Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-10-04 12:07 -0400 (Sat, 04 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4853
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4640
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4585
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4576
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 255/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-10-03 13:45 -0400 (Fri, 03 Oct 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on taishan

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-10-03 05:19:00 -0000 (Fri, 03 Oct 2025)
EndedAt: 2025-10-03 05:19:23 -0000 (Fri, 03 Oct 2025)
EllapsedTime: 23.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.5.0/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -I"/home/biocbuild/R/R-4.5.0/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -I"/home/biocbuild/R/R-4.5.0/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -I"/home/biocbuild/R/R-4.5.0/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -I"/home/biocbuild/R/R-4.5.0/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -shared -L/home/biocbuild/R/R-4.5.0/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/R/R-4.5.0/lib -lR
installing to /home/biocbuild/R/R-4.5.0/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.323   0.033   0.342 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478398 25.6    1047041   56   639620 34.2
Vcells 885166  6.8    8388608   64  2080985 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Oct  3 05:19:17 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Oct  3 05:19:17 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x3c369ff0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Oct  3 05:19:17 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Oct  3 05:19:17 2025"
> 
> ColMode(tmp2)
<pointer: 0x3c369ff0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]      [,2]       [,3]       [,4]
[1,] 98.8115348  1.545187  0.4217956 -0.2834666
[2,]  0.0814870 -1.056158  0.2161111  0.6989407
[3,]  0.2791984 -1.577468 -0.4618993  0.1369405
[4,]  0.2528207 -1.804622 -1.0034789  0.5726093
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]     [,2]      [,3]      [,4]
[1,] 98.8115348 1.545187 0.4217956 0.2834666
[2,]  0.0814870 1.056158 0.2161111 0.6989407
[3,]  0.2791984 1.577468 0.4618993 0.1369405
[4,]  0.2528207 1.804622 1.0034789 0.5726093
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]      [,3]      [,4]
[1,] 9.9403991 1.243055 0.6494579 0.5324158
[2,] 0.2854593 1.027695 0.4648775 0.8360267
[3,] 0.5283923 1.255973 0.6796317 0.3700547
[4,] 0.5028128 1.343362 1.0017380 0.7567095
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.21553 38.97574 31.91637 30.60762
[2,]  27.93608 36.33311 29.86489 34.05921
[3,]  30.56312 39.13720 32.25822 28.83749
[4,]  30.28095 40.23824 36.02086 33.13970
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x3d5999a0>
> exp(tmp5)
<pointer: 0x3d5999a0>
> log(tmp5,2)
<pointer: 0x3d5999a0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 464.5939
> Min(tmp5)
[1] 53.06563
> mean(tmp5)
[1] 73.45434
> Sum(tmp5)
[1] 14690.87
> Var(tmp5)
[1] 840.7461
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.51082 72.43030 70.39671 74.17658 67.60953 69.86537 72.29554 71.05909
 [9] 71.54068 73.65874
> rowSums(tmp5)
 [1] 1830.216 1448.606 1407.934 1483.532 1352.191 1397.307 1445.911 1421.182
 [9] 1430.814 1473.175
> rowVars(tmp5)
 [1] 7757.48113   94.46093   74.51504  112.45528   64.44284   67.98068
 [7]   51.58030   88.83564   34.36539   44.03170
> rowSd(tmp5)
 [1] 88.076564  9.719101  8.632209 10.604493  8.027630  8.245039  7.181943
 [8]  9.425266  5.862200  6.635638
> rowMax(tmp5)
 [1] 464.59387  92.12449  83.94633  91.92669  86.47377  88.58751  88.30183
 [8]  84.18698  80.74170  87.19828
> rowMin(tmp5)
 [1] 57.58816 58.14529 53.06563 58.89554 54.83160 53.16133 57.95740 54.99733
 [9] 62.29891 61.16992
> 
> colMeans(tmp5)
 [1] 109.98685  73.89880  67.54017  67.66954  71.73248  70.03280  71.48502
 [8]  72.28722  71.71097  70.01418  69.79949  70.02122  75.90322  71.32708
[15]  77.30983  71.35023  73.64143  73.72833  70.74476  68.90312
> colSums(tmp5)
 [1] 1099.8685  738.9880  675.4017  676.6954  717.3248  700.3280  714.8502
 [8]  722.8722  717.1097  700.1418  697.9949  700.2122  759.0322  713.2708
[15]  773.0983  713.5023  736.4143  737.2833  707.4476  689.0312
> colVars(tmp5)
 [1] 15586.49185    48.01413    41.67701    26.56549    97.37452    78.32763
 [7]    48.26715    76.52610    86.50680    41.37387    89.28058    79.95005
[13]    76.53916    86.38453    75.02906    90.46446    76.81757    35.79984
[19]    89.93969    68.30788
> colSd(tmp5)
 [1] 124.845872   6.929223   6.455773   5.154172   9.867853   8.850290
 [7]   6.947456   8.747920   9.300903   6.432252   9.448840   8.941479
[13]   8.748666   9.294328   8.661932   9.511280   8.764563   5.983296
[19]   9.483654   8.264858
> colMax(tmp5)
 [1] 464.59387  83.75063  78.07437  77.60727  92.12449  83.94633  79.74608
 [8]  82.73011  84.45668  78.39058  85.25464  90.34337  88.58751  88.30183
[15]  91.92669  86.47377  89.97154  83.09396  84.18698  80.30177
> colMin(tmp5)
 [1] 58.14529 63.50353 54.99733 60.02145 53.16133 59.16780 55.93590 53.06563
 [9] 56.68941 56.79364 54.83160 61.41057 62.02299 58.89554 65.94819 58.71779
[17] 57.58816 63.77141 55.76389 55.68174
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.51082 72.43030 70.39671 74.17658       NA 69.86537 72.29554 71.05909
 [9] 71.54068 73.65874
> rowSums(tmp5)
 [1] 1830.216 1448.606 1407.934 1483.532       NA 1397.307 1445.911 1421.182
