Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-12-04 12:01 -0500 (Thu, 04 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4878
merida1macOS 12.7.6 Montereyx86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4624
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4669
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2033/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.20.0  (landing page)
Joshua David Campbell
Snapshot Date: 2025-12-01 13:45 -0500 (Mon, 01 Dec 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_22
git_last_commit: e2bff7b
git_last_commit_date: 2025-10-29 11:29:49 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.6 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on nebbiolo2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.20.0
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.20.0.tar.gz
StartedAt: 2025-12-02 04:33:06 -0500 (Tue, 02 Dec 2025)
EndedAt: 2025-12-02 04:50:27 -0500 (Tue, 02 Dec 2025)
EllapsedTime: 1040.8 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.20.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.2 (2025-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.20.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 43.786  0.705  44.491
plotDoubletFinderResults 39.603  0.416  40.101
runDoubletFinder         33.856  0.277  34.134
plotScDblFinderResults   30.803  0.583  31.102
runSeuratSCTransform     28.812  0.195  29.008
runScDblFinder           20.480  0.370  20.545
plotBatchCorrCompare     12.963  0.077  13.218
importExampleData        11.131  0.364  11.972
plotScdsHybridResults    10.415  0.062   9.781
plotBcdsResults           9.299  0.119   8.670
plotDecontXResults        8.982  0.077   9.060
runUMAP                   7.995  0.118   8.189
runDecontX                7.806  0.116   7.922
plotUMAP                  7.455  0.137   7.670
plotCxdsResults           7.332  0.067   7.478
plotDEGViolin             7.000  0.132   7.127
plotEmptyDropsResults     6.690  0.096   6.786
plotEmptyDropsScatter     6.582  0.060   6.643
detectCellOutlier         6.190  0.148   6.339
runEmptyDrops             6.257  0.009   6.269
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.20.0’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.150   0.037   0.176 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
336.514   5.406 343.465 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.002
SEG0.0030.0000.003
calcEffectSizes0.1790.0060.187
combineSCE0.6980.0020.702
computeZScore0.2260.0070.233
convertSCEToSeurat4.1490.0804.228
convertSeuratToSCE0.3320.0040.336
dedupRowNames0.0560.0010.057
detectCellOutlier6.1900.1486.339
diffAbundanceFET0.0550.0010.056
discreteColorPalette0.0060.0000.006
distinctColors0.0020.0000.002
downSampleCells0.4880.0620.550
downSampleDepth0.3850.0070.393
expData-ANY-character-method0.1200.0020.122
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1590.0000.160
expData-set0.1480.0020.151
expData0.1270.0000.127
expDataNames-ANY-method0.1180.0100.129
expDataNames0.1160.0050.122
expDeleteDataTag0.0320.0030.035
expSetDataTag0.0220.0030.025
expTaggedData0.0240.0020.025
exportSCE0.0220.0010.023
exportSCEtoAnnData0.0880.0120.099
exportSCEtoFlatFile0.0900.0090.099
featureIndex0.0330.0030.037
generateSimulatedData0.0510.0050.057
getBiomarker0.0580.0030.062
getDEGTopTable0.6740.0530.727
getDiffAbundanceResults0.0500.0000.049
getEnrichRResult0.5300.0283.041
getFindMarkerTopTable1.5220.0571.580
getMSigDBTable0.0030.0010.004
getPathwayResultNames0.0230.0020.024
getSampleSummaryStatsTable0.1910.0100.200
getSoupX000
getTSCANResults1.0710.0181.089
getTopHVG0.8410.0160.857
importAnnData0.0010.0000.002
importBUStools0.1480.0070.157
importCellRanger0.7480.0100.759
importCellRangerV2Sample0.1360.0010.137
importCellRangerV3Sample0.2600.0050.265
importDropEst0.1880.0010.189
importExampleData11.131 0.36411.972
importGeneSetsFromCollection1.8070.0751.882
importGeneSetsFromGMT0.0610.0010.062
importGeneSetsFromList0.1260.0000.126
importGeneSetsFromMSigDB43.786 0.70544.491
importMitoGeneSet0.0510.0030.054
importOptimus0.0020.0000.001
importSEQC0.1400.0160.155
importSTARsolo0.1510.0190.170
iterateSimulations0.1660.0310.197
listSampleSummaryStatsTables0.2540.0240.278
mergeSCEColData0.3600.0120.372
mouseBrainSubsetSCE0.0350.0000.035
msigdb_table0.0010.0000.002
plotBarcodeRankDropsResults0.8400.0060.846
plotBarcodeRankScatter0.8560.0000.857
plotBatchCorrCompare12.963 0.07713.218
plotBatchVariance0.4820.0030.485
