Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-08-16 12:07 -0400 (Sat, 16 Aug 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4818
lconwaymacOS 12.7.1 Montereyx86_644.5.1 (2025-06-13) -- "Great Square Root" 4596
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4538
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4535
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2317HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-08-15 13:45 -0400 (Fri, 15 Aug 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on taishan

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-08-15 04:51:41 -0000 (Fri, 15 Aug 2025)
EndedAt: 2025-08-15 04:52:05 -0000 (Fri, 15 Aug 2025)
EllapsedTime: 24.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.5.0/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -I"/home/biocbuild/R/R-4.5.0/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -I"/home/biocbuild/R/R-4.5.0/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -I"/home/biocbuild/R/R-4.5.0/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -I"/home/biocbuild/R/R-4.5.0/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -std=gnu23 -shared -L/home/biocbuild/R/R-4.5.0/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/R/R-4.5.0/lib -lR
installing to /home/biocbuild/R/R-4.5.0/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.304   0.055   0.346 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478398 25.6    1047041   56   639620 34.2
Vcells 885166  6.8    8388608   64  2080985 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Aug 15 04:51:59 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Aug 15 04:51:59 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0xd79eff0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Aug 15 04:51:59 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Aug 15 04:52:00 2025"
> 
> ColMode(tmp2)
<pointer: 0xd79eff0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]       [,3]       [,4]
[1,] 99.3339256 -0.3604287 -0.9779247 -0.7595957
[2,]  0.2244391  2.4037116  0.1507635 -0.5891609
[3,]  0.7900022  2.1262478 -0.7989273  0.2606904
[4,]  0.1635362 -0.1274223  1.8641637 -0.3218138
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 99.3339256 0.3604287 0.9779247 0.7595957
[2,]  0.2244391 2.4037116 0.1507635 0.5891609
[3,]  0.7900022 2.1262478 0.7989273 0.2606904
[4,]  0.1635362 0.1274223 1.8641637 0.3218138
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9666406 0.6003572 0.9889008 0.8715479
[2,] 0.4737501 1.5503908 0.3882828 0.7675682
[3,] 0.8888207 1.4581659 0.8938273 0.5105785
[4,] 0.4043961 0.3569626 1.3653438 0.5672864
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.00033 31.36400 35.86693 34.47507
[2,]  29.96194 42.90762 29.03359 33.26484
[3,]  34.67821 41.70791 34.73720 30.36648
[4,]  29.20750 28.69705 40.51760 30.99468
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0xe9ce9a0>
> exp(tmp5)
<pointer: 0xe9ce9a0>
> log(tmp5,2)
<pointer: 0xe9ce9a0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.2273
> Min(tmp5)
[1] 53.98601
> mean(tmp5)
[1] 72.14753
> Sum(tmp5)
[1] 14429.51
> Var(tmp5)
[1] 846.032
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.80419 71.63587 71.90167 67.81167 69.75404 68.54786 68.70819 68.98522
 [9] 70.57015 71.75639
> rowSums(tmp5)
 [1] 1836.084 1432.717 1438.033 1356.233 1395.081 1370.957 1374.164 1379.704
 [9] 1411.403 1435.128
> rowVars(tmp5)
 [1] 7801.71536   80.95785   89.32358   58.11026   41.06752   55.56765
 [7]   36.07133   75.03691   69.23222   81.71242
> rowSd(tmp5)
 [1] 88.327319  8.997658  9.451115  7.623009  6.408394  7.454371  6.005942
 [8]  8.662385  8.320590  9.039492
> rowMax(tmp5)
 [1] 466.22734  89.30659  90.06995  84.33208  80.17688  84.83563  78.82791
 [8]  84.54035  85.22183  87.96915
> rowMin(tmp5)
 [1] 63.37824 57.38481 57.68906 54.41198 58.01143 54.82592 58.50533 53.98601
 [9] 58.75782 59.96519
> 
> colMeans(tmp5)
 [1] 106.72903  71.38738  75.40188  71.87138  64.75218  65.09329  68.98513
 [8]  75.60666  69.06251  68.89906  73.96363  70.41217  71.48626  71.93664
[15]  70.95969  67.41917  72.63084  67.22313  72.58456  66.54593
> colSums(tmp5)
 [1] 1067.2903  713.8738  754.0188  718.7138  647.5218  650.9329  689.8513
 [8]  756.0666  690.6251  688.9906  739.6363  704.1217  714.8626  719.3664
[15]  709.5969  674.1917  726.3084  672.2313  725.8456  665.4593
> colVars(tmp5)
 [1] 15978.74687   111.38425    49.66842    73.61762    13.78641    37.62889
 [7]    30.88467    61.40493    31.13569    67.40268    78.65425    28.92647
[13]    58.68839    35.82316    85.55737    68.19366   129.52765    69.99121
[19]    27.12556    68.30755
> colSd(tmp5)
 [1] 126.407068  10.553874   7.047582   8.580071   3.713006   6.134239
 [7]   5.557398   7.836130   5.579936   8.209914   8.868723   5.378333
[13]   7.660835   5.985245   9.249723   8.257945  11.381021   8.366075
[19]   5.208220   8.264838
> colMax(tmp5)
 [1] 466.22734  89.30659  84.33208  87.96915  68.76517  74.38524  77.07121
 [8]  83.98693  76.88609  79.94174  85.23441  81.10832  81.97131  81.66480
[15]  85.22183  78.82791  90.06995  78.42761  79.74071  78.81470
> colMin(tmp5)
 [1] 60.79158 59.72915 60.42962 63.20384 58.50533 54.41198 56.99974 58.76607
 [9] 61.60735 57.21941 61.95259 60.75667 59.26338 63.07485 56.36874 54.82592
[17] 57.38481 53.98601 67.39229 56.75228
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.80419 71.63587 71.90167 67.81167 69.75404       NA 68.70819 68.98522
 [9] 70.57015 71.75639
> rowSums(tmp5)
 [1] 1836.084 1432.717 1438.033 1356.233 1395.081       NA 1374.164 1379.704
 [9] 1411.403 1435.128
> rowVars(tmp5)
 [1] 7801.71536   80.95785   89.32358   58.11026   41.06752   57.87148
