Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-10-09 11:41 -0400 (Thu, 09 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4832
merida1macOS 12.7.5 Montereyx86_644.5.1 RC (2025-06-05 r88288) -- "Great Square Root" 4613
kjohnson1macOS 13.6.6 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4554
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4585
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 997/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.14.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-10-06 13:40 -0400 (Mon, 06 Oct 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_21
git_last_commit: e2435b7
git_last_commit_date: 2025-04-15 12:38:30 -0400 (Tue, 15 Apr 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    ERROR  skipped
merida1macOS 12.7.5 Monterey / x86_64  OK    ERROR  skippedskipped
kjohnson1macOS 13.6.6 Ventura / arm64  OK    ERROR  skippedskipped
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on kunpeng2

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: HPiP
Version: 1.14.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.14.0.tar.gz
StartedAt: 2025-10-07 10:30:07 -0000 (Tue, 07 Oct 2025)
EndedAt: 2025-10-07 10:36:56 -0000 (Tue, 07 Oct 2025)
EllapsedTime: 408.6 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.14.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-02-19 r87757)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS-SP1)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
var_imp       39.443  0.348  39.870
corr_plot     37.159  0.303  37.531
FSmethod      36.885  0.279  37.240
pred_ensembel 18.357  0.336  17.560
enrichfindP    0.487  0.032  18.863
getFASTA       0.073  0.008   5.189
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’
* installing *source* package ‘HPiP’ ...
** this is package ‘HPiP’ version ‘1.14.0’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 101.694696 
iter  10 value 90.105107
iter  20 value 88.340027
iter  30 value 87.710367
iter  40 value 87.696794
final  value 87.696368 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.781758 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.366191 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.159234 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.521043 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.557925 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 117.574114 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.506641 
final  value 93.867392 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.029598 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 107.140796 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.499434 
iter  10 value 94.012575
iter  20 value 93.867813
final  value 93.867391 
converged
Fitting Repeat 2 

# weights:  507
initial  value 112.183961 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.174714 
iter  10 value 93.940228
iter  20 value 90.122452
final  value 90.122449 
converged
Fitting Repeat 4 

# weights:  507
initial  value 143.714316 
iter  10 value 93.875801
final  value 93.867391 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.265918 
iter  10 value 91.737425
iter  20 value 86.189601
iter  30 value 86.165909
iter  30 value 86.165909
iter  30 value 86.165909
final  value 86.165909 
converged
Fitting Repeat 1 

# weights:  103
initial  value 107.419673 
iter  10 value 94.056592
iter  20 value 93.814794
iter  30 value 93.379056
iter  40 value 92.969417
iter  50 value 83.623987
iter  60 value 82.805759
iter  70 value 81.974061
iter  80 value 81.898912
final  value 81.897304 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.950302 
iter  10 value 93.984809
iter  20 value 92.926265
iter  30 value 85.087653
iter  40 value 82.463702
iter  50 value 82.291252
iter  60 value 81.992202
iter  70 value 81.876421
iter  80 value 81.866539
final  value 81.866505 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.846880 
iter  10 value 93.483085
iter  20 value 85.370674
iter  30 value 83.510854
iter  40 value 82.172733
iter  50 value 81.091142
iter  60 value 80.507074
iter  70 value 80.447676
final  value 80.447384 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.291451 
iter  10 value 94.060914
iter  20 value 94.050537
iter  30 value 92.894341
iter  40 value 89.475517
iter  50 value 82.699326
iter  60 value 82.470835
iter  70 value 81.770362
iter  80 value 81.667045
iter  90 value 81.522546
iter 100 value 81.496104
final  value 81.496104 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 100.022183 
iter  10 value 93.991011
iter  20 value 92.538101
iter  30 value 86.164154
iter  40 value 84.281356
iter  50 value 83.794676
iter  60 value 83.287802
iter  70 value 82.540747
iter  80 value 82.442654
final  value 82.418710 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.308715 
iter  10 value 85.792254
iter  20 value 85.350030
iter  30 value 85.255428
iter  40 value 85.107217
iter  50 value 82.512681
iter  60 value 81.847833
iter  70 value 80.951718
iter  80 value 80.054809
iter  90 value 79.594584
iter 100 value 79.437008
final  value 79.437008 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 113.580327 
iter  10 value 94.045991
iter  20 value 89.598924
iter  30 value 83.350472
iter  40 value 81.741276
iter  50 value 81.249899
iter  60 value 81.103635
iter  70 value 81.084042
iter  80 value 81.024174
iter  90 value 80.892575
iter 100 value 80.877405
final  value 80.877405 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 118.099499 
iter  10 value 94.040655
iter  20 value 87.373099
iter  30 value 83.151310
iter  40 value 82.198858
iter  50 value 81.652832
iter  60 value 80.941592
iter  70 value 80.062655
iter  80 value 79.546962
iter  90 value 79.262651
iter 100 value 79.195089
final  value 79.195089 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.416101 
iter  10 value 93.550756
iter  20 value 86.694540
iter  30 value 82.984679
iter  40 value 81.388784
iter  50 value 80.819291
iter  60 value 80.397424
iter  70 value 79.540512
iter  80 value 79.345274
iter  90 value 79.305596
iter 100 value 79.294626
final  value 79.294626 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 108.424243 
iter  10 value 94.118127
iter  20 value 93.598860
iter  30 value 91.261643
iter  40 value 81.255152
iter  50 value 80.363149
iter  60 value 79.629689
iter  70 value 79.556516
iter  80 value 79.504146
iter  90 value 79.119381
iter 100 value 78.762497
final  value 78.762497 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 108.712541 
iter  10 value 94.129579
iter  20 value 93.394702
iter  30 value 88.542818
iter  40 value 82.872062
iter  50 value 81.277680
iter  60 value 80.544244
iter  70 value 80.247670
iter  80 value 79.782183
iter  90 value 79.400494
iter 100 value 79.229128
final  value 79.229128 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.133228 
iter  10 value 89.304068
iter  20 value 85.969661
iter  30 value 84.067263
iter  40 value 82.222335
iter  50 value 81.069393
iter  60 value 79.987601
iter  70 value 79.419175
iter  80 value 79.060310
iter  90 value 78.926909
iter 100 value 78.884567
final  value 78.884567 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.582660 
iter  10 value 94.437037
iter  20 value 88.622912
iter  30 value 82.675905
iter  40 value 82.380289
iter  50 value 81.915655
iter  60 value 81.406196
iter  70 value 81.099912
iter  80 value 80.421493
iter  90 value 79.872080
iter 100 value 79.770183
final  value 79.770183 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.745587 
iter  10 value 93.637669
iter  20 value 85.946839
iter  30 value 84.002164
iter  40 value 80.876965
iter  50 value 79.606815
iter  60 value 79.393685
iter  70 value 79.030999
iter  80 value 78.983789
iter  90 value 78.922184
iter 100 value 78.656493
final  value 78.656493 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.865888 
iter  10 value 94.533891
iter  20 value 85.750656
iter  30 value 82.968653
iter  40 value 82.522339
iter  50 value 82.253303
iter  60 value 82.160230
iter  70 value 81.476100
iter  80 value 80.653526
iter  90 value 79.946277
iter 100 value 79.620580
final  value 79.620580 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.333681 
final  value 94.054693 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.922960 
final  value 94.054321 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.889263 
final  value 94.054538 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.077022 
final  value 94.054488 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.633968 
iter  10 value 87.233224
iter  20 value 83.281062
iter  30 value 83.236757
iter  40 value 83.228380
final  value 83.228266 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.318900 
iter  10 value 93.938755
iter  20 value 93.887914
iter  30 value 92.386683
iter  40 value 92.385977
iter  50 value 84.807989
iter  60 value 84.367167
iter  70 value 84.299565
iter  80 value 84.298945
iter  90 value 84.298580
iter 100 value 84.293577
final  value 84.293577 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.841636 
iter  10 value 94.057768
final  value 94.052979 
converged
Fitting Repeat 3 

