| Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-09-11 11:39 -0400 (Thu, 11 Sep 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4824 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" | 4606 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4547 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.14.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz |
| StartedAt: 2025-09-09 04:55:00 -0400 (Tue, 09 Sep 2025) |
| EndedAt: 2025-09-09 05:03:56 -0400 (Tue, 09 Sep 2025) |
| EllapsedTime: 536.4 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’
* using R version 4.5.1 RC (2025-06-05 r88288)
* using platform: x86_64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 52.445 1.937 56.415
corr_plot 50.389 1.874 53.687
FSmethod 49.986 1.883 52.512
pred_ensembel 24.939 0.392 22.578
enrichfindP 0.874 0.078 13.898
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 112.457687
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 94.799694
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 95.789580
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 109.441173
final value 94.482478
converged
Fitting Repeat 5
# weights: 103
initial value 120.622382
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 108.119539
iter 10 value 85.976083
final value 85.840146
converged
Fitting Repeat 2
# weights: 305
initial value 100.947825
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 95.783384
iter 10 value 93.530228
iter 20 value 93.504298
iter 30 value 93.503451
final value 93.503449
converged
Fitting Repeat 4
# weights: 305
initial value 100.205564
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 101.339147
iter 10 value 94.354423
final value 94.354396
converged
Fitting Repeat 1
# weights: 507
initial value 103.794621
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 114.633229
iter 10 value 93.599792
final value 93.599711
converged
Fitting Repeat 3
# weights: 507
initial value 112.674567
final value 93.599711
converged
Fitting Repeat 4
# weights: 507
initial value 98.313484
iter 10 value 94.275928
iter 20 value 86.427964
iter 30 value 83.720442
final value 83.720430
converged
Fitting Repeat 5
# weights: 507
initial value 97.717927
iter 10 value 94.385742
final value 94.354404
converged
Fitting Repeat 1
# weights: 103
initial value 97.408130
iter 10 value 94.506927
iter 20 value 94.395036
iter 30 value 84.771117
iter 40 value 83.547798
iter 50 value 82.695928
iter 60 value 82.393379
iter 70 value 82.232251
iter 80 value 82.109145
iter 90 value 82.027065
iter 100 value 81.804377
final value 81.804377
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 103.509521
iter 10 value 94.490827
iter 20 value 94.302412
iter 30 value 89.932825
iter 40 value 85.058883
iter 50 value 84.155752
iter 60 value 83.020814
iter 70 value 82.097409
iter 80 value 81.965154
iter 90 value 81.915372
iter 100 value 81.867235
final value 81.867235
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.826887
iter 10 value 94.417543
iter 20 value 93.866212
iter 30 value 88.610541
iter 40 value 86.800061
iter 50 value 83.188200
iter 60 value 82.676995
iter 70 value 82.361169
iter 80 value 82.180965
iter 90 value 82.070403
iter 100 value 81.889278
final value 81.889278
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.399900
iter 10 value 94.468364
iter 20 value 93.233989
iter 30 value 92.250507
iter 40 value 92.117184
iter 50 value 92.106843
final value 92.106583
converged
Fitting Repeat 5
# weights: 103
initial value 98.401828
iter 10 value 94.484703
iter 20 value 94.075604
iter 30 value 88.659219
iter 40 value 87.213090
iter 50 value 86.889075
iter 60 value 84.848986
iter 70 value 84.068349
iter 80 value 83.974759
iter 90 value 83.786960
iter 100 value 83.631239
final value 83.631239
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 115.866365
iter 10 value 94.469494
iter 20 value 88.270788
iter 30 value 85.054380
iter 40 value 84.209077
iter 50 value 83.524676
iter 60 value 83.335416
iter 70 value 83.283341
iter 80 value 83.219600
iter 90 value 82.683978
iter 100 value 81.757066
final value 81.757066
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.307427
iter 10 value 95.491330
iter 20 value 92.526178
iter 30 value 91.094650
iter 40 value 88.970783
iter 50 value 86.042237
iter 60 value 83.374597
iter 70 value 82.879619
iter 80 value 82.514810
iter 90 value 81.790045
iter 100 value 81.202711
final value 81.202711
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.108651
iter 10 value 94.697659
iter 20 value 88.187037
iter 30 value 85.101005
iter 40 value 82.984495
iter 50 value 80.855893
iter 60 value 80.657540
iter 70 value 80.546406
iter 80 value 80.414177
iter 90 value 80.304304
iter 100 value 80.142977
final value 80.142977
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.931690
iter 10 value 94.709580
iter 20 value 89.529219
iter 30 value 87.675046
iter 40 value 83.343117
iter 50 value 81.665852
iter 60 value 81.145597
iter 70 value 80.713926
iter 80 value 80.622425
iter 90 value 80.479645
iter 100 value 80.453215
final value 80.453215
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.578040
iter 10 value 94.491547
iter 20 value 90.434654
iter 30 value 87.493523
iter 40 value 86.543729
iter 50 value 86.200076
iter 60 value 84.453778
iter 70 value 81.638590
iter 80 value 81.263437
iter 90 value 81.169927
iter 100 value 81.115764
final value 81.115764
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 114.627674
iter 10 value 94.471726
iter 20 value 94.338034
iter 30 value 85.943991
iter 40 value 85.362563
iter 50 value 84.870194
iter 60 value 83.526860
iter 70 value 81.397234
iter 80 value 80.708889
iter 90 value 80.400214
iter 100 value 80.091746
final value 80.091746
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 124.729792
iter 10 value 94.514713
iter 20 value 86.678540
iter 30 value 85.049605
iter 40 value 84.044389
iter 50 value 83.057568
iter 60 value 81.752840
iter 70 value 81.176851
iter 80 value 80.678892
iter 90 value 80.532781
iter 100 value 80.465037
final value 80.465037
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 117.710280
iter 10 value 94.782733
iter 20 value 93.640607
iter 30 value 91.558075
iter 40 value 91.049206
