Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-09-04 12:05 -0400 (Thu, 04 Sep 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4822 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4617 |
kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4564 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4541 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 989/2321 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-09-03 21:26:42 -0400 (Wed, 03 Sep 2025) |
EndedAt: 2025-09-03 21:33:47 -0400 (Wed, 03 Sep 2025) |
EllapsedTime: 425.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’ * using R version 4.5.1 (2025-06-13) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.15.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 31.702 1.755 33.746 FSmethod 29.132 1.559 30.907 corr_plot 27.842 1.577 29.659 pred_ensembel 11.212 0.413 9.954 enrichfindP 0.382 0.047 17.618 getFASTA 0.052 0.011 7.068 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 (2025-06-13) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 97.682616 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.655793 iter 10 value 89.599437 final value 88.555221 converged Fitting Repeat 3 # weights: 103 initial value 95.080875 iter 10 value 94.026542 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 4 # weights: 103 initial value 97.815662 final value 94.026542 converged Fitting Repeat 5 # weights: 103 initial value 100.070014 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 104.644021 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.308918 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.641164 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.131014 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 102.624473 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.642447 iter 10 value 93.088569 final value 93.088180 converged Fitting Repeat 2 # weights: 507 initial value 95.668755 final value 92.874891 converged Fitting Repeat 3 # weights: 507 initial value 107.541861 iter 10 value 93.718950 final value 93.630893 converged Fitting Repeat 4 # weights: 507 initial value 110.054180 final value 94.026542 converged Fitting Repeat 5 # weights: 507 initial value 104.200097 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.638444 iter 10 value 94.489011 iter 20 value 94.254705 iter 30 value 87.206809 iter 40 value 84.549532 iter 50 value 84.320998 iter 60 value 84.192899 iter 70 value 83.397495 iter 80 value 82.793209 iter 90 value 82.761084 final value 82.759543 converged Fitting Repeat 2 # weights: 103 initial value 105.765493 iter 10 value 94.501959 iter 20 value 89.935019 iter 30 value 86.813963 iter 40 value 85.872798 iter 50 value 85.634113 iter 60 value 85.571510 final value 85.569479 converged Fitting Repeat 3 # weights: 103 initial value 100.554095 iter 10 value 94.504713 iter 20 value 89.051858 iter 30 value 87.187205 iter 40 value 86.504893 iter 50 value 85.913550 iter 60 value 85.607342 final value 85.569479 converged Fitting Repeat 4 # weights: 103 initial value 105.672247 iter 10 value 94.349452 iter 20 value 87.924612 iter 30 value 87.120155 iter 40 value 86.901688 iter 50 value 86.406475 iter 60 value 84.796472 iter 70 value 81.894368 iter 80 value 81.732082 iter 90 value 81.720110 iter 100 value 81.712716 final value 81.712716 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.497353 iter 10 value 89.822076 iter 20 value 88.892285 iter 30 value 88.054756 iter 40 value 87.897841 iter 50 value 85.452758 iter 60 value 85.260443 iter 70 value 85.213127 final value 85.211769 converged Fitting Repeat 1 # weights: 305 initial value 104.702458 iter 10 value 93.898698 iter 20 value 91.241816 iter 30 value 90.776192 iter 40 value 86.145810 iter 50 value 84.601130 iter 60 value 82.675351 iter 70 value 81.669084 iter 80 value 80.827688 iter 90 value 80.546619 iter 100 value 80.330767 final value 80.330767 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.894120 iter 10 value 92.869955 iter 20 value 84.856617 iter 30 value 82.728764 iter 40 value 81.268872 iter 50 value 81.150697 iter 60 value 80.968442 iter 70 value 80.734026 iter 80 value 80.603530 iter 90 value 80.549812 iter 100 value 80.533524 final value 80.533524 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.409215 iter 10 value 95.809479 iter 20 value 90.103166 iter 30 value 84.256642 iter 40 value 83.433523 iter 50 value 82.859266 iter 60 value 81.279178 iter 70 value 80.799466 iter 80 value 80.603645 iter 90 value 80.557544 iter 100 value 80.399684 final value 80.399684 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.436065 iter 10 value 94.782172 iter 20 value 94.356690 iter 30 value 86.324854 iter 40 value 84.658754 iter 50 value 84.445531 iter 60 value 84.045922 iter 70 value 82.623758 iter 80 value 82.184302 iter 90 value 82.126063 iter 100 value 82.070422 final value 82.070422 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.266487 iter 10 value 94.418919 iter 20 value 90.842295 iter 30 value 86.578131 iter 40 value 84.861826 iter 50 value 83.800047 iter 60 value 82.363176 iter 70 value 81.564341 iter 80 value 81.096305 iter 90 value 80.915249 iter 100 value 80.591833 final value 80.591833 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.965329 iter 10 value 93.742511 iter 20 value 88.505513 iter 30 value 87.488400 iter 40 value 84.178261 iter 50 value 81.770204 iter 60 value 81.191788 iter 70 value 81.017021 iter 80 value 80.745800 iter 90 value 80.695251 iter 100 value 80.615628 final value 80.615628 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.271769 iter 10 value 95.495564 iter 20 value 88.833777 iter 30 value 84.573762 iter 40 value 84.018309 iter 50 value 83.573869 iter 60 value 82.999235 iter 70 value 82.547075 iter 80 value 81.314475 iter 90 value 81.027655 iter 100 value 80.691687 final value 80.691687 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.330278 iter 10 value 95.077121 iter 20 value 91.549824 iter 30 value 90.915487 iter 40 value 90.669263 iter 50 value 86.465775 iter 60 value 84.731992 iter 70 value 84.317239 