| Back to Build/check report for BioC 3.17 |
|
This page was generated on 2023-01-02 09:00:32 -0500 (Mon, 02 Jan 2023).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| palomino5 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2022-12-25 r83502 ucrt) -- "Unsuffered Consequences" | 4165 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the goSorensen package: Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 829/2158 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| goSorensen 1.1.0 (landing page) Pablo Flores
| palomino5 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ||||||||
| Package: goSorensen |
| Version: 1.1.0 |
| Command: F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:goSorensen.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings goSorensen_1.1.0.tar.gz |
| StartedAt: 2022-12-29 00:16:51 -0500 (Thu, 29 Dec 2022) |
| EndedAt: 2022-12-29 00:24:39 -0500 (Thu, 29 Dec 2022) |
| EllapsedTime: 468.0 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: goSorensen.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:goSorensen.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings goSorensen_1.1.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'F:/biocbuild/bbs-3.17-bioc-rtools43/meat/goSorensen.Rcheck'
* using R Under development (unstable) (2022-12-25 r83502 ucrt)
* using platform: x86_64-w64-mingw32 (64-bit)
* R was compiled by
gcc.exe (GCC) 10.4.0
GNU Fortran (GCC) 10.4.0
* running under: Windows Server x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'goSorensen/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'goSorensen' version '1.1.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'goSorensen' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
buildEnrichTable 14.5 1.93 16.62
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
Running 'test_gosorensen_funcs.R'
Running 'test_nonsense_genes.R'
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: OK
goSorensen.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD INSTALL goSorensen ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.17-bioc/R/library' * installing *source* package 'goSorensen' ... ** using staged installation ** R ** data ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (goSorensen)
goSorensen.Rcheck/tests/test_gosorensen_funcs.Rout
R Under development (unstable) (2022-12-25 r83502 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(goSorensen)
Attaching package: 'goSorensen'
The following object is masked from 'package:utils':
upgrade
>
> # A contingency table of GO terms mutual enrichment
> # between gene lists "atlas" and "sanger":
> data(tab_atlas.sanger_BP3)
> tab_atlas.sanger_BP3
Enriched in sanger
Enriched in atlas TRUE FALSE
TRUE 56 30
FALSE 1 471
> ?tab_atlas.sanger_BP3
> class(tab_atlas.sanger_BP3)
[1] "table"
>
> # Sorensen-Dice dissimilarity on this contingency table:
> ?dSorensen
> dSorensen(tab_atlas.sanger_BP3)
[1] 0.2167832
>
> # Standard error of this Sorensen-Dice dissimilarity estimate:
> ?seSorensen
> seSorensen(tab_atlas.sanger_BP3)
[1] 0.03822987
>
> # Upper 95% confidence limit for the Sorensen-Dice dissimilarity:
> ?duppSorensen
> duppSorensen(tab_atlas.sanger_BP3)
[1] 0.2796658
> # This confidence limit is based on an assimptotic normal N(0,1)
> # approximation to the distribution of (dSampl - d) / se, where
> # dSampl stands for the sample dissimilarity, d for the true dissimilarity
> # and se for the sample dissimilarity standard error estimate.
>
> # Upper confidence limit but using a Student's t instead of a N(0,1)
> # (just as an example, not recommended -no theoretical justification)
> df <- sum(tab_atlas.sanger_BP3[1:3]) - 2
> duppSorensen(tab_atlas.sanger_BP3, z.conf.level = qt(1 - 0.95, df))
[1] 0.2803587
>
> # Upper confidence limit but using a bootstrap approximation
> # to the sampling distribution, instead of a N(0,1)
> set.seed(123)
> duppSorensen(tab_atlas.sanger_BP3, boot = TRUE)
[1] 0.2871182
attr(,"eff.nboot")
[1] 10000
>
> # Some computations on diverse data structures:
> badConti <- as.table(matrix(c(501, 27, 36, 12, 43, 15, 0, 0, 0),
+ nrow = 3, ncol = 3,
+ dimnames = list(c("a1","a2","a3"),
+ c("b1", "b2","b3"))))
> tryCatch(nice2x2Table(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(badConti): Not a 2x2 table>
>
> incompleteConti <- badConti[1,1:min(2,ncol(badConti)), drop = FALSE]
> incompleteConti
b1 b2
a1 501 12
> tryCatch(nice2x2Table(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(incompleteConti): Not a 2x2 table>
>
> contiAsVector <- c(32, 21, 81, 1439)
> nice2x2Table(contiAsVector)
[1] TRUE
> contiAsVector.mat <- matrix(contiAsVector, nrow = 2)
> contiAsVector.mat
[,1] [,2]
[1,] 32 81
[2,] 21 1439
> contiAsVectorLen3 <- c(32, 21, 81)
> nice2x2Table(contiAsVectorLen3)
[1] TRUE
>
> tryCatch(dSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
>
> # Apparently, the next order works fine, but returns a wrong value!
