Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-10-09 11:41 -0400 (Thu, 09 Oct 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4832 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" | 4613 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4554 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4585 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | ERROR | skipped | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | ERROR | skipped | skipped | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | ERROR | skipped | skipped | |||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.14.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.14.0.tar.gz |
StartedAt: 2025-10-07 10:30:07 -0000 (Tue, 07 Oct 2025) |
EndedAt: 2025-10-07 10:36:56 -0000 (Tue, 07 Oct 2025) |
EllapsedTime: 408.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.14.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2025-02-19 r87757) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: openEuler 24.03 (LTS-SP1) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.14.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 39.443 0.348 39.870 corr_plot 37.159 0.303 37.531 FSmethod 36.885 0.279 37.240 pred_ensembel 18.357 0.336 17.560 enrichfindP 0.487 0.032 18.863 getFASTA 0.073 0.008 5.189 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 101.694696 iter 10 value 90.105107 iter 20 value 88.340027 iter 30 value 87.710367 iter 40 value 87.696794 final value 87.696368 converged Fitting Repeat 2 # weights: 103 initial value 94.781758 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.366191 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.159234 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 102.521043 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 96.557925 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 117.574114 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.506641 final value 93.867392 converged Fitting Repeat 4 # weights: 305 initial value 97.029598 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 107.140796 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 105.499434 iter 10 value 94.012575 iter 20 value 93.867813 final value 93.867391 converged Fitting Repeat 2 # weights: 507 initial value 112.183961 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 98.174714 iter 10 value 93.940228 iter 20 value 90.122452 final value 90.122449 converged Fitting Repeat 4 # weights: 507 initial value 143.714316 iter 10 value 93.875801 final value 93.867391 converged Fitting Repeat 5 # weights: 507 initial value 99.265918 iter 10 value 91.737425 iter 20 value 86.189601 iter 30 value 86.165909 iter 30 value 86.165909 iter 30 value 86.165909 final value 86.165909 converged Fitting Repeat 1 # weights: 103 initial value 107.419673 iter 10 value 94.056592 iter 20 value 93.814794 iter 30 value 93.379056 iter 40 value 92.969417 iter 50 value 83.623987 iter 60 value 82.805759 iter 70 value 81.974061 iter 80 value 81.898912 final value 81.897304 converged Fitting Repeat 2 # weights: 103 initial value 99.950302 iter 10 value 93.984809 iter 20 value 92.926265 iter 30 value 85.087653 iter 40 value 82.463702 iter 50 value 82.291252 iter 60 value 81.992202 iter 70 value 81.876421 iter 80 value 81.866539 final value 81.866505 converged Fitting Repeat 3 # weights: 103 initial value 106.846880 iter 10 value 93.483085 iter 20 value 85.370674 iter 30 value 83.510854 iter 40 value 82.172733 iter 50 value 81.091142 iter 60 value 80.507074 iter 70 value 80.447676 final value 80.447384 converged Fitting Repeat 4 # weights: 103 initial value 97.291451 iter 10 value 94.060914 iter 20 value 94.050537 iter 30 value 92.894341 iter 40 value 89.475517 iter 50 value 82.699326 iter 60 value 82.470835 iter 70 value 81.770362 iter 80 value 81.667045 iter 90 value 81.522546 iter 100 value 81.496104 final value 81.496104 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.022183 iter 10 value 93.991011 iter 20 value 92.538101 iter 30 value 86.164154 iter 40 value 84.281356 iter 50 value 83.794676 iter 60 value 83.287802 iter 70 value 82.540747 iter 80 value 82.442654 final value 82.418710 converged Fitting Repeat 1 # weights: 305 initial value 99.308715 iter 10 value 85.792254 iter 20 value 85.350030 iter 30 value 85.255428 iter 40 value 85.107217 iter 50 value 82.512681 iter 60 value 81.847833 iter 70 value 80.951718 iter 80 value 80.054809 iter 90 value 79.594584 iter 100 value 79.437008 final value 79.437008 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.580327 iter 10 value 94.045991 iter 20 value 89.598924 iter 30 value 83.350472 iter 40 value 81.741276 iter 50 value 81.249899 iter 60 value 81.103635 iter 70 value 81.084042 iter 80 value 81.024174 iter 90 value 80.892575 iter 100 value 80.877405 final value 80.877405 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 118.099499 iter 10 value 94.040655 iter 20 value 87.373099 iter 30 value 83.151310 iter 40 value 82.198858 iter 50 value 81.652832 iter 60 value 80.941592 iter 70 value 80.062655 iter 80 value 79.546962 iter 90 value 79.262651 iter 100 value 79.195089 final value 79.195089 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.416101 iter 10 value 93.550756 iter 20 value 86.694540 iter 30 value 82.984679 iter 40 value 81.388784 iter 50 value 80.819291 iter 60 value 80.397424 iter 70 value 79.540512 iter 80 value 79.345274 iter 90 value 79.305596 iter 100 value 79.294626 final value 79.294626 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.424243 iter 10 value 94.118127 iter 20 value 93.598860 iter 30 value 91.261643 iter 40 value 81.255152 iter 50 value 80.363149 iter 60 value 79.629689 iter 70 value 79.556516 iter 80 value 79.504146 iter 90 value 79.119381 iter 100 value 78.762497 final value 78.762497 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.712541 iter 10 value 94.129579 iter 20 value 93.394702 iter 30 value 88.542818 iter 40 value 82.872062 iter 50 value 81.277680 iter 60 value 80.544244 iter 70 value 80.247670 iter 80 value 79.782183 iter 90 value 79.400494 iter 100 value 79.229128 final value 