 [7]   36.07133   75.03691   69.23222   81.71242
> rowSd(tmp5)
 [1] 88.327319  8.997658  9.451115  7.623009  6.408394  7.607331  6.005942
 [8]  8.662385  8.320590  9.039492
> rowMax(tmp5)
 [1] 466.22734  89.30659  90.06995  84.33208  80.17688        NA  78.82791
 [8]  84.54035  85.22183  87.96915
> rowMin(tmp5)
 [1] 63.37824 57.38481 57.68906 54.41198 58.01143       NA 58.50533 53.98601
 [9] 58.75782 59.96519
> 
> colMeans(tmp5)
 [1] 106.72903  71.38738  75.40188  71.87138        NA  65.09329  68.98513
 [8]  75.60666  69.06251  68.89906  73.96363  70.41217  71.48626  71.93664
[15]  70.95969  67.41917  72.63084  67.22313  72.58456  66.54593
> colSums(tmp5)
 [1] 1067.2903  713.8738  754.0188  718.7138        NA  650.9329  689.8513
 [8]  756.0666  690.6251  688.9906  739.6363  704.1217  714.8626  719.3664
[15]  709.5969  674.1917  726.3084  672.2313  725.8456  665.4593
> colVars(tmp5)
 [1] 15978.74687   111.38425    49.66842    73.61762          NA    37.62889
 [7]    30.88467    61.40493    31.13569    67.40268    78.65425    28.92647
[13]    58.68839    35.82316    85.55737    68.19366   129.52765    69.99121
[19]    27.12556    68.30755
> colSd(tmp5)
 [1] 126.407068  10.553874   7.047582   8.580071         NA   6.134239
 [7]   5.557398   7.836130   5.579936   8.209914   8.868723   5.378333
[13]   7.660835   5.985245   9.249723   8.257945  11.381021   8.366075
[19]   5.208220   8.264838
> colMax(tmp5)
 [1] 466.22734  89.30659  84.33208  87.96915        NA  74.38524  77.07121
 [8]  83.98693  76.88609  79.94174  85.23441  81.10832  81.97131  81.66480
[15]  85.22183  78.82791  90.06995  78.42761  79.74071  78.81470
> colMin(tmp5)
 [1] 60.79158 59.72915 60.42962 63.20384       NA 54.41198 56.99974 58.76607
 [9] 61.60735 57.21941 61.95259 60.75667 59.26338 63.07485 56.36874 54.82592
[17] 57.38481 53.98601 67.39229 56.75228
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.2273
> Min(tmp5,na.rm=TRUE)
[1] 53.98601
> mean(tmp5,na.rm=TRUE)
[1] 72.184
> Sum(tmp5,na.rm=TRUE)
[1] 14364.62
> Var(tmp5,na.rm=TRUE)
[1] 850.0374
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.80419 71.63587 71.90167 67.81167 69.75404 68.74048 68.70819 68.98522
 [9] 70.57015 71.75639
> rowSums(tmp5,na.rm=TRUE)
 [1] 1836.084 1432.717 1438.033 1356.233 1395.081 1306.069 1374.164 1379.704
 [9] 1411.403 1435.128
> rowVars(tmp5,na.rm=TRUE)
 [1] 7801.71536   80.95785   89.32358   58.11026   41.06752   57.87148
 [7]   36.07133   75.03691   69.23222   81.71242
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.327319  8.997658  9.451115  7.623009  6.408394  7.607331  6.005942
 [8]  8.662385  8.320590  9.039492
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.22734  89.30659  90.06995  84.33208  80.17688  84.83563  78.82791
 [8]  84.54035  85.22183  87.96915
> rowMin(tmp5,na.rm=TRUE)
 [1] 63.37824 57.38481 57.68906 54.41198 58.01143 54.82592 58.50533 53.98601
 [9] 58.75782 59.96519
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 106.72903  71.38738  75.40188  71.87138  64.73708  65.09329  68.98513
 [8]  75.60666  69.06251  68.89906  73.96363  70.41217  71.48626  71.93664
[15]  70.95969  67.41917  72.63084  67.22313  72.58456  66.54593
> colSums(tmp5,na.rm=TRUE)
 [1] 1067.2903  713.8738  754.0188  718.7138  582.6337  650.9329  689.8513
 [8]  756.0666  690.6251  688.9906  739.6363  704.1217  714.8626  719.3664
[15]  709.5969  674.1917  726.3084  672.2313  725.8456  665.4593
> colVars(tmp5,na.rm=TRUE)
 [1] 15978.74687   111.38425    49.66842    73.61762    15.50715    37.62889
 [7]    30.88467    61.40493    31.13569    67.40268    78.65425    28.92647
[13]    58.68839    35.82316    85.55737    68.19366   129.52765    69.99121
[19]    27.12556    68.30755
> colSd(tmp5,na.rm=TRUE)
 [1] 126.407068  10.553874   7.047582   8.580071   3.937912   6.134239
 [7]   5.557398   7.836130   5.579936   8.209914   8.868723   5.378333
[13]   7.660835   5.985245   9.249723   8.257945  11.381021   8.366075
[19]   5.208220   8.264838
> colMax(tmp5,na.rm=TRUE)
 [1] 466.22734  89.30659  84.33208  87.96915  68.76517  74.38524  77.07121
 [8]  83.98693  76.88609  79.94174  85.23441  81.10832  81.97131  81.66480
[15]  85.22183  78.82791  90.06995  78.42761  79.74071  78.81470
> colMin(tmp5,na.rm=TRUE)
 [1] 60.79158 59.72915 60.42962 63.20384 58.50533 54.41198 56.99974 58.76607
 [9] 61.60735 57.21941 61.95259 60.75667 59.26338 63.07485 56.36874 54.82592
[17] 57.38481 53.98601 67.39229 56.75228
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.80419 71.63587 71.90167 67.81167 69.75404      NaN 68.70819 68.98522
 [9] 70.57015 71.75639
> rowSums(tmp5,na.rm=TRUE)
 [1] 1836.084 1432.717 1438.033 1356.233 1395.081    0.000 1374.164 1379.704
 [9] 1411.403 1435.128
> rowVars(tmp5,na.rm=TRUE)
 [1] 7801.71536   80.95785   89.32358   58.11026   41.06752         NA
 [7]   36.07133   75.03691   69.23222   81.71242
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.327319  8.997658  9.451115  7.623009  6.408394        NA  6.005942
 [8]  8.662385  8.320590  9.039492
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.22734  89.30659  90.06995  84.33208  80.17688        NA  78.82791
 [8]  84.54035  85.22183  87.96915
> rowMin(tmp5,na.rm=TRUE)
 [1] 63.37824 57.38481 57.68906 54.41198 58.01143       NA 58.50533 53.98601
 [9] 58.75782 59.96519
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 111.05542  72.08323  74.91561  72.76652       NaN  65.23755  68.83083
 [8]  74.87909  69.05365  69.59890  74.14983  70.64225  71.70838  72.39353
[15]  69.41791  68.81843  72.61745  67.40713  73.00287  67.63411
> colSums(tmp5,na.rm=TRUE)
 [1] 999.4988 648.7490 674.2405 654.8987   0.0000 587.1379 619.4775 673.9118
