| Back to Multiple platform build/check report for BioC 3.9 |
|
This page was generated on 2019-04-09 12:21:46 -0400 (Tue, 09 Apr 2019).
| Package 1564/1703 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
| STATegRa 1.19.0 David Gomez-Cabrero
| malbec2 | Linux (Ubuntu 18.04.2 LTS) / x86_64 | OK | OK | OK | |||||||
| tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | [ OK ] | OK | |||||||
| celaya2 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | OK | OK | |||||||
| merida2 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | OK | OK |
| Package: STATegRa |
| Version: 1.19.0 |
| Command: C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings STATegRa_1.19.0.tar.gz |
| StartedAt: 2019-04-09 06:11:41 -0400 (Tue, 09 Apr 2019) |
| EndedAt: 2019-04-09 06:18:12 -0400 (Tue, 09 Apr 2019) |
| EllapsedTime: 391.0 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: STATegRa.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings STATegRa_1.19.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'C:/Users/biocbuild/bbs-3.9-bioc/meat/STATegRa.Rcheck'
* using R Under development (unstable) (2019-03-09 r76216)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'STATegRa/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'STATegRa' version '1.19.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'STATegRa' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
variable 'components'
modelSelection,list-numeric-character: no visible binding for global
variable 'mylabel'
plotVAF,caClass: no visible binding for global variable 'comp'
plotVAF,caClass: no visible binding for global variable 'VAF'
plotVAF,caClass: no visible binding for global variable 'block'
selectCommonComps,list-numeric: no visible binding for global variable
'comps'
selectCommonComps,list-numeric: no visible binding for global variable
'block'
selectCommonComps,list-numeric: no visible binding for global variable
'comp'
selectCommonComps,list-numeric: no visible binding for global variable
'ratio'
Undefined global functions or variables:
VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
Examples with CPU or elapsed time > 5s
user system elapsed
plotRes 7.33 0.07 7.40
omicsCompAnalysis 5.20 0.22 5.43
plotVAF 5.22 0.05 5.27
** running examples for arch 'x64' ... OK
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
Running 'STATEgRa_Example.omicsCLUST.R'
Running 'STATEgRa_Example.omicsPCA.R'
Running 'STATegRa_Example.omicsNPC.R'
Running 'runTests.R'
OK
** running tests for arch 'x64' ...
Running 'STATEgRa_Example.omicsCLUST.R'
Running 'STATEgRa_Example.omicsPCA.R'
Running 'STATegRa_Example.omicsNPC.R'
Running 'runTests.R'
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
'C:/Users/biocbuild/bbs-3.9-bioc/meat/STATegRa.Rcheck/00check.log'
for details.
STATegRa.Rcheck/00install.out
##############################################################################
##############################################################################
###
### Running command:
###
### C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.9/bioc/src/contrib/STATegRa_1.19.0.tar.gz && rm -rf STATegRa.buildbin-libdir && mkdir STATegRa.buildbin-libdir && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=STATegRa.buildbin-libdir STATegRa_1.19.0.tar.gz && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL STATegRa_1.19.0.zip && rm STATegRa_1.19.0.tar.gz STATegRa_1.19.0.zip
###
##############################################################################
##############################################################################
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 3177k 100 3177k 0 0 31.4M 0 --:--:-- --:--:-- --:--:-- 33.7M
install for i386
* installing *source* package 'STATegRa' ...
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
converting help for package 'STATegRa'
finding HTML links ... done
STATegRa-defunct html
STATegRa html
STATegRaUsersGuide html
STATegRa_data html
STATegRa_data_TCGA_BRCA html
bioDist html
bioDistFeature html
bioDistFeaturePlot html
bioDistW html
bioDistWPlot html
bioDistclass html
bioMap html
caClass-class html
combiningMappings html
createOmicsExpressionSet html
getInitialData html
getLoadings html
getMethodInfo html
getPreprocessing html
getScores html
getVAF html
holistOmics html
modelSelection html
finding level-2 HTML links ... done
omicsCompAnalysis html
omicsNPC html
plotRes html
plotVAF html
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
install for x64
* installing *source* package 'STATegRa' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'STATegRa' as STATegRa_1.19.0.zip
* DONE (STATegRa)
* installing to library 'C:/Users/biocbuild/bbs-3.9-bioc/R/library'
package 'STATegRa' successfully unpacked and MD5 sums checked
|
STATegRa.Rcheck/tests_i386/runTests.Rout
R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Tue Apr 09 06:15:56 2019
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
4.37 0.37 4.75
|
STATegRa.Rcheck/tests_x64/runTests.Rout
R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Tue Apr 09 06:18:06 2019
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
3.70 0.21 3.90
|
|
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout
R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, basename, cbind, colMeans, colSums, colnames,
dirname, do.call, duplicated, eval, evalq, get, grep, grepl,
intersect, is.unsorted, lapply, mapply, match, mget, order, paste,
pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums,
rownames, sapply, setdiff, sort, table, tapply, union, unique,