 [9] 1430.814 1473.175
> rowVars(tmp5)
 [1] 7757.48113   94.46093   74.51504  112.45528   67.96747   67.98068
 [7]   51.58030   88.83564   34.36539   44.03170
> rowSd(tmp5)
 [1] 88.076564  9.719101  8.632209 10.604493  8.244239  8.245039  7.181943
 [8]  9.425266  5.862200  6.635638
> rowMax(tmp5)
 [1] 464.59387  92.12449  83.94633  91.92669        NA  88.58751  88.30183
 [8]  84.18698  80.74170  87.19828
> rowMin(tmp5)
 [1] 57.58816 58.14529 53.06563 58.89554       NA 53.16133 57.95740 54.99733
 [9] 62.29891 61.16992
> 
> colMeans(tmp5)
 [1] 109.98685  73.89880  67.54017  67.66954  71.73248  70.03280  71.48502
 [8]  72.28722  71.71097        NA  69.79949  70.02122  75.90322  71.32708
[15]  77.30983  71.35023  73.64143  73.72833  70.74476  68.90312
> colSums(tmp5)
 [1] 1099.8685  738.9880  675.4017  676.6954  717.3248  700.3280  714.8502
 [8]  722.8722  717.1097        NA  697.9949  700.2122  759.0322  713.2708
[15]  773.0983  713.5023  736.4143  737.2833  707.4476  689.0312
> colVars(tmp5)
 [1] 15586.49185    48.01413    41.67701    26.56549    97.37452    78.32763
 [7]    48.26715    76.52610    86.50680          NA    89.28058    79.95005
[13]    76.53916    86.38453    75.02906    90.46446    76.81757    35.79984
[19]    89.93969    68.30788
> colSd(tmp5)
 [1] 124.845872   6.929223   6.455773   5.154172   9.867853   8.850290
 [7]   6.947456   8.747920   9.300903         NA   9.448840   8.941479
[13]   8.748666   9.294328   8.661932   9.511280   8.764563   5.983296
[19]   9.483654   8.264858
> colMax(tmp5)
 [1] 464.59387  83.75063  78.07437  77.60727  92.12449  83.94633  79.74608
 [8]  82.73011  84.45668        NA  85.25464  90.34337  88.58751  88.30183
[15]  91.92669  86.47377  89.97154  83.09396  84.18698  80.30177
> colMin(tmp5)
 [1] 58.14529 63.50353 54.99733 60.02145 53.16133 59.16780 55.93590 53.06563
 [9] 56.68941       NA 54.83160 61.41057 62.02299 58.89554 65.94819 58.71779
[17] 57.58816 63.77141 55.76389 55.68174
> 
> Max(tmp5,na.rm=TRUE)
[1] 464.5939
> Min(tmp5,na.rm=TRUE)
[1] 53.06563
> mean(tmp5,na.rm=TRUE)
[1] 73.4886
> Sum(tmp5,na.rm=TRUE)
[1] 14624.23
> Var(tmp5,na.rm=TRUE)
[1] 844.7562
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.51082 72.43030 70.39671 74.17658 67.66081 69.86537 72.29554 71.05909
 [9] 71.54068 73.65874
> rowSums(tmp5,na.rm=TRUE)
 [1] 1830.216 1448.606 1407.934 1483.532 1285.555 1397.307 1445.911 1421.182
 [9] 1430.814 1473.175
> rowVars(tmp5,na.rm=TRUE)
 [1] 7757.48113   94.46093   74.51504  112.45528   67.96747   67.98068
 [7]   51.58030   88.83564   34.36539   44.03170
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.076564  9.719101  8.632209 10.604493  8.244239  8.245039  7.181943
 [8]  9.425266  5.862200  6.635638
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.59387  92.12449  83.94633  91.92669  86.47377  88.58751  88.30183
 [8]  84.18698  80.74170  87.19828
> rowMin(tmp5,na.rm=TRUE)
 [1] 57.58816 58.14529 53.06563 58.89554 54.83160 53.16133 57.95740 54.99733
 [9] 62.29891 61.16992
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.98685  73.89880  67.54017  67.66954  71.73248  70.03280  71.48502
 [8]  72.28722  71.71097  70.38964  69.79949  70.02122  75.90322  71.32708
[15]  77.30983  71.35023  73.64143  73.72833  70.74476  68.90312
> colSums(tmp5,na.rm=TRUE)
 [1] 1099.8685  738.9880  675.4017  676.6954  717.3248  700.3280  714.8502
 [8]  722.8722  717.1097  633.5067  697.9949  700.2122  759.0322  713.2708
[15]  773.0983  713.5023  736.4143  737.2833  707.4476  689.0312
> colVars(tmp5,na.rm=TRUE)
 [1] 15586.49185    48.01413    41.67701    26.56549    97.37452    78.32763
 [7]    48.26715    76.52610    86.50680    44.95974    89.28058    79.95005
[13]    76.53916    86.38453    75.02906    90.46446    76.81757    35.79984
[19]    89.93969    68.30788
> colSd(tmp5,na.rm=TRUE)
 [1] 124.845872   6.929223   6.455773   5.154172   9.867853   8.850290
 [7]   6.947456   8.747920   9.300903   6.705202   9.448840   8.941479
[13]   8.748666   9.294328   8.661932   9.511280   8.764563   5.983296
[19]   9.483654   8.264858
> colMax(tmp5,na.rm=TRUE)
 [1] 464.59387  83.75063  78.07437  77.60727  92.12449  83.94633  79.74608
 [8]  82.73011  84.45668  78.39058  85.25464  90.34337  88.58751  88.30183
[15]  91.92669  86.47377  89.97154  83.09396  84.18698  80.30177
> colMin(tmp5,na.rm=TRUE)
 [1] 58.14529 63.50353 54.99733 60.02145 53.16133 59.16780 55.93590 53.06563
 [9] 56.68941 56.79364 54.83160 61.41057 62.02299 58.89554 65.94819 58.71779
[17] 57.58816 63.77141 55.76389 55.68174
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.51082 72.43030 70.39671 74.17658      NaN 69.86537 72.29554 71.05909
 [9] 71.54068 73.65874
> rowSums(tmp5,na.rm=TRUE)
 [1] 1830.216 1448.606 1407.934 1483.532    0.000 1397.307 1445.911 1421.182
 [9] 1430.814 1473.175
> rowVars(tmp5,na.rm=TRUE)
 [1] 7757.48113   94.46093   74.51504  112.45528         NA   67.98068
 [7]   51.58030   88.83564   34.36539   44.03170
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.076564  9.719101  8.632209 10.604493        NA  8.245039  7.181943
 [8]  9.425266  5.862200  6.635638
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.59387  92.12449  83.94633  91.92669        NA  88.58751  88.30183
 [8]  84.18698  80.74170  87.19828
> rowMin(tmp5,na.rm=TRUE)
 [1] 57.58816 58.14529 53.06563 58.89554       NA 53.16133 57.95740 54.99733
 [9] 62.29891 61.16992
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.71159  75.05383  66.36970  67.82021  71.75022  71.24002  71.24433
 [8]  72.76885  73.38004       NaN  71.46259  70.46118  77.10020  72.16663
[15]  77.44530  69.66984  73.24854  74.17759  72.40930  69.20559
