Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-10-16 11:39 -0400 (Thu, 16 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4833
merida1macOS 12.7.6 Montereyx86_644.5.1 RC (2025-06-05 r88288) -- "Great Square Root" 4614
kjohnson1macOS 13.7.5 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4555
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4586
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2013/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.18.2  (landing page)
Joshua David Campbell
Snapshot Date: 2025-10-13 13:40 -0400 (Mon, 13 Oct 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_21
git_last_commit: 6d6c3dd3
git_last_commit_date: 2025-09-25 17:05:42 -0400 (Thu, 25 Sep 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.6 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.7.5 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    ERROR  


CHECK results for singleCellTK on merida1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.18.2
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.18.2.tar.gz
StartedAt: 2025-10-14 10:32:03 -0400 (Tue, 14 Oct 2025)
EndedAt: 2025-10-14 11:03:29 -0400 (Tue, 14 Oct 2025)
EllapsedTime: 1885.9 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.18.2.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.1 RC (2025-06-05 r88288)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.18.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 79 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 88.701  0.758  89.899
plotDoubletFinderResults 54.696  0.254  56.414
plotScDblFinderResults   50.379  1.000  54.172
runDoubletFinder         46.626  0.186  47.700
runScDblFinder           32.658  0.398  33.129
importExampleData        22.345  2.115  25.460
plotBatchCorrCompare     18.826  0.163  19.106
plotScdsHybridResults    15.495  0.217  16.984
plotBcdsResults          14.227  0.252  14.570
plotDecontXResults       13.307  0.099  13.580
plotDEGViolin            13.143  0.207  13.928
plotTSCANClusterDEG      12.310  0.116  13.552
plotCxdsResults          11.771  0.087  12.054
plotDEGRegression        11.371  0.201  12.810
plotEmptyDropsScatter    10.234  0.043  11.094
plotEmptyDropsResults    10.175  0.035  10.587
plotFindMarkerHeatmap     9.656  0.043  10.112
runDecontX                9.404  0.071   9.637
runUMAP                   9.312  0.106   9.637
runEmptyDrops             9.321  0.029   9.696
plotUMAP                  9.142  0.081   9.837
convertSCEToSeurat        8.794  0.316   9.176
detectCellOutlier         7.702  0.171   7.905
plotRunPerCellQCResults   7.366  0.037   7.429
runSeuratSCTransform      7.119  0.123   7.303
plotDEGHeatmap            5.382  0.080   6.045
getEnrichRResult          0.666  0.058  14.287
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.18.2’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.336   0.112   0.417 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
547.876  10.769 573.845 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0020.005
SEG0.0050.0050.010
calcEffectSizes0.4300.0310.464
combineSCE1.6240.0261.654
computeZScore0.3900.0170.408
convertSCEToSeurat8.7940.3169.176
convertSeuratToSCE0.6960.0120.710
dedupRowNames0.1150.0030.119
