| Back to Multiple platform build/check report for BioC 3.16: simplified long |
|
This page was generated on 2023-04-12 11:05:54 -0400 (Wed, 12 Apr 2023).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4502 |
| palomino4 | Windows Server 2022 Datacenter | x64 | 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" | 4282 |
| lconway | macOS 12.5.1 Monterey | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4310 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the STATegRa package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 1974/2183 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| STATegRa 1.34.0 (landing page) David Gomez-Cabrero
| nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.5.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| Package: STATegRa |
| Version: 1.34.0 |
| Command: F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:STATegRa.install-out.txt --library=F:\biocbuild\bbs-3.16-bioc\R\library --no-vignettes --timings STATegRa_1.34.0.tar.gz |
| StartedAt: 2023-04-11 06:30:09 -0400 (Tue, 11 Apr 2023) |
| EndedAt: 2023-04-11 06:33:33 -0400 (Tue, 11 Apr 2023) |
| EllapsedTime: 204.5 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: STATegRa.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:STATegRa.install-out.txt --library=F:\biocbuild\bbs-3.16-bioc\R\library --no-vignettes --timings STATegRa_1.34.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'F:/biocbuild/bbs-3.16-bioc/meat/STATegRa.Rcheck'
* using R version 4.2.3 (2023-03-15 ucrt)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'STATegRa/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'STATegRa' version '1.34.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'STATegRa' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
variable 'components'
modelSelection,list-numeric-character: no visible binding for global
variable 'mylabel'
plotVAF,caClass: no visible binding for global variable 'comp'
plotVAF,caClass: no visible binding for global variable 'VAF'
plotVAF,caClass: no visible binding for global variable 'block'
selectCommonComps,list-numeric: no visible binding for global variable
'comps'
selectCommonComps,list-numeric: no visible binding for global variable
'block'
selectCommonComps,list-numeric: no visible binding for global variable
'comp'
selectCommonComps,list-numeric: no visible binding for global variable
'ratio'
Undefined global functions or variables:
VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
plotRes 5.84 0.34 6.19
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
Running 'STATEgRa_Example.omicsCLUST.R'
Running 'STATEgRa_Example.omicsPCA.R'
Running 'STATegRa_Example.omicsNPC.R'
Running 'runTests.R'
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
'F:/biocbuild/bbs-3.16-bioc/meat/STATegRa.Rcheck/00check.log'
for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.16-bioc/R/library' * installing *source* package 'STATegRa' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Tue Apr 11 06:33:20 2023
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
3.54 0.29 3.82
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
4: In plot.window(...) :
axis(2, *): range of values ( 0) is small wrt |M| = 3e-09 --> not pretty()
5: In plot.window(...) :