unsplit, which, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
26.06 0.81 26.84
|
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout
R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, basename, cbind, colMeans, colSums, colnames,
dirname, do.call, duplicated, eval, evalq, get, grep, grepl,
intersect, is.unsorted, lapply, mapply, match, mget, order, paste,
pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums,
rownames, sapply, setdiff, sort, table, tapply, union, unique,
unsplit, which, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
4: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
5: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
6: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
7: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
23.85 0.85 24.71
|
|
STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout
R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
75.92 0.25 76.17
|
STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout
R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
88.84 0.23 89.09
|
|
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout
R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 -0.0781574344 -0.0431503130
sample2 0.1192218463 0.0294087083
sample3 0.0531412036 -0.0746839777
sample4 -0.0292975070 -0.0005961537
sample5 -0.0202091717 0.0110463639
sample6 -0.1226089051 0.1053467641
sample7 -0.1078928186 -0.0322474562
sample8 -0.1782895223 0.1449363238
sample9 -0.0468698088 -0.0455174213
sample10 0.0036030577 0.0420110376
sample11 0.0035566482 -0.0566292412
sample12 -0.1006128934 0.0641380987
sample13 0.1174408426 0.0907488027
sample14 -0.0981203276 0.0617738657
sample15 -0.0085334371 -0.0087012290
sample16 -0.0783148622 0.1581295292
sample17 0.1483609925 0.0638581854
sample18 0.0963086198 0.0556641149
sample19 0.0217244079 -0.0720087026
sample20 0.0635636351 -0.0779652246
sample21 0.0201840431 0.1566391216
sample22 -0.0218268852 -0.0764103405
sample23 -0.0852041943 -0.0032690379
sample24 0.1287170861 0.1924540981
sample25 0.0430574185 -0.0456567643
sample26 0.1453896889 0.0541510930
sample27 0.0197488698 -0.1185655447
sample28 0.1025336365 0.0650684845
sample29 -0.0706018580 -0.0682987000
sample30 0.1295627424 -0.0066767364
sample31 -0.1147449137 0.1232687463
sample32 0.0374310823 0.0380179516
sample33 -0.0599516110 0.0136868639
sample34 0.0984200784 0.0375321983
sample35 0.0543098320 -0.0378104469
sample36 -0.1403625504 -0.0343753651
sample37 -0.0228942018 -0.0732842991
sample38 0.0222077154 -0.0962594297
sample39 0.0941738509 0.0215198800
sample40 -0.0643801294 -0.0687867825
sample41 0.0327637962 -0.1232188128
sample42 0.0500431832 -0.0292474191
sample43 0.0184498798 0.0233011837
sample44 -0.1487898586 0.1171351250
sample45 0.1050774276 0.1123200272
sample46 0.1151195622 -0.1094028104
sample47 0.0962593675 -0.0288462819
sample48 -0.0004837211 -0.0310279940
sample49 -0.1135207712 0.1213972228
sample50 0.0123553068 -0.1740744098
sample51 -0.0550529801 0.1258887676
sample52 -0.0499121148 0.0728545366
sample53 -0.1119773637 0.1588014882
sample54 0.0360055684 0.0228575851
sample55 -0.0210418971 0.0006732192
sample56 0.0434169291 0.0633126213
sample57 -0.0197824511 0.1150714463
sample58 -0.0030439912 0.0326098594
sample59 -0.0500253201 0.0129420897
sample60 -0.0184278691 0.0136087906
sample61 -0.0150299387 0.0635027287
sample62 0.0304763775 -0.0201317704
sample63 -0.1102252433 0.1285976734
sample64 -0.1552588068 0.0971168630
sample65 0.0058503085 0.0207115249
sample66 0.0025605405 0.0424319342
sample67 -0.1546634911 -0.0661713807
sample68 -0.0536369378 -0.0923682195
sample69 -0.0640330431 0.0081983446
sample70 -0.0163517837 -0.0663230097
sample71 0.0102537602 -0.1345922196
sample72 0.0654195958 -0.0196117947
sample73 0.1048556083 0.0220939423
sample74 -0.0123799483 0.0586115975
sample75 -0.0392077961 -0.0209754458
sample76 -0.0648953418 -0.0524764333
sample77 -0.1172922153 -0.0201186981
sample78 0.1463068163 0.0708470998
sample79 -0.0265211139 -0.1603310081
sample80 -0.0279737175 -0.0214204119
sample81 -0.0079211505 -0.0738451662
sample82 0.1544236447 -0.0361467687
sample83 0.0494211277 -0.0050046521
sample84 0.0259038517 -0.0346550241
sample85 -0.1116484426 -0.0031496066
sample86 0.1306482940 -0.0377214194
sample87 0.0554778198 -0.0459748729
sample88 0.0301623898 0.0382197764
sample89 0.1016866707 0.0694034627
sample90 -0.0086819918 -0.0201320197
sample91 -0.1578625425 -0.2097827496
sample92 -0.0170936769 -0.1655809214
sample93 0.0979806783 -0.0121512078
sample94 -0.0131484139 -0.0114932077
sample95 -0.0315682624 -0.0758860117
sample96 -0.0024125615 -0.0470136405
sample97 -0.0634545417 0.0270331418
sample98 0.0359374601 -0.0135488079
sample99 0.1009163392 0.1124778854
sample100 -0.0551753163 0.0246489713
sample101 0.0080118838 -0.1627369239
sample102 0.0046444449 0.0095629370
sample103 0.0472523140 -0.0940393137
sample104 -0.0198159436 -0.0591092455
sample105 0.0400237833 -0.0160912521
sample106 0.0923808443 0.0369017483
sample107 0.1019373919 0.0224954356
sample108 0.0877091650 -0.0128834467
sample109 -0.0864824312 -0.0900943990
sample110 0.1223115551 -0.0096086099
sample111 -0.0257354577 -0.0936170876
sample112 0.0765286593 0.0270348079
sample113 -0.0258803167 0.0377496357
sample114 -0.0021138955 -0.0882015281
sample115 -0.0303460115 -0.0723588049
sample116 -0.0780508373 -0.0685067926
sample117 -0.0536898030 -0.0911910190
sample118 -0.0666651144 -0.0236231586
sample119 -0.1021871657 -0.2324937945