iter 80 value 82.509180 iter 90 value 82.006117 iter 100 value 81.803015 final value 81.803015 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.147093 iter 10 value 93.753021 iter 20 value 85.659330 iter 30 value 84.162783 iter 40 value 82.300339 iter 50 value 81.523810 iter 60 value 81.040559 iter 70 value 80.491526 iter 80 value 80.248539 iter 90 value 80.115042 iter 100 value 79.968871 final value 79.968871 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.742685 iter 10 value 95.295710 iter 20 value 88.070556 iter 30 value 87.066195 iter 40 value 85.784408 iter 50 value 84.925684 iter 60 value 84.203208 iter 70 value 82.639313 iter 80 value 82.461992 iter 90 value 82.174679 iter 100 value 81.576572 final value 81.576572 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.300787 final value 94.485702 converged Fitting Repeat 2 # weights: 103 initial value 97.253496 final value 94.485698 converged Fitting Repeat 3 # weights: 103 initial value 95.106031 final value 94.485811 converged Fitting Repeat 4 # weights: 103 initial value 97.831935 final value 94.485675 converged Fitting Repeat 5 # weights: 103 initial value 97.830877 final value 94.485745 converged Fitting Repeat 1 # weights: 305 initial value 103.380883 iter 10 value 94.489446 iter 20 value 94.484723 iter 30 value 94.027361 iter 30 value 94.027361 iter 30 value 94.027360 final value 94.027360 converged Fitting Repeat 2 # weights: 305 initial value 104.454954 iter 10 value 94.311659 iter 20 value 94.185222 iter 30 value 94.115182 final value 94.114844 converged Fitting Repeat 3 # weights: 305 initial value 109.509098 iter 10 value 93.673782 iter 20 value 93.670535 iter 30 value 90.011618 iter 40 value 88.539513 iter 50 value 88.511811 iter 60 value 88.429140 iter 70 value 86.307752 iter 80 value 83.320591 iter 90 value 80.288030 iter 100 value 80.174046 final value 80.174046 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 94.864506 iter 10 value 94.486260 iter 20 value 94.484210 iter 30 value 93.657513 iter 40 value 92.841472 iter 50 value 91.420766 iter 60 value 90.725853 iter 70 value 90.562048 iter 80 value 90.561410 iter 90 value 90.442672 final value 90.384555 converged Fitting Repeat 5 # weights: 305 initial value 115.239400 iter 10 value 94.489294 iter 20 value 94.469816 iter 30 value 84.223854 iter 40 value 81.957035 iter 50 value 81.931297 iter 60 value 81.807176 iter 70 value 81.159238 iter 80 value 81.037500 iter 90 value 81.037272 iter 100 value 81.036640 final value 81.036640 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.460646 iter 10 value 94.491914 iter 20 value 94.332337 iter 30 value 92.461580 final value 92.457360 converged Fitting Repeat 2 # weights: 507 initial value 109.427162 iter 10 value 94.492591 iter 20 value 94.442560 iter 30 value 92.177021 iter 40 value 92.124979 iter 50 value 92.124462 iter 60 value 92.124281 final value 92.124053 converged Fitting Repeat 3 # weights: 507 initial value 125.134044 iter 10 value 94.035156 iter 20 value 94.028068 final value 94.027835 converged Fitting Repeat 4 # weights: 507 initial value 104.814874 iter 10 value 94.491207 iter 20 value 92.003926 iter 30 value 84.217416 iter 40 value 84.112277 iter 50 value 83.905954 iter 60 value 83.444147 iter 70 value 83.443909 iter 80 value 83.433792 iter 90 value 82.637169 iter 100 value 80.818113 final value 80.818113 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.843737 iter 10 value 87.355649 iter 20 value 84.028760 iter 30 value 83.997916 iter 40 value 83.854172 final value 83.843818 converged Fitting Repeat 1 # weights: 103 initial value 99.654107 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.141939 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.252938 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.853897 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.330656 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 132.100649 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.325486 iter 10 value 93.646889 iter 20 value 93.081407 final value 93.080990 converged Fitting Repeat 3 # weights: 305 initial value 102.977305 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 100.018044 final value 93.860355 converged Fitting Repeat 5 # weights: 305 initial value 98.752959 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 117.624617 iter 10 value 93.920788 iter 20 value 93.842774 final value 93.842773 converged Fitting Repeat 2 # weights: 507 initial value 103.389492 iter 10 value 93.758204 iter 20 value 93.704699 final value 93.704357 converged Fitting Repeat 3 # weights: 507 initial value 101.269987 iter 10 value 94.008021 iter 20 value 93.991530 final value 93.991526 converged Fitting Repeat 4 # weights: 507 initial value 95.899831 final value 94.032967 converged Fitting Repeat 5 # weights: 507 initial value 99.526489 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 101.550007 iter 10 value 94.056320 iter 20 value 93.854590 iter 30 value 93.828841 iter 40 value 93.781033 iter 50 value 91.677501 iter 60 value 91.443911 iter 70 value 87.981366 iter 80 value 85.792671 iter 90 value 85.096925 iter 100 value 84.426220 final value 84.426220 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 108.272973 iter 10 value 93.813823 iter 20 value 86.432083 iter 30 value 85.251914 iter 40 value 85.184400 iter 50 value 85.090036 final value 85.089187 converged Fitting Repeat 3 # weights: 103 initial value 111.761580 iter 10 value 94.809229 iter 20 value 94.005837 iter 30 value 93.836060 iter 40 value 93.827949 iter 50 value 93.827127 iter 60 value 93.818487 iter 70 value 92.770247 iter 80 value 88.220846 iter 90 value 88.038212 iter 100 value 85.588710 final value 85.588710 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 108.126120 iter 10 value 93.959446 iter 20 value 88.682253 iter 30 value 86.829671 iter 40 value 85.686348 iter 50 value 85.210665 iter 60 value 85.091777 final value 85.089187 converged Fitting Repeat 5 # weights: 103 initial value 99.789422 iter 10 value 94.093791 iter 20 value 93.830861 iter 30 value 