iter 50 value 83.807470
iter 60 value 82.538112
iter 70 value 82.418521
iter 80 value 82.118339
iter 90 value 81.332568
iter 100 value 80.842934
final value 80.842934
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.241149
iter 10 value 100.523238
iter 20 value 85.354876
iter 30 value 83.872227
iter 40 value 82.899828
iter 50 value 82.817183
iter 60 value 82.624666
iter 70 value 82.484001
iter 80 value 82.378505
iter 90 value 82.028363
iter 100 value 81.191438
final value 81.191438
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.724799
iter 10 value 94.770596
iter 20 value 93.020318
iter 30 value 91.693578
iter 40 value 86.684035
iter 50 value 84.777067
iter 60 value 84.647604
iter 70 value 84.041432
iter 80 value 82.655927
iter 90 value 81.154737
iter 100 value 80.903361
final value 80.903361
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.488522
final value 94.485993
converged
Fitting Repeat 2
# weights: 103
initial value 101.011987
final value 94.485675
converged
Fitting Repeat 3
# weights: 103
initial value 115.702903
iter 10 value 88.168327
iter 20 value 86.520500
iter 30 value 86.519589
iter 40 value 86.519486
iter 50 value 86.518415
iter 60 value 84.718549
iter 70 value 83.786537
iter 80 value 83.633494
iter 90 value 83.622063
final value 83.619359
converged
Fitting Repeat 4
# weights: 103
initial value 96.976502
final value 94.485607
converged
Fitting Repeat 5
# weights: 103
initial value 100.579850
final value 94.485990
converged
Fitting Repeat 1
# weights: 305
initial value 96.435146
iter 10 value 94.355811
iter 20 value 94.351956
iter 30 value 94.345904
iter 40 value 94.258409
iter 50 value 87.637737
iter 60 value 87.372405
iter 70 value 87.372172
iter 80 value 85.676460
iter 90 value 85.405361
iter 100 value 85.404929
final value 85.404929
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.626415
iter 10 value 94.490393
iter 20 value 94.485280
iter 30 value 87.862829
iter 40 value 87.777081
iter 50 value 85.896445
iter 60 value 85.709342
iter 70 value 85.708807
iter 80 value 85.706343
iter 90 value 85.577619
iter 100 value 85.495015
final value 85.495015
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.267568
iter 10 value 94.488844
iter 20 value 94.476787
iter 30 value 94.314579
iter 40 value 94.139912
iter 50 value 91.977462
iter 50 value 91.977461
iter 50 value 91.977461
final value 91.977461
converged
Fitting Repeat 4
# weights: 305
initial value 108.589010
iter 10 value 94.489107
iter 20 value 94.483930
iter 30 value 92.080954
iter 40 value 89.436594
iter 50 value 89.433271
iter 60 value 89.431393
iter 60 value 89.431393
iter 60 value 89.431393
final value 89.431393
converged
Fitting Repeat 5
# weights: 305
initial value 103.177589
iter 10 value 94.414302
iter 20 value 94.409022
iter 30 value 94.350871
final value 94.350856
converged
Fitting Repeat 1
# weights: 507
initial value 97.787075
iter 10 value 94.362765
iter 20 value 92.430744
iter 30 value 86.206132
iter 40 value 84.826958
iter 50 value 84.809240
iter 60 value 84.808331
final value 84.808320
converged
Fitting Repeat 2
# weights: 507
initial value 117.692612
iter 10 value 94.492941
iter 20 value 94.465720
iter 30 value 92.088504
iter 40 value 90.085677
iter 50 value 88.999451
iter 60 value 87.405424
iter 70 value 87.398347
iter 80 value 87.397581
iter 90 value 82.249332
iter 100 value 81.880880
final value 81.880880
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 95.762286
iter 10 value 94.491552
iter 20 value 94.465022
final value 94.354595
converged
Fitting Repeat 4
# weights: 507
initial value 96.915255
iter 10 value 92.554411
iter 20 value 91.946945
iter 30 value 90.710062
iter 40 value 83.085422
iter 50 value 82.920630
iter 60 value 82.890903
iter 70 value 82.880526
iter 80 value 82.818408
iter 90 value 82.160652
iter 100 value 81.850823
final value 81.850823
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 96.277796
iter 10 value 94.492430
iter 20 value 91.951457
iter 30 value 91.161802
iter 40 value 87.303542
iter 50 value 86.534301
iter 60 value 84.938492
iter 70 value 84.815788
iter 80 value 84.815214
iter 90 value 84.814334
iter 100 value 84.806260
final value 84.806260
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.942927
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 107.507286
iter 10 value 94.275363
iter 10 value 94.275362
iter 10 value 94.275362
final value 94.275362
converged
Fitting Repeat 3
# weights: 103
initial value 102.679933
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.105634
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.799086
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 94.779239
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 107.228313
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 95.005624
iter 10 value 93.689254
iter 20 value 93.392479
iter 30 value 93.213592
iter 40 value 92.894302
final value 92.894120
converged
Fitting Repeat 4
# weights: 305
initial value 104.334933
iter 10 value 89.604807
iter 20 value 88.158340
iter 30 value 87.979538
iter 40 value 87.330809
iter 50 value 87.179609
final value 87.179115
converged
Fitting Repeat 5
# weights: 305
initial value 100.784693
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 116.373808
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 98.539961
iter 10 value 93.457014
final value 93.456974
converged
Fitting Repeat 3
# weights: 507
initial value 110.138354
iter 10 value 93.728278
iter 20 value 93.725283
final value 93.725275
converged
Fitting Repeat 4
# weights: 507
initial value 105.014856
iter 10 value 93.300231
final value 93.300000
converged
Fitting Repeat 5
# weights: 507
initial value 95.030426
iter 10 value 93.884526
final value 93.813953
converged
Fitting Repeat 1
# weights: 103
initial value 106.415728
iter 10 value 94.460874
iter 20 value 92.152879
iter 30 value 85.989979
iter 40 value 84.750629
iter 50 value 84.505909
iter 60 value 83.982254
iter 70 value 83.854393
iter 80 value 83.288130
iter 90 value 82.921958
final value 82.911358
converged
Fitting Repeat 2
# weights: 103
initial value 100.959156
iter 10 value 94.703978
iter 20 value 94.397546
iter 30 value 81.977272
iter 40 value 81.474344
iter 50 value 81.181436