sample120 -0.0750216559 0.0243378575
sample121 0.0756936422 0.0942950865
sample122 0.0259628167 0.0731986231
sample123 0.1037846228 -0.0369196918
sample124 -0.0611207882 0.0421722441
sample125 0.0738472725 0.0066950101
sample126 -0.0972916495 0.0762640860
sample127 -0.0824697672 -0.0096637469
sample128 0.1249407706 0.0929311721
sample129 0.0734067447 -0.0434362165
sample130 0.0003501973 -0.0309852740
sample131 -0.0930182841 0.0155937607
sample132 -0.0736222774 0.0733028933
sample133 0.0498397998 -0.0462437685
sample134 -0.1644873485 0.0720006217
sample135 0.0752297163 0.0003818536
sample136 -0.0227145846 -0.0495505483
sample137 -0.0564717492 -0.0288914934
sample138 -0.0255988079 -0.0610858134
sample139 -0.0621217832 0.0235808440
sample140 0.0604152483 -0.0435592311
sample141 -0.0246743943 0.0532648466
sample142 0.0409560402 0.0316279228
sample143 0.0077355252 -0.0476896416
sample144 -0.0173240815 -0.0156778011
sample145 -0.0485474392 0.1202770166
sample146 -0.0419645714 -0.0811280715
sample147 0.0977308279 -0.0274839013
sample148 -0.0368256121 0.0803979600
sample149 0.0072865776 -0.1532986479
sample150 -0.1020825300 0.0624775346
sample151 -0.0305399021 -0.0289279046
sample152 0.0533594800 -0.0638309560
sample153 0.0891627836 0.1799576348
sample154 0.0727557415 -0.0834160446
sample155 0.0880668529 -0.0220818788
sample156 0.0276561030 -0.0326624902
sample157 0.1155032172 0.0183616346
sample158 0.0281507523 -0.0104938170
sample159 -0.0663235681 0.0443836917
sample160 0.0302643914 0.0404266127
sample161 -0.0114715517 -0.0591026309
sample162 0.1337087176 0.1398135348
sample163 -0.1330124428 0.1688781038
sample164 0.0150336148 0.0028415648
sample165 -0.0076520225 -0.0164128550
sample166 -0.0367794329 0.0630661298
sample167 -0.1111988884 0.0030057972
sample168 0.0672981621 0.0446279123
sample169 0.0413004951 0.0224395087
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 -0.0420513941 0.0867863141
sample2 -0.0820828907 -0.0410977855
sample3 0.0155900825 -0.0195182456
sample4 -0.1001337227 -0.0410786488
sample5 -0.0153466247 -0.0253259650
sample6 0.0340324494 -0.0408223186
sample7 0.0722580118 0.0002332080
sample8 -0.0457501797 -0.0370016029
sample9 -0.0086248796 0.0820184889
sample10 -0.0423599154 -0.0083923177
sample11 0.0022549304 0.0787766000
sample12 0.0322105393 0.1479824672
sample13 -0.0293890997 -0.0306748497
sample14 0.0337481882 -0.0367506877
sample15 0.0815539469 0.1275622326
sample16 0.0508450371 0.0540604668
sample17 0.0062596096 0.0041023745
sample18 0.0705639248 -0.0351047789
sample19 -0.0476840861 -0.0509598050
sample20 0.0522963817 0.0715521708
sample21 -0.0119128611 -0.0376092964
sample22 0.0724394107 -0.0095625305
sample23 -0.0992532135 0.0134288978
sample24 -0.1595120289 0.0728662460
sample25 -0.0920692904 -0.0749757125
sample26 -0.0595540447 0.0848966193
sample27 0.0826487028 -0.0086735665
sample28 -0.0384788835 0.0440966993
sample29 0.0777672633 0.1735308324
sample30 0.1229471325 -0.0819005763
sample31 0.0579844941 -0.0238644777
sample32 0.0970392736 -0.0111426462
sample33 0.1017587890 -0.0630442750
sample34 0.0637922577 0.0377941612
sample35 0.0789984757 -0.0229723390
sample36 0.1224939167 -0.1274955185
sample37 0.1798821146 -0.1673427809
sample38 0.0466305865 0.0888160793
sample39 -0.0168687741 0.0421533797
sample40 0.1756392458 -0.1526642724
sample41 0.0042372232 0.0004928709
sample42 -0.0447849364 -0.0651504944
sample43 0.0482308150 -0.0253529353
sample44 -0.1986716304 -0.0545777409
sample45 -0.0741837627 0.0054703494
sample46 0.0478773458 -0.0007072182
sample47 0.0608188957 0.0481622504
sample48 -0.1381489064 0.0578288010
sample49 -0.0530522044 -0.1405532649
sample50 -0.0173797588 0.1602389582
sample51 0.0462559505 0.0303473834
sample52 0.0280064016 0.0280388391
sample53 0.0667619675 0.0237702026
sample54 0.0121833217 -0.0521354333
sample55 0.0182395826 0.0221328396
sample56 -0.0001256335 0.0030907398
sample57 0.0316674027 0.0530190300
sample58 0.0393917780 -0.0297798797
sample59 0.1278290624 -0.0546528178
sample60 0.1486984855 0.1069156300
sample61 0.0793121713 0.0569796419
sample62 0.1172801333 -0.0149198717
sample63 -0.0028727914 0.1300519928
sample64 0.0237363774 0.1073287746
sample65 -0.0126535035 0.0589808471
sample66 -0.0468195380 -0.0771072583
sample67 0.1494264853 -0.0769860602
sample68 0.0977962031 -0.0577351292
sample69 0.0403087361 0.0156042049
sample70 0.0221532220 0.0315440873
sample71 -0.0546433178 -0.0272396427
sample72 0.1107487954 -0.0537319596
sample73 0.0906761205 0.0579966449
sample74 0.0586554797 0.0121421599
sample75 0.0390493517 0.0349282725
sample76 -0.0022960470 -0.1676558818
sample77 -0.0232096344 -0.2067302761
sample78 -0.0929755658 -0.0434939268
sample79 -0.1619495258 -0.0378114039
sample80 0.0680365902 0.1424663351
sample81 -0.0530783295 -0.0358350798
sample82 0.0266822370 -0.0577445179
sample83 0.1517235272 -0.0448554627
sample84 -0.0570966845 -0.0273813163
sample85 0.1086289424 -0.1228119528
sample86 0.0833860381 -0.0442915165
sample87 0.0022018658 -0.0943906891
sample88 -0.0078225646 -0.1140506491
sample89 0.0611056561 -0.0094585225
sample90 0.0022928259 -0.0936254010
sample91 0.0433593050 0.3205982577
sample92 -0.1815333960 -0.0334680056
sample93 0.0267631101 0.0614428966
sample94 0.0181878114 0.0605090366
sample95 -0.0720374903 -0.0013045568
sample96 -0.0559714233 -0.0118791344
sample97 -0.0217411145 0.0195414202
sample98 0.0379177703 0.0588357024
sample99 -0.0792428337 -0.0151273580
sample100 0.0222116237 -0.0023321454
sample101 -0.0387226635 0.1224226186