axis(2, *): range of values ( 0) is small wrt |M| = 3e-09 --> not pretty()
6: In plot.window(...) :
axis(2, *): range of values ( 0) is small wrt |M| = 3e-09 --> not pretty()
7: In plot.window(...) :
axis(2, *): range of values ( 0) is small wrt |M| = 3e-09 --> not pretty()
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
23.40 0.75 24.15
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
65.90 1.00 66.89
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 -0.0781574350 -0.0431503420
sample2 0.1192218490 0.0294086679
sample3 0.0531412019 -0.0746839744
sample4 -0.0292975054 -0.0005962050
sample5 -0.0202091731 0.0110463490
sample6 -0.1226089041 0.1053467838
sample7 -0.1078928203 -0.0322474175
sample8 -0.1782895185 0.1449363068
sample9 -0.0468698101 -0.0455174272
sample10 0.0036030576 0.0420110093
sample11 0.0035566469 -0.0566292417
sample12 -0.1006128927 0.0641381134
sample13 0.1174408467 0.0907487997
sample14 -0.0981203269 0.0617738858
sample15 -0.0085334393 -0.0087011921
sample16 -0.0783148610 0.1581295555
sample17 0.1483609940 0.0638581887
sample18 0.0963086198 0.0556641515
sample19 0.0217244066 -0.0720087338
sample20 0.0635636335 -0.0779651963
sample21 0.0201840443 0.1566391106
sample22 -0.0218268876 -0.0764103047
sample23 -0.0852041932 -0.0032690918
sample24 0.1287170940 0.1924540261
sample25 0.0430574193 -0.0456568130
sample26 0.1453896923 0.0541510653
sample27 0.0197488663 -0.1185655036
sample28 0.1025336392 0.0650684681
sample29 -0.0706018601 -0.0682986608
sample30 0.1295627400 -0.0066766744
sample31 -0.1147449129 0.1232687770
sample32 0.0374310800 0.0380179959
sample33 -0.0599516128 0.0136869146
sample34 0.0984200774 0.0375322269
sample35 0.0543098312 -0.0378103985
sample36 -0.1403625523 -0.0343752901
sample37 -0.0228942051 -0.0732841949
sample38 0.0222077138 -0.0962594064
sample39 0.0941738513 0.0215198675
sample40 -0.0643801327 -0.0687866816
sample41 0.0327637941 -0.1232188131
sample42 0.0500431835 -0.0292474442
sample43 0.0184498777 0.0233012009
sample44 -0.1487898518 0.1171350335
sample45 0.1050774305 0.1123199868
sample46 0.1151195603 -0.1094027854
sample47 0.0962593666 -0.0288462496
sample48 -0.0004837192 -0.0310280659
sample49 -0.1135207680 0.1213972012
sample50 0.0123553041 -0.1740744244
sample51 -0.0550529804 0.1258887885
sample52 -0.0499121155 0.0728545500
sample53 -0.1119773630 0.1588015224
sample54 0.0360055676 0.0228575881
sample55 -0.0210418990 0.0006732232
sample56 0.0434169292 0.0633126191
sample57 -0.0197824510 0.1150714628
sample58 -0.0030439915 0.0326098795
sample59 -0.0500253223 0.0129421578
sample60 -0.0184278706 0.0136088760
sample61 -0.0150299403 0.0635027674
sample62 0.0304763756 -0.0201317097
sample63 -0.1102252411 0.1285976717
sample64 -0.1552588054 0.0971168771
sample65 0.0058503079 0.0207115121
sample66 0.0025605407 0.0424319051
sample67 -0.1546634935 -0.0661712900
sample68 -0.0536369409 -0.0923681671
sample69 -0.0640330438 0.0081983629
sample70 -0.0163517847 -0.0663230011
sample71 0.0102537593 -0.1345922484
sample72 0.0654195928 -0.0196117408
sample73 0.1048556063 0.0220939828
sample74 -0.0123799503 0.0586116190
sample75 -0.0392077983 -0.0209754311
sample76 -0.0648953416 -0.0524764265
sample77 -0.1172922144 -0.0201187025