# weights:  305
initial  value 108.631431 
iter  10 value 94.031013
iter  20 value 94.027709
iter  30 value 85.180295
iter  40 value 84.287649
final  value 84.287572 
converged
Fitting Repeat 4 

# weights:  305
initial  value 106.341146 
iter  10 value 94.057783
iter  20 value 93.981902
iter  30 value 91.143020
iter  40 value 91.132623
iter  50 value 91.115156
iter  60 value 91.112686
iter  70 value 91.104681
iter  80 value 83.508466
iter  90 value 79.889931
iter 100 value 79.104848
final  value 79.104848 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 95.773176 
iter  10 value 94.057750
final  value 94.052917 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.826416 
iter  10 value 93.876108
iter  20 value 93.665324
iter  30 value 81.010701
iter  40 value 79.676818
iter  50 value 79.582001
iter  60 value 79.501285
iter  70 value 79.500731
iter  80 value 79.483059
iter  90 value 78.381143
iter 100 value 77.764028
final  value 77.764028 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 116.654794 
iter  10 value 93.875898
iter  20 value 93.872719
iter  30 value 93.871380
iter  40 value 93.859310
iter  50 value 85.342408
iter  60 value 84.084108
final  value 84.077855 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.154187 
iter  10 value 93.715973
iter  20 value 84.872113
iter  30 value 84.812330
iter  40 value 84.476815
iter  50 value 84.474983
iter  60 value 84.465420
final  value 84.465418 
converged
Fitting Repeat 4 

# weights:  507
initial  value 109.603789 
iter  10 value 94.061126
iter  20 value 94.053139
iter  30 value 82.701449
iter  40 value 81.320504
final  value 81.320385 
converged
Fitting Repeat 5 

# weights:  507
initial  value 118.614127 
iter  10 value 94.084402
iter  20 value 93.905265
iter  30 value 81.744572
iter  40 value 81.638754
iter  50 value 81.563044
iter  60 value 81.557732
iter  70 value 81.393066
iter  80 value 81.249569
iter  90 value 81.241526
iter 100 value 80.990893
final  value 80.990893 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.132525 
final  value 94.466823 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.233725 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.667277 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.378055 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.693844 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.294909 
final  value 94.312038 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.850160 
iter  10 value 91.059335
iter  20 value 85.610686
iter  30 value 85.540860
iter  40 value 85.539793
iter  50 value 85.409330
iter  60 value 84.846883
iter  70 value 84.845709
iter  80 value 84.766966
final  value 84.759731 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.087911 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.337918 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  305
initial  value 105.358475 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.961205 
iter  10 value 89.517378
iter  20 value 88.912380
iter  30 value 88.863174
final  value 88.673745 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.784170 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.755041 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.344097 
final  value 94.320299 
converged
Fitting Repeat 5 