sample102 -0.2094614360 -0.0516442220
sample103 0.0138482236 0.0301051865
sample104 -0.0807986534 -0.0162718804
sample105 -0.0520493401 -0.1229665082
sample106 -0.0192613681 -0.0185238127
sample107 0.0319017143 0.0405123239
sample108 -0.0140690759 0.0163421397
sample109 -0.1831929122 0.0613007853
sample110 -0.0292790484 -0.0199849035
sample111 -0.1423251014 0.0327340535
sample112 0.0426332591 -0.0029083506
sample113 -0.0771904915 0.0268733816
sample114 -0.0241640469 -0.0184080429
sample115 -0.1959014787 0.0460131007
sample116 -0.1394475472 -0.0530805578
sample117 -0.1672361203 -0.1386536141
sample118 -0.0448344090 -0.0117621857
sample119 -0.0910383704 0.2217433413
sample120 -0.0331392373 -0.0057274414
sample121 0.0307574159 0.1392506547
sample122 -0.0839781954 -0.0291994217
sample123 0.0239650726 -0.0642163799
sample124 -0.0909150955 0.0130419704
sample125 -0.0065351065 -0.1092631802
sample126 0.0935311387 0.1368283922
sample127 0.0035388161 0.0292755626
sample128 -0.0660296158 0.1018566510
sample129 0.0693639014 -0.0695421903
sample130 0.0008493739 -0.0669704351
sample131 0.0431023867 0.0174064800
sample132 -0.0637040775 0.0029374894
sample133 -0.0289494408 -0.0390818810
sample134 0.0446202223 0.0456334477
sample135 0.0712337087 0.0521634816
sample136 0.0596271645 0.0197299175
sample137 0.0793152284 -0.0380628475
sample138 -0.0973547787 -0.0454218115
sample139 0.0539904171 -0.1534327447
sample140 0.0850827632 0.0955814336
sample141 -0.0192682423 -0.0554449998
sample142 -0.0672262484 -0.0461320767
sample143 -0.0303730158 -0.0519260212
sample144 -0.0089364417 0.0145814919
sample145 -0.0638771403 0.0122258615
sample146 0.0585857214 0.0063083185
sample147 0.0894133498 -0.1124615894
sample148 -0.0216367982 -0.0615967032
sample149 -0.0515419336 -0.0839903493
sample150 0.0568282614 -0.0124468985
sample151 -0.0789532173 -0.0261831053
sample152 -0.0330752619 0.1306443608
sample153 -0.1751932981 0.1497732567
sample154 0.0421425220 -0.0037010333
sample155 0.0680177770 0.0095711078
sample156 0.0388911672 0.1057562858
sample157 0.0314769386 0.0561367373
sample158 0.0329620655 0.0353947249
sample159 -0.0398417201 -0.1007373664
sample160 0.0424938262 0.0108496116
sample161 -0.0888370939 -0.0679700037
sample162 -0.0027477120 0.1237843961
sample163 -0.0126106882 0.0725434489
sample164 -0.0566779817 -0.0458324074
sample165 -0.0315336385 -0.0236362302
sample166 -0.0612058827 -0.0425232874
sample167 0.0142729873 0.0179308253
sample168 -0.0169504040 -0.0769617837
sample169 0.0675080123 0.0131505213
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 -0.0012329735 1.635717e-01
sample2 -0.0724350218 6.021278e-03
sample3 -0.0188460423 1.080036e-01
sample4 0.0390145200 -3.113928e-04
sample5 0.1774811589 2.996386e-02
sample6 -0.0451444538 3.455859e-02
sample7 -0.0226466118 7.020137e-03
sample8 -0.1033680445 9.856809e-03
sample9 0.1350011878 -8.979098e-02
sample10 0.1259887112 5.097855e-02
sample11 0.0979788505 -7.086535e-02
sample12 -0.0863019201 8.620317e-02
sample13 -0.1381401157 -1.828007e-01
sample14 -0.0615073914 2.642803e-02
sample15 0.0381599018 3.101662e-02
sample16 -0.0048776885 -1.271821e-03
sample17 -0.0788481083 1.547555e-02
sample18 -0.0884188825 3.795486e-02
sample19 0.0703044387 1.084004e-01
sample20 -0.0025585321 -7.975877e-02
sample21 0.0941601393 4.126745e-02
sample22 -0.0550273298 7.806740e-02
sample23 0.0679495213 4.102008e-02
sample24 -0.1310963109 -1.649309e-01
sample25 0.0113585214 4.426864e-02
sample26 -0.1402946064 -2.016541e-02
sample27 0.0261561362 -1.588481e-03
sample28 -0.0724198823 -5.850591e-02
sample29 -0.0330058384 -2.060857e-03
sample30 -0.0228752491 2.015428e-02
sample31 -0.0635068088 6.670334e-02
sample32 0.0685099635 4.955272e-02
sample33 -0.0777765231 1.272078e-01
sample34 0.0157842370 3.024314e-02
sample35 -0.0529632537 -1.500972e-01
sample36 0.0070901105 -2.025308e-01
sample37 -0.0442420196 -1.802089e-01
sample38 -0.0781511156 3.676417e-02
sample39 0.0120331764 3.388842e-02
sample40 -0.0473291694 -1.471562e-01
sample41 0.0228189555 2.673552e-02
sample42 -0.0245360319 7.960867e-02
sample43 0.1036362749 8.229577e-02
sample44 -0.1012229046 -7.049447e-02
sample45 0.0013731775 2.450915e-02
sample46 -0.0558509851 -2.947414e-03
sample47 -0.0380481074 -4.554175e-02
sample48 0.0784342044 -4.888978e-02
sample49 -0.0605164160 1.162358e-02
sample50 0.0530079473 2.737930e-02
sample51 0.1514646455 -5.678342e-02
sample52 0.1860935267 -1.246717e-01
sample53 -0.0064177248 2.700995e-02
sample54 0.0697038294 2.308389e-02
sample55 0.1633577064 -1.366441e-02
sample56 0.1011485039 -4.682203e-02
sample57 0.1730374210 -1.609603e-01
sample58 -0.0071384730 1.666955e-02
sample59 -0.0030461556 -3.005288e-02
sample60 0.0215835459 -2.665878e-01
sample61 0.1510583702 -1.002385e-01
sample62 -0.0925533866 4.845839e-02
sample63 -0.0596311971 4.137024e-02
sample64 -0.0449225872 2.600588e-03
sample65 0.0939383687 4.406910e-02
sample66 0.1063400608 5.709995e-02
sample67 -0.0201589576 -2.361728e-01
sample68 0.0037203447 -2.418393e-02
sample69 -0.0645161253 1.155622e-01
sample70 -0.1013440001 1.351789e-01
sample71 -0.0016467766 2.976840e-02
sample72 0.0328893106 2.835855e-02
sample73 0.0275080030 5.148185e-02
sample74 0.1341719601 7.895281e-02
sample75 0.0951575707 3.943183e-02
sample76 -0.0864721858 -3.034993e-02
sample77 -0.1035749554 2.545352e-02
sample78 -0.1575644314 -4.939592e-02
sample79 0.0189137199 -4.874679e-02
sample80 0.1384140685 -4.265924e-05
sample81 -0.0118846451 6.357931e-02
sample82 -0.1675308111 -3.533913e-02
sample83 -0.0065673341 7.812607e-02
