| Back to Multiple platform build/check report for BioC 3.17: simplified long |
|
This page was generated on 2023-10-16 11:37:08 -0400 (Mon, 16 Oct 2023).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4626 |
| palomino3 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4379 |
| merida1 | macOS 12.6.4 Monterey | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4395 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 949/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.6.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.6.4 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson2 | macOS 12.6.1 Monterey / arm64 | see weekly results here | ||||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.6.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.6.0.tar.gz |
| StartedAt: 2023-10-16 02:43:52 -0400 (Mon, 16 Oct 2023) |
| EndedAt: 2023-10-16 02:53:31 -0400 (Mon, 16 Oct 2023) |
| EllapsedTime: 578.0 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.6.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck’
* using R version 4.3.1 (2023-06-16)
* using platform: x86_64-apple-darwin20 (64-bit)
* R was compiled by
Apple clang version 14.0.3 (clang-1403.0.22.14.1)
GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.6.4
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.6.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 50.830 1.738 68.541
corr_plot 50.637 1.589 68.614
var_imp 50.269 1.653 69.862
pred_ensembel 23.644 0.468 25.050
calculateTC 4.687 0.473 6.602
enrichfindP 0.867 0.081 14.493
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/Users/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 104.595654
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.461644
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.036434
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 106.426271
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.078408
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.983686
final value 94.443243
converged
Fitting Repeat 2
# weights: 305
initial value 112.713350
final value 94.443243
converged
Fitting Repeat 3
# weights: 305
initial value 94.237998
iter 10 value 86.778671
iter 20 value 85.559330
iter 30 value 85.318967
iter 40 value 85.310408
iter 50 value 85.310352
final value 85.310349
converged
Fitting Repeat 4
# weights: 305
initial value 105.119902
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 96.418677
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 132.429085
final value 94.443243
converged
Fitting Repeat 2
# weights: 507
initial value 95.329838
iter 10 value 88.626012
iter 20 value 86.717754
iter 30 value 86.708097
iter 40 value 86.707724
final value 86.707692
converged
Fitting Repeat 3
# weights: 507
initial value 95.879915
iter 10 value 93.431365
iter 20 value 91.613939
iter 30 value 91.566985
final value 91.566666
converged
Fitting Repeat 4
# weights: 507
initial value 101.504926
final value 94.443244
converged
Fitting Repeat 5
# weights: 507
initial value 101.699749
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 112.817256
iter 10 value 94.429577
iter 20 value 88.785844
iter 30 value 84.716722
iter 40 value 84.326499
iter 50 value 83.889249
iter 60 value 83.736720
iter 70 value 83.684012
iter 80 value 83.667386
iter 90 value 83.664537
final value 83.663969
converged
Fitting Repeat 2
# weights: 103
initial value 101.206471
iter 10 value 93.397541
iter 20 value 87.340733
iter 30 value 86.703972
iter 40 value 83.456138
iter 50 value 82.675999
iter 60 value 82.418324
iter 70 value 82.388606
final value 82.388430
converged
Fitting Repeat 3
# weights: 103
initial value 105.528308
iter 10 value 94.441542
iter 20 value 90.222232
iter 30 value 87.082104
iter 40 value 86.806506
iter 50 value 86.546686
iter 60 value 85.439266
iter 70 value 84.658179
iter 80 value 84.639089
final value 84.637891
converged
Fitting Repeat 4
# weights: 103
initial value 104.100095
iter 10 value 94.101203
iter 20 value 87.220047
iter 30 value 84.824218
iter 40 value 84.142255
iter 50 value 84.123719
iter 60 value 83.964024
iter 70 value 83.807143
iter 80 value 83.701718
iter 90 value 83.663348
iter 100 value 83.656333
final value 83.656333
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 96.139961
iter 10 value 92.481586
iter 20 value 88.586029
iter 30 value 87.605451
iter 40 value 86.673783
iter 50 value 85.275273
iter 60 value 84.655518
iter 70 value 84.558421
final value 84.558364
converged
Fitting Repeat 1
# weights: 305
initial value 100.096712
iter 10 value 94.631399
iter 20 value 92.611650
iter 30 value 86.322716
iter 40 value 85.415014
iter 50 value 85.039573
iter 60 value 83.254689
iter 70 value 82.508654
iter 80 value 82.315739
iter 90 value 82.105833
iter 100 value 82.039699
final value 82.039699
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.375052
iter 10 value 94.163943
iter 20 value 90.000401
iter 30 value 87.989455
iter 40 value 85.134888
iter 50 value 83.876805
iter 60 value 83.666768
iter 70 value 83.347833
iter 80 value 82.495070
iter 90 value 81.889054
iter 100 value 81.377816
final value 81.377816
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.906305
iter 10 value 94.351176
iter 20 value 88.706838
iter 30 value 85.412818
iter 40 value 84.975169
iter 50 value 84.421342
iter 60 value 83.205613
iter 70 value 82.426106
iter 80 value 82.221371
iter 90 value 81.549200
iter 100 value 81.267152
final value 81.267152
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.399765
iter 10 value 91.921087
iter 20 value 88.388687
iter 30 value 86.790717
iter 40 value 86.686425
iter 50 value 85.865726
iter 60 value 85.088812
iter 70 value 84.636570
iter 80 value 82.294424
iter 90 value 81.507902
iter 100 value 81.120384
final value 81.120384
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.185992
iter 10 value 94.487257
iter 20 value 93.157584
iter 30 value 90.438395
iter 40 value 87.486647
iter 50 value 86.669574
iter 60 value 85.839833
iter 70 value 84.616016
iter 80 value 82.752504
iter 90 value 82.515846
iter 100 value 82.418140
final value 82.418140
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 122.041458