> dSorensen(badConti, check.table = FALSE)
[1] 0.05915493
>
> tryCatch(dSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> dSorensen(contiAsVector)
[1] 0.6144578
> dSorensen(contiAsVector.mat)
[1] 0.6144578
> dSorensen(contiAsVectorLen3)
[1] 0.6144578
> dSorensen(contiAsVectorLen3, check.table = FALSE)
[1] 0.6144578
> dSorensen(c(0,0,0,45))
[1] NaN
>
> tryCatch(seSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> tryCatch(seSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> seSorensen(contiAsVector)
[1] 0.04818012
> seSorensen(contiAsVector.mat)
[1] 0.04818012
> seSorensen(contiAsVectorLen3)
[1] 0.04818012
> seSorensen(contiAsVectorLen3, check.table = FALSE)
[1] 0.04818012
> tryCatch(seSorensen(contiAsVectorLen3, check.table = "not"), error = function(e) {return(e)})
<simpleError in seSorensen.numeric(contiAsVectorLen3, check.table = "not"): Argument 'check.table' must be logical>
> seSorensen(c(0,0,0,45))
[1] NaN
>
> tryCatch(duppSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> tryCatch(duppSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> duppSorensen(contiAsVector)
[1] 0.6937071
> duppSorensen(contiAsVector.mat)
[1] 0.6937071
> set.seed(123)
> duppSorensen(contiAsVector, boot = TRUE)
[1] 0.6922658
attr(,"eff.nboot")
[1] 10000
> set.seed(123)
> duppSorensen(contiAsVector.mat, boot = TRUE)
[1] 0.6922658
attr(,"eff.nboot")
[1] 10000
> duppSorensen(contiAsVectorLen3)
[1] 0.6937071
> # Bootstrapping requires full contingency tables (4 values)
> set.seed(123)
> tryCatch(duppSorensen(contiAsVectorLen3, boot = TRUE), error = function(e) {return(e)})
<simpleError in duppSorensen.numeric(contiAsVectorLen3, boot = TRUE): Bootstraping requires a numeric vector of 4 frequencies>
> duppSorensen(c(0,0,0,45))
[1] NaN
>
> # Equivalence test, H0: d >= d0 vs H1: d < d0 (d0 = 0.4444)
> ?equivTestSorensen
> equiv.atlas.sanger <- equivTestSorensen(tab_atlas.sanger_BP3)
> equiv.atlas.sanger
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab_atlas.sanger_BP3
(d - d0) / se = -5.9551, p-value = 1.3e-09
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.2796658
sample estimates:
Sorensen dissimilarity
0.2167832
attr(,"se")
standard error
0.03822987
> getTable(equiv.atlas.sanger)
Enriched in sanger
Enriched in atlas TRUE FALSE
TRUE 56 30
FALSE 1 471
> getPvalue(equiv.atlas.sanger)
p-value
1.299869e-09
>
> tryCatch(equivTestSorensen(badConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> tryCatch(equivTestSorensen(incompleteConti), error = function(e) {return(e)})
<simpleError in nice2x2Table.table(x): Not a 2x2 table>
> equivTestSorensen(contiAsVector)
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: contiAsVector
(d - d0) / se = 3.5287, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6937071
sample estimates:
Sorensen dissimilarity
0.6144578
attr(,"se")
standard error
0.04818012
> equivTestSorensen(contiAsVector.mat)
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: contiAsVector.mat
(d - d0) / se = 3.5287, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6937071
sample estimates:
Sorensen dissimilarity
0.6144578
attr(,"se")
standard error
0.04818012
> set.seed(123)
> equivTestSorensen(contiAsVector.mat, boot = TRUE)
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: contiAsVector.mat
(d - d0) / se = 3.5287, p-value = 0.9996
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6922658
sample estimates:
Sorensen dissimilarity
0.6144578
attr(,"se")
standard error
0.04818012
> equivTestSorensen(contiAsVectorLen3)
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: contiAsVectorLen3
(d - d0) / se = 3.5287, p-value = 0.9998
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6937071
sample estimates:
Sorensen dissimilarity
0.6144578
attr(,"se")
standard error
0.04818012
>
> tryCatch(equivTestSorensen(contiAsVectorLen3, boot = TRUE), error = function(e) {return(e)})
<simpleError in equivTestSorensen.numeric(contiAsVectorLen3, boot = TRUE): Bootstraping requires a numeric vector of 4 frequencies>
>
> equivTestSorensen(c(0,0,0,45))
No test performed due non finite (d - d0) / se statistic
data: c(0, 0, 0, 45)
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
>
> # Sorensen-Dice computations from scratch, directly from gene lists
> data(allOncoGeneLists)
> ?allOncoGeneLists
> data(humanEntrezIDs)
> # First, the mutual GO node enrichment tables are built, then computations
> # proceed from these contingency tables.