# weights:  507
initial  value 118.108443 
final  value 94.052434 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.002350 
iter  10 value 94.503183
iter  20 value 93.343992
iter  30 value 88.850888
iter  40 value 88.669747
iter  50 value 88.189705
iter  60 value 87.336357
iter  70 value 86.885197
iter  80 value 86.742584
iter  90 value 86.673611
iter 100 value 86.432577
final  value 86.432577 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 95.900222 
iter  10 value 88.511306
iter  20 value 88.087635
iter  30 value 87.439085
iter  40 value 86.388137
iter  50 value 85.728415
iter  60 value 85.584726
iter  70 value 85.536353
final  value 85.535095 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.750990 
iter  10 value 94.175756
iter  20 value 93.755004
iter  30 value 93.725506
iter  40 value 93.723892
iter  50 value 92.240375
iter  60 value 88.248406
iter  70 value 87.584448
iter  80 value 87.068885
iter  90 value 85.581389
iter 100 value 85.398170
final  value 85.398170 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 103.731684 
iter  10 value 94.486595
iter  20 value 93.807052
iter  30 value 87.703980
iter  40 value 87.009865
iter  50 value 86.711728
iter  60 value 86.190562
iter  70 value 85.997602
iter  80 value 85.952960
iter  90 value 85.951476
iter  90 value 85.951476
final  value 85.951476 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.406370 
iter  10 value 94.486419
iter  20 value 94.052194
iter  30 value 93.829490
iter  40 value 93.782646
iter  50 value 93.724579
iter  60 value 93.229707
iter  70 value 91.053630
iter  80 value 89.468896
iter  90 value 88.388359
iter 100 value 87.336821
final  value 87.336821 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 103.232790 
iter  10 value 94.517570
iter  20 value 94.460859
iter  30 value 93.959203
iter  40 value 93.914136
iter  50 value 88.263101
iter  60 value 87.397449
iter  70 value 85.807966
iter  80 value 85.403643
iter  90 value 84.732886
iter 100 value 83.828797
final  value 83.828797 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.084256 
iter  10 value 94.447220
iter  20 value 93.915895
iter  30 value 93.760519
iter  40 value 92.283379
iter  50 value 91.847879
iter  60 value 89.660746
iter  70 value 87.405908
iter  80 value 86.410695
iter  90 value 84.907057
iter 100 value 84.035270
final  value 84.035270 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.793120 
iter  10 value 94.112788
iter  20 value 89.166135
iter  30 value 88.045528
iter  40 value 85.251874
iter  50 value 84.199901
iter  60 value 83.858533
iter  70 value 83.201109
iter  80 value 82.746048
iter  90 value 82.643109
iter 100 value 82.462908
final  value 82.462908 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.747501 
iter  10 value 94.712245
iter  20 value 93.791351
iter  30 value 89.178527
iter  40 value 88.610154
iter  50 value 88.386464
iter  60 value 87.479047
iter  70 value 86.620072
iter  80 value 86.097451
iter  90 value 85.210312
iter 100 value 84.030638
final  value 84.030638 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 107.151450 
iter  10 value 94.366065
iter  20 value 91.232679
iter  30 value 90.112045
iter  40 value 87.115094
iter  50 value 84.887528
iter  60 value 83.977082
iter  70 value 83.134489
iter  80 value 82.501331
iter  90 value 82.307682
iter 100 value 82.227388
final  value 82.227388 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 125.580314 
iter  10 value 94.753632
iter  20 value 89.723517
iter  30 value 85.735001
iter  40 value 84.195576
iter  50 value 83.784727
iter  60 value 83.625384
iter  70 value 83.551901
iter  80 value 82.943436
iter  90 value 82.159396
iter 100 value 81.946671
final  value 81.946671 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.153789 
iter  10 value 94.484055
iter  20 value 93.425066
iter  30 value 92.583313
iter  40 value 91.859945
iter  50 value 87.772703
iter  60 value 86.771221
iter  70 value 85.462225
iter  80 value 85.127715
iter  90 value 84.783236
iter 100 value 84.301297
final  value 84.301297 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.422500 
iter  10 value 94.489215
iter  20 value 94.068673
iter  30 value 93.926968
iter  40 value 93.789482
iter  50 value 93.343468
iter  60 value 92.531962
iter  70 value 92.212951
iter  80 value 92.100861
iter  90 value 90.385153
iter 100 value 88.117036
final  value 88.117036 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.913081 
iter  10 value 94.549901
iter  20 value 93.891504
iter  30 value 86.883541
iter  40 value 85.289286
iter  50 value 84.521272
iter  60 value 83.219754
iter  70 value 82.992604
iter  80 value 82.565699
iter  90 value 82.227832
iter 100 value 82.094881
final  value 82.094881 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.301632 
iter  10 value 95.417799
iter  20 value 91.079265
iter  30 value 87.195806
iter  40 value 84.926738
iter  50 value 84.050556
iter  60 value 83.498199
iter  70 value 83.264069
iter  80 value 82.799323
iter  90 value 82.431925
iter 100 value 82.346227
final  value 82.346227 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.239989 
final  value 94.457205 
converged
Fitting Repeat 2 

# weights:  103
initial  value 105.140319 
final  value 94.485904 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.202954 
iter  10 value 94.485783
iter  20 value 94.439068
iter  30 value 93.767499
iter  40 value 93.762630
final  value 93.762627 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.109444 
final  value 94.485935 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.787927 
final  value 94.485719 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.372690 
iter  10 value 91.842489
iter  20 value 88.244175
iter  30 value 86.854476
iter  40 value 86.827652
iter  50 value 86.761380
iter  60 value 85.480220
iter  70 value 84.337547
iter  80 value 84.335789
iter  90 value 84.331464
iter 100 value 83.072576
final  value 83.072576 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 95.837368 
iter  10 value 94.488955
iter  20 value 94.481909
iter  30 value 94.093447
iter  40 value 94.010426
iter  50 value 93.950382
final  value 93.910134 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.490973 
iter  10 value 94.485893
iter  20 value 86.525071
iter  30 value 86.510584
iter  40 value 85.746206
iter  50 value 85.744683
iter  60 value 85.743289
iter  70 value 85.286245
final  value 85.286239 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.746609 
iter  10 value 94.489661
iter  20 value 94.484607
iter  30 value 93.953335
iter  40 value 92.841125
final  value 92.836008 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.777178 
iter  10 value 94.488890
iter  20 value 94.480221
iter  30 value 93.892180
iter  40 value 93.871837
final  value 93.871823 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.750084 
iter  10 value 94.113072
iter  20 value 94.106017
iter  30 value 93.372488
iter  40 value 85.981584
iter  50 value 84.493871
iter  60 value 82.025406
iter  70 value 81.209627
iter  80 value 80.905093
iter  90 value 80.650624
iter 100 value 80.024774
final  value 80.024774 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 97.377899 
iter  10 value 89.416674
iter  20 value 87.604497
iter  30 value 87.582585
iter  40 value 87.580128
iter  50 value 87.573776
iter  60 value 87.573555
final  value 87.573481 
converged
Fitting Repeat 3 