iter 10 value 94.783841
iter 20 value 94.530969
iter 30 value 88.998715
iter 40 value 86.448836
iter 50 value 83.490313
iter 60 value 82.722337
iter 70 value 81.701396
iter 80 value 81.344368
iter 90 value 81.232580
iter 100 value 81.186746
final value 81.186746
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 141.105114
iter 10 value 95.805837
iter 20 value 90.222237
iter 30 value 87.675312
iter 40 value 85.067012
iter 50 value 83.035915
iter 60 value 82.589162
iter 70 value 82.352381
iter 80 value 82.191930
iter 90 value 82.082976
iter 100 value 81.567253
final value 81.567253
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 129.101287
iter 10 value 96.515706
iter 20 value 88.112248
iter 30 value 87.134812
iter 40 value 85.395482
iter 50 value 84.929424
iter 60 value 82.539328
iter 70 value 82.240138
iter 80 value 82.183499
iter 90 value 82.157759
iter 100 value 81.879143
final value 81.879143
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 123.714023
iter 10 value 95.272581
iter 20 value 88.445081
iter 30 value 87.052393
iter 40 value 82.678422
iter 50 value 82.114311
iter 60 value 81.825328
iter 70 value 81.606837
iter 80 value 81.515156
iter 90 value 81.370499
iter 100 value 81.177702
final value 81.177702
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 134.878058
iter 10 value 94.700383
iter 20 value 91.397022
iter 30 value 89.985839
iter 40 value 87.967038
iter 50 value 87.060487
iter 60 value 86.791185
iter 70 value 86.319885
iter 80 value 84.685168
iter 90 value 84.270063
iter 100 value 84.111219
final value 84.111219
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.384152
final value 94.485833
converged
Fitting Repeat 2
# weights: 103
initial value 94.742136
final value 94.485991
converged
Fitting Repeat 3
# weights: 103
initial value 107.235818
final value 94.485771
converged
Fitting Repeat 4
# weights: 103
initial value 96.724845
iter 10 value 94.485628
iter 20 value 94.484248
final value 94.484217
converged
Fitting Repeat 5
# weights: 103
initial value 95.157446
final value 94.485772
converged
Fitting Repeat 1
# weights: 305
initial value 118.202667
iter 10 value 94.457945
iter 20 value 94.428448
final value 94.400728
converged
Fitting Repeat 2
# weights: 305
initial value 95.957942
iter 10 value 94.488984
iter 20 value 94.450568
iter 30 value 88.895214
iter 40 value 88.395681
iter 50 value 88.362131
iter 60 value 87.420069
iter 70 value 86.687650
iter 80 value 86.666561
iter 90 value 86.655540
iter 100 value 86.485290
final value 86.485290
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 95.256547
iter 10 value 94.486098
iter 20 value 94.314554
iter 30 value 87.652412
final value 87.652019
converged
Fitting Repeat 4
# weights: 305
initial value 101.706456
iter 10 value 94.487366
iter 20 value 93.570242
iter 30 value 86.994202
iter 40 value 83.215415
iter 50 value 82.997954
iter 60 value 82.989945
final value 82.989217
converged
Fitting Repeat 5
# weights: 305
initial value 95.979309
iter 10 value 94.489121
iter 20 value 94.351326
iter 30 value 92.872283
iter 40 value 92.872147
iter 50 value 91.854780
iter 60 value 91.317981
iter 70 value 91.260148
iter 80 value 91.259061
final value 91.259037
converged
Fitting Repeat 1
# weights: 507
initial value 98.928719
iter 10 value 94.491837
iter 20 value 94.470453
iter 30 value 92.400877
iter 40 value 87.183420
iter 50 value 87.180803
final value 87.180776
converged
Fitting Repeat 2
# weights: 507
initial value 107.071915
iter 10 value 94.491699
iter 20 value 90.012073
iter 30 value 85.833930
iter 40 value 85.825686
iter 50 value 85.724097
iter 60 value 85.601001
final value 85.600980
converged
Fitting Repeat 3
# weights: 507
initial value 99.383585
iter 10 value 94.451895
iter 20 value 94.443416
iter 30 value 94.377377
iter 40 value 90.859748
iter 50 value 86.497141
iter 60 value 85.880487
iter 70 value 85.877816
iter 80 value 85.875964
iter 90 value 85.875508
iter 100 value 83.575018
final value 83.575018
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.394319
iter 10 value 94.492000
final value 94.491139
converged
Fitting Repeat 5
# weights: 507
initial value 118.099321
iter 10 value 94.451092
iter 20 value 94.447116
iter 20 value 94.447116
iter 20 value 94.447116
final value 94.447116
converged
Fitting Repeat 1
# weights: 103
initial value 104.758145
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 98.207245
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.407316
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 98.681330
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.430443
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 103.241156
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 96.890368
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 101.274431
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 96.083902
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 123.444820
final value 93.582418
converged
Fitting Repeat 1
# weights: 507
initial value 118.161835
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 103.872388
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 111.121679
final value 93.582418
converged
Fitting Repeat 4
# weights: 507
initial value 111.669534
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 100.970936
iter 10 value 93.553443
iter 20 value 93.322977
iter 30 value 92.969949
final value 92.969862
converged
Fitting Repeat 1
# weights: 103
initial value 96.240245
iter 10 value 94.037275
iter 20 value 93.128115
iter 30 value 93.114821
iter 40 value 93.083859
iter 50 value 92.957055
iter 60 value 89.395841
iter 70 value 86.540688
iter 80 value 86.467125
iter 90 value 86.348734
iter 100 value 85.060811
final value 85.060811
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.031861
iter 10 value 94.044969
iter 20 value 93.631035
iter 30 value 93.510496
iter 40 value 93.461645
iter 50 value 92.510585
iter 60 value 85.427620
iter 70 value 85.148698
iter 80 value 84.966739
iter 90 value 84.911856
iter 100 value 84.901792
final value 84.901792
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.210810
iter 10 value 94.058872