> # Building the contingency tables is a slow process (many enrichment tests)
> normTest <- equivTestSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
+ listNames = c("atlas", "sanger"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> normTest
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -8.0329, p-value = 4.758e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3567572
sample estimates:
Sorensen dissimilarity
0.3341788
attr(,"se")
standard error
0.01372669
>
> # To perform a bootstrap test from scratch would be even slower:
> # set.seed(123)
> # bootTest <- equivTestSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # listNames = c("atlas", "sanger"),
> # boot = TRUE,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # bootTest
>
> # It is much faster to upgrade 'normTest' to be a bootstrap test:
> set.seed(123)
> bootTest <- upgrade(normTest, boot = TRUE)
> bootTest
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -8.0329, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.000000 0.357055
sample estimates:
Sorensen dissimilarity
0.3341788
attr(,"se")
standard error
0.01372669
> # To know the number of planned bootstrap replicates:
> getNboot(bootTest)
[1] 10000
> # To know the number of valid bootstrap replicates:
> getEffNboot(bootTest)
[1] 10000
>
> # There are similar methods for dSorensen, seSorensen, duppSorensen, etc. to
> # compute directly from a pair of gene lists.
> # They are quite slow for the same reason as before (many enrichment tests).
> # dSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # listNames = c("atlas", "sanger"),
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # seSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # listNames = c("atlas", "sanger"),
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> #
> # duppSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # listNames = c("atlas", "sanger"),
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> #
> # set.seed(123)
> # duppSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
> # boot = TRUE,
> # listNames = c("atlas", "sanger"),
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # etc.
>
> # To build the contingency table first and then compute from it, may be a more flexible
> # and saving time strategy, in general:
> ?buildEnrichTable
> tab <- buildEnrichTable(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]],
+ listNames = c("atlas", "sanger"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
>
> tab
Enriched in sanger
Enriched in atlas TRUE FALSE
TRUE 525 477
FALSE 50 9096
>
> # (Here, an obvious faster possibility would be to recover the enrichment contingency
> # table from the previous normal test result:)
> tab <- getTable(normTest)
> tab
Enriched in sanger
Enriched in atlas TRUE FALSE
TRUE 525 477
FALSE 50 9096
>
> tst <- equivTestSorensen(tab)
> tst
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -8.0329, p-value = 4.758e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3567572
sample estimates:
Sorensen dissimilarity
0.3341788
attr(,"se")
standard error
0.01372669
> set.seed(123)
> bootTst <- equivTestSorensen(tab, boot = TRUE)
> bootTst
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -8.0329, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.000000 0.357055
sample estimates:
Sorensen dissimilarity
0.3341788
attr(,"se")
standard error
0.01372669
>
> dSorensen(tab)
[1] 0.3341788
> seSorensen(tab)
[1] 0.01372669
> # or:
> getDissimilarity(tst)
Sorensen dissimilarity
0.3341788
attr(,"se")
standard error
0.01372669
>
> duppSorensen(tab)
[1] 0.3567572
> getUpper(tst)
dUpper
0.3567572
>
> set.seed(123)
> duppSorensen(tab, boot = TRUE)
[1] 0.357055
attr(,"eff.nboot")
[1] 10000
> getUpper(bootTst)
dUpper
0.357055
>
> # To perform from scratch all pairwise tests (or other Sorensen-Dice computations)
> # is even much slower. For example, all pairwise...