> colSums(tmp5,na.rm=TRUE)
 [1] 1032.4044  675.4845  597.3273  610.3819  645.7520  641.1602  641.1990
 [8]  654.9197  660.4203    0.0000  643.1633  634.1506  693.9018  649.4997
[15]  697.0077  627.0285  659.2369  667.5983  651.6837  622.8503
> colVars(tmp5,na.rm=TRUE)
 [1] 17283.66728    39.00734    31.47421    29.63076   109.54279    71.72301
 [7]    53.64881    83.48221    65.98024          NA    69.32430    87.76612
[13]    69.98809    89.25310    84.20124    70.00563    84.68317    38.00418
[19]    70.01182    75.81709
> colSd(tmp5,na.rm=TRUE)
 [1] 131.467362   6.245585   5.610188   5.443415  10.466269   8.468944
 [7]   7.324535   9.136860   8.122822         NA   8.326122   9.368358
[13]   8.365889   9.447386   9.176123   8.366936   9.202346   6.164753
[19]   8.367307   8.707301
> colMax(tmp5,na.rm=TRUE)
 [1] 464.59387  83.75063  74.97270  77.60727  92.12449  83.94633  79.74608
 [8]  82.73011  84.45668      -Inf  85.25464  90.34337  88.58751  88.30183
[15]  91.92669  83.68641  89.97154  83.09396  84.18698  80.30177
> colMin(tmp5,na.rm=TRUE)
 [1] 58.14529 64.01608 54.99733 60.02145 53.16133 59.70416 55.93590 53.06563
 [9] 58.81830      Inf 59.39497 61.41057 62.02299 58.89554 65.94819 58.71779
[17] 57.58816 63.77141 60.67819 55.68174
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 262.49589  94.34943 355.16708 289.13234 157.12454 208.45486 240.26324
 [8] 261.51328 209.61331 146.47271
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 262.49589  94.34943 355.16708 289.13234 157.12454 208.45486 240.26324
 [8] 261.51328 209.61331 146.47271
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14 -8.526513e-14  1.705303e-13  1.136868e-13 -9.947598e-14
 [6]  5.684342e-14  1.421085e-14  0.000000e+00  2.842171e-14 -8.526513e-14
[11] -1.705303e-13  1.136868e-13 -3.410605e-13 -7.105427e-14  0.000000e+00
[16] -1.136868e-13  0.000000e+00 -5.684342e-14  2.842171e-14 -8.526513e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
5   2 
10   15 
10   11 
6   3 
3   3 
4   10 
5   15 
7   12 
6   12 
7   6 
6   7 
5   10 
8   18 
4   7 
10   16 
4   13 
5   4 
2   2 
5   7 
7   12 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.719118
> Min(tmp)
[1] -2.20238
> mean(tmp)
[1] -0.1838529
> Sum(tmp)
[1] -18.38529
> Var(tmp)
[1] 0.937967
> 
> rowMeans(tmp)
[1] -0.1838529
> rowSums(tmp)
[1] -18.38529
> rowVars(tmp)
[1] 0.937967
> rowSd(tmp)
[1] 0.968487
> rowMax(tmp)
[1] 2.719118
> rowMin(tmp)
[1] -2.20238
> 
> colMeans(tmp)
  [1] -1.11062818 -0.55380955 -0.16740333  1.23202836  2.71911755  1.34312831
  [7] -0.76942860  1.59071086 -0.15113878  0.58614977  0.41412152 -1.10759572
 [13] -0.17585376  0.93383675 -0.78418892 -0.53541160  0.67730428 -1.25749438
 [19]  0.30054576  0.08039024  0.10659753 -0.80239408 -1.14412931  1.42824023
 [25] -0.69261068  0.67970640  0.12981373 -1.40745945 -1.40734463 -0.74698698
 [31]  1.01527176 -0.13737389 -1.20028838 -0.00786328 -0.77875607  0.26621973
 [37]  0.52233203 -1.59360878  0.19806197 -1.03735077  0.16168711  0.43885387
 [43]  0.68037539 -0.04700262  1.00581947 -1.69828593 -0.42167987 -1.41663648
 [49] -1.93638506 -0.08760729  0.15407936 -0.72331768 -1.59208704 -0.59982023
 [55] -2.20238017  1.00224352  1.08541334 -1.08504059 -0.95667145 -1.50359280
 [61] -0.28757758  0.15362809 -0.43067022  0.18774665 -1.04116711  0.34920874
 [67]  0.14418976  1.49093144 -1.41972330  0.70892989  0.14672104 -0.87960337
 [73]  0.06160228 -1.86434888  0.31964832  0.43552935 -0.47972540  0.74464156
 [79]  0.83462823 -0.96702951 -0.42747956 -0.66419795 -1.17056941 -1.53383955
 [85]  0.34538266  0.12928708  1.07772120  1.01876524  1.50353238  1.92460650
 [91]  0.38706389 -0.81039695 -0.73154320 -0.89348144 -0.03325765 -1.83370677
 [97] -0.56076163 -0.11550021  0.08169962 -1.19859702
> colSums(tmp)
  [1] -1.11062818 -0.55380955 -0.16740333  1.23202836  2.71911755  1.34312831
  [7] -0.76942860  1.59071086 -0.15113878  0.58614977  0.41412152 -1.10759572
 [13] -0.17585376  0.93383675 -0.78418892 -0.53541160  0.67730428 -1.25749438
 [19]  0.30054576  0.08039024  0.10659753 -0.80239408 -1.14412931  1.42824023
 [25] -0.69261068  0.67970640  0.12981373 -1.40745945 -1.40734463 -0.74698698
 [31]  1.01527176 -0.13737389 -1.20028838 -0.00786328 -0.77875607  0.26621973
 [37]  0.52233203 -1.59360878  0.19806197 -1.03735077  0.16168711  0.43885387
 [43]  0.68037539 -0.04700262  1.00581947 -1.69828593 -0.42167987 -1.41663648
 [49] -1.93638506 -0.08760729  0.15407936 -0.72331768 -1.59208704 -0.59982023
 [55] -2.20238017  1.00224352  1.08541334 -1.08504059 -0.95667145 -1.50359280
 [61] -0.28757758  0.15362809 -0.43067022  0.18774665 -1.04116711  0.34920874
 [67]  0.14418976  1.49093144 -1.41972330  0.70892989  0.14672104 -0.87960337
 [73]  0.06160228 -1.86434888  0.31964832  0.43552935 -0.47972540  0.74464156
 [79]  0.83462823 -0.96702951 -0.42747956 -0.66419795 -1.17056941 -1.53383955
 [85]  0.34538266  0.12928708  1.07772120  1.01876524  1.50353238  1.92460650
 [91]  0.38706389 -0.81039695 -0.73154320 -0.89348144 -0.03325765 -1.83370677
 [97] -0.56076163 -0.11550021  0.08169962 -1.19859702
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -1.11062818 -0.55380955 -0.16740333  1.23202836  2.71911755  1.34312831
  [7] -0.76942860  1.59071086 -0.15113878  0.58614977  0.41412152 -1.10759572
 [13] -0.17585376  0.93383675 -0.78418892 -0.53541160  0.67730428 -1.25749438
 [19]  0.30054576  0.08039024  0.10659753 -0.80239408 -1.14412931  1.42824023
 [25] -0.69261068  0.67970640  0.12981373 -1.40745945 -1.40734463 -0.74698698
 [31]  1.01527176 -0.13737389 -1.20028838 -0.00786328 -0.77875607  0.26621973