# weights:  507
initial  value 115.468889 
iter  10 value 94.492746
iter  20 value 94.484297
final  value 94.484256 
converged
Fitting Repeat 4 

# weights:  507
initial  value 115.949036 
iter  10 value 94.249460
iter  20 value 88.893518
iter  30 value 88.487492
iter  40 value 88.339045
iter  50 value 88.266698
iter  60 value 86.359064
iter  70 value 85.128462
iter  80 value 84.816814
iter  90 value 84.619300
iter 100 value 84.349281
final  value 84.349281 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 99.662018 
iter  10 value 94.098695
iter  20 value 93.918331
iter  30 value 93.913547
iter  40 value 93.909947
final  value 93.909700 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.890608 
iter  10 value 93.244227
final  value 93.183861 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.850550 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.392675 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.643931 
final  value 93.836066 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.916309 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 124.124035 
iter  10 value 93.836066
iter  10 value 93.836066
iter  10 value 93.836066
final  value 93.836066 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.158880 
iter  10 value 93.836066
iter  10 value 93.836066
iter  10 value 93.836066
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.878519 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.777909 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.006325 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 103.348262 
iter  10 value 92.138926
final  value 91.952024 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.934857 
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.482387 
iter  10 value 93.283951
iter  10 value 93.283951
iter  10 value 93.283951
final  value 93.283951 
converged
Fitting Repeat 4 

# weights:  507
initial  value 120.685285 
final  value 93.836066 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.222397 
iter  10 value 84.269477
iter  20 value 83.237046
iter  30 value 83.157830
final  value 83.157794 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.421727 
iter  10 value 94.053588
iter  20 value 93.371292
iter  30 value 93.325848
iter  40 value 89.961264
iter  50 value 85.968789
iter  60 value 84.962417
iter  70 value 81.136152
iter  80 value 80.715620
iter  90 value 80.262384
iter 100 value 79.499088
final  value 79.499088 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 102.471374 
iter  10 value 94.056444
iter  20 value 93.355477
iter  30 value 93.322882
iter  40 value 92.396621
iter  50 value 85.692602
iter  60 value 82.151849
iter  70 value 81.939739
iter  80 value 81.532308
iter  90 value 81.218000
iter 100 value 81.086350
final  value 81.086350 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.188296 
iter  10 value 94.022896
iter  20 value 93.340277
iter  30 value 93.303784
iter  40 value 91.763337
iter  50 value 85.956463
iter  60 value 84.417445
iter  70 value 83.970458
iter  80 value 83.775484
iter  90 value 83.707321
iter 100 value 83.227251
final  value 83.227251 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 96.592545 
iter  10 value 94.055111
iter  20 value 93.372405
iter  30 value 93.337862
iter  40 value 93.304287
iter  50 value 89.785494
iter  60 value 85.451748
iter  70 value 82.343893
iter  80 value 81.390848
iter  90 value 81.283660
iter 100 value 81.210716
final  value 81.210716 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 108.114334 
iter  10 value 93.439962
iter  20 value 90.790344
iter  30 value 90.220835
iter  40 value 90.146718
iter  50 value 90.138616
final  value 90.138542 
converged
Fitting Repeat 1 