sample78 0.1463068208 0.0708470591
sample79 -0.0265211128 -0.1603310881
sample80 -0.0279737204 -0.0214203841
sample81 -0.0079211507 -0.0738451950
sample82 0.1544236455 -0.0361467487
sample83 0.0494211243 -0.0050045781
sample84 0.0259038507 -0.0346550599
sample85 -0.1116484439 -0.0031495427
sample86 0.1306482929 -0.0377213739
sample87 0.0554778190 -0.0459748699
sample88 0.0301623908 0.0382197785
sample89 0.1016866700 0.0694034907
sample90 -0.0086819920 -0.0201320186
sample91 -0.1578625448 -0.2097827225
sample92 -0.0170936747 -0.1655810070
sample93 0.0979806779 -0.0121511969
sample94 -0.0131484145 -0.0114932023
sample95 -0.0315682620 -0.0758860488
sample96 -0.0024125615 -0.0470136730
sample97 -0.0634545416 0.0270331247
sample98 0.0359374589 -0.0135487925
sample99 0.1009163430 0.1124778454
sample100 -0.0551753155 0.0246489858
sample101 0.0080118829 -0.1627369449
sample102 0.0046444484 0.0095628278
sample103 0.0472523124 -0.0940393079
sample104 -0.0198159433 -0.0591092869
sample105 0.0400237829 -0.0160912822
sample106 0.0923808456 0.0369017401
sample107 0.1019373912 0.0224954463
sample108 0.0877091652 -0.0128834557
sample109 -0.0864824283 -0.0900944899
sample110 0.1223115560 -0.0096086236
sample111 -0.0257354571 -0.0936171653
sample112 0.0765286587 0.0270348282
sample113 -0.0258803157 0.0377495917
sample114 -0.0021138967 -0.0882015441
sample115 -0.0303460082 -0.0723589031
sample116 -0.0780508337 -0.0685068516
sample117 -0.0536898011 -0.0911911000
sample118 -0.0666651125 -0.0236231738
sample119 -0.1021871653 -0.2324938338
sample120 -0.0750216547 0.0243378401
sample121 0.0756936432 0.0942951009
sample122 0.0259628182 0.0731985749
sample123 0.1037846219 -0.0369196795
sample124 -0.0611207857 0.0421721968
sample125 0.0738472717 0.0066950028
sample126 -0.0972916502 0.0762641303
sample127 -0.0824697671 -0.0096637462
sample128 0.1249407738 0.0929311368
sample129 0.0734067429 -0.0434361817
sample130 0.0003501967 -0.0309852751
sample131 -0.0930182843 0.0155937852
sample132 -0.0736222756 0.0733028571
sample133 0.0498397989 -0.0462437859
sample134 -0.1644873476 0.0720006505
sample135 0.0752297150 0.0003818884
sample136 -0.0227145866 -0.0495505212
sample137 -0.0564717509 -0.0288914527
sample138 -0.0255988070 -0.0610858629
sample139 -0.0621217832 0.0235808794
sample140 0.0604152456 -0.0435591922
sample141 -0.0246743943 0.0532648316
sample142 0.0409560412 0.0316278871
sample143 0.0077355248 -0.0476896553
sample144 -0.0173240825 -0.0156778102
sample145 -0.0485474366 0.1202769877
sample146 -0.0419645733 -0.0811280411
sample147 0.0977308263 -0.0274838532
sample148 -0.0368256117 0.0803979467
sample149 0.0072865770 -0.1532986690
sample150 -0.1020825297 0.0624775678
sample151 -0.0305399016 -0.0289279469
sample152 0.0533594808 -0.0638309707
sample153 0.0891627916 0.1799575550
sample154 0.0727557400 -0.0834160219
sample155 0.0880668504 -0.0220818492
sample156 0.0276561004 -0.0326624790
sample157 0.1155032173 0.0183616500
sample158 0.0281507505 -0.0104938045
sample159 -0.0663235666 0.0443836743
sample160 0.0302643896 0.0404266280
sample161 -0.0114715507 -0.0591026725
sample162 0.1337087208 0.1398135363
sample163 -0.1330124396 0.1688781001
sample164 0.0150336146 0.0028415312
sample165 -0.0076520236 -0.0164128754
sample166 -0.0367794305 0.0630661002