93.316329 iter 40 value 92.627354 iter 50 value 89.193063 iter 60 value 87.855170 iter 70 value 87.780256 iter 80 value 87.346616 iter 90 value 86.584602 iter 100 value 86.118473 final value 86.118473 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.504782 iter 10 value 90.328431 iter 20 value 87.647963 iter 30 value 85.544507 iter 40 value 84.805141 iter 50 value 84.756887 iter 60 value 84.612996 iter 70 value 84.559468 iter 80 value 84.459089 iter 90 value 82.945972 iter 100 value 82.541625 final value 82.541625 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.733495 iter 10 value 93.656141 iter 20 value 90.768551 iter 30 value 86.358360 iter 40 value 85.686869 iter 50 value 85.044116 iter 60 value 84.565807 iter 70 value 84.540105 iter 80 value 84.485463 iter 90 value 83.326775 iter 100 value 83.016341 final value 83.016341 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.064240 iter 10 value 93.470603 iter 20 value 86.825987 iter 30 value 86.434793 iter 40 value 83.993759 iter 50 value 83.186118 iter 60 value 83.071386 iter 70 value 82.676237 iter 80 value 82.579023 iter 90 value 82.345416 iter 100 value 82.198803 final value 82.198803 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.752055 iter 10 value 91.352076 iter 20 value 85.094582 iter 30 value 84.924966 iter 40 value 84.128069 iter 50 value 83.246216 iter 60 value 82.536472 iter 70 value 82.487941 iter 80 value 82.411226 iter 90 value 82.394431 iter 100 value 82.197717 final value 82.197717 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 112.092087 iter 10 value 93.995068 iter 20 value 93.281420 iter 30 value 92.073041 iter 40 value 86.038280 iter 50 value 85.778833 iter 60 value 85.174683 iter 70 value 84.095719 iter 80 value 83.368793 iter 90 value 82.988462 iter 100 value 82.838376 final value 82.838376 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.487763 iter 10 value 94.167398 iter 20 value 94.057845 iter 30 value 93.838158 iter 40 value 93.826244 iter 50 value 93.773892 iter 60 value 92.334765 iter 70 value 88.100821 iter 80 value 85.463759 iter 90 value 84.227988 iter 100 value 83.408778 final value 83.408778 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.727275 iter 10 value 94.042494 iter 20 value 93.836933 iter 30 value 93.567182 iter 40 value 88.487471 iter 50 value 84.380343 iter 60 value 83.453579 iter 70 value 83.249141 iter 80 value 83.196078 iter 90 value 83.188489 iter 100 value 83.122383 final value 83.122383 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.501187 iter 10 value 94.259267 iter 20 value 94.025491 iter 30 value 90.431443 iter 40 value 87.301030 iter 50 value 85.775620 iter 60 value 85.582531 iter 70 value 85.303219 iter 80 value 84.696078 iter 90 value 83.908158 iter 100 value 83.006786 final value 83.006786 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 143.292839 iter 10 value 98.578728 iter 20 value 90.129188 iter 30 value 86.110205 iter 40 value 85.596442 iter 50 value 85.518192 iter 60 value 85.176259 iter 70 value 84.246441 iter 80 value 83.960410 iter 90 value 83.815549 iter 100 value 83.757857 final value 83.757857 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.780293 iter 10 value 90.281822 iter 20 value 86.206961 iter 30 value 85.210781 iter 40 value 84.967913 iter 50 value 84.422627 iter 60 value 83.385139 iter 70 value 82.482687 iter 80 value 82.345409 iter 90 value 82.310075 iter 100 value 82.194949 final value 82.194949 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.024188 iter 10 value 94.054618 iter 20 value 94.049307 iter 30 value 92.408505 iter 40 value 92.407434 iter 50 value 92.406598 iter 60 value 92.406082 iter 70 value 92.405946 final value 92.405935 converged Fitting Repeat 2 # weights: 103 initial value 94.622977 final value 94.054701 converged Fitting Repeat 3 # weights: 103 initial value 100.530873 iter 10 value 90.977413 iter 20 value 87.068561 iter 30 value 85.221696 iter 40 value 84.785730 iter 50 value 84.785574 iter 60 value 84.782033 iter 70 value 84.017309 iter 80 value 84.013262 final value 84.013130 converged Fitting Repeat 4 # weights: 103 initial value 99.498947 final value 94.054801 converged Fitting Repeat 5 # weights: 103 initial value 99.350100 final value 94.054554 converged Fitting Repeat 1 # weights: 305 initial value 97.953754 iter 10 value 92.705752 iter 20 value 92.213286 iter 30 value 91.967258 iter 40 value 86.811187 iter 50 value 85.697178 final value 85.695527 converged Fitting Repeat 2 # weights: 305 initial value 115.006099 iter 10 value 94.057720 iter 20 value 94.052928 iter 30 value 93.939811 iter 40 value 93.705544 iter 50 value 91.702039 iter 60 value 91.653655 iter 70 value 90.830419 iter 80 value 90.828342 iter 90 value 90.828064 iter 100 value 90.828006 final value 90.828006 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 97.722583 iter 10 value 93.906233 iter 20 value 93.834897 iter 30 value 93.821478 iter 40 value 93.818966 iter 50 value 93.818060 final value 93.817955 converged Fitting Repeat 4 # weights: 305 initial value 99.230007 iter 10 value 94.058005 iter 20 value 94.036605 iter 30 value 87.992999 iter 40 value 84.073132 iter 50 value 84.071056 iter 60 value 83.983168 iter 70 value 83.950915 iter 80 value 83.949658 iter 90 value 83.947229 final value 83.946392 converged Fitting Repeat 5 # weights: 305 initial value 102.297754 iter 10 value 94.057916 iter 20 value 93.995811 iter 30 value 90.513764 iter 40 value 86.202132 iter 50 value 86.200872 iter 60 value 86.200684 iter 70 value 86.200468 iter 80 value 86.074990 iter 90 value 85.958365 final value 85.957776 converged Fitting Repeat 1 # weights: 507 initial value 98.678203 iter 10 value 94.041248 iter 20 value 94.033078 iter 30 value 87.739925 iter 40 value 84.154851 iter 50 value 81.932751 iter 60 value 81.258028 iter 70 value 80.877742 iter 80 value 80.737429 iter 90 value 80.726625 iter 100 value 80.719956 final value 80.719956 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.444307 iter 10 value 94.060717 iter 20 value 86.594503 final value 86.200691 