79.229128 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.133228 iter 10 value 89.304068 iter 20 value 85.969661 iter 30 value 84.067263 iter 40 value 82.222335 iter 50 value 81.069393 iter 60 value 79.987601 iter 70 value 79.419175 iter 80 value 79.060310 iter 90 value 78.926909 iter 100 value 78.884567 final value 78.884567 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.582660 iter 10 value 94.437037 iter 20 value 88.622912 iter 30 value 82.675905 iter 40 value 82.380289 iter 50 value 81.915655 iter 60 value 81.406196 iter 70 value 81.099912 iter 80 value 80.421493 iter 90 value 79.872080 iter 100 value 79.770183 final value 79.770183 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.745587 iter 10 value 93.637669 iter 20 value 85.946839 iter 30 value 84.002164 iter 40 value 80.876965 iter 50 value 79.606815 iter 60 value 79.393685 iter 70 value 79.030999 iter 80 value 78.983789 iter 90 value 78.922184 iter 100 value 78.656493 final value 78.656493 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.865888 iter 10 value 94.533891 iter 20 value 85.750656 iter 30 value 82.968653 iter 40 value 82.522339 iter 50 value 82.253303 iter 60 value 82.160230 iter 70 value 81.476100 iter 80 value 80.653526 iter 90 value 79.946277 iter 100 value 79.620580 final value 79.620580 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.333681 final value 94.054693 converged Fitting Repeat 2 # weights: 103 initial value 100.922960 final value 94.054321 converged Fitting Repeat 3 # weights: 103 initial value 99.889263 final value 94.054538 converged Fitting Repeat 4 # weights: 103 initial value 102.077022 final value 94.054488 converged Fitting Repeat 5 # weights: 103 initial value 95.633968 iter 10 value 87.233224 iter 20 value 83.281062 iter 30 value 83.236757 iter 40 value 83.228380 final value 83.228266 converged Fitting Repeat 1 # weights: 305 initial value 99.318900 iter 10 value 93.938755 iter 20 value 93.887914 iter 30 value 92.386683 iter 40 value 92.385977 iter 50 value 84.807989 iter 60 value 84.367167 iter 70 value 84.299565 iter 80 value 84.298945 iter 90 value 84.298580 iter 100 value 84.293577 final value 84.293577 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.841636 iter 10 value 94.057768 final value 94.052979 converged Fitting Repeat 3 # weights: 305 initial value 108.631431 iter 10 value 94.031013 iter 20 value 94.027709 iter 30 value 85.180295 iter 40 value 84.287649 final value 84.287572 converged Fitting Repeat 4 # weights: 305 initial value 106.341146 iter 10 value 94.057783 iter 20 value 93.981902 iter 30 value 91.143020 iter 40 value 91.132623 iter 50 value 91.115156 iter 60 value 91.112686 iter 70 value 91.104681 iter 80 value 83.508466 iter 90 value 79.889931 iter 100 value 79.104848 final value 79.104848 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.773176 iter 10 value 94.057750 final value 94.052917 converged Fitting Repeat 1 # weights: 507 initial value 96.826416 iter 10 value 93.876108 iter 20 value 93.665324 iter 30 value 81.010701 iter 40 value 79.676818 iter 50 value 79.582001 iter 60 value 79.501285 iter 70 value 79.500731 iter 80 value 79.483059 iter 90 value 78.381143 iter 100 value 77.764028 final value 77.764028 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.654794 iter 10 value 93.875898 iter 20 value 93.872719 iter 30 value 93.871380 iter 40 value 93.859310 iter 50 value 85.342408 iter 60 value 84.084108 final value 84.077855 converged Fitting Repeat 3 # weights: 507 initial value 106.154187 iter 10 value 93.715973 iter 20 value 84.872113 iter 30 value 84.812330 iter 40 value 84.476815 iter 50 value 84.474983 iter 60 value 84.465420 final value 84.465418 converged Fitting Repeat 4 # weights: 507 initial value 109.603789 iter 10 value 94.061126 iter 20 value 94.053139 iter 30 value 82.701449 iter 40 value 81.320504 final value 81.320385 converged Fitting Repeat 5 # weights: 507 initial value 118.614127 iter 10 value 94.084402 iter 20 value 93.905265 iter 30 value 81.744572 iter 40 value 81.638754 iter 50 value 81.563044 iter 60 value 81.557732 iter 70 value 81.393066 iter 80 value 81.249569 iter 90 value 81.241526 iter 100 value 80.990893 final value 80.990893 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.132525 final value 94.466823 converged Fitting Repeat 2 # weights: 103 initial value 96.233725 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.667277 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.378055 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.693844 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.294909 final value 94.312038 converged Fitting Repeat 2 # weights: 305 initial value 95.850160 iter 10 value 91.059335 iter 20 value 85.610686 iter 30 value 85.540860 iter 40 value 85.539793 iter 50 value 85.409330 iter 60 value 84.846883 iter 70 value 84.845709 iter 80 value 84.766966 final value 84.759731 converged Fitting Repeat 3 # weights: 305 initial value 101.087911 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 109.337918 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 105.358475 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 106.961205 iter 10 value 89.517378 iter 20 value 88.912380 iter 30 value 88.863174 final value 88.673745 converged Fitting Repeat 2 # weights: 507 initial value 105.784170 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.755041 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 96.344097 final value 94.320299 converged Fitting Repeat 5 # weights: 507 initial value 118.108443 final value 94.052434 converged Fitting Repeat 1 # weights: 103 initial value 98.002350 iter 10 value 94.503183 iter 20 value 93.343992 iter 30 value 88.850888 iter 40 value 88.669747 iter 50 value 88.189705 iter 60 value 87.336357 iter 70 value 86.885197 iter 80 value 86.742584 iter 90 value 86.673611 iter 100 value 86.432577 final value 86.432577 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 95.900222 iter 10 value 88.511306 iter 20 value 88.087635 iter 30 value 87.439085 iter 40 value 86.388137 iter 50 value 85.728415 iter 60 value 85.584726 iter 70 value 85.536353 