sample84 0.1486891579 3.109058e-02
sample85 -0.0532724240 -7.417887e-02
sample86 -0.1138477246 1.912701e-05
sample87 0.0432864078 -6.080473e-02
sample88 0.0433450405 -1.402490e-01
sample89 0.0331205701 1.395401e-02
sample90 -0.0607412849 8.610413e-02
sample91 -0.0566272170 -1.303748e-01
sample92 -0.0359582354 -1.061604e-01
sample93 -0.0433646379 4.443634e-02
sample94 -0.0477291345 1.059574e-01
sample95 -0.0249595753 3.980525e-02
sample96 0.0035218955 9.293928e-02
sample97 -0.0066048908 1.527231e-01
sample98 0.0020366818 5.579549e-02
sample99 -0.0886616366 3.728229e-02
sample100 -0.1091259162 3.560419e-02
sample101 -0.0739726329 4.317996e-02
sample102 0.0574460938 2.783918e-02
sample103 0.0142731157 -9.705576e-03
sample104 0.0710395256 -4.068350e-02
sample105 0.0980831288 3.452954e-02
sample106 -0.0254259374 -3.628983e-02
sample107 -0.0160653544 9.173394e-02
sample108 -0.0200987690 2.379692e-02
sample109 -0.0389780656 -1.692358e-02
sample110 -0.0326304866 -2.988109e-02
sample111 0.0676937530 6.038214e-02
sample112 0.0167883419 -5.336937e-03
sample113 0.0969216886 2.757606e-02
sample114 -0.0026398323 9.209155e-02
sample115 -0.0308047369 -1.603821e-02
sample116 -0.1240307090 -1.273000e-01
sample117 0.0334729111 -5.392709e-02
sample118 -0.1037152863 -6.252431e-02
sample119 -0.1064176304 -1.196203e-01
sample120 -0.0771355210 1.004933e-01
sample121 -0.0129350845 -3.181974e-02
sample122 0.0847492072 5.568330e-02
sample123 -0.0041336728 -7.693189e-03
sample124 -0.0583458183 8.396391e-02
sample125 0.0634844527 5.232541e-02
sample126 -0.0662581026 1.091732e-01
sample127 -0.0865024650 1.094176e-01
sample128 -0.0627817655 1.470966e-02
sample129 -0.0336276381 4.007857e-02
sample130 -0.0293517766 8.046116e-02
sample131 -0.0469197628 2.209740e-03
sample132 -0.0241740907 1.248598e-01
sample133 0.0907303247 -1.466700e-02
sample134 -0.0350842042 -7.539662e-02
sample135 0.0001333456 -9.185389e-03
sample136 -0.0335876010 9.860271e-02
sample137 -0.0640148846 7.554467e-02
sample138 0.0060964835 1.742763e-02
sample139 -0.0592084392 -5.614970e-02
sample140 0.0427986037 1.099549e-02
sample141 0.0618796233 9.301039e-02
sample142 0.0898554385 -3.573415e-02
sample143 0.0817389316 -8.880524e-02
sample144 0.0787754771 3.821392e-02
sample145 0.1085821493 -1.569476e-01
sample146 -0.0589557804 4.373357e-02
sample147 -0.0495330349 -7.277224e-03
sample148 0.1161592680 -9.079057e-03
sample149 -0.0121579241 -7.788376e-02
sample150 -0.0314512525 -3.520213e-02
sample151 0.0575382136 1.945353e-02
sample152 -0.0494542000 -7.025538e-02
sample153 -0.0941332988 -2.153297e-01
sample154 -0.0335931863 -2.078731e-02
sample155 0.0690457695 2.780409e-02
sample156 0.1039901646 6.292524e-02
sample157 -0.0408645802 -8.065517e-03
sample158 0.1018105349 -7.816875e-03
sample159 -0.0281730626 1.207207e-02
sample160 0.1643052987 -2.978092e-03
sample161 0.0374329320 -8.524610e-02
sample162 -0.0804535481 -8.349752e-02
sample163 -0.0743228187 1.406227e-02
sample164 0.1208805940 2.139462e-02
sample165 0.1608115926 -2.025191e-02
sample166 -0.0425944787 2.660716e-02
sample167 -0.0226849479 4.464281e-02
sample168 -0.0180735675 7.466309e-04
sample169 0.0190779043 -2.645403e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
14.29 0.46 18.21
|
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout
R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 0.0781574353 -0.0431503005
sample2 -0.1192218468 0.0294087327
sample3 -0.0531412044 -0.0746839785
sample4 0.0292975093 -0.0005961387
sample5 0.0202091763 0.0110463468
sample6 0.1226089041 0.1053467602
sample7 0.1078928169 -0.0322474693
sample8 0.1782895212 0.1449363424
sample9 0.0468698118 -0.0455174325
sample10 -0.0036030537 0.0420110327
sample11 -0.0035566463 -0.0566292503
sample12 0.1006128917 0.0641381066
sample13 -0.1174408455 0.0907488223
sample14 0.0981203260 0.0617738638
sample15 0.0085334371 -0.0087012456
sample16 0.0783148624 0.1581295205
sample17 -0.1483609941 0.0638581939
sample18 -0.0963086225 0.0556641096
sample19 -0.0217244058 -0.0720087013
sample20 -0.0635636364 -0.0779652330
sample21 -0.0201840397 0.1566391128
sample22 0.0218268826 -0.0764103494
sample23 0.0852041974 -0.0032690245
sample24 -0.1287170862 0.1924541477
sample25 -0.0430574172 -0.0456567484
sample26 -0.1453896910 0.0541511244
sample27 -0.0197488710 -0.1185655650
sample28 -0.1025336374 0.0650685022
sample29 0.0706018561 -0.0682987070
sample30 -0.1295627448 -0.0066767613
sample31 0.1147449122 0.1232687402
sample32 -0.0374310817 0.0380179241
sample33 0.0599516080 0.0136868497
sample34 -0.0984200786 0.0375321854
sample35 -0.0543098350 -0.0378104591
sample36 0.1403625479 -0.0343753980
sample37 0.0228941970 -0.0732843387
sample38 -0.0222077183 -0.0962594273
sample39 -0.0941738501 0.0215198844
sample40 0.0643801247 -0.0687868204
sample41 -0.0327637964 -0.1232188158
sample42 -0.0500431832 -0.0292474084
sample43 -0.0184498777 0.0233011621
sample44 0.1487898594 0.1171351742
sample45 -0.1050774258 0.1123200435
sample46 -0.1151195649 -0.1094028136
sample47 -0.0962593695 -0.0288462884
sample48 0.0004837247 -0.0310279723
sample49 0.1135207710 0.1213972351
sample50 -0.0123553059 -0.1740744063
sample51 0.0550529837 0.1258887416
sample52 0.0499121190 0.0728545100
sample53 0.1119773637 0.1588014754
sample54 -0.0360055668 0.0228575735
sample55 0.0210419008 0.0006731980
sample56 -0.0434169264 0.0633126103
sample57 0.0197824552 0.1150714211
sample58 0.0030439906 0.0326098511
sample59 0.0500253181 0.0129420611
sample60 0.0184278671 0.0136087588
sample61 0.0150299415 0.0635026967