converged Fitting Repeat 3 # weights: 507 initial value 110.320231 iter 10 value 89.139208 iter 20 value 86.055558 iter 30 value 85.860762 iter 40 value 85.552681 iter 50 value 85.549753 iter 60 value 83.850342 iter 70 value 83.157942 iter 80 value 83.156213 final value 83.155345 converged Fitting Repeat 4 # weights: 507 initial value 102.204207 iter 10 value 93.813536 iter 20 value 93.811216 iter 30 value 93.388390 iter 40 value 93.196512 iter 50 value 93.196078 iter 60 value 93.189405 final value 93.178391 converged Fitting Repeat 5 # weights: 507 initial value 99.756604 iter 10 value 93.834619 iter 20 value 93.797160 iter 30 value 93.794700 final value 93.794505 converged Fitting Repeat 1 # weights: 103 initial value 99.158373 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.465030 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.373166 final value 94.409357 converged Fitting Repeat 4 # weights: 103 initial value 102.923572 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.983117 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 105.007382 iter 10 value 89.679001 iter 20 value 82.968462 iter 30 value 82.950017 final value 82.949496 converged Fitting Repeat 2 # weights: 305 initial value 95.232821 iter 10 value 92.136501 iter 20 value 87.328756 iter 30 value 86.877287 iter 40 value 86.875929 iter 40 value 86.875928 iter 40 value 86.875928 final value 86.875928 converged Fitting Repeat 3 # weights: 305 initial value 106.727193 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.652342 final value 94.452425 converged Fitting Repeat 5 # weights: 305 initial value 95.828173 iter 10 value 86.970870 iter 20 value 86.510758 final value 86.507629 converged Fitting Repeat 1 # weights: 507 initial value 115.011580 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 96.053348 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 103.711572 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 94.903768 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 102.146582 iter 10 value 88.349337 iter 20 value 84.562239 final value 84.561431 converged Fitting Repeat 1 # weights: 103 initial value 103.070281 iter 10 value 94.524946 iter 20 value 94.479039 iter 30 value 94.250110 iter 40 value 94.154440 iter 50 value 94.142378 iter 60 value 86.319856 iter 70 value 84.467730 iter 80 value 84.430613 iter 90 value 83.398854 iter 100 value 83.303402 final value 83.303402 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 105.683263 iter 10 value 94.453319 iter 20 value 91.671098 iter 30 value 89.647502 iter 40 value 85.615371 iter 50 value 80.577597 iter 60 value 79.720224 iter 70 value 79.025439 iter 80 value 78.993246 final value 78.993238 converged Fitting Repeat 3 # weights: 103 initial value 117.437107 iter 10 value 94.449393 iter 20 value 92.854115 iter 30 value 90.901286 iter 40 value 90.726385 iter 50 value 90.524828 final value 90.509379 converged Fitting Repeat 4 # weights: 103 initial value 107.025466 iter 10 value 94.488458 iter 20 value 94.417285 iter 30 value 90.007047 iter 40 value 83.598762 iter 50 value 83.165877 iter 60 value 83.123062 final value 83.120862 converged Fitting Repeat 5 # weights: 103 initial value 96.798574 iter 10 value 94.286726 iter 20 value 86.821382 iter 30 value 83.871064 iter 40 value 83.308764 iter 50 value 83.301597 final value 83.300944 converged Fitting Repeat 1 # weights: 305 initial value 102.295749 iter 10 value 89.860003 iter 20 value 87.349247 iter 30 value 86.351533 iter 40 value 85.728158 iter 50 value 80.482371 iter 60 value 79.233639 iter 70 value 77.910746 iter 80 value 77.442021 iter 90 value 77.316840 iter 100 value 77.292886 final value 77.292886 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.955803 iter 10 value 94.693165 iter 20 value 84.268982 iter 30 value 83.691088 iter 40 value 83.466997 iter 50 value 81.433577 iter 60 value 81.253325 iter 70 value 80.382415 iter 80 value 79.737440 iter 90 value 79.539699 iter 100 value 79.414379 final value 79.414379 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.427251 iter 10 value 94.515834 iter 20 value 91.580838 iter 30 value 85.037607 iter 40 value 83.052782 iter 50 value 83.014673 iter 60 value 82.920411 iter 70 value 81.902772 iter 80 value 80.570637 iter 90 value 79.863081 iter 100 value 79.714410 final value 79.714410 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.072690 iter 10 value 94.503347 iter 20 value 91.195307 iter 30 value 88.104445 iter 40 value 84.442930 iter 50 value 83.414667 iter 60 value 83.010036 iter 70 value 82.561223 iter 80 value 82.137011 iter 90 value 80.107958 iter 100 value 78.821534 final value 78.821534 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.466150 iter 10 value 94.310497 iter 20 value 92.897223 iter 30 value 85.373616 iter 40 value 85.093768 iter 50 value 84.870582 iter 60 value 83.692648 iter 70 value 81.515952 iter 80 value 80.327934 iter 90 value 80.232361 iter 100 value 80.080878 final value 80.080878 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.957467 iter 10 value 94.623611 iter 20 value 94.144189 iter 30 value 88.595776 iter 40 value 84.585664 iter 50 value 83.815708 iter 60 value 83.085904 iter 70 value 82.147211 iter 80 value 80.598569 iter 90 value 79.787701 iter 100 value 79.226634 final value 79.226634 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.633646 iter 10 value 94.543812 iter 20 value 94.451222 iter 30 value 86.146770 iter 40 value 82.846205 iter 50 value 80.921994 iter 60 value 79.251596 iter 70 value 78.669946 iter 80 value 78.253520 iter 90 value 77.715247 iter 100 value 77.486287 final value 77.486287 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.012417 iter 10 value 98.290774 iter 20 value 87.998731 iter 30 value 85.565458 iter 40 value 81.320557 iter 50 value 79.280730 iter 60 value 78.772671 iter 70 value 78.098514 iter 80 value 77.883130 iter 90 value 77.762421 iter 100 value 77.739862 final value 77.739862 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.786468 iter 10 value 94.400727 iter 20 value 85.638068 iter 30 value 