Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-04-22 13:18 -0400 (Tue, 22 Apr 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4831
palomino7Windows Server 2022 Datacenterx644.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" 4573
lconwaymacOS 12.7.1 Montereyx86_644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4599
kjohnson3macOS 13.7.1 Venturaarm644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4553
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4570
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2013/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.18.0  (landing page)
Joshua David Campbell
Snapshot Date: 2025-04-21 13:40 -0400 (Mon, 21 Apr 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_21
git_last_commit: e453fa1
git_last_commit_date: 2025-04-15 13:34:17 -0400 (Tue, 15 Apr 2025)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  NO, package depends on 'MAST' which is not available
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  NO, package depends on 'batchelor' which is only available as a source package that needs compilation
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  NO, package depends on 'MAST' which is not available
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'DelayedArray' which is only available as a source package that needs compilation
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on kjohnson3

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.18.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.18.0.tar.gz
StartedAt: 2025-04-21 21:43:21 -0400 (Mon, 21 Apr 2025)
EndedAt: 2025-04-21 21:49:19 -0400 (Mon, 21 Apr 2025)
EllapsedTime: 358.2 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.18.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.0 RC (2025-04-04 r88126)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.18.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 79 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 15.906  0.081  16.067
runDoubletFinder         14.975  0.067  15.194
plotScDblFinderResults   14.751  0.240  15.070
runScDblFinder            9.992  0.180  10.239
importExampleData         5.142  0.441   6.062
plotBatchCorrCompare      4.978  0.045   5.100
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.18.0’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.071   0.021   0.088 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
100.513   2.509 105.726 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0010.0020.003
SEG0.0010.0010.002
calcEffectSizes0.0750.0050.079
combineSCE0.2380.0050.243
computeZScore0.0930.0020.095
convertSCEToSeurat1.5060.0631.573
convertSeuratToSCE0.1240.0030.127
dedupRowNames0.0220.0010.022
detectCellOutlier2.3010.0372.354
diffAbundanceFET0.0240.0010.026
discreteColorPalette0.0020.0000.002
distinctColors0.0000.0000.001
downSampleCells0.2070.0190.231
downSampleDepth0.1500.0110.162
expData-ANY-character-method0.0410.0020.044
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.0540.0020.055
expData-set0.0460.0010.047
expData0.0420.0020.043
expDataNames-ANY-method0.0380.0020.040
expDataNames0.0400.0020.042
expDeleteDataTag0.0180.0010.019
expSetDataTag0.0130.0010.014
expTaggedData0.0120.0010.013
exportSCE0.0110.0020.013
exportSCEtoAnnData0.0420.0020.043
exportSCEtoFlatFile0.0410.0010.042
featureIndex0.0170.0030.018
generateSimulatedData0.0230.0020.025
getBiomarker0.0250.0020.027
getDEGTopTable0.2320.0170.249
getDiffAbundanceResults0.0210.0020.022
getEnrichRResult0.1130.0203.032
getFindMarkerTopTable0.4480.0110.459
getMSigDBTable0.0020.0010.003
getPathwayResultNames0.0120.0020.015
getSampleSummaryStatsTable0.0750.0020.078
getSoupX000
getTSCANResults0.3430.0130.358
getTopHVG0.2840.0050.306
importAnnData0.0010.0000.001
importBUStools0.0440.0010.047
importCellRanger0.2510.0100.263
importCellRangerV2Sample0.0430.0010.044
importCellRangerV3Sample0.1010.0040.106
importDropEst0.0640.0010.065
importExampleData5.1420.4416.062
importGeneSetsFromCollection0.2530.0330.288
importGeneSetsFromGMT0.0260.0030.029
importGeneSetsFromList0.0400.0040.044
importGeneSetsFromMSigDB0.3100.0180.329
importMitoGeneSet0.0190.0030.023
importOptimus0.0010.0000.001
importSEQC0.0440.0000.045
importSTARsolo0.0410.0010.043
iterateSimulations0.0620.0040.067
listSampleSummaryStatsTables0.0860.0030.089
mergeSCEColData0.1100.0110.124
mouseBrainSubsetSCE0.0190.0020.022
msigdb_table0.0010.0020.002
plotBarcodeRankDropsResults0.2330.0080.241
plotBarcodeRankScatter0.1940.0030.197
plotBatchCorrCompare4.9780.0455.100