iter 60 value 80.981863
iter 70 value 80.958990
final value 80.958963
converged
Fitting Repeat 3
# weights: 103
initial value 98.848030
iter 10 value 89.095104
iter 20 value 82.134523
iter 30 value 81.160864
iter 40 value 81.119912
iter 50 value 81.072887
iter 60 value 80.875818
iter 70 value 80.457313
iter 80 value 80.404507
final value 80.404178
converged
Fitting Repeat 4
# weights: 103
initial value 106.607697
iter 10 value 94.478623
iter 20 value 81.486802
iter 30 value 81.112867
iter 40 value 80.920870
iter 50 value 80.405174
iter 60 value 80.404180
final value 80.404178
converged
Fitting Repeat 5
# weights: 103
initial value 108.484701
iter 10 value 94.456818
iter 20 value 81.991683
iter 30 value 81.314622
iter 40 value 81.278271
iter 50 value 81.031648
iter 60 value 80.961207
iter 70 value 80.958963
iter 70 value 80.958963
iter 70 value 80.958963
final value 80.958963
converged
Fitting Repeat 1
# weights: 305
initial value 104.198966
iter 10 value 94.773892
iter 20 value 93.091421
iter 30 value 91.372180
iter 40 value 87.334020
iter 50 value 80.254055
iter 60 value 79.318753
iter 70 value 78.438532
iter 80 value 77.934609
iter 90 value 77.190202
iter 100 value 77.015721
final value 77.015721
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.827916
iter 10 value 93.100822
iter 20 value 82.067101
iter 30 value 80.898248
iter 40 value 80.779961
iter 50 value 80.301680
iter 60 value 78.361603
iter 70 value 77.147875
iter 80 value 76.822270
iter 90 value 76.801356
iter 100 value 76.781296
final value 76.781296
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 129.204562
iter 10 value 94.750437
iter 20 value 94.388436
iter 30 value 93.583098
iter 40 value 86.723942
iter 50 value 86.409531
iter 60 value 86.145743
iter 70 value 82.406536
iter 80 value 80.480621
iter 90 value 79.798048
iter 100 value 78.724256
final value 78.724256
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 117.536451
iter 10 value 93.813982
iter 20 value 92.045845
iter 30 value 87.024731
iter 40 value 82.839552
iter 50 value 80.457170
iter 60 value 79.511950
iter 70 value 77.826604
iter 80 value 76.857238
iter 90 value 76.512898
iter 100 value 76.424708
final value 76.424708
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.296991
iter 10 value 93.213340
iter 20 value 87.570097
iter 30 value 79.154078
iter 40 value 78.562840
iter 50 value 77.828075
iter 60 value 77.248795
iter 70 value 77.151028
iter 80 value 77.044354
iter 90 value 76.965990
iter 100 value 76.847585
final value 76.847585
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 124.565070
iter 10 value 94.413376
iter 20 value 93.339378
iter 30 value 93.155425
iter 40 value 89.890575
iter 50 value 84.002261
iter 60 value 81.392389
iter 70 value 80.134593
iter 80 value 78.822773
iter 90 value 78.392617
iter 100 value 77.859968
final value 77.859968
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 117.289896
iter 10 value 94.491079
iter 20 value 85.451284
iter 30 value 82.706504
iter 40 value 80.721440
iter 50 value 80.525444
iter 60 value 80.011661
iter 70 value 78.550761
iter 80 value 77.563159
iter 90 value 77.079644
iter 100 value 76.457700
final value 76.457700
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.901728
iter 10 value 98.236163
iter 20 value 93.124298
iter 30 value 85.165081
iter 40 value 83.672193
iter 50 value 79.194059
iter 60 value 77.268504
iter 70 value 76.934894
iter 80 value 76.861349
iter 90 value 76.813675
iter 100 value 76.724786
final value 76.724786
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.552778
iter 10 value 91.977206
iter 20 value 86.333596
iter 30 value 84.915688
iter 40 value 81.251289
iter 50 value 80.775948
iter 60 value 80.403903
iter 70 value 80.321053
iter 80 value 79.666164
iter 90 value 78.334675
iter 100 value 78.242301
final value 78.242301
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 157.808288
iter 10 value 94.454392
iter 20 value 89.586705
iter 30 value 84.687247
iter 40 value 83.961248
iter 50 value 82.728309
iter 60 value 81.073043
iter 70 value 78.069714
iter 80 value 76.830919
iter 90 value 76.512971
iter 100 value 76.375690
final value 76.375690
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.416926
final value 94.486018
converged
Fitting Repeat 2
# weights: 103
initial value 96.079456
final value 94.485742
converged
Fitting Repeat 3
# weights: 103
initial value 97.245270
final value 94.277260
converged
Fitting Repeat 4
# weights: 103
initial value 101.963296
final value 94.485914
converged
Fitting Repeat 5
# weights: 103
initial value 103.845729
iter 10 value 94.485898
iter 20 value 94.484252
iter 30 value 82.467928
iter 40 value 81.022181
iter 50 value 81.021904
iter 60 value 81.021011
iter 70 value 81.019214
iter 80 value 81.018945
iter 90 value 81.004409
iter 100 value 80.983242
final value 80.983242
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.606671
iter 10 value 94.279876
final value 94.275763
converged
Fitting Repeat 2
# weights: 305
initial value 112.959435
iter 10 value 94.487251
iter 20 value 94.123512
iter 30 value 83.834600
final value 83.824545
converged
Fitting Repeat 3
# weights: 305
initial value 106.547407
iter 10 value 94.488451
iter 20 value 94.483095
iter 30 value 93.726265
final value 93.725661
converged
Fitting Repeat 4
# weights: 305
initial value 104.822419
iter 10 value 94.281829
iter 20 value 94.277658
iter 30 value 94.276688
iter 30 value 94.276687
iter 30 value 94.276687
final value 94.276687
converged
Fitting Repeat 5
# weights: 305
initial value 104.607200
iter 10 value 94.489601
iter 20 value 91.619271
iter 30 value 86.733787
iter 40 value 86.699315
iter 50 value 86.698611
iter 60 value 86.698439
iter 70 value 86.698286
iter 80 value 85.911102
iter 90 value 85.530300
iter 100 value 85.122560
final value 85.122560
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 100.513353
iter 10 value 94.492537
iter 20 value 93.566854
iter 30 value 89.036508
iter 40 value 89.036456
final value 89.036443
converged
Fitting Repeat 2
# weights: 507
initial value 127.412219
iter 10 value 94.492529
iter 20 value 94.454231
iter 30 value 79.956717
iter 40 value 78.993737
iter 50 value 78.970978
iter 60 value 78.928132