83.914059 iter 40 value 83.456871 iter 50 value 82.494800 iter 60 value 81.531693 iter 70 value 79.946324 iter 80 value 79.478542 iter 90 value 78.647365 iter 100 value 77.975976 final value 77.975976 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.523934 iter 10 value 94.042363 iter 20 value 86.535074 iter 30 value 83.994857 iter 40 value 81.330021 iter 50 value 80.832851 iter 60 value 79.777009 iter 70 value 78.293413 iter 80 value 78.040682 iter 90 value 77.784270 iter 100 value 77.739299 final value 77.739299 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.691834 final value 94.485895 converged Fitting Repeat 2 # weights: 103 initial value 102.852718 iter 10 value 94.486129 final value 94.485621 converged Fitting Repeat 3 # weights: 103 initial value 94.678912 final value 94.485930 converged Fitting Repeat 4 # weights: 103 initial value 100.483204 final value 94.485711 converged Fitting Repeat 5 # weights: 103 initial value 96.994792 final value 94.469087 converged Fitting Repeat 1 # weights: 305 initial value 106.183357 iter 10 value 94.488529 iter 20 value 94.121155 iter 30 value 85.630587 iter 40 value 85.263617 iter 50 value 85.193259 final value 85.193257 converged Fitting Repeat 2 # weights: 305 initial value 95.734469 iter 10 value 94.486108 iter 20 value 88.706485 iter 30 value 86.715556 iter 40 value 86.707721 iter 50 value 85.290273 iter 60 value 83.852270 iter 70 value 80.586719 iter 80 value 80.264229 iter 90 value 80.148417 iter 100 value 79.071583 final value 79.071583 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.136321 iter 10 value 94.489003 iter 20 value 94.484462 iter 30 value 88.164375 final value 87.955695 converged Fitting Repeat 4 # weights: 305 initial value 99.876365 iter 10 value 94.472340 iter 20 value 94.468694 iter 30 value 94.008797 iter 40 value 86.601529 iter 50 value 85.784072 iter 60 value 85.783057 iter 60 value 85.783057 final value 85.783057 converged Fitting Repeat 5 # weights: 305 initial value 95.729848 iter 10 value 94.487846 iter 20 value 90.435033 iter 30 value 84.565955 iter 40 value 83.956397 final value 83.956374 converged Fitting Repeat 1 # weights: 507 initial value 106.088959 iter 10 value 92.765797 iter 20 value 92.764394 iter 30 value 87.303102 iter 40 value 85.985700 iter 40 value 85.985700 iter 40 value 85.985699 final value 85.985699 converged Fitting Repeat 2 # weights: 507 initial value 96.298555 iter 10 value 94.312519 iter 20 value 94.306380 iter 30 value 94.079231 iter 40 value 88.971640 iter 50 value 88.673077 iter 60 value 88.672989 iter 70 value 88.671684 iter 80 value 88.558986 iter 90 value 88.547155 iter 100 value 80.830599 final value 80.830599 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 130.170033 iter 10 value 94.476268 iter 20 value 92.174085 iter 30 value 87.318710 iter 40 value 85.273475 iter 50 value 85.101025 final value 85.099926 converged Fitting Repeat 4 # weights: 507 initial value 100.453397 iter 10 value 94.475424 iter 20 value 94.468847 final value 94.468779 converged Fitting Repeat 5 # weights: 507 initial value 95.131304 iter 10 value 94.153287 iter 20 value 94.145792 iter 30 value 93.429577 iter 40 value 93.425981 iter 50 value 87.314761 iter 60 value 87.035045 iter 70 value 85.549137 iter 80 value 85.279926 iter 90 value 85.278634 iter 100 value 85.043679 final value 85.043679 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.097373 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.337638 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.923361 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 101.725502 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.493588 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 132.665108 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 103.386340 iter 10 value 93.885927 final value 93.756805 converged Fitting Repeat 3 # weights: 305 initial value 99.779734 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 112.467738 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.113832 final value 93.988095 converged Fitting Repeat 1 # weights: 507 initial value 99.971373 final value 94.032967 converged Fitting Repeat 2 # weights: 507 initial value 122.332425 iter 10 value 92.615964 iter 20 value 92.571897 iter 30 value 92.571474 final value 92.571430 converged Fitting Repeat 3 # weights: 507 initial value 104.935601 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 110.423877 final value 94.032967 converged Fitting Repeat 5 # weights: 507 initial value 102.017248 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 106.969177 iter 10 value 94.023918 iter 20 value 93.624053 iter 30 value 85.454661 iter 40 value 83.771021 iter 50 value 82.842284 iter 60 value 82.783424 final value 82.783314 converged Fitting Repeat 2 # weights: 103 initial value 102.266057 iter 10 value 94.032504 iter 20 value 90.639369 iter 30 value 87.730705 iter 40 value 87.446944 iter 50 value 87.292678 iter 60 value 80.946911 iter 70 value 80.545966 iter 80 value 80.181398 iter 90 value 80.135504 final value 80.135501 converged Fitting Repeat 3 # weights: 103 initial value 96.116630 iter 10 value 94.056155 iter 20 value 87.385387 iter 30 value 84.605637 iter 40 value 82.513847 iter 50 value 82.219671 iter 60 value 82.196006 iter 70 value 82.184874 final value 82.184861 converged Fitting Repeat 4 # weights: 103 initial value 96.751048 iter 10 value 94.000129 iter 20 value 87.105205 iter 30 value 86.548617 iter 40 value 85.096929 iter 50 value 84.193007 iter 60 value 84.093184 iter 60 value 84.093183 iter 60 value 84.093183 final value 84.093183 converged Fitting Repeat 5 # weights: 103 initial value 106.120006 iter 10 value 93.995242 iter 20 value 89.824049 iter 30 value 87.991829 iter 40 value 84.990888 iter 50 value 83.706533 iter 60 value 83.598692 iter 70 value 83.592017 final value 83.591856 converged Fitting Repeat 1 # weights: 305 initial value 102.014353 iter 10 value 93.981991 iter 20 value 89.893689 iter 30 value 87.114755 iter 40 value 83.474968 iter 50 value 83.147471 iter 60 value 81.741586 