sample167 -0.1111988887 0.0030058046
sample168 0.0672981632 0.0446279045
sample169 0.0413004940 0.0224395428
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 0.0420513610 0.0867863160
sample2 0.0820829059 -0.0410977803
sample3 -0.0155901251 -0.0195182478
sample4 0.1001337253 -0.0410786426
sample5 0.0153466300 -0.0253259633
sample6 -0.0340323922 -0.0408223191
sample7 -0.0722580263 0.0002332031
sample8 0.0457502594 -0.0370015980
sample9 0.0086248556 0.0820184892
sample10 0.0423599343 -0.0083923141
sample11 -0.0022549615 0.0787765993
sample12 -0.0322105172 0.1479824660
sample13 0.0293891544 -0.0306748469
sample14 -0.0337481534 -0.0367506889
sample15 -0.0815539606 0.1275622276
sample16 -0.0508449583 0.0540604662
sample17 -0.0062595806 0.0041023748
sample18 -0.0705638975 -0.0351047826
sample19 0.0476840469 -0.0509598031
sample20 -0.0522964234 0.0715521664
sample21 0.0119129404 -0.0376092930
sample22 -0.0724394518 -0.0095625363
sample23 0.0992532105 0.0134289040
sample24 0.1595121280 0.0728662584
sample25 0.0920692688 -0.0749757076
sample26 0.0595540659 0.0848966233
sample27 -0.0826487631 -0.0086735734
sample28 0.0384789149 0.0440967024
sample29 -0.0777673070 0.1735308266
sample30 -0.1229471342 -0.0819005840
sample31 -0.0579844303 -0.0238644795
sample32 -0.0970392569 -0.0111426514
sample33 -0.1017587822 -0.0630442813
sample34 -0.0637922443 0.0377941579
sample35 -0.0789984876 -0.0229723446
sample36 -0.1224939146 -0.1274955263
sample37 -0.1798821329 -0.1673427931
sample38 -0.0466306426 0.0888160747
sample39 0.0168687790 0.0421533810
sample40 -0.1756392633 -0.1526642843
sample41 -0.0042372879 0.0004928687
sample42 0.0447849211 -0.0651504923
sample43 -0.0482308062 -0.0253529376
sample44 0.1986717001 -0.0545777271
sample45 0.0741838163 0.0054703556
sample46 -0.0478774033 -0.0007072231
sample47 -0.0608189130 0.0481622461
sample48 0.1381488888 0.0578288092
sample49 0.0530522768 -0.1405532599
sample50 0.0173796586 0.1602389567
sample51 -0.0462558855 0.0303473831
sample52 -0.0280063607 0.0280388391
sample53 -0.0667618871 0.0237702011
sample54 -0.0121833090 -0.0521354335
sample55 -0.0182395835 0.0221328390
sample56 0.0001256662 0.0030907411
sample57 -0.0316673407 0.0530190305
sample58 -0.0393917602 -0.0297798816
sample59 -0.1278290501 -0.0546528254
sample60 -0.1486984729 0.1069156213
sample61 -0.0793121385 0.0569796386
sample62 -0.1172801449 -0.0149198796
sample63 0.0028728495 0.1300519949
sample64 -0.0237363314 0.1073287746
sample65 0.0126535079 0.0589808484
sample66 0.0468195611 -0.0771072545
sample67 -0.1494265005 -0.0769860703
sample68 -0.0977962445 -0.0577351366
sample69 -0.0403087364 0.0156042024
sample70 -0.0221532629 0.0315440845
sample71 0.0546432494 -0.0272396414
sample72 -0.1107488048 -0.0537319666
sample73 -0.0906761173 0.0579966397
sample74 -0.0586554546 0.0121421576
sample75 -0.0390493661 0.0349282700
sample76 0.0022960337 -0.1676558827
sample77 0.0232096386 -0.2067302753
sample78 0.0929756047 -0.0434939205
sample79 0.1619494491 -0.0378113964
sample80 -0.0680366100 0.1424663311
sample81 0.0530782915 -0.0358350778
sample82 -0.0266822524 -0.0577445206
sample83 -0.1517235315 -0.0448554721
sample84 0.0570966658 -0.0273813129
sample85 -0.1086289307 -0.1228119595