iter 20 value 94.055355
iter 30 value 93.305243
iter 40 value 93.121548
iter 50 value 93.072828
final value 93.067792
converged
Fitting Repeat 4
# weights: 103
initial value 95.883993
iter 10 value 94.065123
iter 20 value 93.520306
iter 30 value 93.234494
iter 40 value 92.680313
iter 50 value 87.064958
iter 60 value 86.459061
iter 70 value 86.449909
iter 80 value 86.326234
iter 90 value 85.716512
iter 100 value 85.221761
final value 85.221761
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.064747
iter 10 value 94.053214
iter 20 value 93.516200
iter 30 value 86.805346
iter 40 value 86.314415
iter 50 value 83.705033
iter 60 value 83.354936
iter 70 value 83.235337
iter 80 value 82.763038
iter 90 value 82.484221
iter 100 value 82.436868
final value 82.436868
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 110.249311
iter 10 value 94.017820
iter 20 value 93.727675
iter 30 value 93.043545
iter 40 value 87.624088
iter 50 value 86.674079
iter 60 value 86.144082
iter 70 value 83.701939
iter 80 value 82.701227
iter 90 value 82.061799
iter 100 value 81.708507
final value 81.708507
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 128.466006
iter 10 value 94.577748
iter 20 value 93.768829
iter 30 value 85.160586
iter 40 value 83.826491
iter 50 value 83.417665
iter 60 value 82.924472
iter 70 value 82.661497
iter 80 value 82.495849
iter 90 value 82.177147
iter 100 value 81.776472
final value 81.776472
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 119.898552
iter 10 value 93.869131
iter 20 value 91.874671
iter 30 value 85.990605
iter 40 value 84.783122
iter 50 value 83.814625
iter 60 value 83.155097
iter 70 value 82.424822
iter 80 value 82.058374
iter 90 value 82.038705
iter 100 value 82.020549
final value 82.020549
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 118.857206
iter 10 value 94.152556
iter 20 value 94.056549
iter 30 value 93.981578
iter 40 value 89.583687
iter 50 value 84.671504
iter 60 value 83.884434
iter 70 value 83.426437
iter 80 value 82.695363
iter 90 value 81.999160
iter 100 value 81.751190
final value 81.751190
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 108.507352
iter 10 value 94.112401
iter 20 value 93.178645
iter 30 value 86.412829
iter 40 value 85.130907
iter 50 value 84.787267
iter 60 value 84.371578
iter 70 value 83.112679
iter 80 value 82.725478
iter 90 value 82.072748
iter 100 value 81.523677
final value 81.523677
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.339070
iter 10 value 94.848653
iter 20 value 91.470566
iter 30 value 86.082004
iter 40 value 85.227044
iter 50 value 85.051583
iter 60 value 84.709864
iter 70 value 83.219082
iter 80 value 81.568620
iter 90 value 80.922430
iter 100 value 80.641638
final value 80.641638
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.118646
iter 10 value 93.742217
iter 20 value 91.926362
iter 30 value 87.606424
iter 40 value 85.835404
iter 50 value 84.830244
iter 60 value 82.797456
iter 70 value 82.014230
iter 80 value 81.891966
iter 90 value 81.643706
iter 100 value 81.590648
final value 81.590648
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 122.387811
iter 10 value 94.853273
iter 20 value 94.048922
iter 30 value 92.640204
iter 40 value 85.824384
iter 50 value 85.483619
iter 60 value 85.263753
iter 70 value 85.180969
iter 80 value 85.014738
iter 90 value 83.642830
iter 100 value 82.527795
final value 82.527795
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 121.162840
iter 10 value 94.006495
iter 20 value 90.830975
iter 30 value 87.037503
iter 40 value 85.710727
iter 50 value 84.337998
iter 60 value 82.727732
iter 70 value 82.223151
iter 80 value 81.913209
iter 90 value 81.575859
iter 100 value 81.341847
final value 81.341847
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 126.488913
iter 10 value 92.987040
iter 20 value 86.210068
iter 30 value 85.673095
iter 40 value 85.061714
iter 50 value 84.268698
iter 60 value 83.350859
iter 70 value 81.732383
iter 80 value 81.230002
iter 90 value 80.964953
iter 100 value 80.781915
final value 80.781915
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.507225
final value 94.054434
converged
Fitting Repeat 2
# weights: 103
initial value 95.990907
final value 94.054709
converged
Fitting Repeat 3
# weights: 103
initial value 98.737848
iter 10 value 94.054614
iter 20 value 94.052928
final value 94.052912
converged
Fitting Repeat 4
# weights: 103
initial value 97.148359
final value 94.056259
converged
Fitting Repeat 5
# weights: 103
initial value 99.937323
iter 10 value 94.054607
iter 20 value 94.025293
final value 93.583041
converged
Fitting Repeat 1
# weights: 305
initial value 106.936891
iter 10 value 94.056849
iter 20 value 93.479349
iter 30 value 93.125719
iter 40 value 93.124343
iter 50 value 93.123118
iter 60 value 93.122992
iter 70 value 93.122802
iter 70 value 93.122802
iter 70 value 93.122801
final value 93.122801
converged
Fitting Repeat 2
# weights: 305
initial value 101.642256
iter 10 value 93.123536
iter 20 value 93.106045
iter 30 value 93.047027
iter 40 value 88.495524
iter 50 value 88.213498
final value 88.201841
converged
Fitting Repeat 3
# weights: 305
initial value 94.972290
iter 10 value 93.376904
iter 20 value 93.375725
iter 30 value 93.375036
iter 40 value 93.374797
final value 93.374593
converged
Fitting Repeat 4
# weights: 305
initial value 101.537193
iter 10 value 92.169270
iter 20 value 92.081952
iter 30 value 92.040329
iter 40 value 91.900380
final value 91.900352
converged
Fitting Repeat 5
# weights: 305
initial value 101.932599
iter 10 value 93.587963
iter 20 value 93.063186
iter 30 value 92.954664
iter 40 value 85.160036
iter 50 value 84.433682
iter 60 value 84.428219
final value 84.427634
converged
Fitting Repeat 1
# weights: 507
initial value 94.827444
iter 10 value 93.590960
iter 20 value 93.041771
iter 30 value 90.295726
iter 40 value 86.291792
iter 50 value 86.120513
iter 60 value 85.214847
iter 70 value 85.175152
iter 80 value 84.851688
iter 90 value 83.888542
iter 100 value 83.828235
final value 83.828235
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.494206
iter 10 value 94.061208
iter 20 value 93.955019