 [9] 621.4829 626.3901 667.3484 635.7803 645.3754 651.5418 624.7612 619.3658
[17] 653.5570 606.6642 657.0258 608.7070
> colVars(tmp5,na.rm=TRUE)
 [1] 17765.51648   119.85995    53.21685    73.80549          NA    42.09840
 [7]    34.47742    63.12516    35.02676    70.31803    88.09602    31.94669
[13]    65.46937    37.95259    69.51012    54.69148   145.71659    78.35922
[19]    28.54772    63.52441
> colSd(tmp5,na.rm=TRUE)
 [1] 133.287346  10.948057   7.294988   8.591012         NA   6.488328
 [7]   5.871747   7.945134   5.918341   8.385585   9.385948   5.652141
[13]   8.091314   6.160567   8.337273   7.395369  12.071313   8.852074
[19]   5.343007   7.970220
> colMax(tmp5,na.rm=TRUE)
 [1] 466.22734  89.30659  84.33208  87.96915      -Inf  74.38524  77.07121
 [8]  83.98693  76.88609  79.94174  85.23441  81.10832  81.97131  81.66480
[15]  85.22183  78.82791  90.06995  78.42761  79.74071  78.81470
> colMin(tmp5,na.rm=TRUE)
 [1] 60.79158 59.72915 60.42962 63.20384      Inf 54.41198 56.99974 58.76607
 [9] 61.60735 57.21941 61.95259 60.75667 59.26338 63.07485 56.36874 58.50628
[17] 57.38481 53.98601 67.39229 57.68906
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 351.3923 163.3202 283.3785 377.1184 235.5010 314.8031 288.3624 308.2269
 [9] 134.5847 265.3269
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 351.3923 163.3202 283.3785 377.1184 235.5010 314.8031 288.3624 308.2269
 [9] 134.5847 265.3269
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -1.136868e-13 -8.526513e-14 -2.842171e-14  0.000000e+00 -1.136868e-13
 [6]  0.000000e+00  1.421085e-13 -2.273737e-13  5.684342e-14 -7.389644e-13
[11]  0.000000e+00  1.705303e-13  1.136868e-13  2.415845e-13 -1.136868e-13
[16] -1.136868e-13 -2.842171e-13 -8.526513e-14  5.684342e-14  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
1   3 
5   9 
1   19 
5   20 
10   8 
5   5 
4   10 
7   1 
2   9 
9   7 
6   20 
8   10 
4   1 
2   7 
10   8 
9   7 
1   19 
6   2 
2   3 
1   6 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.616754
> Min(tmp)
[1] -3.034603
> mean(tmp)
[1] -0.1811261
> Sum(tmp)
[1] -18.11261
> Var(tmp)
[1] 1.19435
> 
> rowMeans(tmp)
[1] -0.1811261
> rowSums(tmp)
[1] -18.11261
> rowVars(tmp)
[1] 1.19435
> rowSd(tmp)
[1] 1.092863
> rowMax(tmp)
[1] 2.616754
> rowMin(tmp)
[1] -3.034603
> 
> colMeans(tmp)
  [1]  0.971178895 -1.107854137 -0.526860230 -0.236770526  0.481337829
  [6] -1.255743512 -0.393801805  0.416670228 -0.264141186  0.784634544
 [11]  0.422292873  0.969348684  0.118193851  0.518494021 -2.289606667
 [16]  0.067428070  0.049246047  0.059622381  0.064445715 -0.729052642
 [21]  1.175169770 -0.575744364 -0.337475764 -0.676616457  1.273864116
 [26] -3.034602998 -1.232775023  1.001946168 -1.026150040  2.266712061
 [31] -0.863103592  1.410029133 -0.615960424 -0.457597601 -0.579855326
 [36]  0.780036252  1.108545588 -1.269636109 -1.061696218  0.418517399
 [41] -0.880593679 -0.008820905 -0.939363829 -2.266429268  2.616753512
 [46] -1.468101932 -0.261354964 -1.174071488 -0.129157727 -2.124082636
 [51] -0.387761695  0.407176765 -1.861114174  0.065152929  0.708314178
 [56] -1.569768050  0.089070161  0.365312908 -0.266558633 -0.068081525
 [61]  0.927823217 -1.335708836 -0.962984908 -1.416228771 -0.024581856
 [66] -0.492780295  1.416201397  0.320402270  0.271259105 -2.386805295
 [71] -0.651878810 -2.365692443  1.847014544 -0.024258577  0.615687823
 [76]  0.041443351  0.744128078  0.495677168 -0.882707564  0.158257088
 [81]  0.901663177  1.244587653 -0.762665301 -1.801463891  0.802329090
 [86] -0.552302584  1.038646528 -0.234993586 -0.776195730  0.709739227
 [91]  1.234844190  0.320698030  0.321452044 -0.597114873  0.271702990
 [96] -2.553807517 -1.409328469  1.915104257 -0.058615846 -1.090340420
> colSums(tmp)
  [1]  0.971178895 -1.107854137 -0.526860230 -0.236770526  0.481337829
  [6] -1.255743512 -0.393801805  0.416670228 -0.264141186  0.784634544
 [11]  0.422292873  0.969348684  0.118193851  0.518494021 -2.289606667
 [16]  0.067428070  0.049246047  0.059622381  0.064445715 -0.729052642
 [21]  1.175169770 -0.575744364 -0.337475764 -0.676616457  1.273864116
 [26] -3.034602998 -1.232775023  1.001946168 -1.026150040  2.266712061
 [31] -0.863103592  1.410029133 -0.615960424 -0.457597601 -0.579855326
 [36]  0.780036252  1.108545588 -1.269636109 -1.061696218  0.418517399
 [41] -0.880593679 -0.008820905 -0.939363829 -2.266429268  2.616753512
 [46] -1.468101932 -0.261354964 -1.174071488 -0.129157727 -2.124082636
 [51] -0.387761695  0.407176765 -1.861114174  0.065152929  0.708314178
 [56] -1.569768050  0.089070161  0.365312908 -0.266558633 -0.068081525
 [61]  0.927823217 -1.335708836 -0.962984908 -1.416228771 -0.024581856
 [66] -0.492780295  1.416201397  0.320402270  0.271259105 -2.386805295
 [71] -0.651878810 -2.365692443  1.847014544 -0.024258577  0.615687823
 [76]  0.041443351  0.744128078  0.495677168 -0.882707564  0.158257088
 [81]  0.901663177  1.244587653 -0.762665301 -1.801463891  0.802329090
 [86] -0.552302584  1.038646528 -0.234993586 -0.776195730  0.709739227
 [91]  1.234844190  0.320698030  0.321452044 -0.597114873  0.271702990
 [96] -2.553807517 -1.409328469  1.915104257 -0.058615846 -1.090340420
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.971178895 -1.107854137 -0.526860230 -0.236770526  0.481337829
  [6] -1.255743512 -0.393801805  0.416670228 -0.264141186  0.784634544
 [11]  0.422292873  0.969348684  0.118193851  0.518494021 -2.289606667
 [16]  0.067428070  0.049246047  0.059622381  0.064445715 -0.729052642
 [21]  1.175169770 -0.575744364 -0.337475764 -0.676616457  1.273864116
 [26] -3.034602998 -1.232775023  1.001946168 -1.026150040  2.266712061
 [31] -0.863103592  1.410029133 -0.615960424 -0.457597601 -0.579855326