final value 85.535095 converged Fitting Repeat 3 # weights: 103 initial value 99.750990 iter 10 value 94.175756 iter 20 value 93.755004 iter 30 value 93.725506 iter 40 value 93.723892 iter 50 value 92.240375 iter 60 value 88.248406 iter 70 value 87.584448 iter 80 value 87.068885 iter 90 value 85.581389 iter 100 value 85.398170 final value 85.398170 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.731684 iter 10 value 94.486595 iter 20 value 93.807052 iter 30 value 87.703980 iter 40 value 87.009865 iter 50 value 86.711728 iter 60 value 86.190562 iter 70 value 85.997602 iter 80 value 85.952960 iter 90 value 85.951476 iter 90 value 85.951476 final value 85.951476 converged Fitting Repeat 5 # weights: 103 initial value 100.406370 iter 10 value 94.486419 iter 20 value 94.052194 iter 30 value 93.829490 iter 40 value 93.782646 iter 50 value 93.724579 iter 60 value 93.229707 iter 70 value 91.053630 iter 80 value 89.468896 iter 90 value 88.388359 iter 100 value 87.336821 final value 87.336821 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 103.232790 iter 10 value 94.517570 iter 20 value 94.460859 iter 30 value 93.959203 iter 40 value 93.914136 iter 50 value 88.263101 iter 60 value 87.397449 iter 70 value 85.807966 iter 80 value 85.403643 iter 90 value 84.732886 iter 100 value 83.828797 final value 83.828797 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.084256 iter 10 value 94.447220 iter 20 value 93.915895 iter 30 value 93.760519 iter 40 value 92.283379 iter 50 value 91.847879 iter 60 value 89.660746 iter 70 value 87.405908 iter 80 value 86.410695 iter 90 value 84.907057 iter 100 value 84.035270 final value 84.035270 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.793120 iter 10 value 94.112788 iter 20 value 89.166135 iter 30 value 88.045528 iter 40 value 85.251874 iter 50 value 84.199901 iter 60 value 83.858533 iter 70 value 83.201109 iter 80 value 82.746048 iter 90 value 82.643109 iter 100 value 82.462908 final value 82.462908 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.747501 iter 10 value 94.712245 iter 20 value 93.791351 iter 30 value 89.178527 iter 40 value 88.610154 iter 50 value 88.386464 iter 60 value 87.479047 iter 70 value 86.620072 iter 80 value 86.097451 iter 90 value 85.210312 iter 100 value 84.030638 final value 84.030638 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.151450 iter 10 value 94.366065 iter 20 value 91.232679 iter 30 value 90.112045 iter 40 value 87.115094 iter 50 value 84.887528 iter 60 value 83.977082 iter 70 value 83.134489 iter 80 value 82.501331 iter 90 value 82.307682 iter 100 value 82.227388 final value 82.227388 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 125.580314 iter 10 value 94.753632 iter 20 value 89.723517 iter 30 value 85.735001 iter 40 value 84.195576 iter 50 value 83.784727 iter 60 value 83.625384 iter 70 value 83.551901 iter 80 value 82.943436 iter 90 value 82.159396 iter 100 value 81.946671 final value 81.946671 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.153789 iter 10 value 94.484055 iter 20 value 93.425066 iter 30 value 92.583313 iter 40 value 91.859945 iter 50 value 87.772703 iter 60 value 86.771221 iter 70 value 85.462225 iter 80 value 85.127715 iter 90 value 84.783236 iter 100 value 84.301297 final value 84.301297 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.422500 iter 10 value 94.489215 iter 20 value 94.068673 iter 30 value 93.926968 iter 40 value 93.789482 iter 50 value 93.343468 iter 60 value 92.531962 iter 70 value 92.212951 iter 80 value 92.100861 iter 90 value 90.385153 iter 100 value 88.117036 final value 88.117036 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.913081 iter 10 value 94.549901 iter 20 value 93.891504 iter 30 value 86.883541 iter 40 value 85.289286 iter 50 value 84.521272 iter 60 value 83.219754 iter 70 value 82.992604 iter 80 value 82.565699 iter 90 value 82.227832 iter 100 value 82.094881 final value 82.094881 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.301632 iter 10 value 95.417799 iter 20 value 91.079265 iter 30 value 87.195806 iter 40 value 84.926738 iter 50 value 84.050556 iter 60 value 83.498199 iter 70 value 83.264069 iter 80 value 82.799323 iter 90 value 82.431925 iter 100 value 82.346227 final value 82.346227 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.239989 final value 94.457205 converged Fitting Repeat 2 # weights: 103 initial value 105.140319 final value 94.485904 converged Fitting Repeat 3 # weights: 103 initial value 102.202954 iter 10 value 94.485783 iter 20 value 94.439068 iter 30 value 93.767499 iter 40 value 93.762630 final value 93.762627 converged Fitting Repeat 4 # weights: 103 initial value 97.109444 final value 94.485935 converged Fitting Repeat 5 # weights: 103 initial value 103.787927 final value 94.485719 converged Fitting Repeat 1 # weights: 305 initial value 97.372690 iter 10 value 91.842489 iter 20 value 88.244175 iter 30 value 86.854476 iter 40 value 86.827652 iter 50 value 86.761380 iter 60 value 85.480220 iter 70 value 84.337547 iter 80 value 84.335789 iter 90 value 84.331464 iter 100 value 83.072576 final value 83.072576 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.837368 iter 10 value 94.488955 iter 20 value 94.481909 iter 30 value 94.093447 iter 40 value 94.010426 iter 50 value 93.950382 final value 93.910134 converged Fitting Repeat 3 # weights: 305 initial value 95.490973 iter 10 value 94.485893 iter 20 value 86.525071 iter 30 value 86.510584 iter 40 value 85.746206 iter 50 value 85.744683 iter 60 value 85.743289 iter 70 value 85.286245 final value 85.286239 converged Fitting Repeat 4 # weights: 305 initial value 100.746609 iter 10 value 94.489661 iter 20 value 94.484607 iter 30 value 93.953335 iter 40 value 92.841125 final value 92.836008 converged Fitting Repeat 5 # weights: 305 initial value 99.777178 iter 10 value 94.488890 iter 20 value 94.480221 iter 30 value 93.892180 iter 40 value 93.871837 final value 93.871823 converged Fitting Repeat 1 # weights: 507 initial value 105.750084 iter 10 value 94.113072 iter 20 value 94.106017 iter 30 value 93.372488 iter 40 value 85.981584 