# weights:  305
initial  value 119.729001 
iter  10 value 96.692426
iter  20 value 93.901562
iter  30 value 86.467878
iter  40 value 84.573489
iter  50 value 81.244051
iter  60 value 80.408853
iter  70 value 79.822563
iter  80 value 79.410676
iter  90 value 79.354259
iter 100 value 79.250922
final  value 79.250922 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 118.019294 
iter  10 value 90.332290
iter  20 value 85.329832
iter  30 value 83.928966
iter  40 value 79.365544
iter  50 value 78.672360
iter  60 value 78.358477
iter  70 value 78.229805
iter  80 value 78.151174
iter  90 value 78.074861
iter 100 value 78.036879
final  value 78.036879 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.242530 
iter  10 value 93.155436
iter  20 value 83.648627
iter  30 value 82.043761
iter  40 value 80.773314
iter  50 value 78.946150
iter  60 value 78.560773
iter  70 value 78.302602
iter  80 value 78.176901
iter  90 value 78.031358
iter 100 value 78.025300
final  value 78.025300 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.171266 
iter  10 value 93.976321
iter  20 value 88.529304
iter  30 value 88.125082
iter  40 value 86.938691
iter  50 value 81.429799
iter  60 value 80.441124
iter  70 value 79.214794
iter  80 value 78.514770
iter  90 value 78.256860
iter 100 value 78.193343
final  value 78.193343 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 114.458136 
iter  10 value 93.859860
iter  20 value 90.324994
iter  30 value 85.820621
iter  40 value 84.766420
iter  50 value 81.524797
iter  60 value 79.654769
iter  70 value 79.006570
iter  80 value 78.474903
iter  90 value 78.233387
iter 100 value 78.111483
final  value 78.111483 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 131.299627 
iter  10 value 96.655787
iter  20 value 90.942448
iter  30 value 87.134698
iter  40 value 83.662279
iter  50 value 82.061596
iter  60 value 80.854832
iter  70 value 79.510783
iter  80 value 78.858770
iter  90 value 78.236184
iter 100 value 78.005415
final  value 78.005415 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.216022 
iter  10 value 95.034719
iter  20 value 92.269050
iter  30 value 81.414481
iter  40 value 80.833705
iter  50 value 79.769260
iter  60 value 79.528437
iter  70 value 78.602910
iter  80 value 77.925028
iter  90 value 77.571542
iter 100 value 77.438086
final  value 77.438086 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 131.544632 
iter  10 value 94.028624
iter  20 value 90.187598
iter  30 value 85.617143
iter  40 value 83.707202
iter  50 value 81.188804
iter  60 value 80.450658
iter  70 value 79.798162
iter  80 value 79.350162
iter  90 value 79.294749
iter 100 value 79.223021
final  value 79.223021 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 106.800447 
iter  10 value 94.514611
iter  20 value 84.713702
iter  30 value 83.297769
iter  40 value 80.530888
iter  50 value 79.043919
iter  60 value 78.809620
iter  70 value 78.283503
iter  80 value 77.967672
iter  90 value 77.819919
iter 100 value 77.733659
final  value 77.733659 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.556600 
iter  10 value 94.189030
iter  20 value 87.492592
iter  30 value 85.112076
iter  40 value 83.418241
iter  50 value 82.002104
iter  60 value 81.115485
iter  70 value 80.391679
iter  80 value 78.969873
iter  90 value 78.072659
iter 100 value 77.921385
final  value 77.921385 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.001460 
iter  10 value 94.054678
final  value 94.053054 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.767108 
iter  10 value 94.054576
iter  20 value 94.052928
final  value 94.052919 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.379430 
final  value 94.054621 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.511690 
final  value 94.054717 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.021572 
iter  10 value 93.058457
iter  20 value 93.057558
final  value 93.057547 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.389012 
iter  10 value 94.057563
iter  20 value 94.052934
final  value 94.052918 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.805564 
iter  10 value 93.840908
iter  20 value 93.836259
iter  30 value 86.044289
iter  40 value 84.564717
iter  50 value 84.301279
iter  60 value 84.300320
iter  60 value 84.300320
final  value 84.300320 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.330030 
iter  10 value 94.058251
iter  20 value 93.887397
iter  30 value 82.275566
iter  40 value 78.336477
iter  50 value 77.558852
iter  60 value 76.828412
iter  70 value 76.801180
final  value 76.801158 
converged
Fitting Repeat 4 

# weights:  305
initial  value 108.741274 
iter  10 value 93.841363
iter  20 value 93.836386
iter  30 value 93.738589
iter  40 value 90.214574
iter  50 value 83.928012
iter  60 value 83.923829
iter  70 value 83.745452
iter  80 value 83.517173
iter  90 value 83.516425
final  value 83.515247 
converged
Fitting Repeat 5 

# weights:  305
initial  value 113.390321 
iter  10 value 92.105773
iter  20 value 87.749117
iter  30 value 87.507795
iter  40 value 86.943129
iter  50 value 86.887336
final  value 86.886654 
converged
Fitting Repeat 1 