 [37]  0.52233203 -1.59360878  0.19806197 -1.03735077  0.16168711  0.43885387
 [43]  0.68037539 -0.04700262  1.00581947 -1.69828593 -0.42167987 -1.41663648
 [49] -1.93638506 -0.08760729  0.15407936 -0.72331768 -1.59208704 -0.59982023
 [55] -2.20238017  1.00224352  1.08541334 -1.08504059 -0.95667145 -1.50359280
 [61] -0.28757758  0.15362809 -0.43067022  0.18774665 -1.04116711  0.34920874
 [67]  0.14418976  1.49093144 -1.41972330  0.70892989  0.14672104 -0.87960337
 [73]  0.06160228 -1.86434888  0.31964832  0.43552935 -0.47972540  0.74464156
 [79]  0.83462823 -0.96702951 -0.42747956 -0.66419795 -1.17056941 -1.53383955
 [85]  0.34538266  0.12928708  1.07772120  1.01876524  1.50353238  1.92460650
 [91]  0.38706389 -0.81039695 -0.73154320 -0.89348144 -0.03325765 -1.83370677
 [97] -0.56076163 -0.11550021  0.08169962 -1.19859702
> colMin(tmp)
  [1] -1.11062818 -0.55380955 -0.16740333  1.23202836  2.71911755  1.34312831
  [7] -0.76942860  1.59071086 -0.15113878  0.58614977  0.41412152 -1.10759572
 [13] -0.17585376  0.93383675 -0.78418892 -0.53541160  0.67730428 -1.25749438
 [19]  0.30054576  0.08039024  0.10659753 -0.80239408 -1.14412931  1.42824023
 [25] -0.69261068  0.67970640  0.12981373 -1.40745945 -1.40734463 -0.74698698
 [31]  1.01527176 -0.13737389 -1.20028838 -0.00786328 -0.77875607  0.26621973
 [37]  0.52233203 -1.59360878  0.19806197 -1.03735077  0.16168711  0.43885387
 [43]  0.68037539 -0.04700262  1.00581947 -1.69828593 -0.42167987 -1.41663648
 [49] -1.93638506 -0.08760729  0.15407936 -0.72331768 -1.59208704 -0.59982023
 [55] -2.20238017  1.00224352  1.08541334 -1.08504059 -0.95667145 -1.50359280
 [61] -0.28757758  0.15362809 -0.43067022  0.18774665 -1.04116711  0.34920874
 [67]  0.14418976  1.49093144 -1.41972330  0.70892989  0.14672104 -0.87960337
 [73]  0.06160228 -1.86434888  0.31964832  0.43552935 -0.47972540  0.74464156
 [79]  0.83462823 -0.96702951 -0.42747956 -0.66419795 -1.17056941 -1.53383955
 [85]  0.34538266  0.12928708  1.07772120  1.01876524  1.50353238  1.92460650
 [91]  0.38706389 -0.81039695 -0.73154320 -0.89348144 -0.03325765 -1.83370677
 [97] -0.56076163 -0.11550021  0.08169962 -1.19859702
> colMedians(tmp)
  [1] -1.11062818 -0.55380955 -0.16740333  1.23202836  2.71911755  1.34312831
  [7] -0.76942860  1.59071086 -0.15113878  0.58614977  0.41412152 -1.10759572
 [13] -0.17585376  0.93383675 -0.78418892 -0.53541160  0.67730428 -1.25749438
 [19]  0.30054576  0.08039024  0.10659753 -0.80239408 -1.14412931  1.42824023
 [25] -0.69261068  0.67970640  0.12981373 -1.40745945 -1.40734463 -0.74698698
 [31]  1.01527176 -0.13737389 -1.20028838 -0.00786328 -0.77875607  0.26621973
 [37]  0.52233203 -1.59360878  0.19806197 -1.03735077  0.16168711  0.43885387
 [43]  0.68037539 -0.04700262  1.00581947 -1.69828593 -0.42167987 -1.41663648
 [49] -1.93638506 -0.08760729  0.15407936 -0.72331768 -1.59208704 -0.59982023
 [55] -2.20238017  1.00224352  1.08541334 -1.08504059 -0.95667145 -1.50359280
 [61] -0.28757758  0.15362809 -0.43067022  0.18774665 -1.04116711  0.34920874
 [67]  0.14418976  1.49093144 -1.41972330  0.70892989  0.14672104 -0.87960337
 [73]  0.06160228 -1.86434888  0.31964832  0.43552935 -0.47972540  0.74464156
 [79]  0.83462823 -0.96702951 -0.42747956 -0.66419795 -1.17056941 -1.53383955
 [85]  0.34538266  0.12928708  1.07772120  1.01876524  1.50353238  1.92460650
 [91]  0.38706389 -0.81039695 -0.73154320 -0.89348144 -0.03325765 -1.83370677
 [97] -0.56076163 -0.11550021  0.08169962 -1.19859702
> colRanges(tmp)
          [,1]       [,2]       [,3]     [,4]     [,5]     [,6]       [,7]
[1,] -1.110628 -0.5538095 -0.1674033 1.232028 2.719118 1.343128 -0.7694286
[2,] -1.110628 -0.5538095 -0.1674033 1.232028 2.719118 1.343128 -0.7694286
         [,8]       [,9]     [,10]     [,11]     [,12]      [,13]     [,14]
[1,] 1.590711 -0.1511388 0.5861498 0.4141215 -1.107596 -0.1758538 0.9338368
[2,] 1.590711 -0.1511388 0.5861498 0.4141215 -1.107596 -0.1758538 0.9338368
          [,15]      [,16]     [,17]     [,18]     [,19]      [,20]     [,21]
[1,] -0.7841889 -0.5354116 0.6773043 -1.257494 0.3005458 0.08039024 0.1065975
[2,] -0.7841889 -0.5354116 0.6773043 -1.257494 0.3005458 0.08039024 0.1065975
          [,22]     [,23]   [,24]      [,25]     [,26]     [,27]     [,28]
[1,] -0.8023941 -1.144129 1.42824 -0.6926107 0.6797064 0.1298137 -1.407459
[2,] -0.8023941 -1.144129 1.42824 -0.6926107 0.6797064 0.1298137 -1.407459
         [,29]     [,30]    [,31]      [,32]     [,33]       [,34]      [,35]
[1,] -1.407345 -0.746987 1.015272 -0.1373739 -1.200288 -0.00786328 -0.7787561
[2,] -1.407345 -0.746987 1.015272 -0.1373739 -1.200288 -0.00786328 -0.7787561
         [,36]    [,37]     [,38]    [,39]     [,40]     [,41]     [,42]
[1,] 0.2662197 0.522332 -1.593609 0.198062 -1.037351 0.1616871 0.4388539
[2,] 0.2662197 0.522332 -1.593609 0.198062 -1.037351 0.1616871 0.4388539
         [,43]       [,44]    [,45]     [,46]      [,47]     [,48]     [,49]
[1,] 0.6803754 -0.04700262 1.005819 -1.698286 -0.4216799 -1.416636 -1.936385
[2,] 0.6803754 -0.04700262 1.005819 -1.698286 -0.4216799 -1.416636 -1.936385
           [,50]     [,51]      [,52]     [,53]      [,54]    [,55]    [,56]
[1,] -0.08760729 0.1540794 -0.7233177 -1.592087 -0.5998202 -2.20238 1.002244
[2,] -0.08760729 0.1540794 -0.7233177 -1.592087 -0.5998202 -2.20238 1.002244
        [,57]     [,58]      [,59]     [,60]      [,61]     [,62]      [,63]
[1,] 1.085413 -1.085041 -0.9566714 -1.503593 -0.2875776 0.1536281 -0.4306702
[2,] 1.085413 -1.085041 -0.9566714 -1.503593 -0.2875776 0.1536281 -0.4306702
         [,64]     [,65]     [,66]     [,67]    [,68]     [,69]     [,70]