plotBcdsResults9.2990.1198.670
plotBubble0.7510.0010.752
plotClusterAbundance1.2940.0011.296
plotCxdsResults7.3320.0677.478
plotDEGHeatmap2.0270.0482.075
plotDEGRegression4.2300.0084.233
plotDEGViolin7.0000.1327.127
plotDEGVolcano0.9120.0050.916
plotDecontXResults8.9820.0779.060
plotDimRed0.2770.0000.278
plotDoubletFinderResults39.603 0.41640.101
plotEmptyDropsResults6.6900.0966.786
plotEmptyDropsScatter6.5820.0606.643
plotFindMarkerHeatmap3.9100.0563.966
plotMASTThresholdGenes1.2880.0221.311
plotPCA0.3970.0080.406
plotPathway0.6710.0150.686
plotRunPerCellQCResults3.0840.0133.098
plotSCEBarAssayData0.3340.0010.335
plotSCEBarColData0.2260.0010.227
plotSCEBatchFeatureMean0.4030.0010.404
plotSCEDensity0.320.000.32
plotSCEDensityAssayData0.3110.0020.313
plotSCEDensityColData0.3090.0010.309
plotSCEDimReduceColData0.8130.0030.816
plotSCEDimReduceFeatures0.3890.0020.391
plotSCEHeatmap0.4530.0010.454
plotSCEScatter0.4200.0050.425
plotSCEViolin0.3730.0010.374
plotSCEViolinAssayData0.4080.0020.411
plotSCEViolinColData0.3800.0010.380
plotScDblFinderResults30.803 0.58331.102
plotScanpyDotPlot0.0220.0000.022
plotScanpyEmbedding0.0220.0000.022
plotScanpyHVG0.0210.0000.020
plotScanpyHeatmap0.0200.0010.022
plotScanpyMarkerGenes0.0220.0000.021
plotScanpyMarkerGenesDotPlot0.0220.0000.021
plotScanpyMarkerGenesHeatmap0.0220.0000.022
plotScanpyMarkerGenesMatrixPlot0.0210.0010.022
plotScanpyMarkerGenesViolin0.0210.0000.022
plotScanpyMatrixPlot0.0210.0000.021
plotScanpyPCA0.0220.0000.022
plotScanpyPCAGeneRanking0.0220.0010.023
plotScanpyPCAVariance0.0210.0000.022
plotScanpyViolin0.0210.0000.021
plotScdsHybridResults10.415 0.062 9.781
plotScrubletResults0.0220.0000.023
plotSeuratElbow0.0210.0000.021
plotSeuratHVG0.0210.0000.021
plotSeuratJackStraw0.0210.0000.021
plotSeuratReduction0.0210.0000.021
plotSoupXResults000
plotTSCANClusterDEG4.8810.0134.895
plotTSCANClusterPseudo1.3350.0061.342
plotTSCANDimReduceFeatures1.3870.0041.391
plotTSCANPseudotimeGenes1.6580.0031.662
plotTSCANPseudotimeHeatmap1.2950.0051.300
plotTSCANResults1.2430.0031.246
plotTSNE0.3670.0020.368
plotTopHVG0.6150.0020.616
plotUMAP7.4550.1377.670
readSingleCellMatrix0.0040.0020.006
reportCellQC0.0800.0000.081
reportDropletQC0.0220.0010.022
reportQCTool0.0820.0000.082
retrieveSCEIndex0.0310.0000.031
runBBKNN000
runBarcodeRankDrops0.2300.0000.231
runBcds1.9420.0321.196
runCellQC0.0830.0010.084
runClusterSummaryMetrics0.3740.0120.386
runComBatSeq0.4180.0050.424
runCxds0.3150.0010.316
runCxdsBcdsHybrid2.0180.0711.259
runDEAnalysis0.4430.0090.452
runDecontX7.8060.1167.922
runDimReduce0.2750.0010.276
runDoubletFinder33.856 0.27734.134
runDropletQC0.0230.0000.023
runEmptyDrops6.2570.0096.269
runEnrichR0.5980.0442.993
runFastMNN1.6980.0371.735
runFeatureSelection0.2210.0000.221
runFindMarker1.4800.0151.494
runGSVA0.8090.0260.835
runHarmony0.1350.0060.141
runKMeans0.1860.0030.190
runLimmaBC0.0850.0010.086
runMNNCorrect0.4350.0080.443
runModelGeneVar0.3030.0020.305
runNormalization2.6860.0482.733
runPerCellQC0.3270.0000.327
runSCANORAMA000
runSCMerge0.0030.0010.004
runScDblFinder20.480 0.37020.545
runScanpyFindClusters0.0210.0020.024
runScanpyFindHVG0.0220.0000.021
runScanpyFindMarkers0.0210.0010.022
runScanpyNormalizeData0.0960.0000.095
runScanpyPCA0.0230.0000.023
runScanpyScaleData0.0220.0000.022
runScanpyTSNE0.0200.0020.022
runScanpyUMAP0.0220.0000.022
runScranSNN0.2830.0030.286
runScrublet0.0200.0020.022
runSeuratFindClusters0.0210.0010.022
runSeuratFindHVG0.4580.0010.458
runSeuratHeatmap0.0220.0010.023
runSeuratICA0.0200.0010.022
runSeuratJackStraw0.0220.0000.023
runSeuratNormalizeData0.0220.0000.022
runSeuratPCA0.0210.0000.022
runSeuratSCTransform28.812 0.19529.008
runSeuratScaleData0.0220.0020.024
runSeuratUMAP0.0230.0000.022
runSingleR0.0370.0010.038
runSoupX0.0000.0000.001
runTSCAN0.6590.0140.673
runTSCANClusterDEAnalysis0.7680.0080.776
runTSCANDEG0.7640.0170.782
runTSNE0.7210.0020.722
runUMAP7.9950.1188.189
runVAM0.3180.0010.319
runZINBWaVE0.0040.0010.005
sampleSummaryStats0.1650.0000.165
scaterCPM0.1320.0020.134
scaterPCA0.4590.0120.471
scaterlogNormCounts0.2320.0030.235
sce0.0210.0020.022
sctkListGeneSetCollections0.0800.0010.081
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0000.0000.001
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0860.0010.086
setSCTKDisplayRow0.4430.0120.454
singleCellTK000
subDiffEx0.3340.0050.338
subsetSCECols0.0800.0020.082
subsetSCERows0.2600.0080.268
summarizeSCE0.0680.0000.068
trimCounts0.2010.0000.201