> # Dissimilarities:
> # # allPairDiss <- dSorensen(allOncoGeneLists,
> # # onto = "BP", GOLevel = 5,
> # # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # # allPairDiss
> #
> # # Still time consuming but faster: build all tables computing in parallel:
> # allPairDiss <- dSorensen(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
> # parallel = TRUE)
> # allPairDiss
>
> # Standard errors:
> # seSorensen(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> #
> # Upper confidence interval limits:
> # duppSorensen(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # All pairwise asymptotic normal tests:
> # allTests <- equivTestSorensen(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # getPvalue(allTests, simplify = FALSE)
> # getPvalue(allTests)
> # p.adjust(getPvalue(allTests), method = "holm")
> # To perform all pairwise bootstrap tests from scratch is (slightly)
> # even more time consuming:
> # set.seed(123)
> # allBootTests <- equivTestSorensen(allOncoGeneLists,
> # boot = TRUE,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # Not all bootstrap replicates may conduct to finite statistics:
> # getNboot(allBootTests)
>
> # Given the normal tests (object 'allTests'), it is much faster to upgrade
> # it to have the bootstrap tests:
> # set.seed(123)
> # allBootTests <- upgrade(allTests, boot = TRUE)
> # getPvalue(allBootTests, simplify = FALSE)
>
> # Again, the faster and more flexible possibility may be:
> # 1) First, build all pairwise enrichment contingency tables (slow first step):
> # allTabsBP.4 <- buildEnrichTable(allOncoGeneLists,
> # onto = "BP", GOLevel = 5,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> # allTabsBP.4
>
> # Better, directly use the dataset available at this package, goSorensen:
> data(allTabsBP.4)
> allTabsBP.4
$cangenes
$cangenes$atlas
Enriched in atlas
Enriched in cangenes TRUE FALSE
TRUE 1 0
FALSE 959 9397
$cis
$cis$atlas
Enriched in atlas
Enriched in cis TRUE FALSE
TRUE 181 11
FALSE 779 9386
$cis$cangenes
Enriched in cangenes
Enriched in cis TRUE FALSE
TRUE 1 191
FALSE 0 10165
$miscellaneous
$miscellaneous$atlas
Enriched in atlas
Enriched in miscellaneous TRUE FALSE
TRUE 450 57
FALSE 510 9340
$miscellaneous$cangenes
Enriched in cangenes
Enriched in miscellaneous TRUE FALSE
TRUE 1 506
FALSE 0 9850
$miscellaneous$cis
Enriched in cis
Enriched in miscellaneous TRUE FALSE
TRUE 145 362
FALSE 47 9803
$sanger
$sanger$atlas
Enriched in atlas
Enriched in sanger TRUE FALSE
TRUE 500 45
FALSE 460 9352
$sanger$cangenes
Enriched in cangenes
Enriched in sanger TRUE FALSE
TRUE 1 544
FALSE 0 9812
$sanger$cis
Enriched in cis
Enriched in sanger TRUE FALSE
TRUE 153 392
FALSE 39 9773
$sanger$miscellaneous
Enriched in miscellaneous
Enriched in sanger TRUE FALSE
TRUE 359 186
FALSE 148 9664
$Vogelstein
$Vogelstein$atlas
Enriched in atlas
Enriched in Vogelstein TRUE FALSE
TRUE 542 76
FALSE 418 9321
$Vogelstein$cangenes
Enriched in cangenes
Enriched in Vogelstein TRUE FALSE
TRUE 1 617
FALSE 0 9739
$Vogelstein$cis
Enriched in cis
Enriched in Vogelstein TRUE FALSE
TRUE 163 455
FALSE 29 9710
$Vogelstein$miscellaneous
Enriched in miscellaneous
Enriched in Vogelstein TRUE FALSE
TRUE 374 244
FALSE 133 9606
$Vogelstein$sanger
Enriched in sanger
Enriched in Vogelstein TRUE FALSE
TRUE 512 106
FALSE 33 9706
$waldman
$waldman$atlas
Enriched in atlas
Enriched in waldman TRUE FALSE
TRUE 641 138
FALSE 319 9259
$waldman$cangenes
Enriched in cangenes
Enriched in waldman TRUE FALSE
TRUE 1 778
FALSE 0 9578
$waldman$cis
Enriched in cis
Enriched in waldman TRUE FALSE
TRUE 171 608
FALSE 21 9557
$waldman$miscellaneous
Enriched in miscellaneous
Enriched in waldman TRUE FALSE
TRUE 467 312
FALSE 40 9538
$waldman$sanger
Enriched in sanger
Enriched in waldman TRUE FALSE
TRUE 446 333
FALSE 99 9479
$waldman$Vogelstein
Enriched in Vogelstein
Enriched in waldman TRUE FALSE
TRUE 488 291
FALSE 130 9448
attr(,"class")
[1] "tableList" "list"
> class(allTabsBP.4)
[1] "tableList" "list"
> # 2) Then perform all required computatios from these enrichment contingency tables...