[1,] 0.1877466 -1.041167 0.3492087 0.1441898 1.490931 -1.419723 0.7089299
[2,] 0.1877466 -1.041167 0.3492087 0.1441898 1.490931 -1.419723 0.7089299
        [,71]      [,72]      [,73]     [,74]     [,75]     [,76]      [,77]
[1,] 0.146721 -0.8796034 0.06160228 -1.864349 0.3196483 0.4355293 -0.4797254
[2,] 0.146721 -0.8796034 0.06160228 -1.864349 0.3196483 0.4355293 -0.4797254
         [,78]     [,79]      [,80]      [,81]     [,82]     [,83]    [,84]
[1,] 0.7446416 0.8346282 -0.9670295 -0.4274796 -0.664198 -1.170569 -1.53384
[2,] 0.7446416 0.8346282 -0.9670295 -0.4274796 -0.664198 -1.170569 -1.53384
         [,85]     [,86]    [,87]    [,88]    [,89]    [,90]     [,91]
[1,] 0.3453827 0.1292871 1.077721 1.018765 1.503532 1.924606 0.3870639
[2,] 0.3453827 0.1292871 1.077721 1.018765 1.503532 1.924606 0.3870639
         [,92]      [,93]      [,94]       [,95]     [,96]      [,97]
[1,] -0.810397 -0.7315432 -0.8934814 -0.03325765 -1.833707 -0.5607616
[2,] -0.810397 -0.7315432 -0.8934814 -0.03325765 -1.833707 -0.5607616
          [,98]      [,99]    [,100]
[1,] -0.1155002 0.08169962 -1.198597
[2,] -0.1155002 0.08169962 -1.198597
> 
> 
> Max(tmp2)
[1] 2.404106
> Min(tmp2)
[1] -2.468663
> mean(tmp2)
[1] -0.1450512
> Sum(tmp2)
[1] -14.50512
> Var(tmp2)
[1] 0.9713436
> 
> rowMeans(tmp2)
  [1]  0.70937323  0.78877384 -0.95867117  0.42388863 -0.27880312 -0.02054905
  [7] -1.07452324 -0.15995629  0.49645497  0.77183440 -0.32534770  0.79908836
 [13] -0.82600084  2.32459226 -1.40181793  0.48729189  0.70719565 -1.16644760
 [19] -0.56063604 -1.40783705 -0.28650233 -0.98592853 -0.61603320 -2.19003736
 [25] -0.80830962 -2.13649978 -0.45764152  1.53597033  0.78067277 -0.95986165
 [31]  0.77383557 -1.02939737  0.80868839  0.02338671 -0.23654851  0.82435712
 [37]  0.29868331  0.82141781  0.93879190 -0.10185801 -1.43590191  0.12347949
 [43]  2.16463443  2.40410587  1.47398645 -0.68858281 -1.90701916 -1.35222173
 [49]  0.63196137 -0.52330611 -1.64837424  0.46732185 -0.29434582 -0.28928087
 [55] -2.46866312  0.30936961 -0.54879753 -1.29182670 -0.62007597 -0.21108964
 [61]  0.08670299 -1.06971187  1.17241163 -0.41543167 -1.12764267  0.46369031
 [67] -0.77833589  1.99453826  1.19924634  0.51088587 -1.56972524 -1.15920361
 [73] -0.20188273  0.19794844  0.34989639 -0.40939042 -1.61830246  0.12838405
 [79] -0.92642000 -0.47732645 -0.75012202  0.05082066  1.00689964 -0.39764397
 [85]  0.17010571 -1.18451300  0.70428799 -0.74506458  0.16168118 -0.97759586
 [91]  0.65044558 -0.09197701 -0.79394240  0.22980863 -0.54082503  0.44927976
 [97]  0.86854394 -1.08945540  0.53424008  0.26911260
> rowSums(tmp2)
  [1]  0.70937323  0.78877384 -0.95867117  0.42388863 -0.27880312 -0.02054905
  [7] -1.07452324 -0.15995629  0.49645497  0.77183440 -0.32534770  0.79908836
 [13] -0.82600084  2.32459226 -1.40181793  0.48729189  0.70719565 -1.16644760
 [19] -0.56063604 -1.40783705 -0.28650233 -0.98592853 -0.61603320 -2.19003736
 [25] -0.80830962 -2.13649978 -0.45764152  1.53597033  0.78067277 -0.95986165
 [31]  0.77383557 -1.02939737  0.80868839  0.02338671 -0.23654851  0.82435712
 [37]  0.29868331  0.82141781  0.93879190 -0.10185801 -1.43590191  0.12347949
 [43]  2.16463443  2.40410587  1.47398645 -0.68858281 -1.90701916 -1.35222173
 [49]  0.63196137 -0.52330611 -1.64837424  0.46732185 -0.29434582 -0.28928087
 [55] -2.46866312  0.30936961 -0.54879753 -1.29182670 -0.62007597 -0.21108964
 [61]  0.08670299 -1.06971187  1.17241163 -0.41543167 -1.12764267  0.46369031
 [67] -0.77833589  1.99453826  1.19924634  0.51088587 -1.56972524 -1.15920361
 [73] -0.20188273  0.19794844  0.34989639 -0.40939042 -1.61830246  0.12838405
 [79] -0.92642000 -0.47732645 -0.75012202  0.05082066  1.00689964 -0.39764397
 [85]  0.17010571 -1.18451300  0.70428799 -0.74506458  0.16168118 -0.97759586
 [91]  0.65044558 -0.09197701 -0.79394240  0.22980863 -0.54082503  0.44927976
 [97]  0.86854394 -1.08945540  0.53424008  0.26911260
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.70937323  0.78877384 -0.95867117  0.42388863 -0.27880312 -0.02054905
  [7] -1.07452324 -0.15995629  0.49645497  0.77183440 -0.32534770  0.79908836
 [13] -0.82600084  2.32459226 -1.40181793  0.48729189  0.70719565 -1.16644760
 [19] -0.56063604 -1.40783705 -0.28650233 -0.98592853 -0.61603320 -2.19003736
 [25] -0.80830962 -2.13649978 -0.45764152  1.53597033  0.78067277 -0.95986165
 [31]  0.77383557 -1.02939737  0.80868839  0.02338671 -0.23654851  0.82435712
 [37]  0.29868331  0.82141781  0.93879190 -0.10185801 -1.43590191  0.12347949
 [43]  2.16463443  2.40410587  1.47398645 -0.68858281 -1.90701916 -1.35222173
 [49]  0.63196137 -0.52330611 -1.64837424  0.46732185 -0.29434582 -0.28928087
 [55] -2.46866312  0.30936961 -0.54879753 -1.29182670 -0.62007597 -0.21108964
 [61]  0.08670299 -1.06971187  1.17241163 -0.41543167 -1.12764267  0.46369031
 [67] -0.77833589  1.99453826  1.19924634  0.51088587 -1.56972524 -1.15920361
 [73] -0.20188273  0.19794844  0.34989639 -0.40939042 -1.61830246  0.12838405
 [79] -0.92642000 -0.47732645 -0.75012202  0.05082066  1.00689964 -0.39764397
 [85]  0.17010571 -1.18451300  0.70428799 -0.74506458  0.16168118 -0.97759586
 [91]  0.65044558 -0.09197701 -0.79394240  0.22980863 -0.54082503  0.44927976
 [97]  0.86854394 -1.08945540  0.53424008  0.26911260
> rowMin(tmp2)
  [1]  0.70937323  0.78877384 -0.95867117  0.42388863 -0.27880312 -0.02054905
  [7] -1.07452324 -0.15995629  0.49645497  0.77183440 -0.32534770  0.79908836
 [13] -0.82600084  2.32459226 -1.40181793  0.48729189  0.70719565 -1.16644760
 [19] -0.56063604 -1.40783705 -0.28650233 -0.98592853 -0.61603320 -2.19003736
 [25] -0.80830962 -2.13649978 -0.45764152  1.53597033  0.78067277 -0.95986165