iter 70 value 80.296403 iter 80 value 79.612552 iter 90 value 78.998214 iter 100 value 78.932884 final value 78.932884 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.517150 iter 10 value 94.088011 iter 20 value 93.961146 iter 30 value 85.115893 iter 40 value 84.035717 iter 50 value 83.477426 iter 60 value 81.482619 iter 70 value 80.967566 iter 80 value 80.363850 iter 90 value 80.019370 iter 100 value 79.898295 final value 79.898295 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.890834 iter 10 value 92.990075 iter 20 value 85.081633 iter 30 value 83.809547 iter 40 value 83.347889 iter 50 value 83.228809 iter 60 value 83.196516 iter 70 value 82.851426 iter 80 value 82.270767 iter 90 value 81.816262 iter 100 value 81.477726 final value 81.477726 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.231137 iter 10 value 88.682755 iter 20 value 85.775479 iter 30 value 83.123911 iter 40 value 82.101851 iter 50 value 81.746069 iter 60 value 81.683264 iter 70 value 81.567120 iter 80 value 81.088614 iter 90 value 80.376044 iter 100 value 79.504199 final value 79.504199 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.242593 iter 10 value 94.055491 iter 20 value 90.860882 iter 30 value 89.669859 iter 40 value 83.758590 iter 50 value 80.066751 iter 60 value 79.505233 iter 70 value 79.458472 iter 80 value 79.401393 iter 90 value 79.183822 iter 100 value 78.787653 final value 78.787653 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.369227 iter 10 value 94.145129 iter 20 value 92.523217 iter 30 value 90.667982 iter 40 value 86.411807 iter 50 value 85.278582 iter 60 value 81.987087 iter 70 value 81.059922 iter 80 value 80.101186 iter 90 value 79.978584 iter 100 value 79.365638 final value 79.365638 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.535788 iter 10 value 93.606650 iter 20 value 84.905509 iter 30 value 83.518997 iter 40 value 82.766454 iter 50 value 81.629954 iter 60 value 80.985088 iter 70 value 80.778434 iter 80 value 80.490844 iter 90 value 79.844039 iter 100 value 79.445085 final value 79.445085 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.600521 iter 10 value 94.025435 iter 20 value 91.648345 iter 30 value 82.563790 iter 40 value 81.901616 iter 50 value 81.326967 iter 60 value 81.025608 iter 70 value 80.793685 iter 80 value 80.353726 iter 90 value 80.042223 iter 100 value 79.828388 final value 79.828388 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.109141 iter 10 value 93.032028 iter 20 value 84.048218 iter 30 value 82.978396 iter 40 value 82.879467 iter 50 value 82.618649 iter 60 value 81.121472 iter 70 value 79.715791 iter 80 value 79.250461 iter 90 value 79.071678 iter 100 value 78.886318 final value 78.886318 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.687720 iter 10 value 94.180342 iter 20 value 88.638396 iter 30 value 84.477531 iter 40 value 82.344791 iter 50 value 81.876041 iter 60 value 81.832654 iter 70 value 81.742778 iter 80 value 81.250664 iter 90 value 80.535615 iter 100 value 79.397068 final value 79.397068 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.566029 final value 94.054760 converged Fitting Repeat 2 # weights: 103 initial value 96.066055 final value 94.054604 converged Fitting Repeat 3 # weights: 103 initial value 95.485897 final value 94.054246 converged Fitting Repeat 4 # weights: 103 initial value 95.741882 iter 10 value 94.054821 iter 20 value 92.396081 iter 30 value 89.545214 iter 40 value 84.758119 iter 50 value 84.631761 iter 60 value 84.467624 iter 70 value 84.460660 iter 80 value 84.455388 final value 84.455166 converged Fitting Repeat 5 # weights: 103 initial value 95.984337 final value 94.054702 converged Fitting Repeat 1 # weights: 305 initial value 98.614021 iter 10 value 94.057704 iter 20 value 94.052956 iter 30 value 94.052914 final value 94.052911 converged Fitting Repeat 2 # weights: 305 initial value 96.706705 iter 10 value 86.001229 iter 20 value 83.611427 iter 30 value 83.576116 iter 40 value 81.090842 iter 50 value 80.950605 iter 60 value 80.945833 iter 70 value 80.572124 iter 80 value 80.304701 iter 90 value 78.980348 iter 100 value 78.754718 final value 78.754718 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.850642 iter 10 value 94.057771 iter 20 value 94.052932 iter 30 value 93.780250 iter 40 value 91.778805 iter 50 value 91.773622 iter 60 value 91.773251 iter 70 value 91.726809 iter 80 value 91.514940 iter 90 value 91.498199 iter 100 value 91.262939 final value 91.262939 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.162582 iter 10 value 93.993132 iter 20 value 93.985491 iter 30 value 88.302700 final value 88.247369 converged Fitting Repeat 5 # weights: 305 initial value 105.634219 iter 10 value 94.057808 iter 20 value 93.783914 iter 30 value 84.986679 iter 40 value 84.276461 final value 84.275268 converged Fitting Repeat 1 # weights: 507 initial value 94.274210 iter 10 value 85.812096 iter 20 value 85.511378 iter 30 value 85.495909 iter 40 value 84.331186 iter 50 value 78.420155 iter 60 value 77.867527 iter 70 value 77.853313 iter 80 value 77.847302 iter 90 value 77.846076 iter 100 value 77.827088 final value 77.827088 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.604145 iter 10 value 94.056528 iter 20 value 93.980653 iter 30 value 91.201952 iter 40 value 91.175111 iter 50 value 87.695481 iter 60 value 81.565706 iter 70 value 81.467297 iter 80 value 80.257729 iter 90 value 80.248817 iter 100 value 79.833127 final value 79.833127 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.712713 iter 10 value 94.040362 iter 20 value 93.232121 final value 87.238025 converged Fitting Repeat 4 # weights: 507 initial value 95.578395 iter 10 value 94.059189 iter 20 value 93.167868 iter 30 value 88.415109 final value 82.583890 converged Fitting Repeat 5 # weights: 507 initial value 94.952197 iter 10 value 94.058497 iter 20 value 94.012407 iter 30 value 93.811418 iter 40 value 93.556064 iter 50 value 85.581971 iter 60 value 80.911022 iter 70 value 78.619462 iter 80 value 78.314654 iter 90 value 78.156879 iter 100 value 