# weights:  507
initial  value 108.990619 
iter  10 value 94.063451
iter  20 value 87.950889
iter  30 value 84.699587
iter  40 value 83.057143
iter  50 value 82.845919
iter  60 value 82.844208
iter  70 value 82.835919
iter  80 value 82.834142
final  value 82.833850 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.729593 
iter  10 value 94.060815
iter  20 value 93.929056
iter  30 value 82.203971
iter  40 value 80.622500
iter  50 value 80.288933
iter  60 value 80.038844
iter  70 value 79.677555
iter  80 value 79.648611
iter  90 value 79.648550
final  value 79.648546 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.239366 
iter  10 value 94.060723
iter  20 value 93.731854
iter  30 value 83.835994
iter  40 value 82.005376
iter  50 value 81.078409
iter  60 value 79.794909
iter  70 value 78.702179
iter  80 value 78.257262
iter  90 value 77.971989
iter 100 value 77.933498
final  value 77.933498 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.312007 
iter  10 value 94.061386
iter  20 value 93.795234
iter  30 value 86.482450
iter  40 value 86.086250
iter  50 value 85.341510
iter  60 value 84.410584
iter  70 value 84.355748
iter  80 value 83.547822
iter  90 value 83.075916
iter 100 value 83.069881
final  value 83.069881 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 117.101409 
iter  10 value 86.450872
iter  20 value 84.567091
iter  30 value 84.492762
iter  40 value 84.375346
iter  50 value 84.367212
iter  60 value 84.365560
iter  70 value 84.359260
iter  80 value 84.258103
iter  90 value 84.224811
iter 100 value 84.224111
final  value 84.224111 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.184909 
iter  10 value 94.484217
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.304478 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 124.021007 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.351052 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.412955 
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.249757 
iter  10 value 89.467625
iter  20 value 89.455283
final  value 89.455279 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.822054 
final  value 94.026542 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.500804 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 112.901567 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 109.827974 
final  value 93.668704 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.566648 
iter  10 value 94.015240
final  value 94.015226 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.301381 
iter  10 value 94.026552
final  value 94.026542 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.300284 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.453888 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.764281 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.222038 
iter  10 value 94.468541
iter  20 value 94.000514
iter  30 value 91.260629
iter  40 value 88.631395
iter  50 value 86.467706
iter  60 value 83.344066
iter  70 value 82.669996
iter  80 value 81.775731
iter  90 value 81.750127
iter 100 value 81.747239
final  value 81.747239 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 101.251192 
iter  10 value 94.488530
iter  20 value 94.328280
iter  30 value 94.216109
iter  40 value 92.890941
iter  50 value 88.009189
iter  60 value 87.567418
iter  70 value 84.471695
iter  80 value 84.228855
iter  90 value 84.159389
final  value 84.159333 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.485365 
iter  10 value 91.309970
iter  20 value 90.964399
iter  30 value 90.939866
final  value 90.937855 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.555056 
iter  10 value 94.489650
iter  20 value 93.926330
iter  30 value 93.875351
iter  40 value 90.516903
iter  50 value 87.864216
iter  60 value 85.650753
iter  70 value 82.457370
iter  80 value 82.232318
iter  90 value 82.007338
iter 100 value 81.975132
final  value 81.975132 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 103.554699 
iter  10 value 94.042174
iter  20 value 87.586167
iter  30 value 86.990330
iter  40 value 86.086925
iter  50 value 85.766036
iter  60 value 85.635526
final  value 85.635355 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.654155 
iter  10 value 94.960270
iter  20 value 94.701525
iter  30 value 94.085048
iter  40 value 89.713747
iter  50 value 88.378335
iter  60 value 88.175608
iter  70 value 87.949782
iter  80 value 85.881536
iter  90 value 85.104380
iter 100 value 84.774027
final  value 84.774027 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.270922 
iter  10 value 93.546272
iter  20 value 88.154472
iter  30 value 84.485159
iter  40 value 82.715100
iter  50 value 81.878079
iter  60 value 81.511749
iter  70 value 81.240843
iter  80 value 81.159012
iter  90 value 80.995397
iter 100 value 80.983259
final  value 80.983259 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.426793 
iter  10 value 94.452800
iter  20 value 85.994409
iter  30 value 85.765304
iter  40 value 85.164622
iter  50 value 84.330518
iter  60 value 82.622277
iter  70 value 81.850610
iter  80 value 81.467641
iter  90 value 81.278857
iter 100 value 81.016103
final  value 81.016103 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.194487 
iter  10 value 95.694865
iter  20 value 92.462039
iter  30 value 88.219270
iter  40 value 86.498987
iter  50 value 85.459377
iter  60 value 82.224040
iter  70 value 81.954939
iter  80 value 81.790290
iter  90 value 81.597844
iter 100 value 81.532216
final  value 81.532216 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.043926 
iter  10 value 94.494134
iter  20 value 94.373287
iter  30 value 86.111967
iter  40 value 84.765499
iter  50 value 81.779612
iter  60 value 81.553862
iter  70 value 81.276415
iter  80 value 81.156454
iter  90 value 81.083349
iter 100 value 80.683263
final  value 80.683263 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 120.810995 
iter  10 value 95.064483
iter  20 value 89.661252
iter  30 value 88.827974
iter  40 value 84.218163
iter  50 value 82.522821
iter  60 value 81.645330
iter  70 value 81.509833
iter  80 value 81.273385
iter  90 value 81.160982
iter 100 value 81.114392
final  value 81.114392 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.860636 
iter  10 value 94.006099
iter  20 value 93.377019
iter  30 value 87.758184
iter  40 value 86.641965
iter  50 value 85.746944
iter  60 value 84.599262
iter  70 value 81.842535
iter  80 value 81.375273
iter  90 value 81.219726
iter 100 value 80.900554
final  value 80.900554 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.290808 
iter  10 value 94.742218
iter  20 value 93.758206
iter  30 value 88.533322
iter  40 value 86.803671
iter  50 value 85.633618
iter  60 value 83.702375
iter  70 value 82.352288
iter  80 value 81.768311
iter  90 value 81.483452
iter 100 value 81.305700
final  value 81.305700 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 121.719143 
iter  10 value 94.105360
iter  20 value 85.814964
iter  30 value 84.077142
iter  40 value 83.556963
iter  50 value 82.889924
iter  60 value 82.207079
iter  70 value 81.912470
iter  80 value 81.672859
iter  90 value 81.549367
iter 100 value 81.187882
final  value 81.187882 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.772598 
iter  10 value 96.524395
iter  20 value 89.292764
iter  30 value 84.272386
iter  40 value 82.939962
iter  50 value 82.248816
iter  60 value 81.443618
iter  70 value 81.161750
iter  80 value 81.099034
iter  90 value 80.922228
iter 100 value 80.852977
final  value 80.852977 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 118.865294 
final  value 94.486090 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.062991 
final  value 94.485693 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.967597 
final  value 94.485909 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.331229 
final  value 94.485715 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.729699 
final  value 94.485614 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.916178 
iter  10 value 94.031593
iter  20 value 93.663418
iter  30 value 87.379440
iter  40 value 85.182142
iter  50 value 85.127545
iter  60 value 85.126181
final  value 85.126147 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.093287 
iter  10 value 94.486641
iter  20 value 94.482464
iter  30 value 93.823343
iter  40 value 88.758703
iter  50 value 85.701070
iter  60 value 85.454596
iter  70 value 85.229969
iter  80 value 85.202963
iter  90 value 85.200396
iter 100 value 85.199314
final  value 85.199314 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 95.684654 
iter  10 value 94.489192
final  value 94.484222 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.855576 
iter  10 value 94.036389
iter  20 value 94.035039
iter  30 value 94.031735
iter  40 value 93.788224
final  value 93.739090 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.455259 
iter  10 value 94.032013
iter  20 value 94.027556
iter  30 value 94.021043
iter  40 value 93.800652
iter  50 value 93.791820
iter  60 value 93.791630
iter  70 value 93.791325
iter  80 value 93.790965
iter  90 value 93.784228
iter 100 value 92.661777
final  value 92.661777 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.915363 
iter  10 value 94.492599
iter  20 value 94.484292
iter  20 value 94.484291
iter  20 value 94.484291
final  value 94.484291 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.121665 
iter  10 value 94.035397
iter  20 value 92.936394
iter  30 value 85.841445
iter  40 value 85.340357
iter  50 value 85.302307
iter  60 value 85.201846
iter  70 value 85.197949
iter  80 value 85.196564
iter  90 value 85.191066
iter 100 value 84.589975
final  value 84.589975 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.528881 
iter  10 value 94.449979
iter  20 value 94.339673
iter  30 value 93.811321
iter  40 value 93.804189
final  value 93.795960 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.547558 
iter  10 value 94.492439
iter  20 value 94.483636
iter  30 value 94.027647
iter  30 value 94.027647
iter  30 value 94.027647
final  value 94.027647 
converged
Fitting Repeat 5 