 [31]  0.77383557 -1.02939737  0.80868839  0.02338671 -0.23654851  0.82435712
 [37]  0.29868331  0.82141781  0.93879190 -0.10185801 -1.43590191  0.12347949
 [43]  2.16463443  2.40410587  1.47398645 -0.68858281 -1.90701916 -1.35222173
 [49]  0.63196137 -0.52330611 -1.64837424  0.46732185 -0.29434582 -0.28928087
 [55] -2.46866312  0.30936961 -0.54879753 -1.29182670 -0.62007597 -0.21108964
 [61]  0.08670299 -1.06971187  1.17241163 -0.41543167 -1.12764267  0.46369031
 [67] -0.77833589  1.99453826  1.19924634  0.51088587 -1.56972524 -1.15920361
 [73] -0.20188273  0.19794844  0.34989639 -0.40939042 -1.61830246  0.12838405
 [79] -0.92642000 -0.47732645 -0.75012202  0.05082066  1.00689964 -0.39764397
 [85]  0.17010571 -1.18451300  0.70428799 -0.74506458  0.16168118 -0.97759586
 [91]  0.65044558 -0.09197701 -0.79394240  0.22980863 -0.54082503  0.44927976
 [97]  0.86854394 -1.08945540  0.53424008  0.26911260
> 
> colMeans(tmp2)
[1] -0.1450512
> colSums(tmp2)
[1] -14.50512
> colVars(tmp2)
[1] 0.9713436
> colSd(tmp2)
[1] 0.9855677
> colMax(tmp2)
[1] 2.404106
> colMin(tmp2)
[1] -2.468663
> colMedians(tmp2)
[1] -0.2064862
> colRanges(tmp2)
          [,1]
[1,] -2.468663
[2,]  2.404106
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -3.6376793 -1.7917037  1.8248489  7.0967126  4.2426981 -4.2508826
 [7]  0.9264707 -3.6477079  1.1927989  9.7661562
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.90804475
[2,] -1.35369703
[3,] -0.07653534
[4,]  0.42044430
[5,]  0.94060024
> 
> rowApply(tmp,sum)
 [1]  0.9130042  3.6685986 -0.6202261 -2.1556601  0.3497492  0.4218803
 [7]  1.7625975  1.7715677  4.0161070  1.5940934
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    6    5    9    1    8    5    1    6     3
 [2,]    7   10    2    2    8    9    2    7    1     1
 [3,]    5    1    7    4    9    6    6    9    7     2
 [4,]    9    8    6    5   10    5    4   10    4     6
 [5,]    3    9    9    7    3    4   10    5    9     7
 [6,]    8    5   10    8    2    1    1    6    3     4
 [7,]   10    3    1    6    4    7    9    3    2     8
 [8,]    4    2    4    3    5    2    7    2    5     5
 [9,]    2    4    8    1    6    3    3    8    8    10
[10,]    6    7    3   10    7   10    8    4   10     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.61883525 -3.19583799  1.28554458  0.30788117  0.34802002  0.44699355
 [7]  1.87758984 -0.13157227 -0.08949002  1.06425024 -1.36286518 -1.91977814
[13]  2.06180067 -2.22813124 -1.89184666  0.89596710  0.76882883  2.16579738
[19] -1.20260739 -2.19011380
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -0.73186767
[2,] -0.56013188
[3,] -0.02957857
[4,]  0.30406679
[5,]  0.39867608
> 
> rowApply(tmp,sum)
[1] -0.3916947 -2.0727629 -4.2762506  1.9765609  1.1557427
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   14   11    8    3   13
[2,]   15    2    1    8    8
[3,]    8   10   10   19   15
[4,]    6   20    2   15   18
[5,]    2   13   16   16    5
> 
> 
> as.matrix(tmp)
            [,1]        [,2]       [,3]       [,4]       [,5]       [,6]
[1,]  0.39867608  0.61492424 -0.2546395 -0.7374621 -1.2017539  0.7544993
[2,] -0.02957857 -1.24151385 -0.1540008  0.9434615  0.3705044 -0.8919609
[3,] -0.56013188 -2.00359985 -0.4065193 -1.4809544  0.6933505 -0.3056889
[4,] -0.73186767 -0.51578699  1.5344795  0.7276526  0.9218294  0.3461456
[5,]  0.30406679 -0.04986154  0.5662246  0.8551836 -0.4359105  0.5439984
              [,7]       [,8]       [,9]      [,10]       [,11]       [,12]
[1,]  1.822422e-05  0.3703778  0.9429444 -0.8661971 -0.01764039 -0.41250688
[2,]  7.049267e-01 -0.3808066 -1.0349747  0.7458419 -0.36155142 -0.58894357
[3,] -1.721144e-02  0.2210834 -0.9450300  0.8286657 -0.66433026 -0.21178150
[4,]  1.152513e+00 -0.5365239 -0.2980869  1.4648542  0.08472049 -0.67699629
[5,]  3.734383e-02  0.1942971  1.2456571 -1.1089145 -0.40406360 -0.02954991
          [,13]      [,14]        [,15]        [,16]       [,17]      [,18]
[1,]  1.0940938 -1.3350421  1.015887525  0.909094252  0.07379517 -0.8164750
[2,]  0.7783209  0.5867470 -2.076554615 -0.005230094  0.50298027 -0.3212686
[3,]  1.3476889 -1.2471697 -0.956022934 -0.529866524 -1.24714848  1.5121595
[4,] -0.6283173 -1.0458969  0.129617009 -0.246809245  1.93384174  0.4895303
[5,] -0.5299855  0.8132305 -0.004773646  0.768778708 -0.49463986  1.3018513
          [,19]       [,20]
[1,] -0.8469945 -0.07729396
[2,] -0.4415911  0.82242921
[3,]  1.7923924 -0.09613583
[4,] -1.4876854 -0.64065184
[5,] -0.2187288 -2.19846139
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  654  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  565  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1       col2     col3       col4      col5      col6       col7
row1 0.7516365 -0.3328332 1.114574 -0.4120943 0.6231471 -0.223058 -0.8347921
          col8      col9    col10      col11     col12     col13      col14
row1 -1.453929 -1.330476 1.487476 -0.9897163 -1.464733 -1.140286 -0.4169248
          col15     col16      col17      col18     col19      col20
row1 -0.2083236 0.7087617 -0.7323523 -0.4518222 0.1322066 -0.1651631
> tmp[,"col10"]
           col10
row1  1.48747562
row2 -0.22286283
row3  1.76117597
row4 -0.50035253
row5  0.04544701
> tmp[c("row1","row5"),]
          col1       col2       col3       col4      col5       col6       col7
row1 0.7516365 -0.3328332  1.1145738 -0.4120943 0.6231471 -0.2230580 -0.8347921
row5 0.6804216 -0.3794794 -0.0066799 -1.2703249 0.3894358 -0.7513242  0.2850173
           col8      col9      col10      col11     col12     col13      col14