sample86 -0.0833860566 -0.0442915226
sample87 -0.0022018820 -0.0943906898
sample88 0.0078225965 -0.1140506479
sample89 -0.0611056230 -0.0094585251
sample90 -0.0022928337 -0.0936254017
sample91 -0.0433594221 0.3205982517
sample92 0.1815333190 -0.0334679972
sample93 -0.0267631237 0.0614428945
sample94 -0.0181878252 0.0605090351
sample95 0.0720374507 -0.0013045536
sample96 0.0559713960 -0.0118791317
sample97 0.0217411214 0.0195414219
sample98 -0.0379177840 0.0588356998
sample99 0.0792428887 -0.0151273517
sample100 -0.0222116109 -0.0023321467
sample101 0.0387225715 0.1224226181
sample102 0.2094614424 -0.0516442088
sample103 -0.0138482739 0.0301051842
sample104 0.0807986261 -0.0162718762
sample105 0.0520493366 -0.1229665050
sample106 0.0192613879 -0.0185238110
sample107 -0.0319017114 0.0405123221
sample108 0.0140690657 0.0163421402
sample109 0.1831928653 0.0613007951
sample110 0.0292790438 -0.0199849020
sample111 0.1423250492 0.0327340610
sample112 -0.0426332465 -0.0029083528
sample113 0.0771905078 0.0268733872
sample114 0.0241639991 -0.0184080428
sample115 0.1959014406 0.0460131114
sample116 0.1394475235 -0.0530805506
sample117 0.1672360857 -0.1386536051
sample118 0.0448344024 -0.0117621836
sample119 0.0910382465 0.2217433430
sample120 0.0331392474 -0.0057274392
sample121 -0.0307573764 0.1392506542
sample122 0.0839782310 -0.0291994152
sample123 -0.0239650891 -0.0642163820
sample124 0.0909151139 0.0130419765
sample125 0.0065351124 -0.1092631796
sample126 -0.0935311108 0.1368283874
sample127 -0.0035388256 0.0292755620
sample128 0.0660296541 0.1018566562
sample129 -0.0693639223 -0.0695421954
sample130 -0.0008493890 -0.0669704357
sample131 -0.0431023778 0.0174064775
sample132 0.0637041106 0.0029374943
sample133 0.0289494188 -0.0390818797
sample134 -0.0446201816 0.0456334461
sample135 -0.0712337127 0.0521634772
sample136 -0.0596271947 0.0197299129
sample137 -0.0793152427 -0.0380628530
sample138 0.0973547501 -0.0454218065
sample139 -0.0539903916 -0.1534327477
sample140 -0.0850827932 0.0955814278
sample141 0.0192682688 -0.0554449977
sample142 0.0672262677 -0.0461320718
sample143 0.0303729981 -0.0519260198
sample144 0.0089364310 0.0145814924
sample145 0.0638772082 0.0122258677
sample146 -0.0585857639 0.0063083134
sample147 -0.0894133582 -0.1124615955
sample148 0.0216368434 -0.0615967003
sample149 0.0515418642 -0.0839903486
sample150 -0.0568282251 -0.0124469010
sample151 0.0789532036 -0.0261831007
sample152 0.0330752237 0.1306443617
sample153 0.1751933889 0.1497732700
sample154 -0.0421425646 -0.0037010373
sample155 -0.0680177922 0.0095711035
sample156 -0.0388911943 0.1057562831
sample157 -0.0314769344 0.0561367355
sample158 -0.0329620738 0.0353947230
sample159 0.0398417498 -0.1007373633
sample160 -0.0424938077 0.0108496101
sample161 0.0888370718 -0.0679699990
sample162 0.0027477772 0.1237843982
sample163 0.0126107721 0.0725434521
sample164 0.0566779841 -0.0458324035
sample165 0.0315336318 -0.0236362281
sample166 0.0612059172 -0.0425232828
sample167 -0.0142729866 0.0179308245
sample168 0.0169504302 -0.0769617820
sample169 -0.0675080014 0.0131505176
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 0.0012329731 -1.635717e-01
sample2 0.0724350189 -6.021285e-03
sample3 0.0188460427 -1.080036e-01
sample4 -0.0390145203 3.113891e-04