iter 50 value 84.493871 iter 60 value 82.025406 iter 70 value 81.209627 iter 80 value 80.905093 iter 90 value 80.650624 iter 100 value 80.024774 final value 80.024774 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.377899 iter 10 value 89.416674 iter 20 value 87.604497 iter 30 value 87.582585 iter 40 value 87.580128 iter 50 value 87.573776 iter 60 value 87.573555 final value 87.573481 converged Fitting Repeat 3 # weights: 507 initial value 115.468889 iter 10 value 94.492746 iter 20 value 94.484297 final value 94.484256 converged Fitting Repeat 4 # weights: 507 initial value 115.949036 iter 10 value 94.249460 iter 20 value 88.893518 iter 30 value 88.487492 iter 40 value 88.339045 iter 50 value 88.266698 iter 60 value 86.359064 iter 70 value 85.128462 iter 80 value 84.816814 iter 90 value 84.619300 iter 100 value 84.349281 final value 84.349281 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 99.662018 iter 10 value 94.098695 iter 20 value 93.918331 iter 30 value 93.913547 iter 40 value 93.909947 final value 93.909700 converged Fitting Repeat 1 # weights: 103 initial value 98.890608 iter 10 value 93.244227 final value 93.183861 converged Fitting Repeat 2 # weights: 103 initial value 98.850550 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.392675 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.643931 final value 93.836066 converged Fitting Repeat 5 # weights: 103 initial value 105.916309 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 124.124035 iter 10 value 93.836066 iter 10 value 93.836066 iter 10 value 93.836066 final value 93.836066 converged Fitting Repeat 2 # weights: 305 initial value 97.158880 iter 10 value 93.836066 iter 10 value 93.836066 iter 10 value 93.836066 final value 93.836066 converged Fitting Repeat 3 # weights: 305 initial value 99.878519 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 101.777909 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 106.006325 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 103.348262 iter 10 value 92.138926 final value 91.952024 converged Fitting Repeat 2 # weights: 507 initial value 95.934857 final value 93.836066 converged Fitting Repeat 3 # weights: 507 initial value 102.482387 iter 10 value 93.283951 iter 10 value 93.283951 iter 10 value 93.283951 final value 93.283951 converged Fitting Repeat 4 # weights: 507 initial value 120.685285 final value 93.836066 converged Fitting Repeat 5 # weights: 507 initial value 99.222397 iter 10 value 84.269477 iter 20 value 83.237046 iter 30 value 83.157830 final value 83.157794 converged Fitting Repeat 1 # weights: 103 initial value 96.421727 iter 10 value 94.053588 iter 20 value 93.371292 iter 30 value 93.325848 iter 40 value 89.961264 iter 50 value 85.968789 iter 60 value 84.962417 iter 70 value 81.136152 iter 80 value 80.715620 iter 90 value 80.262384 iter 100 value 79.499088 final value 79.499088 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.471374 iter 10 value 94.056444 iter 20 value 93.355477 iter 30 value 93.322882 iter 40 value 92.396621 iter 50 value 85.692602 iter 60 value 82.151849 iter 70 value 81.939739 iter 80 value 81.532308 iter 90 value 81.218000 iter 100 value 81.086350 final value 81.086350 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.188296 iter 10 value 94.022896 iter 20 value 93.340277 iter 30 value 93.303784 iter 40 value 91.763337 iter 50 value 85.956463 iter 60 value 84.417445 iter 70 value 83.970458 iter 80 value 83.775484 iter 90 value 83.707321 iter 100 value 83.227251 final value 83.227251 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.592545 iter 10 value 94.055111 iter 20 value 93.372405 iter 30 value 93.337862 iter 40 value 93.304287 iter 50 value 89.785494 iter 60 value 85.451748 iter 70 value 82.343893 iter 80 value 81.390848 iter 90 value 81.283660 iter 100 value 81.210716 final value 81.210716 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 108.114334 iter 10 value 93.439962 iter 20 value 90.790344 iter 30 value 90.220835 iter 40 value 90.146718 iter 50 value 90.138616 final value 90.138542 converged Fitting Repeat 1 # weights: 305 initial value 119.729001 iter 10 value 96.692426 iter 20 value 93.901562 iter 30 value 86.467878 iter 40 value 84.573489 iter 50 value 81.244051 iter 60 value 80.408853 iter 70 value 79.822563 iter 80 value 79.410676 iter 90 value 79.354259 iter 100 value 79.250922 final value 79.250922 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 118.019294 iter 10 value 90.332290 iter 20 value 85.329832 iter 30 value 83.928966 iter 40 value 79.365544 iter 50 value 78.672360 iter 60 value 78.358477 iter 70 value 78.229805 iter 80 value 78.151174 iter 90 value 78.074861 iter 100 value 78.036879 final value 78.036879 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.242530 iter 10 value 93.155436 iter 20 value 83.648627 iter 30 value 82.043761 iter 40 value 80.773314 iter 50 value 78.946150 iter 60 value 78.560773 iter 70 value 78.302602 iter 80 value 78.176901 iter 90 value 78.031358 iter 100 value 78.025300 final value 78.025300 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.171266 iter 10 value 93.976321 iter 20 value 88.529304 iter 30 value 88.125082 iter 40 value 86.938691 iter 50 value 81.429799 iter 60 value 80.441124 iter 70 value 79.214794 iter 80 value 78.514770 iter 90 value 78.256860 iter 100 value 78.193343 final value 78.193343 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.458136 iter 10 value 93.859860 iter 20 value 90.324994 iter 30 value 85.820621 iter 40 value 84.766420 iter 50 value 81.524797 iter 60 value 79.654769 iter 70 value 79.006570 iter 80 value 78.474903 iter 90 value 78.233387 iter 100 value 78.111483 final value 78.111483 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 131.299627 iter 10 value 96.655787 iter 20 value 90.942448 iter 30 value 87.134698 iter 40 value 83.662279 iter 50 value 82.061596 iter 60 value 80.854832 iter 70 value 79.510783 iter 80 value 78.858770 iter 90 value 78.236184 iter 100 value 78.005415 final value 78.005415 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.216022 iter 10 value 95.034719 