> # All pairwise tests:
> allTests <- equivTestSorensen(allTabsBP.4)
> allTests
$cangenes
$cangenes$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 266.22, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.9979188
attr(,"se")
standard error
0.002079
$cis
$cis$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 13.583, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.7149878
sample estimates:
Sorensen dissimilarity
0.6857639
attr(,"se")
standard error
0.01776688
$cis$cangenes
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 52.885, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.9896373
attr(,"se")
standard error
0.010309
$miscellaneous
$miscellaneous$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -3.8685, p-value = 5.474e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.000000 0.411139
sample estimates:
Sorensen dissimilarity
0.3865031
attr(,"se")
standard error
0.01497758
$miscellaneous$cangenes
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 140.39, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.996063
attr(,"se")
standard error
0.003929258
$miscellaneous$cis
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 5.9904, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.000000 0.623749
sample estimates:
Sorensen dissimilarity
0.5851216
attr(,"se")
standard error
0.02348381
$sanger
$sanger$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -7.738, p-value = 5.051e-15
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3586962
sample estimates:
Sorensen dissimilarity
0.3355482
attr(,"se")
standard error
0.01407301
$sanger$cangenes
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 150.94, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.996337
attr(,"se")
standard error
0.003656295
$sanger$cis
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 6.1374, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6224203
sample estimates:
Sorensen dissimilarity
0.5848033
attr(,"se")
standard error
0.02286957
$sanger$miscellaneous
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -7.701, p-value = 6.75e-15
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3446065
sample estimates:
Sorensen dissimilarity
0.3174905
attr(,"se")
standard error
0.01648539
$Vogelstein
$Vogelstein$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -9.8173, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3350683
sample estimates:
Sorensen dissimilarity
0.3130545
attr(,"se")
standard error
0.01338347
$Vogelstein$cangenes
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 171.22, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.996769
attr(,"se")
standard error
0.003225798
$Vogelstein$cis
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 7.0238, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6333811
sample estimates:
Sorensen dissimilarity
0.5975309
attr(,"se")
standard error
0.02179538
$Vogelstein$miscellaneous
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -6.7191, p-value = 9.142e-12
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3618762
sample estimates:
Sorensen dissimilarity
0.3351111
attr(,"se")
standard error
0.01627199
$Vogelstein$sanger
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -32.259, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.1360863
sample estimates:
Sorensen dissimilarity
0.1195185
attr(,"se")
standard error
0.0100725
$waldman
$waldman$atlas
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -15.308, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.2823131
sample estimates:
Sorensen dissimilarity
0.2627947
attr(,"se")
standard error
0.01186635
$waldman$cangenes
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 215.94, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.9974359
attr(,"se")
standard error
0.002560815
$waldman$cis
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = 10.327, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6801719
sample estimates:
Sorensen dissimilarity
0.6477858
attr(,"se")
standard error
0.01968936
$waldman$miscellaneous
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -12.16, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.2968117
sample estimates:
Sorensen dissimilarity
0.273717
attr(,"se")
standard error
0.01404058
$waldman$sanger
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -7.9582, p-value = 8.729e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3507062
sample estimates:
Sorensen dissimilarity
0.326284
attr(,"se")
standard error
0.01484766
$waldman$Vogelstein
Normal asymptotic test for 2x2 contingency tables based on the
Sorensen-Dice dissimilarity
data: tab
(d - d0) / se = -10.211, p-value < 2.2e-16
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3244082
sample estimates:
Sorensen dissimilarity
0.3013601
attr(,"se")
standard error
0.01401229
attr(,"class")
[1] "equivSDhtestList" "list"
> class(allTests)
[1] "equivSDhtestList" "list"
> set.seed(123)
> allBootTests <- equivTestSorensen(allTabsBP.4, boot = TRUE)
> allBootTests
$cangenes
$cangenes$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (6298 effective bootstrap replicates of 10000)
data: tab
(d - d0) / se = 266.22, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.9979188
attr(,"se")
standard error
0.002079
$cis