iter 70 value 78.414083
iter 80 value 77.194892
iter 90 value 75.554188
iter 100 value 74.709399
final value 74.709399
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.588224
iter 10 value 94.283980
iter 20 value 94.232469
iter 30 value 94.231255
iter 40 value 88.193895
iter 50 value 88.083164
iter 60 value 88.081035
iter 70 value 86.036470
iter 80 value 84.955583
iter 90 value 84.955349
final value 84.955105
converged
Fitting Repeat 4
# weights: 507
initial value 103.011527
iter 10 value 93.309586
iter 20 value 93.303316
iter 30 value 93.300383
final value 93.300271
converged
Fitting Repeat 5
# weights: 507
initial value 101.998002
iter 10 value 94.492376
iter 20 value 94.484292
iter 30 value 91.402258
iter 40 value 88.371270
iter 50 value 88.188806
iter 60 value 87.745602
iter 70 value 84.641428
iter 80 value 83.946123
iter 90 value 83.945895
iter 100 value 83.924897
final value 83.924897
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 109.431798
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 103.142855
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 101.974338
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 94.591828
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.202536
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 114.423765
iter 10 value 94.466845
final value 94.466823
converged
Fitting Repeat 2
# weights: 305
initial value 108.662158
final value 94.312038
converged
Fitting Repeat 3
# weights: 305
initial value 136.889854
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 104.771782
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 96.032589
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 97.583292
final value 94.466823
converged
Fitting Repeat 2
# weights: 507
initial value 108.435848
iter 10 value 94.466823
iter 10 value 94.466823
iter 10 value 94.466823
final value 94.466823
converged
Fitting Repeat 3
# weights: 507
initial value 95.489207
iter 10 value 92.062521
final value 92.036569
converged
Fitting Repeat 4
# weights: 507
initial value 97.845004
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 102.951475
final value 94.466823
converged
Fitting Repeat 1
# weights: 103
initial value 103.508338
iter 10 value 93.999209
iter 20 value 84.340090
iter 30 value 83.293160
iter 40 value 82.810582
iter 50 value 82.411129
iter 60 value 82.397348
iter 70 value 82.392311
final value 82.391984
converged
Fitting Repeat 2
# weights: 103
initial value 98.023354
iter 10 value 94.477885
iter 20 value 84.834563
iter 30 value 84.158650
iter 40 value 83.101613
final value 83.098906
converged
Fitting Repeat 3
# weights: 103
initial value 100.363230
iter 10 value 94.486418
iter 20 value 94.293424
iter 30 value 90.478514
iter 40 value 87.255449
iter 50 value 86.513221
iter 60 value 85.990158
iter 70 value 85.968103
iter 80 value 83.508372
iter 90 value 82.538997
iter 100 value 82.363084
final value 82.363084
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.762152
iter 10 value 92.207986
iter 20 value 83.266306
iter 30 value 82.875602
iter 40 value 82.866276
iter 50 value 82.863188
final value 82.863186
converged
Fitting Repeat 5
# weights: 103
initial value 99.477787
iter 10 value 94.188142
iter 20 value 87.697557
iter 30 value 84.131059
iter 40 value 83.183192
iter 50 value 82.657211
iter 60 value 82.400502
iter 70 value 81.650104
iter 80 value 81.047822
iter 90 value 80.779606
iter 100 value 80.228175
final value 80.228175
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 117.460570
iter 10 value 94.081591
iter 20 value 85.565955
iter 30 value 84.752489
iter 40 value 83.184385
iter 50 value 82.812751
iter 60 value 81.834985
iter 70 value 81.450208
iter 80 value 81.106972
iter 90 value 80.275956
iter 100 value 79.803786
final value 79.803786
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 113.234080
iter 10 value 94.121297
iter 20 value 86.669044
iter 30 value 84.223294
iter 40 value 81.497844
iter 50 value 81.136263
iter 60 value 80.036498
iter 70 value 79.154472
iter 80 value 78.908018
iter 90 value 78.358380
iter 100 value 78.219157
final value 78.219157
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.474151
iter 10 value 94.382764
iter 20 value 87.767433
iter 30 value 86.017645
iter 40 value 83.333722
iter 50 value 82.919427
iter 60 value 82.365100
iter 70 value 81.734031
iter 80 value 80.222779
iter 90 value 79.038801
iter 100 value 78.649913
final value 78.649913
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.461752
iter 10 value 93.498448
iter 20 value 87.251813
iter 30 value 86.966998
iter 40 value 85.164158
iter 50 value 82.845846
iter 60 value 82.368160
iter 70 value 81.856009
iter 80 value 81.159441
iter 90 value 80.454971
iter 100 value 79.755730
final value 79.755730
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.590623
iter 10 value 94.443794
iter 20 value 89.011922
iter 30 value 83.741964
iter 40 value 83.146225
iter 50 value 81.590585
iter 60 value 80.994259
iter 70 value 79.918120
iter 80 value 78.630289
iter 90 value 78.183456
iter 100 value 78.128570
final value 78.128570
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.922318
iter 10 value 94.849703
iter 20 value 91.666964
iter 30 value 82.680992
iter 40 value 82.385784
iter 50 value 82.139613
iter 60 value 80.769496
iter 70 value 79.499834
iter 80 value 78.946693
iter 90 value 78.898866
iter 100 value 78.800663
final value 78.800663
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 168.327878
iter 10 value 94.678555
iter 20 value 92.274794
iter 30 value 90.521926
iter 40 value 86.588404
iter 50 value 83.029353
iter 60 value 81.190660
iter 70 value 80.121967
iter 80 value 79.111826
iter 90 value 78.537256
iter 100 value 78.448035
final value 78.448035
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 123.758228
iter 10 value 94.860178
iter 20 value 94.665573
iter 30 value 93.734614
iter 40 value 87.493793
iter 50 value 83.373592
iter 60 value 81.058236
iter 70 value 79.604559
iter 80 value 78.941070
iter 90 value 78.807418
iter 100 value 78.626250
final value 78.626250
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.681727
iter 10 value 90.972780
iter 20 value 85.676542
iter 30 value 84.380635