sample62 -0.0304763814 -0.0201317846
sample63 0.1102252430 0.1285976846
sample64 0.1552588061 0.0971168658
sample65 -0.0058503057 0.0207115196
sample66 -0.0025605370 0.0424319300
sample67 0.1546634873 -0.0661714148
sample68 0.0536369358 -0.0923682427
sample69 0.0640330414 0.0081983444
sample70 0.0163517809 -0.0663230012
sample71 -0.0102537603 -0.1345922087
sample72 -0.0654195967 -0.0196118225
sample73 -0.1048556085 0.0220939234
sample74 0.0123799512 0.0586115715
sample75 0.0392077979 -0.0209754631
sample76 0.0648953391 -0.0524764296
sample77 0.1172922127 -0.0201186894
sample78 -0.1463068186 0.0708471355
sample79 0.0265211155 -0.1603309783
sample80 0.0279737200 -0.0214204366
sample81 0.0079211506 -0.0738451546
sample82 -0.1544236496 -0.0361467571
sample83 -0.0494211299 -0.0050046835
sample84 -0.0259038475 -0.0346550292
sample85 0.1116484393 -0.0031496287
sample86 -0.1306482982 -0.0377214249
sample87 -0.0554778194 -0.0459748815
sample88 -0.0301623890 0.0382197686
sample89 -0.1016866703 0.0694034467
sample90 0.0086819902 -0.0201320160
sample91 0.1578625396 -0.2097827434
sample92 0.0170936773 -0.1655808817
sample93 -0.0979806796 -0.0121512056
sample94 0.0131484128 -0.0114932035
sample95 0.0315682625 -0.0758859939
sample96 0.0024125623 -0.0470136290
sample97 0.0634545424 0.0270331484
sample98 -0.0359374604 -0.0135488134
sample99 -0.1009163395 0.1124779120
sample100 0.0551753135 0.0246489786
sample101 -0.0080118856 -0.1627369032
sample102 -0.0046444405 0.0095629727
sample103 -0.0472523144 -0.0940393169
sample104 0.0198159460 -0.0591092375
sample105 -0.0400237805 -0.0160912557
sample106 -0.0923808445 0.0369017548
sample107 -0.1019373923 0.0224954334
sample108 -0.0877091652 -0.0128834404
sample109 0.0864824324 -0.0900943552
sample110 -0.1223115557 -0.0096086004
sample111 0.0257354610 -0.0936170640
sample112 -0.0765286594 0.0270347975
sample113 0.0258803205 0.0377496421
sample114 0.0021138955 -0.0882015227
sample115 0.0303460131 -0.0723587595
sample116 0.0780508355 -0.0685067532
sample117 0.0536898052 -0.0911909934
sample118 0.0666651122 -0.0236231391
sample119 0.1021871632 -0.2324937579
sample120 0.0750216549 0.0243378730
sample121 -0.0756936422 0.0942950865
sample122 -0.0259628129 0.0731986308
sample123 -0.1037846236 -0.0369196979
sample124 0.0611207886 0.0421722701
sample125 -0.0738472709 0.0066950016
sample126 0.0972916476 0.0762640787
sample127 0.0824697653 -0.0096637368
sample128 -0.1249407704 0.0929311970
sample129 -0.0734067468 -0.0434362289
sample130 -0.0003501981 -0.0309852726
sample131 0.0930182825 0.0155937570
sample132 0.0736222785 0.0733029098
sample133 -0.0498397976 -0.0462437736
sample134 0.1644873473 0.0720006163
sample135 -0.0752297172 0.0003818409
sample136 0.0227145829 -0.0495505558
sample137 0.0564717465 -0.0288915039
sample138 0.0255988090 -0.0610857954
sample139 0.0621217807 0.0235808334
sample140 -0.0604152485 -0.0435592499
sample141 0.0246743965 0.0532648425
sample142 -0.0409560370 0.0316279253
sample143 -0.0077355234 -0.0476896466
sample144 0.0173240835 -0.0156778073
sample145 0.0485474431 0.1202770169
sample146 0.0419645688 -0.0811280769
sample147 -0.0977308308 -0.0274839177
sample148 0.0368256156 0.0803979494
sample149 -0.0072865784 -0.1532986392
sample150 0.1020825287 0.0624775250
sample151 0.0305399044 -0.0289278955
sample152 -0.0533594811 -0.0638309395
sample153 -0.0891627826 0.1799576855
sample154 -0.0727557435 -0.0834160495
sample155 -0.0880668522 -0.0220818994
sample156 -0.0276561008 -0.0326625055
sample157 -0.1155032185 0.0183616351
sample158 -0.0281507503 -0.0104938338
sample159 0.0663235681 0.0443836993
sample160 -0.0302643878 0.0404265864
sample161 0.0114715531 -0.0591026196
sample162 -0.1337087186 0.1398135486
sample163 0.1330124423 0.1688781164
sample164 -0.0150336111 0.0028415620
sample165 0.0076520266 -0.0164128671
sample166 0.0367794331 0.0630661458
sample167 0.1111988878 0.0030057971
sample168 -0.0672981622 0.0446279156
sample169 -0.0413004955 0.0224394931
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 -0.0420514093 0.0867863136
sample2 -0.0820828872 -0.0410977914
sample3 0.0155900651 -0.0195182417
sample4 -0.1001337181 -0.0410786546
sample5 -0.0153466129 -0.0253259653
sample6 0.0340324729 -0.0408223205
sample7 0.0722580055 0.0002332131
sample8 -0.0457501498 -0.0370016113
sample9 -0.0086248859 0.0820184901
sample10 -0.0423599011 -0.0083923207
sample11 0.0022549194 0.0787766022
sample12 0.0322105402 0.1479824667
sample13 -0.0293890846 -0.0306748558
sample14 0.0337482014 -0.0367506881
sample15 0.0815539390 0.1275622380
sample16 0.0508450677 0.0540604643
sample17 0.0062596167 0.0041023727
sample18 0.0705639326 -0.0351047767
sample19 -0.0476840966 -0.0509598046
sample20 0.0522963613 0.0715521763
sample21 -0.0119128229 -0.0376093017
sample22 0.0724393921 -0.0095625236
sample23 -0.0992532112 0.0134288924
sample24 -0.1595119988 0.0728662289
sample25 -0.0920692961 -0.0749757161
sample26 -0.0595540467 0.0848966134
sample27 0.0826486796 -0.0086735575
sample28 -0.0384788766 0.0440966944
sample29 0.0777672384 0.1735308391
sample30 0.1229471328 -0.0819005685
sample31 0.0579845190 -0.0238644787
sample32 0.0970392841 -0.0111426411
sample33 0.1017587911 -0.0630442694
sample34 0.0637922622 0.0377941641
sample35 0.0789984680 -0.0229723339
sample36 0.1224939221 -0.1274955112
sample37 0.1798821100 -0.1673427688
sample38 0.0466305569 0.0888160851
sample39 -0.0168687733 0.0421533784
sample40 0.1756392412 -0.1526642606
sample41 0.0042371978 0.0004928756
sample42 -0.0447849416 -0.0651504958