iter 30 value 89.531352
iter 40 value 89.373581
iter 50 value 86.799374
iter 60 value 84.475037
iter 70 value 84.420311
iter 80 value 84.417621
iter 90 value 84.417471
iter 100 value 84.407263
final value 84.407263
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 99.269690
iter 10 value 94.059621
iter 20 value 93.667959
iter 30 value 85.979303
iter 40 value 85.978134
iter 50 value 85.393453
iter 60 value 84.610512
final value 84.610186
converged
Fitting Repeat 4
# weights: 507
initial value 95.242125
iter 10 value 93.021522
iter 20 value 92.945182
iter 30 value 92.878943
iter 40 value 92.873690
iter 50 value 92.873310
iter 60 value 92.873166
iter 70 value 92.873115
final value 92.873076
converged
Fitting Repeat 5
# weights: 507
initial value 101.814173
iter 10 value 94.060723
iter 20 value 94.041595
iter 30 value 85.216239
iter 40 value 83.437215
iter 50 value 82.843137
final value 82.813967
converged
Fitting Repeat 1
# weights: 103
initial value 99.941251
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 103.752835
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 105.699085
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 94.931959
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.501938
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 100.708692
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 100.658185
final value 94.467391
converged
Fitting Repeat 3
# weights: 305
initial value 99.771007
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 97.646550
final value 92.786232
converged
Fitting Repeat 5
# weights: 305
initial value 113.226889
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 98.845839
final value 94.467392
converged
Fitting Repeat 2
# weights: 507
initial value 102.379341
final value 94.428840
converged
Fitting Repeat 3
# weights: 507
initial value 121.492044
final value 94.467391
converged
Fitting Repeat 4
# weights: 507
initial value 101.016249
iter 10 value 93.955965
iter 20 value 93.936869
iter 30 value 93.422007
final value 93.413497
converged
Fitting Repeat 5
# weights: 507
initial value 109.704732
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 114.886027
iter 10 value 94.486564
iter 20 value 94.482832
iter 30 value 91.018926
iter 40 value 86.928693
iter 50 value 86.258682
iter 60 value 84.093099
iter 70 value 82.975787
iter 80 value 81.693241
iter 90 value 80.976804
iter 100 value 80.949654
final value 80.949654
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.498274
iter 10 value 93.937875
iter 20 value 87.417869
iter 30 value 85.257450
iter 40 value 85.013581
iter 50 value 84.833600
iter 60 value 84.542809
iter 70 value 81.705211
iter 80 value 81.008301
iter 90 value 80.960306
iter 100 value 80.959357
final value 80.959357
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 106.494035
iter 10 value 93.985221
iter 20 value 93.392472
iter 30 value 92.003637
iter 40 value 88.884140
iter 50 value 82.656084
iter 60 value 82.253875
iter 70 value 81.258964
iter 80 value 81.221235
iter 80 value 81.221234
final value 81.221234
converged
Fitting Repeat 4
# weights: 103
initial value 102.304202
iter 10 value 94.487410
iter 20 value 84.513796
iter 30 value 82.756699
iter 40 value 81.276871
iter 50 value 81.131397
iter 60 value 81.084682
iter 70 value 80.786412
final value 80.784735
converged
Fitting Repeat 5
# weights: 103
initial value 99.549559
iter 10 value 94.484701
iter 20 value 88.399699
iter 30 value 84.313312
iter 40 value 81.906990
iter 50 value 81.299212
iter 60 value 81.200426
final value 81.200239
converged
Fitting Repeat 1
# weights: 305
initial value 101.876176
iter 10 value 94.648470
iter 20 value 85.905112
iter 30 value 83.121598
iter 40 value 80.239253
iter 50 value 77.813466
iter 60 value 77.543630
iter 70 value 77.270856
iter 80 value 77.204178
iter 90 value 77.180403
iter 100 value 77.169858
final value 77.169858
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.735991
iter 10 value 94.322051
iter 20 value 85.214690
iter 30 value 83.985811
iter 40 value 81.148939
iter 50 value 80.360884
iter 60 value 79.224408
iter 70 value 77.974705
iter 80 value 77.414862
iter 90 value 77.372492
iter 100 value 77.092447
final value 77.092447
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.532095
iter 10 value 94.508318
iter 20 value 94.433355
iter 30 value 84.539187
iter 40 value 82.716969
iter 50 value 81.251249
iter 60 value 80.790221
iter 70 value 80.726438
iter 80 value 80.618549
iter 90 value 80.274093
iter 100 value 79.775354
final value 79.775354
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.222756
iter 10 value 94.595824
iter 20 value 85.000162
iter 30 value 82.562742
iter 40 value 81.307801
iter 50 value 81.201512
iter 60 value 80.645211
iter 70 value 78.952139
iter 80 value 77.850152
iter 90 value 77.620091
iter 100 value 77.490456
final value 77.490456
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 111.908171
iter 10 value 94.434646
iter 20 value 85.039469
iter 30 value 82.664276
iter 40 value 81.188037
iter 50 value 78.477128
iter 60 value 78.074939
iter 70 value 77.797155
iter 80 value 77.086984
iter 90 value 76.589351
iter 100 value 76.339925
final value 76.339925
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.032366
iter 10 value 95.942921
iter 20 value 92.871909
iter 30 value 92.084606
iter 40 value 91.887283
iter 50 value 91.737684
iter 60 value 84.576512
iter 70 value 80.539029
iter 80 value 79.228835
iter 90 value 78.847217
iter 100 value 78.188181
final value 78.188181
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 129.566602
iter 10 value 95.535323
iter 20 value 84.668581
iter 30 value 82.272977
iter 40 value 81.446550
iter 50 value 81.249366
iter 60 value 80.856511
iter 70 value 80.220555
iter 80 value 79.243408
iter 90 value 78.124294
iter 100 value 77.538271
final value 77.538271
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.402748
iter 10 value 94.697702
iter 20 value 90.032238
iter 30 value 84.317159
iter 40 value 80.306478
iter 50 value 79.218915
iter 60 value 78.010776
iter 70 value 77.682848
iter 80 value 77.307260
iter 90 value 76.930624
iter 100 value 76.900193
