as 'batch.label=NULL'. 
If 'batch.label=NULL', 'divisive.method' can be one of: 'cluster', 'random'. 

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 11 ]
> 
> proc.time()
   user  system elapsed 
 36.448  12.599  32.984 

Example timings

Coralysis.Rcheck/Coralysis-Ex.timings

nameusersystemelapsed
AggregateDataByBatch21.568 0.39230.280
BinCellClusterProbability0.0000.0000.001
CellBinsFeatureCorrelation0.0000.0000.001
CellClusterProbabilityDistribution5.4723.1264.908
FindAllClusterMarkers0.2370.0230.260
FindClusterMarkers0.2280.0180.246
GetCellClusterProbability3.3732.9073.605
GetFeatureCoefficients5.1033.3144.597
HeatmapFeatures0.4520.0600.512
MajorityVotingFeatures000
PCAElbowPlot4.6973.6685.529
PlotClusterTree5.9342.9085.312
PlotDimRed1.5890.1471.736
PlotExpression1.3410.0481.389
PrepareData0.2990.0040.303
ReferenceMapping4.5352.2984.850
RunPCA4.2272.9554.393
RunParallelDivisiveICP4.4013.0384.607
RunTSNE1.5880.1081.696
RunUMAP6.0023.4346.407
SummariseCellClusterProbability4.6823.3724.946
TabulateCellBinsByGroup000
VlnPlot1.0920.0901.181