row1 -1.4539291 -1.330476 1.48747562 -0.9897163 -1.464733 -1.140286 -0.4169248
row5 -0.4615764 -1.006005 0.04544701 -3.3294712  1.057934 -1.243307  0.8128940
          col15     col16      col17      col18     col19      col20
row1 -0.2083236 0.7087617 -0.7323523 -0.4518222 0.1322066 -0.1651631
row5 -0.5235682 0.8724635 -0.2727476 -0.7310934 0.4687591 -0.8238953
> tmp[,c("col6","col20")]
           col6      col20
row1 -0.2230580 -0.1651631
row2  1.9614491 -0.4251708
row3 -1.2300407 -1.5524088
row4  0.4670269  2.2139029
row5 -0.7513242 -0.8238953
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -0.2230580 -0.1651631
row5 -0.7513242 -0.8238953
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1    col2     col3     col4     col5     col6     col7     col8
row1 49.81929 51.2065 50.02093 50.58153 48.87755 105.0774 49.51778 50.83344
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.23084 49.75449 49.07477 49.86708 50.58883 47.85737 49.26392 49.82564
        col17    col18    col19    col20
row1 47.61458 48.58573 48.89433 105.4042
> tmp[,"col10"]
        col10
row1 49.75449
row2 29.23912
row3 28.62393
row4 30.20503
row5 50.95883
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.81929 51.20650 50.02093 50.58153 48.87755 105.0774 49.51778 50.83344
row5 49.42222 49.13429 51.40731 50.26066 52.01225 104.3226 50.15408 49.46776
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.23084 49.75449 49.07477 49.86708 50.58883 47.85737 49.26392 49.82564
row5 50.68587 50.95883 50.89627 50.10647 50.20597 49.22206 49.48248 50.79370
        col17    col18    col19    col20
row1 47.61458 48.58573 48.89433 105.4042
row5 50.00256 49.25528 48.74749 104.4063
> tmp[,c("col6","col20")]
          col6     col20
row1 105.07739 105.40421
row2  73.73640  75.47342
row3  74.86953  75.77648
row4  74.25543  74.66232
row5 104.32260 104.40633
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.0774 105.4042
row5 104.3226 104.4063
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.0774 105.4042
row5 104.3226 104.4063
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.1851878
[2,] -0.2392891
[3,]  0.1861298
[4,]  0.5937599
[5,] -0.4646226
> tmp[,c("col17","col7")]
           col17       col7
[1,]  0.68365990  0.6071130
[2,]  0.34888645  0.9047413
[3,] -0.01769432  0.9870892
[4,]  0.17553365  0.3095963
[5,]  0.83881108 -0.1144205
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -1.1145761  1.2070852
[2,] -0.2973197 -0.2034636
[3,] -0.7788505 -1.1892704
[4,] -0.3014794  1.9888102
[5,]  0.7611089 -1.1272240
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.114576
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -1.1145761
[2,] -0.2973197
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]       [,3]       [,4]      [,5]       [,6]       [,7]
row3 0.21756095 1.8448995  0.7060898 -1.8226631  2.297733 -0.2274579 -1.1400636
row1 0.02993392 0.5546907 -0.4936491  0.7717458 -1.594210  1.2459881 -0.4126237
           [,8]       [,9]      [,10]      [,11]      [,12]      [,13]
row3  1.6752854 -0.4004324 -0.9174292  0.4058021 -0.8545198 -0.9914375
row1 -0.2739185  0.2343797 -0.1043151 -1.4981828 -0.1814158  3.2196127
            [,14]     [,15]       [,16]      [,17]      [,18]     [,19]
row3 -0.581571257 -1.767879 -0.02698257  0.6182002  0.6895681 0.5400687
row1  0.001781211  1.324075 -1.75860913 -2.1732261 -1.5232068 1.4795223
          [,20]
row3 0.79346367
row1 0.05178449
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]       [,3]      [,4]      [,5]     [,6]      [,7]
row2 -1.200114 -0.4369673 -0.8589746 0.3807387 -0.102982 1.175635 0.7323183
           [,8]     [,9]    [,10]
row2 -0.3745721 2.413074 -1.38587
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]       [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
row5 0.1820159 -0.1946656 0.4695355 0.2063823 -1.263536 0.0273505 -1.031483
         [,8]      [,9]     [,10]     [,11]     [,12]      [,13]     [,14]
row5 1.105441 -1.239791 0.1639617 0.6750962 0.1578637 -0.9068428 0.5123527
          [,15]    [,16]     [,17]      [,18]      [,19]      [,20]
row5 -0.8792777 1.149817 0.5285393 -0.5902699 -0.3998291 -0.8253741
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x3ce60860>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e043cadd26"
 [2] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e012acefac"
 [3] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e043c81fcb"
 [4] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e03b4e18dc"
 [5] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e0128cdd93"
 [6] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e01e82fdbf"
 [7] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e013ff191f"
 [8] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e067549d24"
 [9] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e03d70f55c"
[10] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e01fcb0621"
[11] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e06bcc3663"
[12] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e0671550f5"
[13] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e0433b9883"
[14] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e07f4eb6b9"
[15] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM31d2e07f288398"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x3b215b50>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x3b215b50>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x3b215b50>
> rowMedians(tmp)
  [1]  0.249428121  0.226150377  0.569158648 -0.046903451  0.977055241
  [6]  0.151262731  0.149535200 -0.523521939 -0.316771157 -0.544546653
 [11]  0.054323161  0.361318884 -1.065872914 -0.196126464 -0.368524353