78.116501 final value 78.116501 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.556308 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.904094 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.238633 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.956197 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.338323 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.351530 iter 10 value 92.266277 iter 20 value 92.193007 final value 92.193002 converged Fitting Repeat 2 # weights: 305 initial value 102.091785 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 107.549513 iter 10 value 93.772978 final value 93.772973 converged Fitting Repeat 4 # weights: 305 initial value 118.248038 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 97.796025 iter 10 value 93.772973 iter 10 value 93.772973 iter 10 value 93.772973 final value 93.772973 converged Fitting Repeat 1 # weights: 507 initial value 106.750012 iter 10 value 94.450224 iter 20 value 93.793230 final value 93.772973 converged Fitting Repeat 2 # weights: 507 initial value 102.067935 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 122.580416 iter 10 value 91.466406 iter 20 value 86.884571 final value 86.884478 converged Fitting Repeat 4 # weights: 507 initial value 96.736212 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 121.603521 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 96.871575 iter 10 value 94.174384 iter 20 value 86.032820 iter 30 value 85.105708 iter 40 value 84.570196 iter 50 value 83.987188 iter 60 value 83.804564 final value 83.802146 converged Fitting Repeat 2 # weights: 103 initial value 102.259861 iter 10 value 94.486656 iter 20 value 94.042969 iter 30 value 93.976993 iter 40 value 93.976816 iter 50 value 93.329170 iter 60 value 87.149762 iter 70 value 85.222803 iter 80 value 84.677731 iter 90 value 84.534888 iter 100 value 84.507455 final value 84.507455 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.507732 iter 10 value 94.463275 iter 20 value 88.475341 iter 30 value 87.141776 iter 40 value 86.642752 iter 50 value 83.549122 iter 60 value 83.374907 iter 70 value 83.372120 iter 70 value 83.372120 iter 70 value 83.372120 final value 83.372120 converged Fitting Repeat 4 # weights: 103 initial value 100.388055 iter 10 value 92.594762 iter 20 value 86.189095 iter 30 value 85.693369 iter 40 value 85.615017 iter 50 value 84.522951 iter 60 value 83.720426 iter 70 value 83.675832 iter 80 value 83.447575 iter 90 value 83.364277 final value 83.363764 converged Fitting Repeat 5 # weights: 103 initial value 106.656159 iter 10 value 94.001014 iter 20 value 91.812309 iter 30 value 87.324091 iter 40 value 86.722625 iter 50 value 85.746584 iter 60 value 84.464604 iter 70 value 82.992172 iter 80 value 82.734109 iter 90 value 82.686479 iter 90 value 82.686479 iter 90 value 82.686479 final value 82.686479 converged Fitting Repeat 1 # weights: 305 initial value 102.576053 iter 10 value 94.754002 iter 20 value 94.455480 iter 30 value 93.784808 iter 40 value 91.066088 iter 50 value 86.458317 iter 60 value 84.105372 iter 70 value 82.255419 iter 80 value 81.589770 iter 90 value 81.189237 iter 100 value 81.168935 final value 81.168935 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.465954 iter 10 value 94.405518 iter 20 value 90.495663 iter 30 value 86.459725 iter 40 value 85.304578 iter 50 value 84.739847 iter 60 value 83.993933 iter 70 value 83.511475 iter 80 value 83.370493 iter 90 value 83.244453 iter 100 value 83.208433 final value 83.208433 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.994867 iter 10 value 94.463684 iter 20 value 86.111708 iter 30 value 85.684917 iter 40 value 84.008262 iter 50 value 82.462755 iter 60 value 82.174014 iter 70 value 81.541218 iter 80 value 81.359879 iter 90 value 81.345325 iter 100 value 81.332412 final value 81.332412 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.314766 iter 10 value 94.513585 iter 20 value 90.033937 iter 30 value 85.333844 iter 40 value 83.741080 iter 50 value 83.231833 iter 60 value 82.885037 iter 70 value 82.015935 iter 80 value 81.749295 iter 90 value 81.511437 iter 100 value 81.503290 final value 81.503290 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.337779 iter 10 value 94.434545 iter 20 value 89.998008 iter 30 value 85.390237 iter 40 value 84.946007 iter 50 value 84.688965 iter 60 value 83.390995 iter 70 value 82.683271 iter 80 value 82.081025 iter 90 value 81.558256 iter 100 value 81.471896 final value 81.471896 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 139.714113 iter 10 value 94.546408 iter 20 value 91.449009 iter 30 value 85.387652 iter 40 value 82.916989 iter 50 value 82.324094 iter 60 value 81.791390 iter 70 value 81.610853 iter 80 value 80.990188 iter 90 value 80.706218 iter 100 value 80.641036 final value 80.641036 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.130025 iter 10 value 94.922296 iter 20 value 90.907692 iter 30 value 88.121057 iter 40 value 83.677172 iter 50 value 82.486640 iter 60 value 81.571164 iter 70 value 81.029057 iter 80 value 80.831127 iter 90 value 80.769950 iter 100 value 80.711017 final value 80.711017 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.825933 iter 10 value 92.394628 iter 20 value 87.355205 iter 30 value 85.848510 iter 40 value 85.685774 iter 50 value 84.356883 iter 60 value 82.606234 iter 70 value 81.760519 iter 80 value 81.474146 iter 90 value 81.320803 iter 100 value 81.221399 final value 81.221399 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.240027 iter 10 value 94.857544 iter 20 value 94.060546 iter 30 value 93.171632 iter 40 value 87.340318 iter 50 value 86.320540 iter 60 value 85.925687 iter 70 value 83.857729 iter 80 value 83.672670 iter 90 value 83.275872 iter 100 value 81.791235 final value 81.791235 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 118.380498 iter 10 value 94.942135 iter 20 value 93.785290 iter 30 value 93.579813 iter 40 value 89.530757 iter 50 value 85.803633 iter 60 value 84.390545 iter 70 value 83.728474 iter 80 value 82.859448 iter 90 value 81.445238 