plotBatchVariance0.1120.0080.121
plotBcdsResults3.4080.0733.508
plotBubble0.2490.0180.267
plotClusterAbundance0.2610.0020.263
plotCxdsResults2.6890.0292.745
plotDEGHeatmap0.7230.0250.748
plotDEGRegression1.1710.0381.019
plotDEGViolin1.3970.0651.290
plotDEGVolcano0.2950.0050.299
plotDecontXResults3.2060.0253.234
plotDimRed0.0690.0020.070
plotDoubletFinderResults15.906 0.08116.067
plotEmptyDropsResults2.1150.0072.123
plotEmptyDropsScatter2.0720.0052.078
plotFindMarkerHeatmap1.2260.0091.251
plotMASTThresholdGenes0.4050.0100.419
plotPCA0.1000.0030.104
plotPathway0.1640.0030.169
plotRunPerCellQCResults0.6240.0080.637
plotSCEBarAssayData0.0740.0040.078
plotSCEBarColData0.0500.0030.056
plotSCEBatchFeatureMean0.0670.0010.069
plotSCEDensity0.0780.0040.084
plotSCEDensityAssayData0.0600.0030.063
plotSCEDensityColData0.0720.0030.075
plotSCEDimReduceColData0.1770.0050.183
plotSCEDimReduceFeatures0.0880.0040.092
plotSCEHeatmap0.1270.0030.130
plotSCEScatter0.0880.0040.092
plotSCEViolin0.0880.0030.090
plotSCEViolinAssayData0.0990.0030.102
plotSCEViolinColData0.0830.0040.086
plotScDblFinderResults14.751 0.24015.070
plotScanpyDotPlot0.0130.0020.014
plotScanpyEmbedding0.0120.0010.012
plotScanpyHVG0.0120.0010.013
plotScanpyHeatmap0.0120.0020.013
plotScanpyMarkerGenes0.0120.0010.013
plotScanpyMarkerGenesDotPlot0.0120.0020.013
plotScanpyMarkerGenesHeatmap0.0110.0010.012
plotScanpyMarkerGenesMatrixPlot0.0110.0010.012
plotScanpyMarkerGenesViolin0.0110.0010.012
plotScanpyMatrixPlot0.0110.0020.012
plotScanpyPCA0.0110.0010.012
plotScanpyPCAGeneRanking0.0120.0010.012
plotScanpyPCAVariance0.0110.0010.012
plotScanpyViolin0.0120.0010.012
plotScdsHybridResults3.6150.0513.735
plotScrubletResults0.0120.0010.014
plotSeuratElbow0.0110.0000.012
plotSeuratHVG0.0110.0010.011
plotSeuratJackStraw0.0110.0010.011
plotSeuratReduction0.0110.0010.012
plotSoupXResults000
plotTSCANClusterDEG1.1320.0271.162
plotTSCANClusterPseudo0.3670.0080.377
plotTSCANDimReduceFeatures0.3680.0080.378
plotTSCANPseudotimeGenes0.4040.0060.411
plotTSCANPseudotimeHeatmap0.4180.0080.439
plotTSCANResults0.3570.0070.366
plotTSNE0.1080.0030.112
plotTopHVG0.1740.0060.179
plotUMAP3.1240.0223.237
readSingleCellMatrix0.0020.0000.002
reportCellQC0.0290.0020.030
reportDropletQC0.0120.0010.013
reportQCTool0.0280.0010.030
retrieveSCEIndex0.0140.0010.015
runBBKNN000
runBarcodeRankDrops0.0750.0020.077
runBcds0.6010.0320.645
runCellQC0.0300.0020.032
runClusterSummaryMetrics0.1170.0070.125
runComBatSeq0.1670.0090.180
runCxds0.1180.0100.128
runCxdsBcdsHybrid0.6660.0300.696
runDEAnalysis0.1340.0040.139
runDecontX2.9810.0223.030
runDimReduce0.0970.0050.110
runDoubletFinder14.975 0.06715.194
runDropletQC0.0130.0020.013
runEmptyDrops2.0130.0022.016
runEnrichR0.1130.0242.314
runFastMNN0.6100.0300.645
runFeatureSelection0.0800.0060.088
runFindMarker0.4250.0110.436
runGSVA0.2650.0140.281
runHarmony0.0120.0010.013
runKMeans0.0620.0040.067
runLimmaBC0.0230.0010.027
runMNNCorrect0.1300.0030.135
runModelGeneVar0.1030.0030.110
runNormalization1.0750.0651.184
runPerCellQC0.1070.0030.110
runSCANORAMA000
runSCMerge0.0020.0000.002
runScDblFinder 9.992 0.18010.239
runScanpyFindClusters0.0130.0020.015
runScanpyFindHVG0.0120.0020.013
runScanpyFindMarkers0.0120.0010.013
runScanpyNormalizeData0.0360.0020.038
runScanpyPCA0.0120.0010.013
runScanpyScaleData0.0120.0020.012
runScanpyTSNE0.0130.0030.015
runScanpyUMAP0.0130.0020.015
runScranSNN0.0950.0040.099
runScrublet0.0120.0010.013
runSeuratFindClusters0.0110.0010.013
runSeuratFindHVG0.1530.0060.158
runSeuratHeatmap0.0120.0030.014
runSeuratICA0.0120.0020.013
runSeuratJackStraw0.0130.0030.017
runSeuratNormalizeData0.0130.0010.013
runSeuratPCA0.0110.0010.012
runSeuratSCTransform2.2380.0612.305
runSeuratScaleData0.0120.0010.013
runSeuratUMAP0.0120.0010.012
runSingleR0.0120.0010.013
runSoupX000
runTSCAN0.2070.0050.224
runTSCANClusterDEAnalysis0.2400.0130.259
runTSCANDEG0.2270.0120.239
runTSNE0.2830.0100.294
runUMAP3.0710.0213.135
runVAM0.0930.0020.096
runZINBWaVE0.0010.0010.002
sampleSummaryStats0.0530.0010.054
scaterCPM0.0550.0020.058
scaterPCA0.1390.0040.142
scaterlogNormCounts0.0900.0040.094
sce0.0130.0040.016
sctkListGeneSetCollections0.0280.0030.031
sctkPythonInstallConda0.0000.0000.001
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment0.0000.0000.001
setRowNames0.0310.0010.032
setSCTKDisplayRow0.1150.0050.121
singleCellTK000
subDiffEx0.1240.0120.139
subsetSCECols0.0290.0030.032
subsetSCERows0.0880.0070.097
summarizeSCE0.0270.0010.029
trimCounts0.0780.0030.082