 [36]  0.780036252  1.108545588 -1.269636109 -1.061696218  0.418517399
 [41] -0.880593679 -0.008820905 -0.939363829 -2.266429268  2.616753512
 [46] -1.468101932 -0.261354964 -1.174071488 -0.129157727 -2.124082636
 [51] -0.387761695  0.407176765 -1.861114174  0.065152929  0.708314178
 [56] -1.569768050  0.089070161  0.365312908 -0.266558633 -0.068081525
 [61]  0.927823217 -1.335708836 -0.962984908 -1.416228771 -0.024581856
 [66] -0.492780295  1.416201397  0.320402270  0.271259105 -2.386805295
 [71] -0.651878810 -2.365692443  1.847014544 -0.024258577  0.615687823
 [76]  0.041443351  0.744128078  0.495677168 -0.882707564  0.158257088
 [81]  0.901663177  1.244587653 -0.762665301 -1.801463891  0.802329090
 [86] -0.552302584  1.038646528 -0.234993586 -0.776195730  0.709739227
 [91]  1.234844190  0.320698030  0.321452044 -0.597114873  0.271702990
 [96] -2.553807517 -1.409328469  1.915104257 -0.058615846 -1.090340420
> colMin(tmp)
  [1]  0.971178895 -1.107854137 -0.526860230 -0.236770526  0.481337829
  [6] -1.255743512 -0.393801805  0.416670228 -0.264141186  0.784634544
 [11]  0.422292873  0.969348684  0.118193851  0.518494021 -2.289606667
 [16]  0.067428070  0.049246047  0.059622381  0.064445715 -0.729052642
 [21]  1.175169770 -0.575744364 -0.337475764 -0.676616457  1.273864116
 [26] -3.034602998 -1.232775023  1.001946168 -1.026150040  2.266712061
 [31] -0.863103592  1.410029133 -0.615960424 -0.457597601 -0.579855326
 [36]  0.780036252  1.108545588 -1.269636109 -1.061696218  0.418517399
 [41] -0.880593679 -0.008820905 -0.939363829 -2.266429268  2.616753512
 [46] -1.468101932 -0.261354964 -1.174071488 -0.129157727 -2.124082636
 [51] -0.387761695  0.407176765 -1.861114174  0.065152929  0.708314178
 [56] -1.569768050  0.089070161  0.365312908 -0.266558633 -0.068081525
 [61]  0.927823217 -1.335708836 -0.962984908 -1.416228771 -0.024581856
 [66] -0.492780295  1.416201397  0.320402270  0.271259105 -2.386805295
 [71] -0.651878810 -2.365692443  1.847014544 -0.024258577  0.615687823
 [76]  0.041443351  0.744128078  0.495677168 -0.882707564  0.158257088
 [81]  0.901663177  1.244587653 -0.762665301 -1.801463891  0.802329090
 [86] -0.552302584  1.038646528 -0.234993586 -0.776195730  0.709739227
 [91]  1.234844190  0.320698030  0.321452044 -0.597114873  0.271702990
 [96] -2.553807517 -1.409328469  1.915104257 -0.058615846 -1.090340420
> colMedians(tmp)
  [1]  0.971178895 -1.107854137 -0.526860230 -0.236770526  0.481337829
  [6] -1.255743512 -0.393801805  0.416670228 -0.264141186  0.784634544
 [11]  0.422292873  0.969348684  0.118193851  0.518494021 -2.289606667
 [16]  0.067428070  0.049246047  0.059622381  0.064445715 -0.729052642
 [21]  1.175169770 -0.575744364 -0.337475764 -0.676616457  1.273864116
 [26] -3.034602998 -1.232775023  1.001946168 -1.026150040  2.266712061
 [31] -0.863103592  1.410029133 -0.615960424 -0.457597601 -0.579855326
 [36]  0.780036252  1.108545588 -1.269636109 -1.061696218  0.418517399
 [41] -0.880593679 -0.008820905 -0.939363829 -2.266429268  2.616753512
 [46] -1.468101932 -0.261354964 -1.174071488 -0.129157727 -2.124082636
 [51] -0.387761695  0.407176765 -1.861114174  0.065152929  0.708314178
 [56] -1.569768050  0.089070161  0.365312908 -0.266558633 -0.068081525
 [61]  0.927823217 -1.335708836 -0.962984908 -1.416228771 -0.024581856
 [66] -0.492780295  1.416201397  0.320402270  0.271259105 -2.386805295
 [71] -0.651878810 -2.365692443  1.847014544 -0.024258577  0.615687823
 [76]  0.041443351  0.744128078  0.495677168 -0.882707564  0.158257088
 [81]  0.901663177  1.244587653 -0.762665301 -1.801463891  0.802329090
 [86] -0.552302584  1.038646528 -0.234993586 -0.776195730  0.709739227
 [91]  1.234844190  0.320698030  0.321452044 -0.597114873  0.271702990
 [96] -2.553807517 -1.409328469  1.915104257 -0.058615846 -1.090340420
> colRanges(tmp)
          [,1]      [,2]       [,3]       [,4]      [,5]      [,6]       [,7]
[1,] 0.9711789 -1.107854 -0.5268602 -0.2367705 0.4813378 -1.255744 -0.3938018
[2,] 0.9711789 -1.107854 -0.5268602 -0.2367705 0.4813378 -1.255744 -0.3938018
          [,8]       [,9]     [,10]     [,11]     [,12]     [,13]    [,14]
[1,] 0.4166702 -0.2641412 0.7846345 0.4222929 0.9693487 0.1181939 0.518494
[2,] 0.4166702 -0.2641412 0.7846345 0.4222929 0.9693487 0.1181939 0.518494
         [,15]      [,16]      [,17]      [,18]      [,19]      [,20]   [,21]
[1,] -2.289607 0.06742807 0.04924605 0.05962238 0.06444572 -0.7290526 1.17517
[2,] -2.289607 0.06742807 0.04924605 0.05962238 0.06444572 -0.7290526 1.17517
          [,22]      [,23]      [,24]    [,25]     [,26]     [,27]    [,28]
[1,] -0.5757444 -0.3374758 -0.6766165 1.273864 -3.034603 -1.232775 1.001946
[2,] -0.5757444 -0.3374758 -0.6766165 1.273864 -3.034603 -1.232775 1.001946
        [,29]    [,30]      [,31]    [,32]      [,33]      [,34]      [,35]
[1,] -1.02615 2.266712 -0.8631036 1.410029 -0.6159604 -0.4575976 -0.5798553
[2,] -1.02615 2.266712 -0.8631036 1.410029 -0.6159604 -0.4575976 -0.5798553
         [,36]    [,37]     [,38]     [,39]     [,40]      [,41]        [,42]
[1,] 0.7800363 1.108546 -1.269636 -1.061696 0.4185174 -0.8805937 -0.008820905
[2,] 0.7800363 1.108546 -1.269636 -1.061696 0.4185174 -0.8805937 -0.008820905
          [,43]     [,44]    [,45]     [,46]     [,47]     [,48]      [,49]
[1,] -0.9393638 -2.266429 2.616754 -1.468102 -0.261355 -1.174071 -0.1291577
[2,] -0.9393638 -2.266429 2.616754 -1.468102 -0.261355 -1.174071 -0.1291577
         [,50]      [,51]     [,52]     [,53]      [,54]     [,55]     [,56]
[1,] -2.124083 -0.3877617 0.4071768 -1.861114 0.06515293 0.7083142 -1.569768
[2,] -2.124083 -0.3877617 0.4071768 -1.861114 0.06515293 0.7083142 -1.569768