final value 76.900193
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.208350
iter 10 value 94.670541
iter 20 value 88.984846
iter 30 value 86.841883
iter 40 value 82.258278
iter 50 value 80.500982
iter 60 value 79.878029
iter 70 value 79.748769
iter 80 value 79.486434
iter 90 value 78.647888
iter 100 value 78.534162
final value 78.534162
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.958153
iter 10 value 87.967600
iter 20 value 83.375617
iter 30 value 80.234954
iter 40 value 77.727516
iter 50 value 77.469975
iter 60 value 77.352072
iter 70 value 77.045725
iter 80 value 76.845842
iter 90 value 76.503814
iter 100 value 76.371333
final value 76.371333
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.313943
final value 94.485827
converged
Fitting Repeat 2
# weights: 103
initial value 95.994315
final value 94.485728
converged
Fitting Repeat 3
# weights: 103
initial value 107.991981
final value 94.485718
converged
Fitting Repeat 4
# weights: 103
initial value 115.039708
final value 94.485711
converged
Fitting Repeat 5
# weights: 103
initial value 106.650123
iter 10 value 94.485745
iter 20 value 94.484024
iter 30 value 92.287035
iter 40 value 91.973535
final value 91.476556
converged
Fitting Repeat 1
# weights: 305
initial value 100.189786
iter 10 value 94.472284
iter 20 value 93.526425
iter 30 value 89.346079
iter 40 value 78.825709
iter 50 value 78.761055
iter 60 value 78.741583
iter 70 value 78.722056
iter 80 value 78.715252
iter 90 value 78.696683
iter 100 value 78.664138
final value 78.664138
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 98.677939
iter 10 value 94.488887
iter 20 value 86.051317
iter 30 value 81.206432
iter 40 value 81.185366
final value 81.183214
converged
Fitting Repeat 3
# weights: 305
initial value 107.534522
iter 10 value 94.488617
iter 20 value 86.776159
iter 30 value 80.437489
iter 40 value 80.437085
final value 80.435744
converged
Fitting Repeat 4
# weights: 305
initial value 101.367176
final value 94.489288
converged
Fitting Repeat 5
# weights: 305
initial value 108.854729
iter 10 value 94.488372
iter 20 value 94.406466
iter 30 value 82.714727
iter 40 value 80.883616
iter 50 value 80.164428
iter 60 value 80.077772
iter 70 value 78.771734
iter 80 value 78.349578
iter 90 value 78.341094
iter 100 value 78.340031
final value 78.340031
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 100.813675
iter 10 value 94.338705
iter 20 value 93.925931
iter 30 value 93.510077
iter 40 value 93.505149
iter 50 value 93.504548
iter 60 value 93.499082
iter 70 value 93.498226
final value 93.498211
converged
Fitting Repeat 2
# weights: 507
initial value 97.677556
iter 10 value 88.174315
iter 20 value 82.752588
iter 30 value 82.722909
iter 40 value 82.692368
iter 50 value 80.906330
iter 60 value 79.820110
iter 70 value 79.655544
iter 80 value 79.583311
iter 80 value 79.583311
iter 80 value 79.583311
final value 79.583311
converged
Fitting Repeat 3
# weights: 507
initial value 98.583141
iter 10 value 87.938297
iter 20 value 86.329625
iter 30 value 86.018689
iter 40 value 83.055436
iter 50 value 82.677475
iter 60 value 80.864883
iter 70 value 80.700621
iter 80 value 80.698562
iter 90 value 80.685062
iter 100 value 80.576238
final value 80.576238
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.793554
iter 10 value 92.794979
iter 20 value 92.791263
iter 30 value 86.172849
iter 40 value 82.977795
iter 50 value 82.925542
iter 60 value 82.908781
iter 70 value 82.903572
final value 82.903422
converged
Fitting Repeat 5
# weights: 507
initial value 100.022561
iter 10 value 94.437067
iter 20 value 92.285720
iter 30 value 80.509820
iter 40 value 79.681485
iter 50 value 79.679997
iter 60 value 79.667131
iter 70 value 79.515393
iter 80 value 79.512758
iter 90 value 79.484715
iter 100 value 79.002632
final value 79.002632
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.080204
iter 10 value 90.033718
iter 20 value 84.042462
iter 30 value 83.707324
iter 40 value 83.529487
final value 83.528083
converged
Fitting Repeat 2
# weights: 103
initial value 100.464701
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 108.085796
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.869633
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.303825
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 123.781018
final value 94.466823
converged
Fitting Repeat 2
# weights: 305
initial value 99.580499
iter 10 value 94.106994
iter 20 value 88.622401
final value 88.621431
converged
Fitting Repeat 3
# weights: 305
initial value 99.950763
final value 94.466823
converged
Fitting Repeat 4
# weights: 305
initial value 97.172182
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 107.613404
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 96.535028
final value 94.112903
converged
Fitting Repeat 2
# weights: 507
initial value 97.850262
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 101.025450
iter 10 value 89.624165
iter 20 value 88.757582
iter 30 value 87.837044
iter 40 value 86.871320
iter 50 value 86.835086
final value 86.834591
converged
Fitting Repeat 4
# weights: 507
initial value 112.865643
iter 10 value 94.090586
final value 94.090584
converged
Fitting Repeat 5
# weights: 507
initial value 99.932378
final value 94.466823
converged
Fitting Repeat 1
# weights: 103
initial value 106.556630
iter 10 value 94.475219
iter 20 value 93.646112
iter 30 value 87.770555
iter 40 value 87.117141
iter 50 value 86.741529
iter 60 value 86.073714
iter 70 value 84.043606
iter 80 value 82.722435
iter 90 value 82.677626
iter 100 value 82.672921
final value 82.672921
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.884298
iter 10 value 94.489039
iter 20 value 89.977719
iter 30 value 86.731391
iter 40 value 85.215145
iter 50 value 84.125617
iter 60 value 83.716734
iter 70 value 83.453921
iter 80 value 83.033059
final value 83.008491
converged
Fitting Repeat 3
# weights: 103
initial value 100.353423
iter 10 value 94.488296
iter 20 value 94.090070
iter 30 value 87.301349
iter 40 value 87.216113
iter 50 value 85.238685
iter 60 value 84.565663
iter 70 value 83.875728
iter 80 value 83.515520
iter 90 value 82.966249