iter 40 value 82.884812
iter 50 value 82.289375
iter 60 value 81.046656
iter 70 value 80.402713
iter 80 value 79.683968
iter 90 value 78.921902
iter 100 value 78.270413
final value 78.270413
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.475002
iter 10 value 94.483865
iter 20 value 92.618383
iter 30 value 85.112536
iter 40 value 84.163813
iter 50 value 83.193662
iter 60 value 82.968024
iter 70 value 82.831126
iter 80 value 82.046616
iter 90 value 80.923837
iter 100 value 79.044039
final value 79.044039
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.164660
final value 94.486016
converged
Fitting Repeat 2
# weights: 103
initial value 104.849953
final value 94.485687
converged
Fitting Repeat 3
# weights: 103
initial value 99.129378
iter 10 value 94.485860
iter 20 value 94.482207
iter 30 value 86.240474
iter 40 value 82.599648
iter 50 value 81.570724
iter 60 value 81.565466
final value 81.565412
converged
Fitting Repeat 4
# weights: 103
initial value 95.108593
final value 94.485957
converged
Fitting Repeat 5
# weights: 103
initial value 104.912140
final value 94.468461
converged
Fitting Repeat 1
# weights: 305
initial value 96.600626
iter 10 value 94.428966
iter 20 value 88.176898
iter 30 value 87.786679
iter 40 value 87.293552
iter 50 value 86.502650
iter 60 value 86.499625
iter 70 value 86.080647
iter 80 value 85.550454
iter 90 value 85.545426
iter 100 value 85.543797
final value 85.543797
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 98.369729
iter 10 value 94.094009
iter 20 value 88.337790
iter 30 value 86.333688
iter 40 value 85.678514
iter 50 value 84.977744
final value 84.976703
converged
Fitting Repeat 3
# weights: 305
initial value 101.933949
iter 10 value 94.269894
iter 20 value 94.263897
iter 30 value 83.504441
iter 40 value 82.846511
iter 50 value 81.906573
iter 60 value 81.864194
iter 70 value 81.864048
iter 80 value 80.913659
iter 90 value 80.478253
final value 80.477431
converged
Fitting Repeat 4
# weights: 305
initial value 104.894068
iter 10 value 94.494748
iter 20 value 94.491042
iter 30 value 94.397911
iter 40 value 93.614860
iter 50 value 93.452837
iter 60 value 93.450694
iter 70 value 93.448575
iter 80 value 93.447938
iter 90 value 93.447639
iter 100 value 93.447102
final value 93.447102
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 119.722088
iter 10 value 94.488980
iter 20 value 94.296006
iter 30 value 93.943400
final value 93.942435
converged
Fitting Repeat 1
# weights: 507
initial value 99.751553
iter 10 value 94.096368
iter 20 value 94.091375
iter 30 value 94.090692
iter 40 value 85.395303
iter 50 value 83.316490
iter 60 value 83.289496
iter 70 value 83.289011
iter 80 value 82.235218
iter 90 value 81.991903
final value 81.991885
converged
Fitting Repeat 2
# weights: 507
initial value 100.917976
iter 10 value 94.395420
iter 20 value 94.086595
iter 30 value 94.079676
iter 40 value 86.783595
iter 50 value 83.332901
iter 60 value 83.272943
iter 70 value 83.249761
final value 83.249578
converged
Fitting Repeat 3
# weights: 507
initial value 111.330438
iter 10 value 94.120784
iter 20 value 92.723578
iter 30 value 92.703545
iter 40 value 92.414356
iter 50 value 92.399766
iter 60 value 92.392440
iter 70 value 92.062860
final value 92.060948
converged
Fitting Repeat 4
# weights: 507
initial value 99.065462
iter 10 value 94.474903
iter 20 value 94.468081
iter 30 value 84.917360
iter 40 value 83.382087
iter 50 value 83.373045
iter 60 value 83.372690
iter 70 value 83.372069
iter 80 value 82.263983
iter 90 value 82.234260
iter 100 value 82.200246
final value 82.200246
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 134.683028
iter 10 value 94.461156
iter 20 value 94.446080
iter 30 value 94.430337
iter 40 value 87.007225
iter 50 value 84.148228
iter 60 value 84.147799
iter 70 value 84.120576
iter 80 value 84.119634
iter 80 value 84.119633
final value 84.119633
converged
Fitting Repeat 1
# weights: 103
initial value 100.741183
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.668777
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.739259
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 96.657410
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 97.204606
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.871690
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 100.034858
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 128.499002
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 101.053290
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 98.969983
final value 94.052911
converged
Fitting Repeat 1
# weights: 507
initial value 101.608474
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 111.345210
iter 10 value 93.725752
iter 20 value 93.068147
final value 93.067600
converged
Fitting Repeat 3
# weights: 507
initial value 95.919843
iter 10 value 93.943843
iter 10 value 93.943842
iter 10 value 93.943842
final value 93.943842
converged
Fitting Repeat 4
# weights: 507
initial value 95.992662
final value 94.042012
converged
Fitting Repeat 5
# weights: 507
initial value 108.318534
iter 10 value 92.195055
iter 20 value 87.076818
iter 30 value 86.734035
final value 86.734033
converged
Fitting Repeat 1
# weights: 103
initial value 98.891294
iter 10 value 94.061106
iter 20 value 94.050377
iter 30 value 89.353324
iter 40 value 88.327616
iter 50 value 87.792970
iter 60 value 87.242962
iter 70 value 87.097558
iter 80 value 87.084253
final value 87.084249
converged
Fitting Repeat 2
# weights: 103
initial value 100.826749
iter 10 value 94.053400
iter 20 value 88.616199
iter 30 value 88.362149
iter 40 value 87.720391
iter 50 value 86.773013
iter 60 value 86.416018
final value 86.408593
converged
Fitting Repeat 3
# weights: 103
initial value 102.487285
iter 10 value 94.058186
iter 20 value 93.770498
iter 30 value 93.669676
iter 40 value 93.669039
iter 50 value 93.668805
iter 60 value 93.439543
iter 70 value 89.643487
iter 80 value 89.483216
iter 90 value 89.454481
iter 100 value 87.928913
final value 87.928913
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.519177
iter 10 value 94.050475
iter 20 value 93.210517
iter 30 value 92.697682
iter 40 value 92.507189
iter 50 value 88.512892
iter 60 value 88.323822