          [,57]     [,58]      [,59]       [,60]     [,61]     [,62]      [,63]
[1,] 0.08907016 0.3653129 -0.2665586 -0.06808153 0.9278232 -1.335709 -0.9629849
[2,] 0.08907016 0.3653129 -0.2665586 -0.06808153 0.9278232 -1.335709 -0.9629849
         [,64]       [,65]      [,66]    [,67]     [,68]     [,69]     [,70]
[1,] -1.416229 -0.02458186 -0.4927803 1.416201 0.3204023 0.2712591 -2.386805
[2,] -1.416229 -0.02458186 -0.4927803 1.416201 0.3204023 0.2712591 -2.386805
          [,71]     [,72]    [,73]       [,74]     [,75]      [,76]     [,77]
[1,] -0.6518788 -2.365692 1.847015 -0.02425858 0.6156878 0.04144335 0.7441281
[2,] -0.6518788 -2.365692 1.847015 -0.02425858 0.6156878 0.04144335 0.7441281
         [,78]      [,79]     [,80]     [,81]    [,82]      [,83]     [,84]
[1,] 0.4956772 -0.8827076 0.1582571 0.9016632 1.244588 -0.7626653 -1.801464
[2,] 0.4956772 -0.8827076 0.1582571 0.9016632 1.244588 -0.7626653 -1.801464
         [,85]      [,86]    [,87]      [,88]      [,89]     [,90]    [,91]
[1,] 0.8023291 -0.5523026 1.038647 -0.2349936 -0.7761957 0.7097392 1.234844
[2,] 0.8023291 -0.5523026 1.038647 -0.2349936 -0.7761957 0.7097392 1.234844
        [,92]    [,93]      [,94]    [,95]     [,96]     [,97]    [,98]
[1,] 0.320698 0.321452 -0.5971149 0.271703 -2.553808 -1.409328 1.915104
[2,] 0.320698 0.321452 -0.5971149 0.271703 -2.553808 -1.409328 1.915104
           [,99]   [,100]
[1,] -0.05861585 -1.09034
[2,] -0.05861585 -1.09034
> 
> 
> Max(tmp2)
[1] 2.219592
> Min(tmp2)
[1] -2.22139
> mean(tmp2)
[1] 0.09948486
> Sum(tmp2)
[1] 9.948486
> Var(tmp2)
[1] 0.9248557
> 
> rowMeans(tmp2)
  [1] -0.38181403 -0.33176811 -0.54658390  0.23585573 -0.88173609 -1.36122634
  [7]  0.70091838 -0.17433838  1.04492492 -2.22139044 -0.94502805  0.40072071
 [13]  1.43410494  0.30882698 -0.49288981  1.37686104  0.29694909  0.05626353
 [19] -1.02289202  2.21959181  1.97148837 -1.33021693 -0.35331345  0.28757797
 [25]  0.79531488 -0.28785988  0.02408833 -1.29749279  1.04512706  0.36659779
 [31]  1.49367821 -1.18010857 -0.32737771  0.57795349 -2.01671432  1.62840289
 [37]  0.01552185 -0.25647106 -0.25080077  0.01991115  0.76446342 -0.55197088
 [43] -0.03778808 -0.29633131 -0.11624328 -0.64536662 -0.24286515 -0.54368427
 [49]  0.79848176  1.60158001 -0.06887945 -1.39938079  0.53343983  0.65325898
 [55]  0.30277488  0.24074619 -0.27345132 -0.14033141  0.82706793 -0.32925688
 [61]  0.15558448  0.26025445 -1.22875354 -1.10698884 -1.03229615  0.02236143
 [67] -1.84503643 -0.20726298 -0.74973943  0.77104789  2.02597899  0.84453374
 [73] -0.41578972  0.37548897 -1.19067175 -0.28966062  0.11401432  1.64423380
 [79]  0.11158253  1.04135963 -0.25489845  1.51023118 -0.80397045  0.06695181
 [85]  1.46655949  1.86252971  0.21371046  0.34270610 -0.59543159  1.95989451
 [91]  0.35888024 -0.08083838 -0.18963003 -1.71419991  1.39229170  1.29531255
 [97]  0.71897416  1.71883453  0.05596817 -0.39255102
> rowSums(tmp2)
  [1] -0.38181403 -0.33176811 -0.54658390  0.23585573 -0.88173609 -1.36122634
  [7]  0.70091838 -0.17433838  1.04492492 -2.22139044 -0.94502805  0.40072071
 [13]  1.43410494  0.30882698 -0.49288981  1.37686104  0.29694909  0.05626353
 [19] -1.02289202  2.21959181  1.97148837 -1.33021693 -0.35331345  0.28757797
 [25]  0.79531488 -0.28785988  0.02408833 -1.29749279  1.04512706  0.36659779
 [31]  1.49367821 -1.18010857 -0.32737771  0.57795349 -2.01671432  1.62840289
 [37]  0.01552185 -0.25647106 -0.25080077  0.01991115  0.76446342 -0.55197088
 [43] -0.03778808 -0.29633131 -0.11624328 -0.64536662 -0.24286515 -0.54368427
 [49]  0.79848176  1.60158001 -0.06887945 -1.39938079  0.53343983  0.65325898
 [55]  0.30277488  0.24074619 -0.27345132 -0.14033141  0.82706793 -0.32925688
 [61]  0.15558448  0.26025445 -1.22875354 -1.10698884 -1.03229615  0.02236143
 [67] -1.84503643 -0.20726298 -0.74973943  0.77104789  2.02597899  0.84453374
 [73] -0.41578972  0.37548897 -1.19067175 -0.28966062  0.11401432  1.64423380
 [79]  0.11158253  1.04135963 -0.25489845  1.51023118 -0.80397045  0.06695181
 [85]  1.46655949  1.86252971  0.21371046  0.34270610 -0.59543159  1.95989451
 [91]  0.35888024 -0.08083838 -0.18963003 -1.71419991  1.39229170  1.29531255
 [97]  0.71897416  1.71883453  0.05596817 -0.39255102
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.38181403 -0.33176811 -0.54658390  0.23585573 -0.88173609 -1.36122634
  [7]  0.70091838 -0.17433838  1.04492492 -2.22139044 -0.94502805  0.40072071
 [13]  1.43410494  0.30882698 -0.49288981  1.37686104  0.29694909  0.05626353
 [19] -1.02289202  2.21959181  1.97148837 -1.33021693 -0.35331345  0.28757797
 [25]  0.79531488 -0.28785988  0.02408833 -1.29749279  1.04512706  0.36659779
 [31]  1.49367821 -1.18010857 -0.32737771  0.57795349 -2.01671432  1.62840289
 [37]  0.01552185 -0.25647106 -0.25080077  0.01991115  0.76446342 -0.55197088
 [43] -0.03778808 -0.29633131 -0.11624328 -0.64536662 -0.24286515 -0.54368427
 [49]  0.79848176  1.60158001 -0.06887945 -1.39938079  0.53343983  0.65325898
 [55]  0.30277488  0.24074619 -0.27345132 -0.14033141  0.82706793 -0.32925688
 [61]  0.15558448  0.26025445 -1.22875354 -1.10698884 -1.03229615  0.02236143
 [67] -1.84503643 -0.20726298 -0.74973943  0.77104789  2.02597899  0.84453374
 [73] -0.41578972  0.37548897 -1.19067175 -0.28966062  0.11401432  1.64423380
 [79]  0.11158253  1.04135963 -0.25489845  1.51023118 -0.80397045  0.06695181
 [85]  1.46655949  1.86252971  0.21371046  0.34270610 -0.59543159  1.95989451
 [91]  0.35888024 -0.08083838 -0.18963003 -1.71419991  1.39229170  1.29531255
 [97]  0.71897416  1.71883453  0.05596817 -0.39255102
> rowMin(tmp2)
  [1] -0.38181403 -0.33176811 -0.54658390  0.23585573 -0.88173609 -1.36122634