sample5 -0.1774811598 -2.996386e-02
sample6 0.0451444507 -3.455859e-02
sample7 0.0226466143 -7.020132e-03
sample8 0.1033680405 -9.856818e-03
sample9 -0.1350011840 8.979099e-02
sample10 -0.1259887138 -5.097855e-02
sample11 -0.0979788471 7.086535e-02
sample12 0.0863019180 -8.620317e-02
sample13 0.1381401140 1.828007e-01
sample14 0.0615073898 -2.642803e-02
sample15 -0.0381599011 -3.101662e-02
sample16 0.0048776841 1.271817e-03
sample17 0.0788481043 -1.547555e-02
sample18 0.0884188792 -3.795486e-02
sample19 -0.0703044386 -1.084004e-01
sample20 0.0025585361 7.975877e-02
sample21 -0.0941601460 -4.126746e-02
sample22 0.0550273318 -7.806739e-02
sample23 -0.0679495215 -4.102008e-02
sample24 0.1310963048 1.649308e-01
sample25 -0.0113585217 -4.426864e-02
sample26 0.1402946033 2.016540e-02
sample27 -0.0261561317 1.588490e-03
sample28 0.0724198798 5.850590e-02
sample29 0.0330058426 2.060864e-03
sample30 0.0228752481 -2.015427e-02
sample31 0.0635068046 -6.670335e-02
sample32 -0.0685099656 -4.955272e-02
sample33 0.0777765214 -1.272078e-01
sample34 -0.0157842393 -3.024314e-02
sample35 0.0529632574 1.500972e-01
sample36 -0.0070901042 2.025308e-01
sample37 0.0442420259 1.802089e-01
sample38 0.0781511188 -3.676417e-02
sample39 -0.0120331786 -3.388842e-02
sample40 0.0473291755 1.471562e-01
sample41 -0.0228189518 -2.673552e-02
sample42 0.0245360307 -7.960867e-02
sample43 -0.1036362771 -8.229577e-02
sample44 0.1012229018 7.049445e-02
sample45 -0.0013731834 -2.450916e-02
sample46 0.0558509883 2.947419e-03
sample47 0.0380481087 4.554175e-02
sample48 -0.0784342030 4.888978e-02
sample49 0.0605164119 -1.162359e-02
sample50 -0.0530079412 -2.737929e-02
sample51 -0.1514646482 5.678342e-02
sample52 -0.1860935265 1.246717e-01
sample53 0.0064177202 -2.700995e-02
sample54 -0.0697038311 -2.308389e-02
sample55 -0.1633577058 1.366441e-02
sample56 -0.1011485058 4.682203e-02
sample57 -0.1730374219 1.609603e-01
sample58 0.0071384717 -1.666955e-02
sample59 0.0030461566 3.005288e-02
sample60 -0.0215835406 2.665878e-01
sample61 -0.1510583700 1.002385e-01
sample62 0.0925533868 -4.845838e-02
sample63 0.0596311933 -4.137025e-02
sample64 0.0449225857 -2.600591e-03
sample65 -0.0939383701 -4.406910e-02
sample66 -0.1063400637 -5.709995e-02
sample67 0.0201589660 2.361728e-01
sample68 -0.0037203401 2.418394e-02
sample69 0.0645161240 -1.155622e-01
sample70 0.1013440006 -1.351789e-01
sample71 0.0016467805 -2.976840e-02
sample72 -0.0328893106 -2.835855e-02
sample73 -0.0275080050 -5.148185e-02
sample74 -0.1341719631 -7.895281e-02
sample75 -0.0951575699 -3.943183e-02
sample76 0.0864721884 3.034994e-02
sample77 0.1035749561 -2.545352e-02
sample78 0.1575644276 4.939591e-02
sample79 -0.0189137140 4.874679e-02
sample80 -0.1384140667 4.266563e-05
sample81 0.0118846463 -6.357931e-02
sample82 0.1675308114 3.533913e-02
sample83 0.0065673332 -7.812606e-02
sample84 -0.1486891578 -3.109058e-02
sample85 0.0532724267 7.417887e-02
sample86 0.1138477250 -1.912413e-05
sample87 -0.0432864060 6.080473e-02
sample88 -0.0433450402 1.402490e-01
sample89 -0.0331205736 -1.395401e-02
sample90 0.0607412841 -8.610413e-02
sample91 0.0566272295 1.303748e-01
sample92 0.0359582422 1.061604e-01
sample93 0.0433646369 -4.443634e-02
sample94 0.0477291335 -1.059574e-01