iter 20 value 92.269050 iter 30 value 81.414481 iter 40 value 80.833705 iter 50 value 79.769260 iter 60 value 79.528437 iter 70 value 78.602910 iter 80 value 77.925028 iter 90 value 77.571542 iter 100 value 77.438086 final value 77.438086 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 131.544632 iter 10 value 94.028624 iter 20 value 90.187598 iter 30 value 85.617143 iter 40 value 83.707202 iter 50 value 81.188804 iter 60 value 80.450658 iter 70 value 79.798162 iter 80 value 79.350162 iter 90 value 79.294749 iter 100 value 79.223021 final value 79.223021 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.800447 iter 10 value 94.514611 iter 20 value 84.713702 iter 30 value 83.297769 iter 40 value 80.530888 iter 50 value 79.043919 iter 60 value 78.809620 iter 70 value 78.283503 iter 80 value 77.967672 iter 90 value 77.819919 iter 100 value 77.733659 final value 77.733659 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.556600 iter 10 value 94.189030 iter 20 value 87.492592 iter 30 value 85.112076 iter 40 value 83.418241 iter 50 value 82.002104 iter 60 value 81.115485 iter 70 value 80.391679 iter 80 value 78.969873 iter 90 value 78.072659 iter 100 value 77.921385 final value 77.921385 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.001460 iter 10 value 94.054678 final value 94.053054 converged Fitting Repeat 2 # weights: 103 initial value 95.767108 iter 10 value 94.054576 iter 20 value 94.052928 final value 94.052919 converged Fitting Repeat 3 # weights: 103 initial value 104.379430 final value 94.054621 converged Fitting Repeat 4 # weights: 103 initial value 94.511690 final value 94.054717 converged Fitting Repeat 5 # weights: 103 initial value 94.021572 iter 10 value 93.058457 iter 20 value 93.057558 final value 93.057547 converged Fitting Repeat 1 # weights: 305 initial value 101.389012 iter 10 value 94.057563 iter 20 value 94.052934 final value 94.052918 converged Fitting Repeat 2 # weights: 305 initial value 98.805564 iter 10 value 93.840908 iter 20 value 93.836259 iter 30 value 86.044289 iter 40 value 84.564717 iter 50 value 84.301279 iter 60 value 84.300320 iter 60 value 84.300320 final value 84.300320 converged Fitting Repeat 3 # weights: 305 initial value 95.330030 iter 10 value 94.058251 iter 20 value 93.887397 iter 30 value 82.275566 iter 40 value 78.336477 iter 50 value 77.558852 iter 60 value 76.828412 iter 70 value 76.801180 final value 76.801158 converged Fitting Repeat 4 # weights: 305 initial value 108.741274 iter 10 value 93.841363 iter 20 value 93.836386 iter 30 value 93.738589 iter 40 value 90.214574 iter 50 value 83.928012 iter 60 value 83.923829 iter 70 value 83.745452 iter 80 value 83.517173 iter 90 value 83.516425 final value 83.515247 converged Fitting Repeat 5 # weights: 305 initial value 113.390321 iter 10 value 92.105773 iter 20 value 87.749117 iter 30 value 87.507795 iter 40 value 86.943129 iter 50 value 86.887336 final value 86.886654 converged Fitting Repeat 1 # weights: 507 initial value 108.990619 iter 10 value 94.063451 iter 20 value 87.950889 iter 30 value 84.699587 iter 40 value 83.057143 iter 50 value 82.845919 iter 60 value 82.844208 iter 70 value 82.835919 iter 80 value 82.834142 final value 82.833850 converged Fitting Repeat 2 # weights: 507 initial value 102.729593 iter 10 value 94.060815 iter 20 value 93.929056 iter 30 value 82.203971 iter 40 value 80.622500 iter 50 value 80.288933 iter 60 value 80.038844 iter 70 value 79.677555 iter 80 value 79.648611 iter 90 value 79.648550 final value 79.648546 converged Fitting Repeat 3 # weights: 507 initial value 108.239366 iter 10 value 94.060723 iter 20 value 93.731854 iter 30 value 83.835994 iter 40 value 82.005376 iter 50 value 81.078409 iter 60 value 79.794909 iter 70 value 78.702179 iter 80 value 78.257262 iter 90 value 77.971989 iter 100 value 77.933498 final value 77.933498 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.312007 iter 10 value 94.061386 iter 20 value 93.795234 iter 30 value 86.482450 iter 40 value 86.086250 iter 50 value 85.341510 iter 60 value 84.410584 iter 70 value 84.355748 iter 80 value 83.547822 iter 90 value 83.075916 iter 100 value 83.069881 final value 83.069881 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.101409 iter 10 value 86.450872 iter 20 value 84.567091 iter 30 value 84.492762 iter 40 value 84.375346 iter 50 value 84.367212 iter 60 value 84.365560 iter 70 value 84.359260 iter 80 value 84.258103 iter 90 value 84.224811 iter 100 value 84.224111 final value 84.224111 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.184909 iter 10 value 94.484217 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.304478 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 124.021007 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.351052 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.412955 final value 94.026542 converged Fitting Repeat 1 # weights: 305 initial value 105.249757 iter 10 value 89.467625 iter 20 value 89.455283 final value 89.455279 converged Fitting Repeat 2 # weights: 305 initial value 94.822054 final value 94.026542 converged Fitting Repeat 3 # weights: 305 initial value 95.500804 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 112.901567 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 109.827974 final value 93.668704 converged Fitting Repeat 1 # weights: 507 initial value 95.566648 iter 10 value 94.015240 final value 94.015226 converged Fitting Repeat 2 # weights: 507 initial value 102.301381 iter 10 value 94.026552 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 106.300284 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 101.453888 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 95.764281 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.222038 iter 10 value 94.468541 iter 20 value 94.000514 iter 30 value 91.260629 iter 40 value 88.631395 iter 50 value 86.467706 iter 60 value 83.344066 iter 70 value 82.669996 iter 80 value 81.775731 iter 90 value 81.750127 iter 100 value 81.747239 final value 81.747239 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.251192 iter 10 value 94.488530 iter 20 