  [7]  0.70091838 -0.17433838  1.04492492 -2.22139044 -0.94502805  0.40072071
 [13]  1.43410494  0.30882698 -0.49288981  1.37686104  0.29694909  0.05626353
 [19] -1.02289202  2.21959181  1.97148837 -1.33021693 -0.35331345  0.28757797
 [25]  0.79531488 -0.28785988  0.02408833 -1.29749279  1.04512706  0.36659779
 [31]  1.49367821 -1.18010857 -0.32737771  0.57795349 -2.01671432  1.62840289
 [37]  0.01552185 -0.25647106 -0.25080077  0.01991115  0.76446342 -0.55197088
 [43] -0.03778808 -0.29633131 -0.11624328 -0.64536662 -0.24286515 -0.54368427
 [49]  0.79848176  1.60158001 -0.06887945 -1.39938079  0.53343983  0.65325898
 [55]  0.30277488  0.24074619 -0.27345132 -0.14033141  0.82706793 -0.32925688
 [61]  0.15558448  0.26025445 -1.22875354 -1.10698884 -1.03229615  0.02236143
 [67] -1.84503643 -0.20726298 -0.74973943  0.77104789  2.02597899  0.84453374
 [73] -0.41578972  0.37548897 -1.19067175 -0.28966062  0.11401432  1.64423380
 [79]  0.11158253  1.04135963 -0.25489845  1.51023118 -0.80397045  0.06695181
 [85]  1.46655949  1.86252971  0.21371046  0.34270610 -0.59543159  1.95989451
 [91]  0.35888024 -0.08083838 -0.18963003 -1.71419991  1.39229170  1.29531255
 [97]  0.71897416  1.71883453  0.05596817 -0.39255102
> 
> colMeans(tmp2)
[1] 0.09948486
> colSums(tmp2)
[1] 9.948486
> colVars(tmp2)
[1] 0.9248557
> colSd(tmp2)
[1] 0.9616942
> colMax(tmp2)
[1] 2.219592
> colMin(tmp2)
[1] -2.22139
> colMedians(tmp2)
[1] 0.02322488
> colRanges(tmp2)
          [,1]
[1,] -2.221390
[2,]  2.219592
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.8451635  1.7034532  0.7639052 -4.1816162  4.4644492  0.7179540
 [7] -0.7423804  1.7322987  5.1007692  2.6265786
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.49061547
[2,] -0.91213812
[3,] -0.08540336
[4,]  0.34102584
[5,]  1.29706155
> 
> rowApply(tmp,sum)
 [1]  4.9042931  4.4604792  3.2233677 -3.6275906 -5.3149245  0.3232495
 [7] -1.4410843  6.6189483 -1.7381074  2.9316171
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    3    1    8   10    6    2    9    6     6
 [2,]    5    6   10   10    5    1    1    6    5     3
 [3,]   10    1    2    5    6    9    7    4    2     7
 [4,]    2    5    9    1    3    3    4    1    4     4
 [5,]    6    7    8    2    8    5    9    5    7     9
 [6,]    8    2    7    3    7    7    3    3    8     5
 [7,]    3    8    3    4    2    2    6    2    9    10
 [8,]    4    4    4    7    1    8    8    8   10     8
 [9,]    7   10    5    9    4   10   10    7    3     2
[10,]    9    9    6    6    9    4    5   10    1     1
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.0308139  2.3406637  1.1029327  2.6107612  0.4726882  0.3803727
 [7]  2.7327228  1.2571780  0.1283227 -1.7789604 -0.1233228 -1.8874794
[13] -0.5346372  2.1325827  3.6207584 -0.6387900 -1.6361010  1.4894025
[19]  0.2866816 -2.8374581
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -0.14397347
[2,] -0.05764425
[3,]  0.26083883
[4,]  0.28340296
[5,]  0.68818981
> 
> rowApply(tmp,sum)
[1] -1.054150 12.634738 -6.848180  3.086668  2.330056
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    8   10   13   12   14
[2,]   15   13   17    1   20
[3,]    4   14   11    9   16
[4,]   20    9    8   11    9
[5,]    3    4    9   18   13
> 
> 
> as.matrix(tmp)
            [,1]        [,2]        [,3]       [,4]       [,5]        [,6]
[1,] -0.14397347  0.07590114 -0.68497786  2.4611903 -0.9518750  0.03005524
[2,]  0.68818981  0.94342209  1.03615152  0.6369103 -0.3893682  0.14624022
[3,] -0.05764425  0.30771027 -0.18639473 -0.4146032 -0.2233685 -0.65512983
[4,]  0.26083883 -1.62489830 -0.09147505  0.1150175  1.8280593  0.67453827
[5,]  0.28340296  2.63852854  1.02962883 -0.1877537  0.2092407  0.18466879
            [,7]        [,8]        [,9]       [,10]       [,11]      [,12]
[1,] -0.00121422  0.05885382 -0.04336194  0.11745676  0.03041134 -0.1986141
[2,]  1.40819712 -0.55367148  0.53625209 -0.51247531  0.88904643  0.8392904
[3,] -0.62125140 -0.18504127  0.90092159  0.24701842 -1.29788136 -0.2154925
[4,]  1.17780759  0.41946093 -0.55863832  0.02688202  0.79130672 -1.4102264
[5,]  0.76918371  1.51757600 -0.70685071 -1.65784229 -0.53620590 -0.9024368
          [,13]      [,14]      [,15]      [,16]       [,17]      [,18]
[1,] -1.5405879 -0.5074302 -0.2518404  0.3655742 -0.07337301  0.8782403
[2,]  1.1739351  1.3442805  1.2651865  0.4428486 -0.33831339  2.1696216
[3,] -1.1981847 -2.0267174  1.3339832  0.3644723  0.08302567 -1.4092489
[4,] -0.2630843  2.0139494  1.8450332 -0.7962804 -1.38583661  0.8396039
[5,]  1.2932846  1.3085005 -0.5716041 -1.0154046  0.07839631 -0.9888145
          [,19]       [,20]
[1,]  0.8355293 -1.51011416
[2,]  1.6789741 -0.76997956
[3,] -1.5458757 -0.04847774
[4,] -0.4998304 -0.27555975
[5,] -0.1821157 -0.23332690
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  648  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1      col2       col3      col4      col5      col6       col7
row1 -1.120865 0.2359197 -0.2388173 0.7028626 -1.663551 -1.430739 -0.7102183
         col8     col9      col10     col11    col12     col13     col14
row1 1.833852 0.680822 -0.7946629 -1.212248 -1.28616 0.7334803 -1.992323
         col15      col16    col17      col18      col19     col20
row1 0.2733092 -0.5263464 1.493628 -0.1128584 0.06122622 0.1291897
> tmp[,"col10"]
          col10
row1 -0.7946629
row2  0.1956467
row3  1.4526845
row4 -1.6067246
row5 -0.8752936
> tmp[c("row1","row5"),]
          col1       col2       col3       col4      col5       col6       col7
row1 -1.120865  0.2359197 -0.2388173  0.7028626 -1.663551 -1.4307395 -0.7102183
row5  1.723309 -0.9990269  0.7688712 -0.2016218 -1.550551 -0.6626822  1.3749523