iter 70 value 87.912468
iter 80 value 87.159499
iter 90 value 85.730236
iter 100 value 85.334589
final value 85.334589
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 109.240788
iter 10 value 94.059985
iter 20 value 93.755254
iter 30 value 93.670762
iter 40 value 93.669364
iter 50 value 93.668756
iter 60 value 89.963905
iter 70 value 88.644648
iter 80 value 87.898385
iter 90 value 87.483674
iter 100 value 87.148271
final value 87.148271
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.597380
iter 10 value 94.064802
iter 20 value 94.045210
iter 30 value 88.900703
iter 40 value 88.371906
iter 50 value 87.625834
iter 60 value 87.084682
iter 70 value 86.228732
iter 80 value 85.640600
iter 90 value 85.289570
iter 100 value 85.257288
final value 85.257288
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.682940
iter 10 value 94.097303
iter 20 value 89.814837
iter 30 value 87.905974
iter 40 value 87.431860
iter 50 value 86.727116
iter 60 value 86.412600
iter 70 value 86.067014
iter 80 value 85.026729
iter 90 value 84.252792
iter 100 value 84.116315
final value 84.116315
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.236629
iter 10 value 93.739235
iter 20 value 92.815983
iter 30 value 92.641584
iter 40 value 92.358256
iter 50 value 88.762692
iter 60 value 87.564337
iter 70 value 86.472888
iter 80 value 86.049440
iter 90 value 85.881324
iter 100 value 85.600457
final value 85.600457
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 108.865422
iter 10 value 96.110722
iter 20 value 94.131482
iter 30 value 93.944158
iter 40 value 89.217874
iter 50 value 87.754096
iter 60 value 87.570182
iter 70 value 87.259003
iter 80 value 87.112755
iter 90 value 86.663828
iter 100 value 84.963919
final value 84.963919
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.635696
iter 10 value 93.613675
iter 20 value 88.737716
iter 30 value 88.076574
iter 40 value 87.638843
iter 50 value 86.951973
iter 60 value 86.648582
iter 70 value 86.282072
iter 80 value 85.409879
iter 90 value 85.275262
iter 100 value 84.924270
final value 84.924270
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.735474
iter 10 value 94.132070
iter 20 value 89.110295
iter 30 value 87.713766
iter 40 value 87.057803
iter 50 value 86.847504
iter 60 value 85.317335
iter 70 value 84.832265
iter 80 value 84.195112
iter 90 value 83.839594
iter 100 value 83.778766
final value 83.778766
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 119.095612
iter 10 value 94.158319
iter 20 value 90.603901
iter 30 value 88.738546
iter 40 value 87.695741
iter 50 value 85.689918
iter 60 value 85.481228
iter 70 value 85.178968
iter 80 value 84.445169
iter 90 value 83.999329
iter 100 value 83.835241
final value 83.835241
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 120.026558
iter 10 value 94.097492
iter 20 value 93.819085
iter 30 value 92.887889
iter 40 value 92.432230
iter 50 value 89.751302
iter 60 value 87.751961
iter 70 value 86.268785
iter 80 value 84.907752
iter 90 value 83.973848
iter 100 value 83.481255
final value 83.481255
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.337896
iter 10 value 94.187705
iter 20 value 92.627572
iter 30 value 90.518549
iter 40 value 87.706052
iter 50 value 87.520434
iter 60 value 87.213783
iter 70 value 86.377772
iter 80 value 84.767973
iter 90 value 84.403358
iter 100 value 84.242714
final value 84.242714
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.237437
iter 10 value 94.273529
iter 20 value 92.367715
iter 30 value 90.456369
iter 40 value 88.065843
iter 50 value 87.820197
iter 60 value 87.023290
iter 70 value 85.615652
iter 80 value 84.616057
iter 90 value 84.263769
iter 100 value 84.124625
final value 84.124625
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.881622
final value 94.054542
converged
Fitting Repeat 2
# weights: 103
initial value 96.278634
final value 94.054293
converged
Fitting Repeat 3
# weights: 103
initial value 95.146643
iter 10 value 94.054347
iter 20 value 93.878527
iter 30 value 93.097014
iter 40 value 92.592701
iter 50 value 92.572090
iter 60 value 92.572037
iter 70 value 92.571644
iter 80 value 92.516214
iter 90 value 92.485187
final value 92.485032
converged
Fitting Repeat 4
# weights: 103
initial value 98.876098
iter 10 value 93.839809
final value 93.837602
converged
Fitting Repeat 5
# weights: 103
initial value 105.125665
final value 94.054602
converged
Fitting Repeat 1
# weights: 305
initial value 122.714724
iter 10 value 94.059110
iter 20 value 92.362389
iter 30 value 92.050778
iter 40 value 88.422307
iter 50 value 87.991638
iter 60 value 87.958484
iter 70 value 87.433666
iter 80 value 86.602606
iter 90 value 86.583734
final value 86.583584
converged
Fitting Repeat 2
# weights: 305
initial value 99.492619
iter 10 value 94.051343
iter 20 value 87.774735
iter 30 value 87.616192
iter 40 value 85.563778
iter 50 value 85.076997
iter 60 value 84.980174
iter 70 value 84.767615
iter 80 value 84.497717
iter 90 value 83.547870
iter 100 value 83.535850
final value 83.535850
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 118.078146
iter 10 value 94.057938
iter 20 value 94.052952
iter 30 value 88.592405
iter 40 value 88.206399
final value 88.206395
converged
Fitting Repeat 4
# weights: 305
initial value 117.738450
iter 10 value 94.057585
iter 20 value 94.052872
iter 30 value 93.615662
iter 40 value 92.819904
iter 50 value 92.717605
iter 60 value 92.717528
final value 92.717512
converged
Fitting Repeat 5
# weights: 305
initial value 96.601078
iter 10 value 94.058118
iter 20 value 93.811354
iter 30 value 93.097104
final value 93.096916
converged
Fitting Repeat 1
# weights: 507
initial value 116.366567
iter 10 value 92.841855
iter 20 value 87.664761
iter 30 value 87.266096
iter 40 value 86.579949
iter 50 value 86.579048
iter 60 value 86.576891
iter 70 value 85.744532
iter 80 value 85.639911
iter 90 value 85.638494
iter 100 value 85.635421
final value 85.635421
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.687897
iter 10 value 94.060584
iter 20 value 93.886112
iter 30 value 90.767191
iter 40 value 89.352033
iter 50 value 89.271042
iter 60 value 89.265244
final value 89.264971
converged
Fitting Repeat 3
# weights: 507
initial value 99.240452