iter 100 value 81.064221 final value 81.064221 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.253246 final value 94.485774 converged Fitting Repeat 2 # weights: 103 initial value 104.735830 final value 94.485873 converged Fitting Repeat 3 # weights: 103 initial value 97.365061 final value 94.485743 converged Fitting Repeat 4 # weights: 103 initial value 108.666199 iter 10 value 94.486031 iter 20 value 94.484281 iter 30 value 94.179841 final value 93.773483 converged Fitting Repeat 5 # weights: 103 initial value 106.384501 iter 10 value 94.485716 final value 94.484561 converged Fitting Repeat 1 # weights: 305 initial value 102.031492 iter 10 value 91.574930 iter 20 value 86.502183 iter 30 value 86.396381 iter 40 value 86.393190 iter 50 value 86.151665 iter 60 value 85.578926 iter 70 value 85.572708 iter 80 value 85.042570 iter 90 value 84.679275 iter 100 value 83.863042 final value 83.863042 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.564643 iter 10 value 94.487902 iter 20 value 94.484683 final value 94.484678 converged Fitting Repeat 3 # weights: 305 initial value 109.351916 iter 10 value 94.520778 iter 20 value 94.488427 iter 30 value 94.119813 iter 40 value 94.095064 iter 50 value 84.375758 iter 60 value 84.328794 iter 70 value 83.621629 iter 80 value 83.621384 iter 90 value 83.620981 final value 83.620102 converged Fitting Repeat 4 # weights: 305 initial value 97.655854 iter 10 value 94.489388 iter 20 value 92.970753 iter 30 value 92.919162 iter 40 value 92.917947 final value 92.917935 converged Fitting Repeat 5 # weights: 305 initial value 103.788476 iter 10 value 94.488986 iter 20 value 94.200801 iter 30 value 88.292815 iter 40 value 86.670413 final value 86.527768 converged Fitting Repeat 1 # weights: 507 initial value 95.265092 iter 10 value 93.781258 iter 20 value 93.778410 iter 30 value 88.550679 iter 40 value 87.334712 iter 50 value 85.279808 iter 60 value 85.173879 final value 85.173145 converged Fitting Repeat 2 # weights: 507 initial value 99.346568 iter 10 value 94.491937 iter 20 value 94.310348 iter 30 value 90.600610 iter 40 value 89.786007 iter 50 value 85.550530 iter 60 value 83.340941 iter 70 value 82.910268 iter 80 value 82.701477 iter 90 value 82.630621 iter 100 value 82.630066 final value 82.630066 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.163144 iter 10 value 89.202822 iter 20 value 89.083634 iter 30 value 87.345457 iter 40 value 87.339339 iter 50 value 86.895642 iter 60 value 85.935099 iter 70 value 85.902938 iter 80 value 85.486356 iter 90 value 85.483779 iter 100 value 85.483664 final value 85.483664 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.322488 iter 10 value 93.730974 iter 20 value 93.730524 iter 30 value 93.729856 iter 40 value 93.726091 iter 50 value 93.716312 final value 93.715409 converged Fitting Repeat 5 # weights: 507 initial value 102.359065 iter 10 value 94.492470 iter 20 value 94.484538 iter 30 value 92.783460 iter 40 value 85.957980 iter 50 value 85.363096 iter 60 value 84.930107 iter 70 value 82.932467 iter 80 value 82.922798 iter 90 value 82.919721 iter 100 value 82.874838 final value 82.874838 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 129.466989 iter 10 value 117.986745 iter 20 value 115.302614 iter 30 value 110.292342 iter 40 value 109.727306 iter 50 value 106.571647 iter 60 value 105.125196 iter 70 value 104.471457 iter 80 value 104.298119 iter 90 value 103.373299 iter 100 value 101.823437 final value 101.823437 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 138.422864 iter 10 value 118.671851 iter 20 value 116.732700 iter 30 value 110.162753 iter 40 value 109.486123 iter 50 value 105.929572 iter 60 value 103.595151 iter 70 value 102.134534 iter 80 value 101.619177 iter 90 value 101.221632 iter 100 value 101.043928 final value 101.043928 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 132.456362 iter 10 value 117.909812 iter 20 value 113.660327 iter 30 value 111.861745 iter 40 value 105.989196 iter 50 value 103.206530 iter 60 value 102.151019 iter 70 value 101.581403 iter 80 value 101.225519 iter 90 value 101.077854 iter 100 value 101.044002 final value 101.044002 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 155.930271 iter 10 value 122.019406 iter 20 value 115.166088 iter 30 value 114.255279 iter 40 value 113.976540 iter 50 value 113.832317 iter 60 value 112.762589 iter 70 value 108.410848 iter 80 value 104.794737 iter 90 value 103.328249 iter 100 value 102.424487 final value 102.424487 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 147.924078 iter 10 value 119.191416 iter 20 value 118.653416 iter 30 value 111.748713 iter 40 value 110.277814 iter 50 value 107.706081 iter 60 value 107.445708 iter 70 value 107.006089 iter 80 value 105.022580 iter 90 value 103.006860 iter 100 value 101.824089 final value 101.824089 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Sep 3 21:33:38 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 38.574 1.528 139.922
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 29.132 | 1.559 | 30.907 | |
FreqInteractors | 0.175 | 0.009 | 0.186 | |
calculateAAC | 0.028 | 0.005 | 0.034 | |
calculateAutocor | 0.278 | 0.064 | 0.346 | |
calculateCTDC | 0.061 | 0.004 | 0.066 | |
calculateCTDD | 0.454 | 0.024 | 0.480 | |
calculateCTDT | 0.180 | 0.010 | 0.193 | |
calculateCTriad | 0.292 | 0.026 | 0.319 | |
calculateDC | 0.070 | 0.007 | 0.078 | |
calculateF | 0.265 | 0.014 | 0.280 | |
calculateKSAAP | 0.083 | 0.010 | 0.093 | |
calculateQD_Sm | 1.353 | 0.100 | 1.470 | |
calculateTC | 1.614 | 0.200 | 1.840 | |
calculateTC_Sm | 0.196 | 0.016 | 0.215 | |
corr_plot | 27.842 | 1.577 | 29.659 | |
enrichfindP | 0.382 | 0.047 | 17.618 | |
enrichfind_hp | 0.059 | 0.025 | 0.899 | |
enrichplot | 0.293 | 0.005 | 0.300 | |
filter_missing_values | 0.001 | 0.000 | 0.002 | |
getFASTA | 0.052 | 0.011 | 7.068 | |
getHPI | 0.000 | 0.001 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.001 | 0.001 | |
plotPPI | 0.055 | 0.002 | 0.058 | |
pred_ensembel | 11.212 | 0.413 | 9.954 | |
var_imp | 31.702 | 1.755 | 33.746 | |