$cis$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 13.583, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.7143131
sample estimates:
Sorensen dissimilarity
0.6857639
attr(,"se")
standard error
0.01776688
$cis$cangenes
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (6342 effective bootstrap replicates of 10000)
data: tab
(d - d0) / se = 52.885, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.9896373
attr(,"se")
standard error
0.010309
$miscellaneous
$miscellaneous$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -3.8685, p-value = 2e-04
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.4111369
sample estimates:
Sorensen dissimilarity
0.3865031
attr(,"se")
standard error
0.01497758
$miscellaneous$cangenes
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (6382 effective bootstrap replicates of 10000)
data: tab
(d - d0) / se = 140.39, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.996063
attr(,"se")
standard error
0.003929258
$miscellaneous$cis
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 5.9904, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6245189
sample estimates:
Sorensen dissimilarity
0.5851216
attr(,"se")
standard error
0.02348381
$sanger
$sanger$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -7.738, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3588894
sample estimates:
Sorensen dissimilarity
0.3355482
attr(,"se")
standard error
0.01407301
$sanger$cangenes
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (6401 effective bootstrap replicates of 10000)
data: tab
(d - d0) / se = 150.94, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.996337
attr(,"se")
standard error
0.003656295
$sanger$cis
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 6.1374, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6222571
sample estimates:
Sorensen dissimilarity
0.5848033
attr(,"se")
standard error
0.02286957
$sanger$miscellaneous
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -7.701, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3449603
sample estimates:
Sorensen dissimilarity
0.3174905
attr(,"se")
standard error
0.01648539
$Vogelstein
$Vogelstein$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -9.8173, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3357311
sample estimates:
Sorensen dissimilarity
0.3130545
attr(,"se")
standard error
0.01338347
$Vogelstein$cangenes
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (6276 effective bootstrap replicates of 10000)
data: tab
(d - d0) / se = 171.22, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.996769
attr(,"se")
standard error
0.003225798
$Vogelstein$cis
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 7.0238, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6328101
sample estimates:
Sorensen dissimilarity
0.5975309
attr(,"se")
standard error
0.02179538
$Vogelstein$miscellaneous
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -6.7191, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3629782
sample estimates:
Sorensen dissimilarity
0.3351111
attr(,"se")
standard error
0.01627199
$Vogelstein$sanger
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -32.259, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.000000 0.136948
sample estimates:
Sorensen dissimilarity
0.1195185
attr(,"se")
standard error
0.0100725
$waldman
$waldman$atlas
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -15.308, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.2826499
sample estimates:
Sorensen dissimilarity
0.2627947
attr(,"se")
standard error
0.01186635
$waldman$cangenes
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (6278 effective bootstrap replicates of 10000)
data: tab
(d - d0) / se = 215.94, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 1
sample estimates:
Sorensen dissimilarity
0.9974359
attr(,"se")
standard error
0.002560815
$waldman$cis
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = 10.327, p-value = 1
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.6796177
sample estimates:
Sorensen dissimilarity
0.6477858
attr(,"se")
standard error
0.01968936
$waldman$miscellaneous
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -12.16, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.2973298
sample estimates:
Sorensen dissimilarity
0.273717
attr(,"se")
standard error
0.01404058
$waldman$sanger
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -7.9582, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3515402
sample estimates:
Sorensen dissimilarity
0.326284
attr(,"se")
standard error
0.01484766
$waldman$Vogelstein
Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice
dissimilarity (10000 bootstrap replicates)
data: tab
(d - d0) / se = -10.211, p-value = 9.999e-05
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0.0000000 0.3243615
sample estimates:
Sorensen dissimilarity
0.3013601
attr(,"se")
standard error
0.01401229
attr(,"class")
[1] "equivSDhtestList" "list"
> class(allBootTests)
[1] "equivSDhtestList" "list"
> getPvalue(allBootTests, simplify = FALSE)
atlas cangenes cis miscellaneous sanger Vogelstein
atlas 0.00000000 1 1 0.00019998 9.999e-05 9.999e-05
cangenes 1.00000000 0 1 1.00000000 1.000e+00 1.000e+00
cis 1.00000000 1 0 1.00000000 1.000e+00 1.000e+00
miscellaneous 0.00019998 1 1 0.00000000 9.999e-05 9.999e-05