iter 10 value 94.060600
iter 20 value 94.028233
final value 93.604689
converged
Fitting Repeat 4
# weights: 507
initial value 114.499327
iter 10 value 93.844027
iter 20 value 93.566683
iter 30 value 88.078369
iter 40 value 85.778290
iter 50 value 85.681485
iter 60 value 85.673856
iter 70 value 85.673429
iter 80 value 85.641841
iter 90 value 85.592221
iter 100 value 85.570427
final value 85.570427
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 94.418266
iter 10 value 94.057556
iter 20 value 94.053021
iter 30 value 89.581490
iter 40 value 88.040630
iter 50 value 87.241645
iter 60 value 87.228602
final value 87.228569
converged
Fitting Repeat 1
# weights: 103
initial value 97.574739
final value 94.035089
converged
Fitting Repeat 2
# weights: 103
initial value 99.897763
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 96.984530
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 101.020782
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.103767
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 106.786094
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 112.421723
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 111.933181
iter 10 value 94.008696
iter 10 value 94.008696
iter 10 value 94.008696
final value 94.008696
converged
Fitting Repeat 4
# weights: 305
initial value 123.297498
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 94.174050
iter 10 value 85.878966
final value 85.874988
converged
Fitting Repeat 1
# weights: 507
initial value 94.737104
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 101.452598
iter 10 value 92.926566
iter 20 value 84.971831
iter 30 value 84.109254
final value 84.107621
converged
Fitting Repeat 3
# weights: 507
initial value 101.149871
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 103.610218
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 96.906376
final value 93.785768
converged
Fitting Repeat 1
# weights: 103
initial value 100.225326
iter 10 value 94.139099
iter 20 value 94.051851
iter 30 value 93.976944
iter 40 value 93.804488
iter 50 value 92.415787
iter 60 value 85.464389
iter 70 value 84.678941
iter 80 value 83.814783
iter 90 value 83.411359
iter 100 value 83.353922
final value 83.353922
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.729302
iter 10 value 94.053175
iter 20 value 86.376326
iter 30 value 85.388983
iter 40 value 84.610313
iter 50 value 84.535022
iter 60 value 84.033241
iter 70 value 83.484094
iter 80 value 83.385783
final value 83.382950
converged
Fitting Repeat 3
# weights: 103
initial value 105.257468
iter 10 value 94.057087
iter 20 value 93.786816
iter 30 value 89.031938
iter 40 value 85.814277
iter 50 value 85.735356
iter 60 value 85.355110
iter 70 value 85.079482
iter 80 value 85.063063
final value 85.061385
converged
Fitting Repeat 4
# weights: 103
initial value 99.285340
iter 10 value 94.130784
iter 20 value 92.798635
iter 30 value 85.665385
iter 40 value 84.462398
iter 50 value 83.894714
iter 60 value 83.523069
iter 70 value 83.383016
iter 80 value 83.346990
iter 90 value 83.334015
final value 83.332905
converged
Fitting Repeat 5
# weights: 103
initial value 96.454414
iter 10 value 89.477935
iter 20 value 84.961280
iter 30 value 84.620360
iter 40 value 84.554583
iter 50 value 83.813512
iter 60 value 83.398933
iter 70 value 83.382950
final value 83.382944
converged
Fitting Repeat 1
# weights: 305
initial value 101.016551
iter 10 value 93.100708
iter 20 value 92.010791
iter 30 value 91.673474
iter 40 value 90.670701
iter 50 value 90.615612
iter 60 value 90.555181
iter 70 value 90.196859
iter 80 value 89.399712
iter 90 value 86.581222
iter 100 value 85.366714
final value 85.366714
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.619804
iter 10 value 93.504110
iter 20 value 87.143455
iter 30 value 85.447304
iter 40 value 85.061398
iter 50 value 84.690073
iter 60 value 82.768995
iter 70 value 81.448655
iter 80 value 80.671574
iter 90 value 80.395629
iter 100 value 80.297184
final value 80.297184
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.776422
iter 10 value 93.902388
iter 20 value 87.746439
iter 30 value 84.899082
iter 40 value 83.346976
iter 50 value 82.658706
iter 60 value 81.695162
iter 70 value 80.723257
iter 80 value 80.550565
iter 90 value 80.493054
iter 100 value 80.457779
final value 80.457779
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.788570
iter 10 value 94.067989
iter 20 value 91.928956
iter 30 value 89.693049
iter 40 value 87.896576
iter 50 value 85.262015
iter 60 value 84.262486
iter 70 value 84.019290
iter 80 value 83.439455
iter 90 value 82.060410
iter 100 value 81.746135
final value 81.746135
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.277696
iter 10 value 93.941876
iter 20 value 86.359599
iter 30 value 84.923051
iter 40 value 83.769715
iter 50 value 83.425775
iter 60 value 83.285115
iter 70 value 82.992957
iter 80 value 81.734294
iter 90 value 81.238536
iter 100 value 80.883525
final value 80.883525
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 114.624416
iter 10 value 93.797544
iter 20 value 87.175560
iter 30 value 83.139118
iter 40 value 81.575318
iter 50 value 80.804049
iter 60 value 80.642933
iter 70 value 80.629317
iter 80 value 80.591317
iter 90 value 80.567951
iter 100 value 80.545817
final value 80.545817
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 118.573605
iter 10 value 94.564725
iter 20 value 89.168027
iter 30 value 85.776865
iter 40 value 85.191111
iter 50 value 82.580194
iter 60 value 81.895638
iter 70 value 81.550544
iter 80 value 81.276537
iter 90 value 81.171158
iter 100 value 81.113532
final value 81.113532
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.367252
iter 10 value 94.459422
iter 20 value 93.897486
iter 30 value 92.603171
iter 40 value 92.021138
iter 50 value 87.914248
iter 60 value 85.271554
iter 70 value 84.460744
iter 80 value 83.719261
iter 90 value 83.547942
iter 100 value 83.422645
final value 83.422645
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.989757
iter 10 value 94.411510
iter 20 value 93.715510
iter 30 value 85.875016
iter 40 value 84.653068
iter 50 value 82.352264
iter 60 value 82.074732
iter 70 value 81.821399
iter 80 value 80.801071