iter 100 value 82.933464
final value 82.933464
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.817915
iter 10 value 94.445133
iter 20 value 88.589477
iter 30 value 84.329696
iter 40 value 83.800984
iter 50 value 83.033691
iter 60 value 83.020353
iter 70 value 83.012670
final value 83.008491
converged
Fitting Repeat 5
# weights: 103
initial value 96.825606
iter 10 value 93.524967
iter 20 value 88.814222
iter 30 value 84.125200
iter 40 value 83.646744
iter 50 value 83.246363
iter 60 value 82.928684
iter 70 value 82.714453
iter 80 value 82.449683
iter 90 value 82.236318
final value 82.236012
converged
Fitting Repeat 1
# weights: 305
initial value 102.633051
iter 10 value 94.456466
iter 20 value 91.971925
iter 30 value 89.838002
iter 40 value 89.595354
iter 50 value 84.705898
iter 60 value 84.367150
iter 70 value 82.730682
iter 80 value 81.617669
iter 90 value 81.375848
iter 100 value 81.176612
final value 81.176612
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.585356
iter 10 value 94.521545
iter 20 value 94.340033
iter 30 value 91.823827
iter 40 value 90.801788
iter 50 value 90.110233
iter 60 value 84.891754
iter 70 value 82.558683
iter 80 value 81.838264
iter 90 value 81.477292
iter 100 value 81.289598
final value 81.289598
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 128.026381
iter 10 value 93.979207
iter 20 value 90.041824
iter 30 value 89.791149
iter 40 value 88.867064
iter 50 value 85.174719
iter 60 value 83.475486
iter 70 value 81.933969
iter 80 value 81.463299
iter 90 value 81.409420
iter 100 value 81.353392
final value 81.353392
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 112.868833
iter 10 value 94.568878
iter 20 value 87.563617
iter 30 value 86.790186
iter 40 value 85.484126
iter 50 value 83.857737
iter 60 value 83.178555
iter 70 value 82.980812
iter 80 value 82.522504
iter 90 value 81.527806
iter 100 value 81.312850
final value 81.312850
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 119.510331
iter 10 value 94.442952
iter 20 value 94.002330
iter 30 value 92.500893
iter 40 value 91.548230
iter 50 value 90.133117
iter 60 value 89.951188
iter 70 value 89.635080
iter 80 value 89.304092
iter 90 value 86.592379
iter 100 value 84.144116
final value 84.144116
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.956995
iter 10 value 94.845585
iter 20 value 87.634983
iter 30 value 85.824573
iter 40 value 83.886232
iter 50 value 83.410087
iter 60 value 82.918927
iter 70 value 81.978072
iter 80 value 81.658044
iter 90 value 81.524691
iter 100 value 81.116364
final value 81.116364
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.839058
iter 10 value 94.075258
iter 20 value 84.181555
iter 30 value 83.435234
iter 40 value 82.654420
iter 50 value 81.649783
iter 60 value 80.922580
iter 70 value 80.753524
iter 80 value 80.655203
iter 90 value 80.582538
iter 100 value 80.562836
final value 80.562836
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.114442
iter 10 value 94.932093
iter 20 value 91.103716
iter 30 value 87.035604
iter 40 value 86.244544
iter 50 value 85.716652
iter 60 value 81.811870
iter 70 value 81.204162
iter 80 value 81.026614
iter 90 value 80.963924
iter 100 value 80.808455
final value 80.808455
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 125.407704
iter 10 value 94.494825
iter 20 value 86.284995
iter 30 value 84.151055
iter 40 value 83.825221
iter 50 value 83.318364
iter 60 value 82.713965
iter 70 value 82.568069
iter 80 value 82.095178
iter 90 value 81.709178
iter 100 value 81.624787
final value 81.624787
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.447864
iter 10 value 91.471784
iter 20 value 84.397383
iter 30 value 84.046217
iter 40 value 83.763138
iter 50 value 83.627651
iter 60 value 82.861130
iter 70 value 82.358393
iter 80 value 81.880765
iter 90 value 81.425746
iter 100 value 81.178964
final value 81.178964
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.489428
final value 94.486086
converged
Fitting Repeat 2
# weights: 103
initial value 106.947322
final value 94.485977
converged
Fitting Repeat 3
# weights: 103
initial value 100.117670
final value 94.486037
converged
Fitting Repeat 4
# weights: 103
initial value 102.907476
final value 94.485766
converged
Fitting Repeat 5
# weights: 103
initial value 100.554037
final value 94.485999
converged
Fitting Repeat 1
# weights: 305
initial value 105.725838
iter 10 value 94.489027
iter 20 value 90.568716
iter 30 value 87.037385
iter 40 value 86.780169
iter 50 value 84.612764
iter 60 value 84.611017
iter 70 value 84.209046
iter 80 value 84.058337
final value 84.055917
converged
Fitting Repeat 2
# weights: 305
initial value 106.280095
iter 10 value 94.496505
iter 20 value 94.466230
iter 30 value 94.389433
iter 40 value 94.333884
iter 50 value 94.324522
iter 60 value 94.323384
iter 60 value 94.323384
iter 60 value 94.323383
final value 94.323383
converged
Fitting Repeat 3
# weights: 305
initial value 94.812542
iter 10 value 94.489161
iter 20 value 94.243529
iter 30 value 91.791514
iter 40 value 91.790723
final value 91.790657
converged
Fitting Repeat 4
# weights: 305
initial value 97.294230
iter 10 value 94.471884
iter 20 value 94.466449
iter 30 value 94.270235
iter 40 value 92.923107
final value 92.923099
converged
Fitting Repeat 5
# weights: 305
initial value 98.620259
iter 10 value 94.488996
iter 20 value 94.369203
iter 30 value 91.783147
iter 40 value 91.707828
final value 91.707254
converged
Fitting Repeat 1
# weights: 507
initial value 95.554450
iter 10 value 91.512889
iter 20 value 91.383432
iter 30 value 91.380377
iter 40 value 90.257928
iter 50 value 89.514275
iter 60 value 89.022857
iter 70 value 88.678349
iter 80 value 88.673479
final value 88.671497
converged
Fitting Repeat 2
# weights: 507
initial value 122.207585
iter 10 value 94.492316
iter 20 value 94.458379
iter 30 value 87.118249
iter 40 value 82.807224
iter 50 value 82.792042
iter 60 value 82.791613
final value 82.791534
converged
Fitting Repeat 3
# weights: 507
initial value 99.520876
iter 10 value 94.492614
iter 20 value 91.834380
iter 30 value 87.434012
iter 40 value 85.469339
iter 50 value 84.196930