detectCellOutlier7.7020.1717.905
diffAbundanceFET0.0970.0040.102
discreteColorPalette0.0110.0010.011
distinctColors0.0040.0010.004
downSampleCells1.0390.1031.148
downSampleDepth0.8520.0550.909
expData-ANY-character-method0.2780.0070.286
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3630.0080.372
expData-set0.3510.0070.359
expData0.2830.0060.291
expDataNames-ANY-method0.2530.0100.263
expDataNames0.2680.0270.296
expDeleteDataTag0.0590.0040.063
expSetDataTag0.0420.0050.046
expTaggedData0.0450.0040.049
exportSCE0.0390.0060.046
exportSCEtoAnnData0.1230.0110.134
exportSCEtoFlatFile0.1120.0080.122
featureIndex0.0630.0100.074
generateSimulatedData0.0890.0100.099
getBiomarker0.1040.0140.119
getDEGTopTable1.5480.1111.664
getDiffAbundanceResults0.0850.0030.088
getEnrichRResult 0.666 0.05814.287
getFindMarkerTopTable3.2460.0493.298
getMSigDBTable0.0070.0070.014
getPathwayResultNames0.0450.0060.050
getSampleSummaryStatsTable0.3930.0060.399
getSoupX0.0000.0000.001
getTSCANResults2.2950.0712.398
getTopHVG1.6880.0251.786
importAnnData0.0030.0000.004
importBUStools0.4330.0090.458
importCellRanger1.6650.0461.833
importCellRangerV2Sample0.3320.0030.335
importCellRangerV3Sample0.6330.0190.653
importDropEst0.4320.0050.438
importExampleData22.345 2.11525.460
importGeneSetsFromCollection1.5980.1321.736
importGeneSetsFromGMT0.1330.0100.146
importGeneSetsFromList0.2740.0190.293
importGeneSetsFromMSigDB88.701 0.75889.899
importMitoGeneSet0.1020.0140.117
importOptimus0.0030.0010.004
importSEQC0.3270.0310.361
importSTARsolo0.3550.0380.393
iterateSimulations0.3950.0410.437
listSampleSummaryStatsTables0.5870.0660.659
mergeSCEColData0.9130.1251.050
mouseBrainSubsetSCE0.0630.0090.072
msigdb_table0.0020.0040.006
plotBarcodeRankDropsResults1.9550.0401.999
plotBarcodeRankScatter2.0220.0222.049
plotBatchCorrCompare18.826 0.16319.106
plotBatchVariance1.0840.0341.121
plotBcdsResults14.227 0.25214.570
plotBubble1.8240.0161.843
plotClusterAbundance3.3500.0173.386
plotCxdsResults11.771 0.08712.054
plotDEGHeatmap5.3820.0806.045
plotDEGRegression11.371 0.20112.810
plotDEGViolin13.143 0.20713.928
plotDEGVolcano2.0430.0202.070
plotDecontXResults13.307 0.09913.580
plotDimRed0.6800.0110.742
plotDoubletFinderResults54.696 0.25456.414
plotEmptyDropsResults10.175 0.03510.587
plotEmptyDropsScatter10.234 0.04311.094
plotFindMarkerHeatmap 9.656 0.04310.112
plotMASTThresholdGenes3.0200.0373.060
plotPCA0.9600.0150.976
plotPathway1.5260.0141.546
plotRunPerCellQCResults7.3660.0377.429
plotSCEBarAssayData0.6110.0090.625
plotSCEBarColData0.5330.0080.544
plotSCEBatchFeatureMean0.9520.0050.961
plotSCEDensity0.7070.0090.718
plotSCEDensityAssayData0.6970.0100.708
plotSCEDensityColData0.6780.0100.689
plotSCEDimReduceColData1.6950.0161.772
plotSCEDimReduceFeatures0.8950.0100.907
plotSCEHeatmap0.9130.0080.923
plotSCEScatter0.7760.0130.789
plotSCEViolin0.8830.0120.897
plotSCEViolinAssayData0.8610.0100.872
plotSCEViolinColData0.8640.0140.884
plotScDblFinderResults50.379 1.00054.172
plotScanpyDotPlot0.0380.0050.050
plotScanpyEmbedding0.0390.0050.049
plotScanpyHVG0.0410.0050.049
plotScanpyHeatmap0.0390.0030.047
plotScanpyMarkerGenes0.0390.0050.052
plotScanpyMarkerGenesDotPlot0.0390.0050.046
plotScanpyMarkerGenesHeatmap0.0390.0050.045