iter 90 value 80.460920
iter 100 value 80.297319
final value 80.297319
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.769354
iter 10 value 94.074449
iter 20 value 94.051209
iter 30 value 90.786774
iter 40 value 89.754226
iter 50 value 88.465913
iter 60 value 83.413720
iter 70 value 82.673784
iter 80 value 81.441699
iter 90 value 81.058343
iter 100 value 80.561464
final value 80.561464
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.284148
iter 10 value 93.891882
iter 20 value 89.493765
iter 30 value 85.219951
final value 85.219929
converged
Fitting Repeat 2
# weights: 103
initial value 101.971441
final value 94.054640
converged
Fitting Repeat 3
# weights: 103
initial value 105.026258
iter 10 value 94.054565
iter 20 value 93.909015
iter 30 value 86.719395
iter 40 value 84.246537
iter 50 value 84.211934
final value 84.211899
converged
Fitting Repeat 4
# weights: 103
initial value 94.642669
final value 94.054546
converged
Fitting Repeat 5
# weights: 103
initial value 100.113730
iter 10 value 94.010457
iter 20 value 94.009293
iter 30 value 93.367004
iter 40 value 86.641227
final value 86.640240
converged
Fitting Repeat 1
# weights: 305
initial value 100.213102
iter 10 value 94.057443
iter 20 value 93.979250
iter 30 value 89.618062
iter 40 value 89.551049
iter 50 value 88.376202
iter 60 value 88.253605
final value 88.253578
converged
Fitting Repeat 2
# weights: 305
initial value 102.861903
iter 10 value 94.057695
iter 20 value 93.977019
iter 30 value 86.769465
iter 40 value 86.589931
iter 50 value 86.546334
iter 60 value 86.520369
iter 70 value 86.516187
iter 80 value 86.242074
iter 90 value 85.694158
iter 100 value 84.773589
final value 84.773589
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 98.722077
iter 10 value 94.013829
iter 20 value 94.009105
final value 94.008756
converged
Fitting Repeat 4
# weights: 305
initial value 116.174921
iter 10 value 94.058058
iter 20 value 94.038679
iter 30 value 93.811313
iter 40 value 93.799931
final value 93.785925
converged
Fitting Repeat 5
# weights: 305
initial value 98.707821
iter 10 value 94.091196
iter 20 value 94.084035
iter 30 value 94.064633
iter 40 value 88.442637
iter 50 value 88.047182
iter 50 value 88.047182
final value 88.047182
converged
Fitting Repeat 1
# weights: 507
initial value 103.879190
iter 10 value 94.017356
iter 20 value 94.011471
iter 30 value 87.321559
iter 40 value 84.352255
iter 50 value 83.937861
iter 60 value 83.936740
iter 70 value 83.936562
iter 80 value 83.936520
iter 90 value 83.935852
final value 83.935733
converged
Fitting Repeat 2
# weights: 507
initial value 122.670274
iter 10 value 94.062665
iter 20 value 91.854189
iter 30 value 89.374788
iter 40 value 89.261417
iter 50 value 89.261055
final value 89.261048
converged
Fitting Repeat 3
# weights: 507
initial value 104.878437
iter 10 value 94.016625
iter 20 value 94.013437
iter 30 value 94.008681
iter 40 value 85.941743
iter 50 value 84.058757
iter 60 value 84.039041
iter 70 value 84.037359
iter 80 value 84.036907
final value 84.036865
converged
Fitting Repeat 4
# weights: 507
initial value 117.598334
iter 10 value 94.060867
iter 20 value 93.986348
iter 30 value 90.748728
iter 40 value 88.479084
iter 50 value 86.923257
iter 60 value 83.324549
iter 70 value 81.855956
iter 80 value 81.658808
iter 90 value 81.505136
iter 100 value 81.504309
final value 81.504309
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.173243
iter 10 value 94.055895
iter 20 value 89.939523
iter 30 value 83.919359
iter 40 value 83.723571
iter 50 value 83.208025
iter 60 value 83.207925
iter 70 value 83.207166
iter 80 value 82.534715
iter 90 value 81.550096
iter 100 value 81.311904
final value 81.311904
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 119.616909
iter 10 value 117.894232
iter 20 value 117.890316
final value 117.890308
converged
Fitting Repeat 2
# weights: 305
initial value 139.221146
iter 10 value 117.894979
iter 20 value 117.806463
iter 30 value 114.509165
iter 40 value 109.727438
iter 50 value 108.960844
iter 60 value 108.085133
final value 108.083597
converged
Fitting Repeat 3
# weights: 305
initial value 135.326267
iter 10 value 117.763932
iter 20 value 114.271614
iter 30 value 108.574762
iter 40 value 108.101616
iter 50 value 108.087142
iter 60 value 106.873011
iter 70 value 106.801847
iter 80 value 106.790412
final value 106.790268
converged
Fitting Repeat 4
# weights: 305
initial value 118.661847
iter 10 value 117.763645
iter 20 value 117.731313
iter 30 value 113.620720
iter 40 value 111.535588
final value 111.532149
converged
Fitting Repeat 5
# weights: 305
initial value 124.397707
iter 10 value 117.976397
iter 20 value 117.963870
iter 30 value 116.489594
iter 40 value 111.988579
iter 50 value 109.060474
iter 60 value 109.029219
iter 70 value 109.008472
iter 70 value 109.008471
final value 109.008471
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Sep 9 05:03:42 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
75.121 2.301 141.554
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 49.986 | 1.883 | 52.512 | |
| FreqInteractors | 0.428 | 0.020 | 0.448 | |
| calculateAAC | 0.067 | 0.014 | 0.082 | |
| calculateAutocor | 0.795 | 0.093 | 0.894 | |
| calculateCTDC | 0.141 | 0.010 | 0.151 | |
| calculateCTDD | 1.185 | 0.050 | 1.237 | |
| calculateCTDT | 0.429 | 0.014 | 0.444 | |
| calculateCTriad | 0.748 | 0.056 | 0.808 | |
| calculateDC | 0.228 | 0.026 | 0.255 | |
| calculateF | 0.677 | 0.022 | 0.701 | |
| calculateKSAAP | 0.296 | 0.038 | 0.337 | |
| calculateQD_Sm | 3.338 | 0.197 | 3.694 | |
| calculateTC | 4.395 | 0.393 | 4.924 | |
| calculateTC_Sm | 0.551 | 0.045 | 0.602 | |
| corr_plot | 50.389 | 1.874 | 53.687 | |
| enrichfindP | 0.874 | 0.078 | 13.898 | |
| enrichfind_hp | 0.130 | 0.043 | 1.179 | |
| enrichplot | 0.824 | 0.013 | 0.881 | |
| filter_missing_values | 0.002 | 0.000 | 0.002 | |
| getFASTA | 0.118 | 0.017 | 2.817 | |
| getHPI | 0.001 | 0.001 | 0.002 | |
| get_negativePPI | 0.003 | 0.001 | 0.004 | |
| get_positivePPI | 0.000 | 0.000 | 0.001 | |
| impute_missing_data | 0.003 | 0.001 | 0.003 | |
| plotPPI | 0.135 | 0.005 | 0.141 | |
| pred_ensembel | 24.939 | 0.392 | 22.578 | |
| var_imp | 52.445 | 1.937 | 56.415 | |