# weights:  507
initial  value 102.906378 
iter  10 value 94.492571
iter  20 value 93.794037
iter  30 value 90.359227
iter  40 value 88.946103
iter  50 value 88.943122
iter  60 value 88.941154
iter  70 value 88.779317
iter  80 value 88.275887
iter  90 value 88.252099
final  value 88.251037 
converged
Fitting Repeat 1 

# weights:  103
initial  value 108.546339 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.130360 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.524579 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.121578 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.433284 
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.662431 
iter  10 value 90.839613
iter  20 value 88.229952
iter  30 value 88.226407
final  value 88.226400 
converged
Fitting Repeat 2 

# weights:  305
initial  value 106.303636 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.148521 
iter  10 value 92.120996
iter  20 value 91.471330
final  value 91.471322 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.847540 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.505739 
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  507
initial  value 114.593968 
final  value 94.026542 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.726322 
final  value 94.252920 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.854477 
final  value 94.046703 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.242907 
iter  10 value 92.256866
iter  20 value 87.051389
iter  30 value 86.983960
final  value 86.983942 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.666213 
iter  10 value 94.021984
iter  20 value 94.019156
iter  20 value 94.019155
iter  20 value 94.019155
final  value 94.019155 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.633799 
iter  10 value 94.242534
iter  20 value 88.831103
iter  30 value 84.307807
iter  40 value 83.227682
iter  50 value 82.468969
iter  60 value 82.139221
iter  70 value 82.085528
final  value 82.085345 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.720043 
iter  10 value 94.148159
iter  20 value 94.094770
iter  30 value 89.351900
iter  40 value 87.634025
iter  50 value 87.259169
iter  60 value 86.453319
iter  70 value 83.336407
iter  80 value 81.605236
iter  90 value 81.550008
final  value 81.549993 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.558139 
iter  10 value 94.495033
iter  20 value 94.489289
iter  30 value 94.353578
iter  40 value 94.180428
iter  50 value 94.129143
iter  60 value 94.127979
iter  70 value 94.092492
iter  80 value 85.936139
iter  90 value 84.183818
iter 100 value 83.871555
final  value 83.871555 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 96.126473 
iter  10 value 94.488343
iter  20 value 92.084162
iter  30 value 88.159249
iter  40 value 83.337943
iter  50 value 82.737179
iter  60 value 82.158207
iter  70 value 82.085765
final  value 82.085345 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.519959 
iter  10 value 93.086839
iter  20 value 84.215676
iter  30 value 83.814740
iter  40 value 82.811340
iter  50 value 82.421293
iter  60 value 82.307773
iter  70 value 82.177946
iter  80 value 82.085473
final  value 82.085345 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.676090 
iter  10 value 94.099958
iter  20 value 88.648033
iter  30 value 85.604696
iter  40 value 81.613480
iter  50 value 81.102432
iter  60 value 79.986488
iter  70 value 79.751657
iter  80 value 79.458345
iter  90 value 79.348061
iter 100 value 79.261831
final  value 79.261831 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.572515 
iter  10 value 94.928996
iter  20 value 89.987633
iter  30 value 88.231995
iter  40 value 84.006029
iter  50 value 83.474413
iter  60 value 82.241074
iter  70 value 82.051851
iter  80 value 81.605832
iter  90 value 81.007070
iter 100 value 80.391607
final  value 80.391607 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 114.049500 
iter  10 value 94.300575
iter  20 value 88.392793
iter  30 value 86.494501
iter  40 value 85.664989
iter  50 value 82.146544
iter  60 value 81.139555
iter  70 value 80.623443
iter  80 value 80.585071
iter  90 value 80.099067
iter 100 value 79.784320
final  value 79.784320 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.088430 
iter  10 value 91.549771
iter  20 value 87.336771
iter  30 value 82.969749
iter  40 value 82.579006
iter  50 value 82.408759
iter  60 value 82.053282
iter  70 value 80.990441
iter  80 value 80.390424
iter  90 value 80.305581
iter 100 value 80.229064
final  value 80.229064 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.604179 
iter  10 value 94.524829
iter  20 value 94.126322
iter  30 value 87.904254
iter  40 value 84.146248
iter  50 value 82.849090
iter  60 value 81.671104
iter  70 value 80.245674
iter  80 value 79.561874
iter  90 value 79.460303
iter 100 value 79.320472
final  value 79.320472 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.798541 
iter  10 value 94.489593
iter  20 value 94.125846
iter  30 value 86.255002
iter  40 value 84.780601
iter  50 value 83.354177
iter  60 value 82.679059
iter  70 value 81.326343
iter  80 value 81.048531
iter  90 value 80.841675
iter 100 value 79.995109
final  value 79.995109 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.356050 
iter  10 value 93.521312
iter  20 value 87.985584
iter  30 value 86.418451
iter  40 value 85.496342
iter  50 value 84.700502
iter  60 value 84.088739
iter  70 value 83.889556
iter  80 value 83.538102
iter  90 value 82.326095
iter 100 value 80.632498
final  value 80.632498 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 118.943432 
iter  10 value 95.673784
iter  20 value 90.528898
iter  30 value 84.449771
iter  40 value 82.822874
iter  50 value 81.516717
iter  60 value 80.337906
iter  70 value 79.581010
iter  80 value 79.442146
iter  90 value 79.325303
iter 100 value 79.236769
final  value 79.236769 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 115.395966 
iter  10 value 96.182024
iter  20 value 95.696626
iter  30 value 84.412829
iter  40 value 83.887000
iter  50 value 81.618956
iter  60 value 80.505878
iter  70 value 80.132529
iter  80 value 79.890297
iter  90 value 79.643934
iter 100 value 79.367825
final  value 79.367825 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 121.799489 
iter  10 value 94.940516
iter  20 value 86.010484
iter  30 value 84.929047
iter  40 value 83.584880
iter  50 value 81.719557
iter  60 value 79.893576
iter  70 value 79.392698
iter  80 value 79.308602
iter  90 value 79.254151
iter 100 value 79.230412
final  value 79.230412 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.108714 
final  value 94.028513 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.877801 
final  value 94.486005 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.805199 
final  value 94.485858 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.217508 
final  value 94.485747 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.126636 
final  value 94.486022 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.884619 
iter  10 value 94.488590
iter  20 value 94.483171
iter  30 value 94.026773
iter  30 value 94.026772
iter  30 value 94.026772
final  value 94.026772 
converged
Fitting Repeat 2 