sanger 0.00009999 1 1 0.00009999 0.000e+00 9.999e-05
Vogelstein 0.00009999 1 1 0.00009999 9.999e-05 0.000e+00
waldman 0.00009999 1 1 0.00009999 9.999e-05 9.999e-05
waldman
atlas 9.999e-05
cangenes 1.000e+00
cis 1.000e+00
miscellaneous 9.999e-05
sanger 9.999e-05
Vogelstein 9.999e-05
waldman 0.000e+00
> getEffNboot(allBootTests)
cangenes.atlas cis.atlas cis.cangenes
6298 10000 6342
miscellaneous.atlas miscellaneous.cangenes miscellaneous.cis
10000 6382 10000
sanger.atlas sanger.cangenes sanger.cis
10000 6401 10000
sanger.miscellaneous Vogelstein.atlas Vogelstein.cangenes
10000 10000 6276
Vogelstein.cis Vogelstein.miscellaneous Vogelstein.sanger
10000 10000 10000
waldman.atlas waldman.cangenes waldman.cis
10000 6278 10000
waldman.miscellaneous waldman.sanger waldman.Vogelstein
10000 10000 10000
>
> # To adjust for testing multiplicity:
> p.adjust(getPvalue(allBootTests), method = "holm")
cangenes.atlas.p-value cis.atlas.p-value
1.00000000 1.00000000
cis.cangenes.p-value miscellaneous.atlas.p-value
1.00000000 0.00239976
miscellaneous.cangenes.p-value miscellaneous.cis.p-value
1.00000000 1.00000000
sanger.atlas.p-value sanger.cangenes.p-value
0.00209979 1.00000000
sanger.cis.p-value sanger.miscellaneous.p-value
1.00000000 0.00209979
Vogelstein.atlas.p-value Vogelstein.cangenes.p-value
0.00209979 1.00000000
Vogelstein.cis.p-value Vogelstein.miscellaneous.p-value
1.00000000 0.00209979
Vogelstein.sanger.p-value waldman.atlas.p-value
0.00209979 0.00209979
waldman.cangenes.p-value waldman.cis.p-value
1.00000000 1.00000000
waldman.miscellaneous.p-value waldman.sanger.p-value
0.00209979 0.00209979
waldman.Vogelstein.p-value
0.00209979
>
> # If only partial statistics are desired:
> dSorensen(allTabsBP.4)
atlas cangenes cis miscellaneous sanger Vogelstein
atlas 0.0000000 0.9979188 0.6857639 0.3865031 0.3355482 0.3130545
cangenes 0.9979188 0.0000000 0.9896373 0.9960630 0.9963370 0.9967690
cis 0.6857639 0.9896373 0.0000000 0.5851216 0.5848033 0.5975309
miscellaneous 0.3865031 0.9960630 0.5851216 0.0000000 0.3174905 0.3351111
sanger 0.3355482 0.9963370 0.5848033 0.3174905 0.0000000 0.1195185
Vogelstein 0.3130545 0.9967690 0.5975309 0.3351111 0.1195185 0.0000000
waldman 0.2627947 0.9974359 0.6477858 0.2737170 0.3262840 0.3013601
waldman
atlas 0.2627947
cangenes 0.9974359
cis 0.6477858
miscellaneous 0.2737170
sanger 0.3262840
Vogelstein 0.3013601
waldman 0.0000000
> duppSorensen(allTabsBP.4)
atlas cangenes cis miscellaneous sanger Vogelstein
atlas 0.0000000 1 0.7149878 0.4111390 0.3586962 0.3350683
cangenes 1.0000000 0 1.0000000 1.0000000 1.0000000 1.0000000
cis 0.7149878 1 0.0000000 0.6237490 0.6224203 0.6333811
miscellaneous 0.4111390 1 0.6237490 0.0000000 0.3446065 0.3618762
sanger 0.3586962 1 0.6224203 0.3446065 0.0000000 0.1360863
Vogelstein 0.3350683 1 0.6333811 0.3618762 0.1360863 0.0000000
waldman 0.2823131 1 0.6801719 0.2968117 0.3507062 0.3244082
waldman
atlas 0.2823131
cangenes 1.0000000
cis 0.6801719
miscellaneous 0.2968117
sanger 0.3507062
Vogelstein 0.3244082
waldman 0.0000000
> seSorensen(allTabsBP.4)
atlas cangenes cis miscellaneous sanger
atlas 0.00000000 0.002079000 0.01776688 0.014977580 0.014073007
cangenes 0.00207900 0.000000000 0.01030900 0.003929258 0.003656295
cis 0.01776688 0.010309002 0.00000000 0.023483807 0.022869567
miscellaneous 0.01497758 0.003929258 0.02348381 0.000000000 0.016485388
sanger 0.01407301 0.003656295 0.02286957 0.016485388 0.000000000
Vogelstein 0.01338347 0.003225798 0.02179538 0.016271992 0.010072500
waldman 0.01186635 0.002560815 0.01968936 0.014040581 0.014847661
Vogelstein waldman
atlas 0.013383469 0.011866345
cangenes 0.003225798 0.002560815
cis 0.021795381 0.019689356
miscellaneous 0.016271992 0.014040581
sanger 0.010072500 0.014847661
Vogelstein 0.000000000 0.014012289
waldman 0.014012289 0.000000000
>
>
> # Tipically, in a real study it would be interesting to scan tests
> # along some ontologies and levels inside these ontologies:
> # (which obviously will be a quite slow process)
> # gc()
> # set.seed(123)
> # allBootTests_BP_MF_lev4to8 <- allEquivTestSorensen(allOncoGeneLists,
> # boot = TRUE,
> # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
> # ontos = c("BP", "MF"), GOLevels = 4:8)
> # getPvalue(allBootTests_BP_MF_lev4to8)
> # getEffNboot(allBootTests_BP_MF_lev4to8)
>
> proc.time()
user system elapsed
93.31 9.43 102.70
goSorensen.Rcheck/tests/test_nonsense_genes.Rout
R Under development (unstable) (2022-12-25 r83502 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(goSorensen)
Attaching package: 'goSorensen'
The following object is masked from 'package:utils':
upgrade
>
> testError <- function(e) {return(e)}
>
> tryCatch(dSorensen("Sec1", onto = "BP"), error = testError)
<simpleError in buildEnrichTable.character(x, y, check.table = check.table, ...): Argument 'y' is missing, 'x' and 'y' must be 'character' vectors of valid gene identifiers>
>
> data(allOncoGeneLists)
> ?allOncoGeneLists
> data(humanEntrezIDs)
>
> # Non-sense random gene lists. Generating Entrez-like gene identifiers, but random:
> set.seed(1234567)
> genList1 <- unique(as.character(sample.int(99999, size = 100)))
> genList2 <- unique(as.character(sample.int(99999, size = 100)))
> # Gene identifiers are numbers like Entrez identifiers at 'humanEntrezIDs', but random.
> dSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
[1] NaN
> duppSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
[1] NaN
> seSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
[1] NaN
> nonSenseTst <- equivTestSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> nonSenseTst
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
> tab <- getTable(nonSenseTst)
> tab
Enriched in genList2
Enriched in genList1 TRUE FALSE
TRUE 0 0
FALSE 0 10148
> # Or, alternatively:
> tab <- buildEnrichTable(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
> tab
Enriched in genList2
Enriched in genList1 TRUE FALSE
TRUE 0 0
FALSE 0 10148
> dSorensen(tab)
[1] NaN
> duppSorensen(tab)
[1] NaN
> seSorensen(tab)
[1] NaN
> equivTestSorensen(tab)
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
>
> # Even more non-sense, letters non numeric-style like those at 'humanEntrezIDs':
> set.seed(1234567)
> genList1 <- unique(vapply(seq_len(100), function(i) {
+ paste0(sample(c(letters, LETTERS), 6, replace = TRUE), collapse = "")
+ }, FUN.VALUE = character(1)))
> genList2 <- unique(vapply(seq_len(100), function(i) {
+ paste0(sample(c(letters, LETTERS), 6, replace = TRUE), collapse = "")
+ }, FUN.VALUE = character(1)))
>
> # Gene identifiers incompatible with those at 'humanEntrezIDs':
> dSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 3309,8546,222698,2692,284359,56776
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 54997,132243,3371,344018,84678,9184
--> return NULL...
[1] NaN
> duppSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 3007,11144,221400,734,51207,374768
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 84225,9825,53405,5819,90780,84056
--> return NULL...
[1] NaN
> seSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 100137049,151195,23617,5888,4956,128497
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 1235,440822,50487,57113,116369,6774
--> return NULL...
[1] NaN
> nonSenseTst <- equivTestSorensen(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 2241,4323,7040,2072,8654,190
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 51087,5781,23492,84787,147700,7272
--> return NULL...
> nonSenseTst
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
> tab <- getTable(nonSenseTst)
> tab
Enriched in genList2
Enriched in genList1 TRUE FALSE
TRUE 0 0
FALSE 0 10148
> # Or, alternatively:
> tab <- buildEnrichTable(genList1, genList2,
+ listNames = c("genList1", "genList2"),
+ onto = "BP", GOLevel = 5,
+ geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
--> No gene can be mapped....
--> Expected input gene ID: 578,84464,23230,23626,90,406
--> return NULL...
--> No gene can be mapped....
--> Expected input gene ID: 18,132625,431707,84275,54890,2302
--> return NULL...
> tab
Enriched in genList2
Enriched in genList1 TRUE FALSE
TRUE 0 0
FALSE 0 10148
> dSorensen(tab)
[1] NaN
> duppSorensen(tab)
[1] NaN
> seSorensen(tab)
[1] NaN
> equivTestSorensen(tab)
No test performed due not finite (d - d0) / se statistic
data: tab
(d - d0) / se = NaN, p-value = NA
alternative hypothesis: true equivalence limit d0 is less than 0.4444444
95 percent confidence interval:
0 NaN
sample estimates:
Sorensen dissimilarity
NaN
attr(,"se")
standard error
NaN
>
> proc.time()
user system elapsed
195.35 7.46 203.45
goSorensen.Rcheck/goSorensen-Ex.timings
| name | user | system | elapsed | |
| allEquivTestSorensen | 0 | 0 | 0 | |
| buildEnrichTable | 14.50 | 1.93 | 16.62 | |
| dSorensen | 0.07 | 0.07 | 0.14 | |
| duppSorensen | 0.16 | 0.03 | 0.19 | |
| equivTestSorensen | 0.20 | 0.00 | 0.21 | |
| getDissimilarity | 0.26 | 0.06 | 0.34 | |
| getEffNboot | 0.93 | 0.03 | 0.95 | |
| getNboot | 1.01 | 0.06 | 1.08 | |
| getPvalue | 0.22 | 0.08 | 0.47 | |
| getSE | 0.23 | 0.16 | 0.39 | |
| getTable | 0.29 | 0.14 | 0.42 | |
| getUpper | 0.15 | 0.14 | 0.30 | |
| nice2x2Table | 0 | 0 | 0 | |
| pbtAllOntosAndLevels | 0.13 | 0.03 | 0.17 | |
| seSorensen | 0.00 | 0.02 | 0.02 | |
| upgrade | 0.73 | 0.20 | 0.94 | |