iter 60 value 83.999270
iter 70 value 82.622950
iter 80 value 82.558002
iter 90 value 82.556884
iter 100 value 82.556687
final value 82.556687
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 130.310584
iter 10 value 94.492384
iter 20 value 94.484331
iter 30 value 93.863625
iter 40 value 88.174897
iter 50 value 87.502278
final value 87.502076
converged
Fitting Repeat 5
# weights: 507
initial value 96.333876
iter 10 value 94.475130
iter 20 value 94.455148
iter 30 value 94.452966
iter 40 value 94.450494
iter 50 value 94.450003
iter 60 value 87.712428
iter 70 value 87.034015
iter 80 value 86.595146
final value 86.578174
converged
Fitting Repeat 1
# weights: 103
initial value 100.275926
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 99.688978
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.968533
final value 93.582418
converged
Fitting Repeat 4
# weights: 103
initial value 94.836757
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 96.324413
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 112.382978
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 100.159357
iter 10 value 85.111633
iter 20 value 83.910201
iter 30 value 83.909751
iter 40 value 83.679304
final value 83.679291
converged
Fitting Repeat 3
# weights: 305
initial value 97.834975
iter 10 value 93.541483
final value 93.473742
converged
Fitting Repeat 4
# weights: 305
initial value 98.624090
final value 93.582418
converged
Fitting Repeat 5
# weights: 305
initial value 112.494595
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 99.797530
final value 93.288889
converged
Fitting Repeat 2
# weights: 507
initial value 114.539096
final value 93.084594
converged
Fitting Repeat 3
# weights: 507
initial value 122.555951
iter 10 value 91.507340
iter 20 value 87.931561
final value 87.813230
converged
Fitting Repeat 4
# weights: 507
initial value 94.703724
iter 10 value 93.582418
iter 10 value 93.582418
iter 10 value 93.582418
final value 93.582418
converged
Fitting Repeat 5
# weights: 507
initial value 121.580339
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 120.410773
iter 10 value 92.246689
iter 20 value 86.074013
iter 30 value 84.511692
iter 40 value 82.947848
iter 50 value 82.648871
iter 60 value 82.183394
iter 70 value 81.679644
iter 80 value 80.631323
iter 90 value 80.628871
final value 80.628425
converged
Fitting Repeat 2
# weights: 103
initial value 96.301142
iter 10 value 93.981598
iter 20 value 93.225320
iter 30 value 93.062567
iter 40 value 91.068983
iter 50 value 85.137338
iter 60 value 81.292626
iter 70 value 81.182552
iter 80 value 81.122484
iter 90 value 81.121951
iter 100 value 80.850281
final value 80.850281
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.678028
iter 10 value 93.743946
iter 20 value 93.081980
iter 30 value 93.065099
iter 40 value 93.060841
iter 50 value 92.577640
iter 60 value 89.590559
iter 70 value 88.856457
iter 80 value 87.959777
iter 90 value 85.166914
iter 100 value 83.729875
final value 83.729875
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.014281
iter 10 value 93.951546
iter 20 value 85.552723
iter 30 value 83.570865
iter 40 value 82.423294
iter 50 value 80.741521
iter 60 value 80.630062
iter 70 value 80.628452
final value 80.628425
converged
Fitting Repeat 5
# weights: 103
initial value 98.115412
iter 10 value 94.064480
iter 20 value 93.890785
iter 30 value 93.684058
iter 40 value 90.820034
iter 50 value 88.147353
iter 60 value 83.395912
iter 70 value 83.179851
iter 80 value 83.164710
final value 83.164702
converged
Fitting Repeat 1
# weights: 305
initial value 103.686279
iter 10 value 95.525725
iter 20 value 92.733172
iter 30 value 90.703157
iter 40 value 84.161662
iter 50 value 82.969302
iter 60 value 82.367485
iter 70 value 82.034529
iter 80 value 81.101509
iter 90 value 80.892060
iter 100 value 80.339739
final value 80.339739
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.078482
iter 10 value 93.979348
iter 20 value 91.807364
iter 30 value 88.024430
iter 40 value 84.201629
iter 50 value 82.664460
iter 60 value 81.971746
iter 70 value 81.796864
iter 80 value 81.531229
iter 90 value 81.008136
iter 100 value 80.844207
final value 80.844207
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.898579
iter 10 value 93.928401
iter 20 value 89.914504
iter 30 value 83.742229
iter 40 value 83.177746
iter 50 value 82.703702
iter 60 value 82.596533
iter 70 value 82.521532
iter 80 value 81.835825
iter 90 value 80.277549
iter 100 value 79.929288
final value 79.929288
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.234337
iter 10 value 92.930491
iter 20 value 84.203940
iter 30 value 83.382599
iter 40 value 83.275658
iter 50 value 82.995160
iter 60 value 81.269966
iter 70 value 80.213525
iter 80 value 79.821334
iter 90 value 79.783683
iter 100 value 79.703018
final value 79.703018
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.052388
iter 10 value 93.912244
iter 20 value 86.255275
iter 30 value 85.121607
iter 40 value 84.770831
iter 50 value 82.273484
iter 60 value 80.337519
iter 70 value 80.111178
iter 80 value 79.849643
iter 90 value 79.777277
iter 100 value 79.666744
final value 79.666744
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.877762
iter 10 value 93.274918
iter 20 value 89.522418
iter 30 value 87.865223
iter 40 value 84.250872
iter 50 value 81.827416
iter 60 value 80.158276
iter 70 value 80.077530
iter 80 value 79.941677
iter 90 value 79.735505
iter 100 value 79.656336
final value 79.656336
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 118.264335
iter 10 value 94.622324
iter 20 value 93.914740
iter 30 value 88.232784
iter 40 value 87.731937
iter 50 value 84.106624
iter 60 value 81.943765
iter 70 value 81.249965
iter 80 value 80.278803
iter 90 value 79.911842
iter 100 value 79.769479
final value 79.769479
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.551659
iter 10 value 95.724203
iter 20 value 85.388467
iter 30 value 83.493694
iter 40 value 82.597726
iter 50 value 81.543718
iter 60 value 80.616572
iter 70 value 79.555098
iter 80 value 79.116497
iter 90 value 79.033402
iter 100 value 78.994961
final value 78.994961