          col8      col9      col10      col11      col12      col13      col14
row1 1.8338524  0.680822 -0.7946629 -1.2122476 -1.2861601  0.7334803 -1.9923226
row5 0.7715327 -0.446039 -0.8752936  0.6733542 -0.7505087 -0.3990093 -0.8912037
         col15      col16    col17      col18      col19     col20
row1 0.2733092 -0.5263464 1.493628 -0.1128584 0.06122622 0.1291897
row5 1.3853098  0.2204993 1.344080 -1.5259647 1.72214608 1.3106433
> tmp[,c("col6","col20")]
           col6      col20
row1 -1.4307395  0.1291897
row2 -0.7635729  1.0674570
row3  0.5086561 -0.5933696
row4  0.7452354  0.8495367
row5 -0.6626822  1.3106433
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1 -1.4307395 0.1291897
row5 -0.6626822 1.3106433
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1    col2     col3     col4     col5     col6     col7     col8
row1 50.90414 50.1007 50.97087 49.30007 50.58966 106.2712 49.29647 49.83705
         col9    col10   col11    col12    col13    col14    col15    col16
row1 49.63654 49.63955 49.2401 50.48075 50.60673 49.26976 50.31812 48.34643
        col17    col18    col19    col20
row1 49.34909 48.34967 51.43621 104.7764
> tmp[,"col10"]
        col10
row1 49.63955
row2 27.30305
row3 29.78223
row4 30.35973
row5 49.35351
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.90414 50.10070 50.97087 49.30007 50.58966 106.2712 49.29647 49.83705
row5 49.78571 48.21762 50.42207 51.14709 49.48433 104.7167 49.89694 51.34925
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.63654 49.63955 49.24010 50.48075 50.60673 49.26976 50.31812 48.34643
row5 50.94129 49.35351 49.22275 49.64652 50.71555 49.34477 49.04229 49.90388
        col17    col18    col19    col20
row1 49.34909 48.34967 51.43621 104.7764
row5 52.28769 50.53659 51.90604 104.2234
> tmp[,c("col6","col20")]
          col6     col20
row1 106.27119 104.77640
row2  74.48743  77.52708
row3  74.20449  75.86386
row4  76.39296  73.04386
row5 104.71670 104.22335
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 106.2712 104.7764
row5 104.7167 104.2234
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 106.2712 104.7764
row5 104.7167 104.2234
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.7726093
[2,] -0.9490549
[3,] -0.3764924
[4,]  0.4924362
[5,]  0.5689813
> tmp[,c("col17","col7")]
          col17       col7
[1,] -1.2668766  1.1165704
[2,]  0.1156765 -1.0348162
[3,]  1.1711410  0.5214219
[4,]  1.1853337 -0.4656799
[5,]  0.3092356  0.1795706
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -1.0453368 -1.0787838
[2,]  0.2821023 -0.3027882
[3,]  0.2264927 -0.1219606
[4,]  0.3910909  0.1911075
[5,]  0.3889296 -1.7401846
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.045337
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -1.0453368
[2,]  0.2821023
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]      [,2]     [,3]     [,4]     [,5]       [,6]      [,7]
row3 0.1423917 0.4502682 1.162238 0.632165 1.018064 -0.1437252 -1.832445
row1 0.3780673 0.8519466 1.577834 1.884488 1.048417  0.6274545  1.116713
           [,8]        [,9]       [,10]      [,11]     [,12]      [,13]
row3 -0.9453248  0.02741784  1.12157780 -0.2359911 0.3268270 -1.8046977
row1 -1.6865013 -1.21507775 -0.06258293 -0.4932030 0.5044156 -0.6319562
           [,14]      [,15]      [,16]      [,17]      [,18]     [,19]
row3 -0.55676910 -0.5816724 -1.2392085 -0.9220731 -1.2434504 0.4142153
row1 -0.02180282 -0.1667568  0.3782692  0.3154519  0.7050331 1.4053769
          [,20]
row3 -0.4370549
row1  0.3927298
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]      [,2]       [,3]     [,4]     [,5]      [,6]      [,7]
row2 -0.9173226 -0.238536 -0.8054917 1.401849 1.002357 0.7851956 -1.093742
           [,8]     [,9]      [,10]
row2 -0.5302361 1.237745 -0.4206301
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
         [,1]      [,2]       [,3]       [,4]      [,5]      [,6]      [,7]
row5 -1.36102 -1.078057 -0.7850914 -0.7729198 -1.002201 -0.684603 -1.013076
          [,8]      [,9]      [,10]       [,11]    [,12]       [,13]     [,14]
row5 0.7797687 0.2626446 -0.8658282 -0.01344664 0.745921 -0.07647443 0.3162365
         [,15]     [,16]     [,17]      [,18]     [,19]     [,20]
row5 0.3489063 0.7611672 0.1357488 -0.9197532 -1.226779 0.3561497
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0xd037290>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a53bdfd04"
 [2] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a59f31a1" 
 [3] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a2d84802b"
 [4] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a1b1a5029"
 [5] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a5eccd9b6"
 [6] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a471f9e4a"
 [7] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a5ff8e911"
 [8] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a775702da"
 [9] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a2b6c219" 
[10] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a25f4d6f0"
[11] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a6d6ee33e"
[12] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a7c884824"
[13] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a11d2d07" 
[14] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a1590d22f"
[15] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMacd2a5998051c"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0xcea1490>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0xcea1490>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0xcea1490>
> rowMedians(tmp)
  [1]  0.171324590  0.565710584  0.257176809  0.188876860 -0.062188770