value 94.328280 iter 30 value 94.216109 iter 40 value 92.890941 iter 50 value 88.009189 iter 60 value 87.567418 iter 70 value 84.471695 iter 80 value 84.228855 iter 90 value 84.159389 final value 84.159333 converged Fitting Repeat 3 # weights: 103 initial value 94.485365 iter 10 value 91.309970 iter 20 value 90.964399 iter 30 value 90.939866 final value 90.937855 converged Fitting Repeat 4 # weights: 103 initial value 101.555056 iter 10 value 94.489650 iter 20 value 93.926330 iter 30 value 93.875351 iter 40 value 90.516903 iter 50 value 87.864216 iter 60 value 85.650753 iter 70 value 82.457370 iter 80 value 82.232318 iter 90 value 82.007338 iter 100 value 81.975132 final value 81.975132 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.554699 iter 10 value 94.042174 iter 20 value 87.586167 iter 30 value 86.990330 iter 40 value 86.086925 iter 50 value 85.766036 iter 60 value 85.635526 final value 85.635355 converged Fitting Repeat 1 # weights: 305 initial value 101.654155 iter 10 value 94.960270 iter 20 value 94.701525 iter 30 value 94.085048 iter 40 value 89.713747 iter 50 value 88.378335 iter 60 value 88.175608 iter 70 value 87.949782 iter 80 value 85.881536 iter 90 value 85.104380 iter 100 value 84.774027 final value 84.774027 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.270922 iter 10 value 93.546272 iter 20 value 88.154472 iter 30 value 84.485159 iter 40 value 82.715100 iter 50 value 81.878079 iter 60 value 81.511749 iter 70 value 81.240843 iter 80 value 81.159012 iter 90 value 80.995397 iter 100 value 80.983259 final value 80.983259 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.426793 iter 10 value 94.452800 iter 20 value 85.994409 iter 30 value 85.765304 iter 40 value 85.164622 iter 50 value 84.330518 iter 60 value 82.622277 iter 70 value 81.850610 iter 80 value 81.467641 iter 90 value 81.278857 iter 100 value 81.016103 final value 81.016103 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.194487 iter 10 value 95.694865 iter 20 value 92.462039 iter 30 value 88.219270 iter 40 value 86.498987 iter 50 value 85.459377 iter 60 value 82.224040 iter 70 value 81.954939 iter 80 value 81.790290 iter 90 value 81.597844 iter 100 value 81.532216 final value 81.532216 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.043926 iter 10 value 94.494134 iter 20 value 94.373287 iter 30 value 86.111967 iter 40 value 84.765499 iter 50 value 81.779612 iter 60 value 81.553862 iter 70 value 81.276415 iter 80 value 81.156454 iter 90 value 81.083349 iter 100 value 80.683263 final value 80.683263 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.810995 iter 10 value 95.064483 iter 20 value 89.661252 iter 30 value 88.827974 iter 40 value 84.218163 iter 50 value 82.522821 iter 60 value 81.645330 iter 70 value 81.509833 iter 80 value 81.273385 iter 90 value 81.160982 iter 100 value 81.114392 final value 81.114392 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.860636 iter 10 value 94.006099 iter 20 value 93.377019 iter 30 value 87.758184 iter 40 value 86.641965 iter 50 value 85.746944 iter 60 value 84.599262 iter 70 value 81.842535 iter 80 value 81.375273 iter 90 value 81.219726 iter 100 value 80.900554 final value 80.900554 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.290808 iter 10 value 94.742218 iter 20 value 93.758206 iter 30 value 88.533322 iter 40 value 86.803671 iter 50 value 85.633618 iter 60 value 83.702375 iter 70 value 82.352288 iter 80 value 81.768311 iter 90 value 81.483452 iter 100 value 81.305700 final value 81.305700 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 121.719143 iter 10 value 94.105360 iter 20 value 85.814964 iter 30 value 84.077142 iter 40 value 83.556963 iter 50 value 82.889924 iter 60 value 82.207079 iter 70 value 81.912470 iter 80 value 81.672859 iter 90 value 81.549367 iter 100 value 81.187882 final value 81.187882 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.772598 iter 10 value 96.524395 iter 20 value 89.292764 iter 30 value 84.272386 iter 40 value 82.939962 iter 50 value 82.248816 iter 60 value 81.443618 iter 70 value 81.161750 iter 80 value 81.099034 iter 90 value 80.922228 iter 100 value 80.852977 final value 80.852977 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 118.865294 final value 94.486090 converged Fitting Repeat 2 # weights: 103 initial value 99.062991 final value 94.485693 converged Fitting Repeat 3 # weights: 103 initial value 102.967597 final value 94.485909 converged Fitting Repeat 4 # weights: 103 initial value 102.331229 final value 94.485715 converged Fitting Repeat 5 # weights: 103 initial value 103.729699 final value 94.485614 converged Fitting Repeat 1 # weights: 305 initial value 94.916178 iter 10 value 94.031593 iter 20 value 93.663418 iter 30 value 87.379440 iter 40 value 85.182142 iter 50 value 85.127545 iter 60 value 85.126181 final value 85.126147 converged Fitting Repeat 2 # weights: 305 initial value 96.093287 iter 10 value 94.486641 iter 20 value 94.482464 iter 30 value 93.823343 iter 40 value 88.758703 iter 50 value 85.701070 iter 60 value 85.454596 iter 70 value 85.229969 iter 80 value 85.202963 iter 90 value 85.200396 iter 100 value 85.199314 final value 85.199314 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.684654 iter 10 value 94.489192 final value 94.484222 converged Fitting Repeat 4 # weights: 305 initial value 97.855576 iter 10 value 94.036389 iter 20 value 94.035039 iter 30 value 94.031735 iter 40 value 93.788224 final value 93.739090 converged Fitting Repeat 5 # weights: 305 initial value 96.455259 iter 10 value 94.032013 iter 20 value 94.027556 iter 30 value 94.021043 iter 40 value 93.800652 iter 50 value 93.791820 iter 60 value 93.791630 iter 70 value 93.791325 iter 80 value 93.790965 iter 90 value 93.784228 iter 100 value 92.661777 final value 92.661777 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.915363 iter 10 value 94.492599 iter 20 value 94.484292 iter 20 value 94.484291 iter 20 value 94.484291 final value 94.484291 converged Fitting Repeat 2 # weights: 507 initial value 107.121665 iter 10 value 94.035397 iter 20 value 92.936394 iter 30 value 85.841445 