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.078793
iter 10 value 94.079984
iter 20 value 92.488070
iter 30 value 84.369923
iter 40 value 83.989996
iter 50 value 83.371217
iter 60 value 82.823202
iter 70 value 82.300701
iter 80 value 80.792736
iter 90 value 80.314280
iter 100 value 79.965511
final value 79.965511
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 139.561845
iter 10 value 92.673335
iter 20 value 88.216110
iter 30 value 83.534661
iter 40 value 82.471209
iter 50 value 82.083803
iter 60 value 81.557128
iter 70 value 81.451991
iter 80 value 81.383336
iter 90 value 81.354579
iter 100 value 81.297776
final value 81.297776
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.127774
final value 94.054681
converged
Fitting Repeat 2
# weights: 103
initial value 98.326970
iter 10 value 94.054430
final value 94.053201
converged
Fitting Repeat 3
# weights: 103
initial value 101.219791
iter 10 value 93.584170
iter 20 value 93.209600
iter 30 value 84.003851
iter 40 value 83.723612
iter 50 value 83.721306
iter 50 value 83.721306
iter 50 value 83.721306
final value 83.721306
converged
Fitting Repeat 4
# weights: 103
initial value 99.665624
iter 10 value 94.054659
final value 94.053034
converged
Fitting Repeat 5
# weights: 103
initial value 97.866511
final value 94.054592
converged
Fitting Repeat 1
# weights: 305
initial value 128.435705
iter 10 value 94.057942
iter 20 value 94.053008
iter 30 value 93.604777
iter 40 value 92.978534
iter 50 value 92.970800
iter 60 value 92.963584
iter 70 value 87.416087
final value 86.934506
converged
Fitting Repeat 2
# weights: 305
initial value 104.126422
iter 10 value 93.587903
iter 20 value 93.552525
iter 30 value 89.112228
iter 40 value 89.110016
iter 50 value 87.254289
iter 60 value 86.639901
iter 70 value 82.466827
iter 80 value 79.521273
iter 90 value 79.126185
iter 100 value 79.032820
final value 79.032820
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 95.115915
iter 10 value 94.057740
iter 20 value 94.052894
iter 30 value 93.921500
iter 40 value 90.027192
iter 50 value 83.181141
iter 60 value 83.043282
iter 70 value 83.042759
iter 80 value 82.816552
iter 90 value 82.457665
iter 100 value 82.436795
final value 82.436795
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.671723
iter 10 value 93.478736
iter 20 value 93.237432
final value 93.105021
converged
Fitting Repeat 5
# weights: 305
initial value 109.917749
iter 10 value 94.057351
final value 94.052933
converged
Fitting Repeat 1
# weights: 507
initial value 109.295847
iter 10 value 89.479354
iter 20 value 85.556002
iter 30 value 85.549161
iter 40 value 85.535661
iter 50 value 84.059472
iter 60 value 81.884803
iter 70 value 81.812982
iter 80 value 81.812565
iter 90 value 81.584921
iter 100 value 81.113602
final value 81.113602
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.419477
iter 10 value 94.061372
iter 20 value 93.961604
iter 30 value 93.155030
iter 40 value 92.997084
iter 50 value 92.976811
iter 60 value 92.950410
iter 70 value 87.560041
iter 80 value 82.667555
iter 90 value 82.454265
iter 100 value 82.413977
final value 82.413977
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.235742
iter 10 value 94.061457
iter 20 value 93.963876
final value 93.582663
converged
Fitting Repeat 4
# weights: 507
initial value 105.137358
iter 10 value 94.059540
iter 20 value 93.816564
iter 30 value 92.949286
final value 92.949251
converged
Fitting Repeat 5
# weights: 507
initial value 98.231544
iter 10 value 92.967461
iter 20 value 92.964945
iter 30 value 92.951110
iter 40 value 92.949628
final value 92.949480
converged
Fitting Repeat 1
# weights: 305
initial value 119.654924
iter 10 value 117.894960
iter 20 value 117.836885
iter 30 value 117.512956
final value 117.512939
converged
Fitting Repeat 2
# weights: 305
initial value 120.668219
iter 10 value 115.032344
iter 20 value 115.010919
final value 115.008250
converged
Fitting Repeat 3
# weights: 305
initial value 131.131523
iter 10 value 117.764539
iter 20 value 108.368193
iter 30 value 107.252147
iter 40 value 107.108853
iter 50 value 106.315324
iter 60 value 106.223470
iter 70 value 106.221719
iter 80 value 105.691940
iter 90 value 105.689239
iter 100 value 105.481500
final value 105.481500
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 118.481526
iter 10 value 109.252300
iter 20 value 107.009787
iter 30 value 107.008689
iter 40 value 105.057603
final value 105.057453
converged
Fitting Repeat 5
# weights: 305
initial value 128.041963
iter 10 value 117.763870
iter 20 value 117.759231
iter 30 value 117.190969
iter 40 value 108.257246
iter 50 value 108.250359
iter 60 value 108.208868
iter 70 value 103.450527
iter 80 value 102.609046
iter 90 value 102.607536
iter 100 value 102.598703
final value 102.598703
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Mon Oct 16 02:53:13 2023
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
67.804 2.085 79.789
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 50.830 | 1.738 | 68.541 | |
| FreqInteractors | 0.498 | 0.022 | 0.665 | |
| calculateAAC | 0.077 | 0.015 | 0.121 | |
| calculateAutocor | 0.813 | 0.109 | 1.181 | |
| calculateCTDC | 0.165 | 0.007 | 0.219 | |
| calculateCTDD | 1.420 | 0.067 | 1.913 | |
| calculateCTDT | 0.449 | 0.018 | 0.585 | |
| calculateCTriad | 0.755 | 0.041 | 1.078 | |
| calculateDC | 0.240 | 0.026 | 0.372 | |
| calculateF | 0.673 | 0.015 | 0.939 | |
| calculateKSAAP | 0.271 | 0.024 | 0.399 | |
| calculateQD_Sm | 3.605 | 0.178 | 4.803 | |
| calculateTC | 4.687 | 0.473 | 6.602 | |
| calculateTC_Sm | 0.483 | 0.027 | 0.683 | |
| corr_plot | 50.637 | 1.589 | 68.614 | |
| enrichfindP | 0.867 | 0.081 | 14.493 | |
| enrichfind_hp | 0.125 | 0.022 | 1.107 | |
| enrichplot | 0.517 | 0.009 | 0.630 | |
| filter_missing_values | 0.002 | 0.000 | 0.003 | |
| getFASTA | 0.121 | 0.015 | 3.068 | |
| getHPI | 0.001 | 0.002 | 0.003 | |
| get_negativePPI | 0.003 | 0.001 | 0.004 | |
| get_positivePPI | 0.000 | 0.001 | 0.001 | |
| impute_missing_data | 0.003 | 0.002 | 0.005 | |
| plotPPI | 0.131 | 0.005 | 0.137 | |
| pred_ensembel | 23.644 | 0.468 | 25.050 | |
| var_imp | 50.269 | 1.653 | 69.862 | |