sample43 0.0482308247 -0.0253529323
sample44 -0.1986716045 -0.0545777577
sample45 -0.0741837414 0.0054703415
sample46 0.0478773190 -0.0007072118
sample47 0.0608188844 0.0481622548
sample48 -0.1381489120 0.0578287941
sample49 -0.0530521722 -0.1405532726
sample50 -0.0173798026 0.1602389635
sample51 0.0462559833 0.0303473823
sample52 0.0280064260 0.0280388386
sample53 0.0667620000 0.0237702011
sample54 0.0121833319 -0.0521354329
sample55 0.0182395895 0.0221328414
sample56 -0.0001256159 0.0030907380
sample57 0.0316674338 0.0530190281
sample58 0.0393917860 -0.0297798784
sample59 0.1278290693 -0.0546528109
sample60 0.1486984868 0.1069156373
sample61 0.0793121896 0.0569796448
sample62 0.1172801247 -0.0149198643
sample63 -0.0028727741 0.1300519880
sample64 0.0237363914 0.1073287722
sample65 -0.0126534991 0.0589808463
sample66 -0.0468195205 -0.0771072617
sample67 0.1494264805 -0.0769860505
sample68 0.0977961886 -0.0577351205
sample69 0.0403087333 0.0156042071
sample70 0.0221532002 0.0315440909
sample71 -0.0546433448 -0.0272396412
sample72 0.1107487947 -0.0537319520
sample73 0.0906761208 0.0579966500
sample74 0.0586554964 0.0121421624
sample75 0.0390493497 0.0349282761
sample76 -0.0022960507 -0.1676558809
sample77 -0.0232096298 -0.2067302774
sample78 -0.0929755571 -0.0434939354
sample79 -0.1619495550 -0.0378114082
sample80 0.0680365841 0.1424663405
sample81 -0.0530783440 -0.0358350803
sample82 0.0266822235 -0.0577445158
sample83 0.1517235268 -0.0448554532
sample84 -0.0570966840 -0.0273813176
sample85 0.1086289492 -0.1228119470
sample86 0.0833860258 -0.0442915106
sample87 0.0022018638 -0.0943906873
sample88 -0.0078225465 -0.1140506512
sample89 0.0611056709 -0.0094585208
sample90 0.0022928234 -0.0936254002
sample91 0.0433592438 0.3205982663
sample92 -0.1815334284 -0.0334680114
sample93 0.0267631000 0.0614428987
sample94 0.0181878021 0.0605090382
sample95 -0.0720375072 -0.0013045585
sample96 -0.0559714334 -0.0118791357
sample97 -0.0217411114 0.0195414185
sample98 0.0379177629 0.0588357054
sample99 -0.0792428155 -0.0151273666
sample100 0.0222116242 -0.0023321455
sample101 -0.0387227086 0.1224226216
sample102 -0.2094614287 -0.0516442343
sample103 0.0138482024 0.0301051906
sample104 -0.0807986606 -0.0162718830
sample105 -0.0520493327 -0.1229665101
sample106 -0.0192613613 -0.0185238152
sample107 0.0319017132 0.0405123255
sample108 -0.0140690820 0.0163421394
sample109 -0.1831929349 0.0613007771
sample110 -0.0292790520 -0.0199849050
sample111 -0.1423251201 0.0327340488
sample112 0.0426332647 -0.0029083488
sample113 -0.0771904808 0.0268733763
sample114 -0.0241640655 -0.0184080410
sample115 -0.1959014973 0.0460130912
sample116 -0.1394475612 -0.0530805650
sample117 -0.1672361280 -0.1386536211
sample118 -0.0448344162 -0.0117621885
sample119 -0.0910384337 0.2217433425
sample120 -0.0331392357 -0.0057274443
sample121 0.0307574260 0.1392506533
sample122 -0.0839781757 -0.0291994285
sample123 0.0239650672 -0.0642163771
sample124 -0.0909150904 0.0130419636
sample125 -0.0065350975 -0.1092631802
sample126 0.0935311433 0.1368283951
sample127 0.0035388081 0.0292755630
sample128 -0.0660296074 0.1018566439
sample129 0.0693638934 -0.0695421846
sample130 0.0008493690 -0.0669704338
sample131 0.0431023880 0.0174064816
sample132 -0.0637040642 0.0029374834
sample133 -0.0289494444 -0.0390818807
sample134 0.0446202362 0.0456334471
sample135 0.0712337047 0.0521634859
sample136 0.0596271505 0.0197299229
sample137 0.0793152215 -0.0380628420
sample138 -0.0973547883 -0.0454218151
sample139 0.0539904300 -0.1534327429
sample140 0.0850827495 0.0955814405
sample141 -0.0192682260 -0.0554450021
sample142 -0.0672262351 -0.0461320814
sample143 -0.0303730178 -0.0519260213
sample144 -0.0089364424 0.0145814924
sample145 -0.0638771083 0.0122258535
sample146 0.0585857015 0.0063083245
sample147 0.0894133472 -0.1124615833
sample148 -0.0216367719 -0.0615967067
sample149 -0.0515419602 -0.0839903476
sample150 0.0568282756 -0.0124468978
sample151 -0.0789532190 -0.0261831086
sample152 -0.0330752849 0.1306443606
sample153 -0.1751932722 0.1497732391
sample154 0.0421425026 -0.0037010281
sample155 0.0680177734 0.0095711132
sample156 0.0388911577 0.1057562900
sample157 0.0314769357 0.0561367385
sample158 0.0329620656 0.0353947277
sample159 -0.0398417054 -0.1007373704
sample160 0.0424938411 0.0108496136
sample161 -0.0888370991 -0.0679700071
sample162 -0.0027476948 0.1237843907
sample163 -0.0126106591 0.0725434418
sample164 -0.0566779734 -0.0458324101
sample165 -0.0315336328 -0.0236362308
sample166 -0.0612058689 -0.0425232933
sample167 0.0142729868 0.0179308259
sample168 -0.0169503920 -0.0769617862
sample169 0.0675080168 0.0131505246
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 -0.0012329691 1.635717e-01
sample2 -0.0724350114 6.021282e-03
sample3 -0.0188460435 1.080036e-01
sample4 0.0390145240 -3.113963e-04
sample5 0.1774811622 2.996385e-02
sample6 -0.0451444445 3.455859e-02
sample7 -0.0226466209 7.020139e-03
sample8 -0.1033680300 9.856813e-03
sample9 0.1350011764 -8.979099e-02
sample10 0.1259887208 5.097854e-02
sample11 0.0979788398 -7.086535e-02
sample12 -0.0863019127 8.620317e-02
sample13 -0.1381401120 -1.828007e-01
sample14 -0.0615073868 2.642803e-02
sample15 0.0381598981 3.101662e-02
sample16 -0.0048776757 -1.271822e-03
sample17 -0.0788480971 1.547555e-02
sample18 -0.0884188749 3.795487e-02
sample19 0.0703044401 1.084004e-01
sample20 -0.0025585465 -7.975877e-02
sample21 0.0941601602 4.126744e-02
sample22 -0.0550273375 7.806740e-02
sample23 0.0679495258 4.102007e-02