iter 40 value 85.340357 iter 50 value 85.302307 iter 60 value 85.201846 iter 70 value 85.197949 iter 80 value 85.196564 iter 90 value 85.191066 iter 100 value 84.589975 final value 84.589975 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.528881 iter 10 value 94.449979 iter 20 value 94.339673 iter 30 value 93.811321 iter 40 value 93.804189 final value 93.795960 converged Fitting Repeat 4 # weights: 507 initial value 97.547558 iter 10 value 94.492439 iter 20 value 94.483636 iter 30 value 94.027647 iter 30 value 94.027647 iter 30 value 94.027647 final value 94.027647 converged Fitting Repeat 5 # weights: 507 initial value 102.906378 iter 10 value 94.492571 iter 20 value 93.794037 iter 30 value 90.359227 iter 40 value 88.946103 iter 50 value 88.943122 iter 60 value 88.941154 iter 70 value 88.779317 iter 80 value 88.275887 iter 90 value 88.252099 final value 88.251037 converged Fitting Repeat 1 # weights: 103 initial value 108.546339 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.130360 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.524579 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.121578 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.433284 final value 94.026542 converged Fitting Repeat 1 # weights: 305 initial value 101.662431 iter 10 value 90.839613 iter 20 value 88.229952 iter 30 value 88.226407 final value 88.226400 converged Fitting Repeat 2 # weights: 305 initial value 106.303636 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 105.148521 iter 10 value 92.120996 iter 20 value 91.471330 final value 91.471322 converged Fitting Repeat 4 # weights: 305 initial value 99.847540 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.505739 final value 94.026542 converged Fitting Repeat 1 # weights: 507 initial value 114.593968 final value 94.026542 converged Fitting Repeat 2 # weights: 507 initial value 99.726322 final value 94.252920 converged Fitting Repeat 3 # weights: 507 initial value 99.854477 final value 94.046703 converged Fitting Repeat 4 # weights: 507 initial value 103.242907 iter 10 value 92.256866 iter 20 value 87.051389 iter 30 value 86.983960 final value 86.983942 converged Fitting Repeat 5 # weights: 507 initial value 96.666213 iter 10 value 94.021984 iter 20 value 94.019156 iter 20 value 94.019155 iter 20 value 94.019155 final value 94.019155 converged Fitting Repeat 1 # weights: 103 initial value 103.633799 iter 10 value 94.242534 iter 20 value 88.831103 iter 30 value 84.307807 iter 40 value 83.227682 iter 50 value 82.468969 iter 60 value 82.139221 iter 70 value 82.085528 final value 82.085345 converged Fitting Repeat 2 # weights: 103 initial value 102.720043 iter 10 value 94.148159 iter 20 value 94.094770 iter 30 value 89.351900 iter 40 value 87.634025 iter 50 value 87.259169 iter 60 value 86.453319 iter 70 value 83.336407 iter 80 value 81.605236 iter 90 value 81.550008 final value 81.549993 converged Fitting Repeat 3 # weights: 103 initial value 101.558139 iter 10 value 94.495033 iter 20 value 94.489289 iter 30 value 94.353578 iter 40 value 94.180428 iter 50 value 94.129143 iter 60 value 94.127979 iter 70 value 94.092492 iter 80 value 85.936139 iter 90 value 84.183818 iter 100 value 83.871555 final value 83.871555 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.126473 iter 10 value 94.488343 iter 20 value 92.084162 iter 30 value 88.159249 iter 40 value 83.337943 iter 50 value 82.737179 iter 60 value 82.158207 iter 70 value 82.085765 final value 82.085345 converged Fitting Repeat 5 # weights: 103 initial value 97.519959 iter 10 value 93.086839 iter 20 value 84.215676 iter 30 value 83.814740 iter 40 value 82.811340 iter 50 value 82.421293 iter 60 value 82.307773 iter 70 value 82.177946 iter 80 value 82.085473 final value 82.085345 converged Fitting Repeat 1 # weights: 305 initial value 100.676090 iter 10 value 94.099958 iter 20 value 88.648033 iter 30 value 85.604696 iter 40 value 81.613480 iter 50 value 81.102432 iter 60 value 79.986488 iter 70 value 79.751657 iter 80 value 79.458345 iter 90 value 79.348061 iter 100 value 79.261831 final value 79.261831 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.572515 iter 10 value 94.928996 iter 20 value 89.987633 iter 30 value 88.231995 iter 40 value 84.006029 iter 50 value 83.474413 iter 60 value 82.241074 iter 70 value 82.051851 iter 80 value 81.605832 iter 90 value 81.007070 iter 100 value 80.391607 final value 80.391607 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.049500 iter 10 value 94.300575 iter 20 value 88.392793 iter 30 value 86.494501 iter 40 value 85.664989 iter 50 value 82.146544 iter 60 value 81.139555 iter 70 value 80.623443 iter 80 value 80.585071 iter 90 value 80.099067 iter 100 value 79.784320 final value 79.784320 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.088430 iter 10 value 91.549771 iter 20 value 87.336771 iter 30 value 82.969749 iter 40 value 82.579006 iter 50 value 82.408759 iter 60 value 82.053282 iter 70 value 80.990441 iter 80 value 80.390424 iter 90 value 80.305581 iter 100 value 80.229064 final value 80.229064 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.604179 iter 10 value 94.524829 iter 20 value 94.126322 iter 30 value 87.904254 iter 40 value 84.146248 iter 50 value 82.849090 iter 60 value 81.671104 iter 70 value 80.245674 iter 80 value 79.561874 iter 90 value 79.460303 iter 100 value 79.320472 final value 79.320472 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.798541 iter 10 value 94.489593 iter 20 value 94.125846 iter 30 value 86.255002 iter 40 value 84.780601 iter 50 value 83.354177 iter 60 value 82.679059 iter 70 value 81.326343 iter 80 value 81.048531 iter 90 value 80.841675 iter 100 value 79.995109 final value 79.995109 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.356050 iter 10 value 93.521312 iter 20 value 87.985584 iter 30 value 86.418451 iter 40 value 85.496342 iter 50 value 84.700502 iter 60 value 84.088739 iter 70 value 83.889556 iter 80 value 83.538102 iter 90 value 82.326095 iter 100 value 80.632498 final value 80.632498 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.943432 iter 10 value 