# weights:  305
initial  value 100.503364 
iter  10 value 94.489298
iter  20 value 93.448815
iter  30 value 88.116629
iter  40 value 88.115598
iter  50 value 86.592489
iter  60 value 85.715790
iter  70 value 85.707346
iter  80 value 85.706133
iter  90 value 85.045813
final  value 85.011904 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.553066 
iter  10 value 94.488961
iter  20 value 91.242564
iter  30 value 83.938730
iter  40 value 83.917843
final  value 83.917819 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.234711 
iter  10 value 82.585804
iter  20 value 80.624140
iter  30 value 80.605126
iter  40 value 80.604277
iter  50 value 80.594422
iter  60 value 80.341239
iter  70 value 80.147114
iter  80 value 80.145673
final  value 80.145501 
converged
Fitting Repeat 5 

# weights:  305
initial  value 114.420064 
iter  10 value 94.489706
iter  20 value 93.267740
iter  30 value 88.789525
iter  40 value 86.828275
iter  50 value 86.780011
iter  60 value 86.779342
iter  70 value 85.030402
iter  80 value 84.835636
iter  80 value 84.835636
final  value 84.835636 
converged
Fitting Repeat 1 

# weights:  507
initial  value 117.026468 
iter  10 value 94.492207
iter  20 value 94.459684
iter  30 value 94.327544
iter  40 value 91.142170
iter  50 value 89.503606
iter  60 value 83.502786
iter  70 value 83.026148
iter  80 value 83.025400
iter  90 value 81.990789
iter 100 value 81.258221
final  value 81.258221 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 97.200852 
iter  10 value 94.487671
iter  20 value 92.538818
iter  30 value 85.435644
iter  40 value 85.360737
iter  50 value 84.901357
iter  60 value 84.811681
iter  70 value 84.811185
final  value 84.809945 
converged
Fitting Repeat 3 

# weights:  507
initial  value 112.299343 
iter  10 value 94.034671
iter  20 value 94.028087
iter  30 value 91.054830
iter  40 value 90.268766
iter  50 value 90.145842
final  value 90.145675 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.330270 
iter  10 value 94.296870
iter  20 value 94.230054
iter  30 value 93.673308
iter  40 value 83.729405
iter  50 value 83.024335
final  value 83.020741 
converged
Fitting Repeat 5 

# weights:  507
initial  value 117.729164 
iter  10 value 94.492023
iter  20 value 94.294773
iter  30 value 93.260312
iter  40 value 84.946677
iter  50 value 81.909242
iter  60 value 79.413488
iter  70 value 79.208637
iter  80 value 79.205571
iter  90 value 79.204670
iter 100 value 79.202906
final  value 79.202906 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 123.134462 
iter  10 value 117.569273
iter  20 value 117.554939
iter  30 value 117.513573
final  value 117.512718 
converged
Fitting Repeat 2 

# weights:  305
initial  value 135.214162 
iter  10 value 117.763993
iter  20 value 117.093551
iter  30 value 108.552155
final  value 108.506922 
converged
Fitting Repeat 3 

# weights:  305
initial  value 138.172284 
iter  10 value 115.317790
iter  20 value 114.331063
iter  30 value 113.880615
iter  40 value 113.712503
iter  50 value 113.694809
iter  60 value 113.622961
final  value 113.622714 
converged
Fitting Repeat 4 

# weights:  305
initial  value 142.902465 
iter  10 value 117.895275
iter  20 value 117.762068
final  value 117.759726 
converged
Fitting Repeat 5 

# weights:  305
initial  value 129.010629 
iter  10 value 117.734977
iter  20 value 116.649720
iter  30 value 110.127045
iter  40 value 109.305021
iter  50 value 108.975930
iter  60 value 108.886399
iter  70 value 108.635803
final  value 108.635251 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Tue Oct  7 10:36:51 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 53.844   1.463 137.094 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod36.885 0.27937.240
FreqInteractors0.2730.0240.298
calculateAAC0.0440.0040.048
calculateAutocor0.6930.0200.717
calculateCTDC0.0970.0000.097
calculateCTDD0.7360.0000.738
calculateCTDT0.2490.0120.262
calculateCTriad0.470.000.47
calculateDC0.1290.0000.129
calculateF0.4340.0040.439
calculateKSAAP0.1400.0040.145
calculateQD_Sm2.3550.0202.381
calculateTC2.4060.0282.439
calculateTC_Sm0.3310.0000.332
corr_plot37.159 0.30337.531
enrichfindP 0.487 0.03218.863
enrichfind_hp0.0770.0041.349
enrichplot0.4690.0640.534
filter_missing_values0.0010.0000.001
getFASTA0.0730.0085.189
getHPI000
get_negativePPI0.0020.0000.002
get_positivePPI000
impute_missing_data0.0020.0000.002
plotPPI0.0790.0080.088
pred_ensembel18.357 0.33617.560
var_imp39.443 0.34839.870