sample24 -0.1310962892 -1.649309e-01
sample25 0.0113585246 4.426864e-02
sample26 -0.1402945958 -2.016541e-02
sample27 0.0261561198 -1.588480e-03
sample28 -0.0724198745 -5.850590e-02
sample29 -0.0330058522 -2.060855e-03
sample30 -0.0228752507 2.015428e-02
sample31 -0.0635067967 6.670335e-02
sample32 0.0685099671 4.955272e-02
sample33 -0.0777765200 1.272078e-01
sample34 0.0157842421 3.024314e-02
sample35 -0.0529632688 -1.500972e-01
sample36 0.0070900865 -2.025308e-01
sample37 -0.0442420461 -1.802089e-01
sample38 -0.0781511261 3.676418e-02
sample39 0.0120331836 3.388842e-02
sample40 -0.0473291944 -1.471562e-01
sample41 0.0228189441 2.673552e-02
sample42 -0.0245360269 7.960867e-02
sample43 0.1036362806 8.229577e-02
sample44 -0.1012228900 -7.049446e-02
sample45 0.0013731972 2.450914e-02
sample46 -0.0558509968 -2.947409e-03
sample47 -0.0380481139 -4.554175e-02
sample48 0.0784342042 -4.888979e-02
sample49 -0.0605164016 1.162358e-02
sample50 0.0530079300 2.737930e-02
sample51 0.1514646524 -5.678343e-02
sample52 0.1860935248 -1.246717e-01
sample53 -0.0064177117 2.700995e-02
sample54 0.0697038338 2.308389e-02
sample55 0.1633577042 -1.366442e-02
sample56 0.1011485092 -4.682204e-02
sample57 0.1730374221 -1.609603e-01
sample58 -0.0071384702 1.666955e-02
sample59 -0.0030461627 -3.005287e-02
sample60 0.0215835240 -2.665878e-01
sample61 0.1510583670 -1.002385e-01
sample62 -0.0925533905 4.845839e-02
sample63 -0.0596311838 4.137024e-02
sample64 -0.0449225818 2.600590e-03
sample65 0.0939383740 4.406910e-02
sample66 0.1063400713 5.709994e-02
sample67 -0.0201589888 -2.361728e-01
sample68 0.0037203277 -2.418393e-02
sample69 -0.0645161212 1.155622e-01
sample70 -0.1013440011 1.351789e-01
sample71 -0.0016467868 2.976840e-02
sample72 0.0328893069 2.835855e-02
sample73 0.0275080065 5.148185e-02
sample74 0.1341719681 7.895280e-02
sample75 0.0951575678 3.943183e-02
sample76 -0.0864721940 -3.034993e-02
sample77 -0.1035749568 2.545353e-02
sample78 -0.1575644184 -4.939591e-02
sample79 0.0189137064 -4.874679e-02
sample80 0.1384140616 -4.266689e-05
sample81 -0.0118846471 6.357931e-02
sample82 -0.1675308143 -3.533912e-02
sample83 -0.0065673357 7.812607e-02
sample84 0.1486891593 3.109057e-02
sample85 -0.0532724358 -7.417886e-02
sample86 -0.1138477292 1.913553e-05
sample87 0.0432864010 -6.080473e-02
sample88 0.0433450382 -1.402491e-01
sample89 0.0331205783 1.395401e-02
sample90 -0.0607412820 8.610414e-02
sample91 -0.0566272551 -1.303748e-01
sample92 -0.0359582517 -1.061604e-01
sample93 -0.0433646358 4.443634e-02
sample94 -0.0477291310 1.059574e-01
sample95 -0.0249595788 3.980525e-02
sample96 0.0035218983 9.293928e-02
sample97 -0.0066048795 1.527231e-01
sample98 0.0020366824 5.579549e-02
sample99 -0.0886616159 3.728229e-02
sample100 -0.1091259138 3.560420e-02
sample101 -0.0739726470 4.317996e-02
sample102 0.0574461064 2.783918e-02
sample103 0.0142731051 -9.705576e-03
sample104 0.0710395200 -4.068351e-02
sample105 0.0980831330 3.452953e-02
sample106 -0.0254259323 -3.628983e-02
sample107 -0.0160653458 9.173395e-02
sample108 -0.0200987664 2.379692e-02
sample109 -0.0389780705 -1.692358e-02
sample110 -0.0326304850 -2.988109e-02
sample111 0.0676937519 6.038213e-02
sample112 0.0167883445 -5.336938e-03
sample113 0.0969216972 2.757605e-02
sample114 -0.0026398355 9.209155e-02
sample115 -0.0308047378 -1.603821e-02
sample116 -0.1240307192 -1.273000e-01
sample117 0.0334729050 -5.392709e-02
sample118 -0.1037152920 -6.252431e-02
sample119 -0.1064176623 -1.196203e-01
sample120 -0.0771355127 1.004933e-01
sample121 -0.0129350762 -3.181974e-02
sample122 0.0847492231 5.568329e-02
sample123 -0.0041336756 -7.693188e-03
sample124 -0.0583458062 8.396391e-02
sample125 0.0634844591 5.232540e-02
sample126 -0.0662580952 1.091732e-01
sample127 -0.0865024620 1.094176e-01
sample128 -0.0627817488 1.470967e-02
sample129 -0.0336276416 4.007857e-02
sample130 -0.0293517751 8.046116e-02
sample131 -0.0469197653 2.209743e-03
sample132 -0.0241740742 1.248598e-01
sample133 0.0907303215 -1.466701e-02
sample134 -0.0350842069 -7.539662e-02
sample135 0.0001333434 -9.185388e-03
sample136 -0.0335876041 9.860272e-02
sample137 -0.0640148882 7.554468e-02
sample138 0.0060964818 1.742763e-02
sample139 -0.0592084431 -5.614970e-02
sample140 0.0427985966 1.099549e-02
sample141 0.0618796351 9.301039e-02
sample142 0.0898554442 -3.573416e-02
sample143 0.0817389231 -8.880524e-02
sample144 0.0787754775 3.821391e-02
sample145 0.1085821552 -1.569476e-01
sample146 -0.0589557906 4.373357e-02
sample147 -0.0495330395 -7.277219e-03
sample148 0.1161592768 -9.079065e-03
sample149 -0.0121579425 -7.788376e-02
sample150 -0.0314512527 -3.520213e-02
sample151 0.0575382146 1.945353e-02
sample152 -0.0494542090 -7.025538e-02
sample153 -0.0941332821 -2.153297e-01
sample154 -0.0335931969 -2.078731e-02
sample155 0.0690457676 2.780409e-02
sample156 0.1039901630 6.292524e-02
sample157 -0.0408645776 -8.065515e-03
sample158 0.1018105323 -7.816881e-03
sample159 -0.0281730563 1.207207e-02
sample160 0.1643053017 -2.978101e-03
sample161 0.0374329247 -8.524610e-02
sample162 -0.0804535348 -8.349752e-02
sample163 -0.0743228023 1.406228e-02
sample164 0.1208805988 2.139461e-02
sample165 0.1608115910 -2.025192e-02
sample166 -0.0425944681 2.660716e-02
sample167 -0.0226849484 4.464281e-02
sample168 -0.0180735598 7.466319e-04
sample169 0.0190779030 -2.645403e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
11.18 0.45 11.64
|
|
STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings
|
STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings
|