95.673784 iter 20 value 90.528898 iter 30 value 84.449771 iter 40 value 82.822874 iter 50 value 81.516717 iter 60 value 80.337906 iter 70 value 79.581010 iter 80 value 79.442146 iter 90 value 79.325303 iter 100 value 79.236769 final value 79.236769 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.395966 iter 10 value 96.182024 iter 20 value 95.696626 iter 30 value 84.412829 iter 40 value 83.887000 iter 50 value 81.618956 iter 60 value 80.505878 iter 70 value 80.132529 iter 80 value 79.890297 iter 90 value 79.643934 iter 100 value 79.367825 final value 79.367825 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.799489 iter 10 value 94.940516 iter 20 value 86.010484 iter 30 value 84.929047 iter 40 value 83.584880 iter 50 value 81.719557 iter 60 value 79.893576 iter 70 value 79.392698 iter 80 value 79.308602 iter 90 value 79.254151 iter 100 value 79.230412 final value 79.230412 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.108714 final value 94.028513 converged Fitting Repeat 2 # weights: 103 initial value 95.877801 final value 94.486005 converged Fitting Repeat 3 # weights: 103 initial value 99.805199 final value 94.485858 converged Fitting Repeat 4 # weights: 103 initial value 104.217508 final value 94.485747 converged Fitting Repeat 5 # weights: 103 initial value 95.126636 final value 94.486022 converged Fitting Repeat 1 # weights: 305 initial value 104.884619 iter 10 value 94.488590 iter 20 value 94.483171 iter 30 value 94.026773 iter 30 value 94.026772 iter 30 value 94.026772 final value 94.026772 converged Fitting Repeat 2 # weights: 305 initial value 100.503364 iter 10 value 94.489298 iter 20 value 93.448815 iter 30 value 88.116629 iter 40 value 88.115598 iter 50 value 86.592489 iter 60 value 85.715790 iter 70 value 85.707346 iter 80 value 85.706133 iter 90 value 85.045813 final value 85.011904 converged Fitting Repeat 3 # weights: 305 initial value 103.553066 iter 10 value 94.488961 iter 20 value 91.242564 iter 30 value 83.938730 iter 40 value 83.917843 final value 83.917819 converged Fitting Repeat 4 # weights: 305 initial value 109.234711 iter 10 value 82.585804 iter 20 value 80.624140 iter 30 value 80.605126 iter 40 value 80.604277 iter 50 value 80.594422 iter 60 value 80.341239 iter 70 value 80.147114 iter 80 value 80.145673 final value 80.145501 converged Fitting Repeat 5 # weights: 305 initial value 114.420064 iter 10 value 94.489706 iter 20 value 93.267740 iter 30 value 88.789525 iter 40 value 86.828275 iter 50 value 86.780011 iter 60 value 86.779342 iter 70 value 85.030402 iter 80 value 84.835636 iter 80 value 84.835636 final value 84.835636 converged Fitting Repeat 1 # weights: 507 initial value 117.026468 iter 10 value 94.492207 iter 20 value 94.459684 iter 30 value 94.327544 iter 40 value 91.142170 iter 50 value 89.503606 iter 60 value 83.502786 iter 70 value 83.026148 iter 80 value 83.025400 iter 90 value 81.990789 iter 100 value 81.258221 final value 81.258221 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.200852 iter 10 value 94.487671 iter 20 value 92.538818 iter 30 value 85.435644 iter 40 value 85.360737 iter 50 value 84.901357 iter 60 value 84.811681 iter 70 value 84.811185 final value 84.809945 converged Fitting Repeat 3 # weights: 507 initial value 112.299343 iter 10 value 94.034671 iter 20 value 94.028087 iter 30 value 91.054830 iter 40 value 90.268766 iter 50 value 90.145842 final value 90.145675 converged Fitting Repeat 4 # weights: 507 initial value 105.330270 iter 10 value 94.296870 iter 20 value 94.230054 iter 30 value 93.673308 iter 40 value 83.729405 iter 50 value 83.024335 final value 83.020741 converged Fitting Repeat 5 # weights: 507 initial value 117.729164 iter 10 value 94.492023 iter 20 value 94.294773 iter 30 value 93.260312 iter 40 value 84.946677 iter 50 value 81.909242 iter 60 value 79.413488 iter 70 value 79.208637 iter 80 value 79.205571 iter 90 value 79.204670 iter 100 value 79.202906 final value 79.202906 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 123.134462 iter 10 value 117.569273 iter 20 value 117.554939 iter 30 value 117.513573 final value 117.512718 converged Fitting Repeat 2 # weights: 305 initial value 135.214162 iter 10 value 117.763993 iter 20 value 117.093551 iter 30 value 108.552155 final value 108.506922 converged Fitting Repeat 3 # weights: 305 initial value 138.172284 iter 10 value 115.317790 iter 20 value 114.331063 iter 30 value 113.880615 iter 40 value 113.712503 iter 50 value 113.694809 iter 60 value 113.622961 final value 113.622714 converged Fitting Repeat 4 # weights: 305 initial value 142.902465 iter 10 value 117.895275 iter 20 value 117.762068 final value 117.759726 converged Fitting Repeat 5 # weights: 305 initial value 129.010629 iter 10 value 117.734977 iter 20 value 116.649720 iter 30 value 110.127045 iter 40 value 109.305021 iter 50 value 108.975930 iter 60 value 108.886399 iter 70 value 108.635803 final value 108.635251 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Oct 7 10:36:51 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 53.844 1.463 137.094
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 36.885 | 0.279 | 37.240 | |
FreqInteractors | 0.273 | 0.024 | 0.298 | |
calculateAAC | 0.044 | 0.004 | 0.048 | |
calculateAutocor | 0.693 | 0.020 | 0.717 | |
calculateCTDC | 0.097 | 0.000 | 0.097 | |
calculateCTDD | 0.736 | 0.000 | 0.738 | |
calculateCTDT | 0.249 | 0.012 | 0.262 | |
calculateCTriad | 0.47 | 0.00 | 0.47 | |
calculateDC | 0.129 | 0.000 | 0.129 | |
calculateF | 0.434 | 0.004 | 0.439 | |
calculateKSAAP | 0.140 | 0.004 | 0.145 | |
calculateQD_Sm | 2.355 | 0.020 | 2.381 | |
calculateTC | 2.406 | 0.028 | 2.439 | |
calculateTC_Sm | 0.331 | 0.000 | 0.332 | |
corr_plot | 37.159 | 0.303 | 37.531 | |
enrichfindP | 0.487 | 0.032 | 18.863 | |
enrichfind_hp | 0.077 | 0.004 | 1.349 | |
enrichplot | 0.469 | 0.064 | 0.534 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.073 | 0.008 | 5.189 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.000 | 0.002 | |
plotPPI | 0.079 | 0.008 | 0.088 | |
pred_ensembel | 18.357 | 0.336 | 17.560 | |
var_imp | 39.443 | 0.348 | 39.870 | |