plotScanpyMarkerGenesMatrixPlot0.0410.0040.053
plotScanpyMarkerGenesViolin0.0400.0050.050
plotScanpyMatrixPlot0.0400.0040.045
plotScanpyPCA0.0400.0040.046
plotScanpyPCAGeneRanking0.0450.0050.059
plotScanpyPCAVariance0.0430.0040.054
plotScanpyViolin0.0430.0040.052
plotScdsHybridResults15.495 0.21716.984
plotScrubletResults0.0420.0040.052
plotSeuratElbow0.0430.0060.057
plotSeuratHVG0.0400.0050.051
plotSeuratJackStraw0.0410.0060.050
plotSeuratReduction0.0440.0030.053
plotSoupXResults0.0000.0010.001
plotTSCANClusterDEG12.310 0.11613.552
plotTSCANClusterPseudo3.3350.0343.673
plotTSCANDimReduceFeatures3.3670.0373.731
plotTSCANPseudotimeGenes4.1540.0394.479
plotTSCANPseudotimeHeatmap3.0920.0333.363
plotTSCANResults3.0100.0333.278
plotTSNE0.9190.0181.014
plotTopHVG1.4360.0261.552
plotUMAP9.1420.0819.837
readSingleCellMatrix0.0110.0010.012
reportCellQC0.1800.0070.195
reportDropletQC0.0410.0050.046
reportQCTool0.1750.0070.192
retrieveSCEIndex0.0500.0060.062
runBBKNN0.0000.0000.001
runBarcodeRankDrops0.4710.0100.536
runBcds3.3410.0673.629
runCellQC0.1710.0060.187
runClusterSummaryMetrics0.8900.0210.928
runComBatSeq0.9770.0211.003
runCxds0.7220.0150.740
runCxdsBcdsHybrid3.4160.1103.539
runDEAnalysis0.9240.0741.009
runDecontX9.4040.0719.637
runDimReduce0.6250.0110.639
runDoubletFinder46.626 0.18647.700
runDropletQC0.0440.0050.066
runEmptyDrops9.3210.0299.696
runEnrichR0.6340.0474.628
runFastMNN3.8430.0653.920
runFeatureSelection0.4370.0090.447
runFindMarker3.1040.0453.156
runGSVA1.4140.0471.465
runHarmony0.0840.0020.086
runKMeans0.4740.0180.492
runLimmaBC0.1740.0030.177
runMNNCorrect0.8590.0060.872
runModelGeneVar0.6690.0090.692
runNormalization3.3720.0413.485
runPerCellQC0.6710.0110.683
runSCANORAMA0.0000.0010.001
runSCMerge0.0070.0020.008
runScDblFinder32.658 0.39833.129
runScanpyFindClusters0.0380.0040.043
runScanpyFindHVG0.0400.0040.043
runScanpyFindMarkers0.0390.0050.044
runScanpyNormalizeData0.2130.0060.220
runScanpyPCA0.0450.0040.050
runScanpyScaleData0.0400.0030.044
runScanpyTSNE0.0530.0030.056
runScanpyUMAP0.0430.0030.046
runScranSNN0.6520.0140.669
runScrublet0.0410.0070.049
runSeuratFindClusters0.0420.0050.047
runSeuratFindHVG1.0480.0161.069
runSeuratHeatmap0.0400.0030.043
runSeuratICA0.0420.0030.045
runSeuratJackStraw0.0410.0020.044
runSeuratNormalizeData0.0410.0080.049
runSeuratPCA0.0480.0030.050
runSeuratSCTransform7.1190.1237.303
runSeuratScaleData0.0400.0050.045
runSeuratUMAP0.0380.0050.043
runSingleR0.0810.0040.086
runSoupX0.0010.0010.001
runTSCAN1.5340.0201.563
runTSCANClusterDEAnalysis1.7230.0361.779
runTSCANDEG1.6950.0561.762
runTSNE1.3170.0191.360
runUMAP9.3120.1069.637
runVAM0.6890.0090.828
runZINBWaVE0.0070.0010.008
sampleSummaryStats0.3630.0110.412
scaterCPM0.2120.0080.221
scaterPCA1.0040.0111.017
scaterlogNormCounts0.4280.0080.437
sce0.0360.0050.042
sctkListGeneSetCollections0.1610.0090.170
sctkPythonInstallConda0.0000.0000.001
sctkPythonInstallVirtualEnv0.0000.0000.001
selectSCTKConda0.0010.0010.001
selectSCTKVirtualEnvironment0.0000.0000.001
setRowNames0.1770.0050.182
setSCTKDisplayRow0.9790.0261.008
singleCellTK0.0000.0010.001
subDiffEx0.6450.0310.678
subsetSCECols0.1730.0090.183
subsetSCERows0.5490.0290.579
summarizeSCE0.1260.0120.139
trimCounts0.3380.0170.356