  [6] -0.283236496 -0.089970853  0.026708459 -0.185776563  0.229608360
 [11] -0.235795330 -0.312334595  0.297201100 -0.225854162  0.109554647
 [16] -0.232841083  0.312318453  0.074306877 -0.239682725 -0.083977593
 [21] -0.142121012  0.232304577  0.327800363  0.362500861 -0.310627302
 [26]  0.078529682 -0.308480494 -0.071363365 -0.140731614 -0.454360752
 [31] -0.025391799 -0.062556101 -0.245388465 -0.247334687 -0.647723131
 [36] -0.530626709 -0.607852597  0.125029649  0.668850115  0.568416503
 [41]  0.110602144  0.059453306  0.344784366  0.533496982  0.430004141
 [46] -0.070724921  0.500101784 -0.014435419 -0.303532597  0.015611130
 [51]  0.286494740  0.321265828  0.384739843 -0.436665003  0.336659159
 [56] -0.341373205 -0.407412550 -0.125453189 -0.552493933 -0.619903181
 [61] -0.072078470 -0.088241164 -0.152528481  0.066928528  0.430562109
 [66]  0.217104649 -0.118416835  0.078102564  0.641250147 -0.119007910
 [71] -0.173493754  0.433880858 -0.226232929 -0.371361837  0.317126985
 [76]  0.110535194 -0.171140827 -0.447019316  0.249591592 -0.447916455
 [81]  0.187371814  0.003157805 -0.332906252 -0.475845425 -0.005892648
 [86] -0.278463880  0.103506208  0.181960796  0.597715473  0.141127317
 [91]  0.537854405 -0.080018069  0.058027044 -0.441722080  0.371287296
 [96]  0.251516239  0.030025092  0.268596288  0.059304723 -0.235502887
[101] -0.208514906 -0.153073004 -0.111401886  0.074339414  0.200510275
[106] -0.276644107  0.359447639 -0.274067465  0.927447335  0.299152975
[111]  0.574737151 -0.240004289  0.445835392 -0.568117102  0.515922192
[116]  0.146748629 -0.607908465  0.578000405 -0.095961895 -0.014059810
[121] -0.037228989  0.372932501 -0.285903023 -0.149427708  0.580712457
[126]  0.052797622  0.366208170 -0.409779229  0.088235084 -0.568692316
[131] -0.573418824  0.115828105 -0.431851834 -0.167783443  0.259310881
[136]  0.201167596  0.080423370  0.233321329 -0.144230940  0.131839149
[141]  0.045251693  0.126119842  0.030928539 -0.384654603 -0.317994100
[146]  0.020491121  0.344984273 -0.094732083  0.623983539 -0.258106296
[151] -0.037670573 -0.232906973  0.330269764  0.760129410  0.022595695
[156]  0.318257475  0.302941952  0.395287810 -0.211722319 -0.093176094
[161]  0.078359972  0.268921930  0.089426552  0.200776120  0.571713418
[166]  0.032404497  0.465771030 -0.247623015  0.385504347 -0.203592459
[171] -0.038201852  0.538565498  0.497779703 -0.553776748 -0.363580223
[176] -0.403212135  0.037148282  0.285848209  0.063038940  0.301636360
[181] -0.069149685  0.392596038 -0.308855490  0.773659852  0.420273709
[186] -0.246866277 -0.259391153  0.033227101  0.075745130 -0.299566068
[191]  0.369973194 -0.515577320  0.049437694 -0.174222698 -0.088437591
[196] -0.203709830 -0.342542322  0.093545923 -0.589590590  0.448276652
[201]  0.102317532  0.295670314 -0.011504788  0.293805308  0.069050053
[206]  0.321914184 -0.525019212 -0.027938760  0.089871964 -0.047124219
[211] -0.495717172  0.332915284  0.109617204 -0.425568932  0.480111419
[216] -0.152305416  0.048413569  0.047748565  0.067832399 -0.676995877
[221]  0.363672942  0.226470397  0.261330835  0.432293109 -0.420045245
[226] -0.015972864 -0.049785531 -0.063341161 -0.693348582  0.369268351
> 
> proc.time()
   user  system elapsed 
  1.910   0.851   2.786 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x144f6ff0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x144f6ff0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x144f6ff0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x144f6ff0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x14401470>
> .Call("R_bm_AddColumn",P)
<pointer: 0x14401470>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x14401470>
> .Call("R_bm_AddColumn",P)
<pointer: 0x14401470>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x14401470>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x143dc0e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x143dc0e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x143dc0e0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x143dc0e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x143dc0e0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x143dc0e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x143dc0e0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x143dc0e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x143dc0e0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x13363520>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x13363520>
> .Call("R_bm_AddColumn",P)
<pointer: 0x13363520>
> .Call("R_bm_AddColumn",P)
<pointer: 0x13363520>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFileacea842713cfb" "BufferedMatrixFileacea87bc7268f"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFileacea842713cfb" "BufferedMatrixFileacea87bc7268f"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x152ac030>
> .Call("R_bm_AddColumn",P)
<pointer: 0x152ac030>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x152ac030>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x152ac030>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x152ac030>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x152ac030>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x13c775c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x13c775c0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x13c775c0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x13c775c0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x14d57f30>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x14d57f30>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.326   0.038   0.351 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.310   0.055   0.350 

Example timings