 [16]  0.126783645  0.041529233 -0.118591607 -0.073326948 -0.332235540
 [21] -0.633850730  0.111979918  0.603244749  0.482639762  0.085655491
 [26] -0.203567516  0.301099901 -0.106723486  0.148424497  0.670558180
 [31]  0.375571099  0.157698500  0.194591713 -0.066760824 -0.207025531
 [36]  0.424904461 -0.162156416 -0.174538987 -0.024987091 -0.093201036
 [41]  0.336190900 -0.282755435 -0.078669142 -0.182942090  0.263958412
 [46]  0.219566919 -0.005264029  0.229138176  0.348195939 -0.171023965
 [51]  0.148369960  0.174947379 -0.319401326  0.222643665  0.245243461
 [56] -0.364792350 -0.139737491 -0.106984568 -0.262502216 -0.401130063
 [61] -0.288164011  0.072730944 -0.371063635  0.287604307 -0.190070751
 [66] -0.023816213  0.102271067  0.308509757  0.141857247  0.482459628
 [71]  0.233658829  0.538862868  0.393428467  0.046912427 -0.044816976
 [76] -0.322953722  0.243537118  0.160389100 -0.797654282 -0.059796248
 [81]  0.494466825 -0.575730606  0.089749568 -0.281844911 -0.292532511
 [86] -0.276939975 -0.169260787 -0.446285217 -0.299814073  0.053164025
 [91] -0.226987840 -0.053632453 -0.069588934  0.606125393 -0.103029406
 [96] -0.080450624 -0.773158449 -0.289012611  0.467303135 -0.237118120
[101] -0.225129188 -0.017425179  0.189772977  0.240437479 -0.229310214
[106] -0.123631877 -0.137294540 -0.378346229  0.127074666  0.060880243
[111] -0.128065241 -0.270962746 -0.030124819  0.408756521 -0.036863789
[116]  0.303319192 -0.257659197  0.212416914 -0.021349891  0.047395343
[121]  0.361248241  0.361529153  0.250214215 -0.622144969  0.127033496
[126]  0.005504853 -0.295071848  0.125542593 -0.112153350  0.047945994
[131] -0.172055412 -0.110814996 -0.206663128 -0.258368992 -0.046112161
[136]  0.171187020  0.153791948 -0.083196686 -0.020182353  1.071460832
[141] -0.240717981 -0.267162024  0.454707725  0.233927179 -0.107885412
[146]  0.347927351 -0.376663570 -0.107696604  0.248289945  0.459545374
[151]  0.072147832 -0.037320451  0.152186265  0.262196086 -0.449857888
[156]  0.035670791  0.313720503  0.338747958 -0.024420701  0.017736204
[161]  0.533921757  0.074326346  0.088762504  0.336880168  0.062999184
[166]  0.259715046  0.043450047 -0.535507972  0.059888555 -0.381738312
[171] -0.494249948 -0.333750860 -0.319280638 -0.088285927  0.013313254
[176] -0.457402736 -0.230238315  0.062728149 -0.234232759  0.299557827
[181] -0.024095319 -0.045019950  0.081267689  0.315724360  0.167767180
[186]  0.253669728 -0.060410414 -0.271707944  0.088741724  0.192583226
[191] -0.170132786 -0.272895603 -0.218689737 -0.168841048 -0.162742256
[196] -0.256712390 -0.055188187 -0.233655283  0.385703431 -0.090413493
[201]  0.335188861 -0.870576804 -0.159430881  0.473604719  0.299365033
[206]  0.053767976 -0.283270556  0.065874653 -0.113255932 -0.276363832
[211] -0.124473855 -0.302891129 -0.094946704 -0.092166811  0.701570961
[216]  0.281301716  0.311558757  0.244055156  0.593381622  0.256635133
[221]  0.212979539  0.693760199 -0.580061166  0.158914441 -0.439866407
[226] -0.334388533 -0.162235536  0.165630113  0.164728937  0.046587146
> 
> proc.time()
   user  system elapsed 
  1.775   0.983   2.786 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2cc17ff0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2cc17ff0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2cc17ff0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x2cc17ff0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x2cb22470>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2cb22470>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x2cb22470>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2cb22470>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2cb22470>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2cafd0e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2cafd0e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2cafd0e0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x2cafd0e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2cafd0e0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x2cafd0e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2cafd0e0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x2cafd0e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2cafd0e0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ba84520>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x2ba84520>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ba84520>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ba84520>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile31d312201633c6" "BufferedMatrixFile31d31258d51a41"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile31d312201633c6" "BufferedMatrixFile31d31258d51a41"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2d9cd030>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2d9cd030>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x2d9cd030>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x2d9cd030>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x2d9cd030>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x2d9cd030>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2c3985c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2c3985c0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x2c3985c0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x2c3985c0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2d478f30>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2d478f30>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.325   0.033   0.345 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.321   0.039   0.347 

Example timings