sample95 0.0249595773 -3.980525e-02
sample96 -0.0035218957 -9.293928e-02
sample97 0.0066048878 -1.527231e-01
sample98 -0.0020366822 -5.579549e-02
sample99 0.0886616305 -3.728230e-02
sample100 0.1091259154 -3.560419e-02
sample101 0.0739726382 -4.317995e-02
sample102 -0.0574460959 -2.783919e-02
sample103 -0.0142731125 9.705581e-03
sample104 -0.0710395231 4.068350e-02
sample105 -0.0980831298 -3.452954e-02
sample106 0.0254259356 3.628982e-02
sample107 0.0160653513 -9.173395e-02
sample108 0.0200987682 -2.379692e-02
sample109 0.0389780692 1.692357e-02
sample110 0.0326304861 2.988109e-02
sample111 -0.0676937510 -6.038214e-02
sample112 -0.0167883433 5.336938e-03
sample113 -0.0969216905 -2.757606e-02
sample114 0.0026398338 -9.209155e-02
sample115 0.0308047392 1.603820e-02
sample116 0.1240307134 1.273000e-01
sample117 -0.0334729077 5.392709e-02
sample118 0.1037152885 6.252431e-02
sample119 0.1064176419 1.196203e-01
sample120 0.0771355190 -1.004933e-01
sample121 0.0129350815 3.181974e-02
sample122 -0.0847492116 -5.568330e-02
sample123 0.0041336732 7.693191e-03
sample124 0.0583458155 -8.396392e-02
sample125 -0.0634844549 -5.232541e-02
sample126 0.0662580999 -1.091732e-01
sample127 0.0865024645 -1.094176e-01
sample128 0.0627817606 -1.470967e-02
sample129 0.0336276385 -4.007856e-02
sample130 0.0293517762 -8.046116e-02
sample131 0.0469197634 -2.209739e-03
sample132 0.0241740864 -1.248599e-01
sample133 -0.0907303236 1.466700e-02
sample134 0.0350842048 7.539662e-02
sample135 -0.0001333456 9.185392e-03
sample136 0.0335876017 -9.860271e-02
sample137 0.0640148853 -7.554467e-02
sample138 -0.0060964820 -1.742763e-02
sample139 0.0592084398 5.614970e-02
sample140 -0.0427986022 -1.099548e-02
sample141 -0.0618796268 -9.301040e-02
sample142 -0.0898554399 3.573415e-02
sample143 -0.0817389288 8.880524e-02
sample144 -0.0787754770 -3.821392e-02
sample145 -0.1085821509 1.569476e-01
sample146 0.0589557834 -4.373356e-02
sample147 0.0495330352 7.277228e-03
sample148 -0.1161592707 9.079055e-03
sample149 0.0121579303 7.788376e-02
sample150 0.0314512521 3.520213e-02
sample151 -0.0575382131 -1.945354e-02
sample152 0.0494542032 7.025538e-02
sample153 0.0941332946 2.153296e-01
sample154 0.0335931892 2.078731e-02
sample155 -0.0690457696 -2.780408e-02
sample156 -0.1039901642 -6.292524e-02
sample157 0.0408645789 8.065517e-03
sample158 -0.1018105344 7.816879e-03
sample159 0.0281730610 -1.207208e-02
sample160 -0.1643053001 2.978095e-03
sample161 -0.0374329290 8.524610e-02
sample162 0.0804535435 8.349751e-02
sample163 0.0743228138 -1.406228e-02
sample164 -0.1208805951 -2.139462e-02
sample165 -0.1608115919 2.025191e-02
sample166 0.0425944759 -2.660717e-02
sample167 0.0226849483 -4.464281e-02
sample168 0.0180735649 -7.466343e-04
sample169 -0.0190779046 2.645403e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
13.28 0.62 13.84
STATegRa.Rcheck/STATegRa-Ex.timings
| name | user | system | elapsed | |
| STATegRaUsersGuide | 0 | 0 | 0 | |
| STATegRa_data | 0.23 | 0.02 | 0.25 | |
| STATegRa_data_TCGA_BRCA | 0.00 | 0.02 | 0.02 | |
| bioDist | 0.36 | 0.03 | 0.39 | |
| bioDistFeature | 0.34 | 0.03 | 0.37 | |
| bioDistFeaturePlot | 0.33 | 0.00 | 0.33 | |
| bioDistW | 0.28 | 0.03 | 0.31 | |
| bioDistWPlot | 0.35 | 0.03 | 0.38 | |
| bioMap | 0.01 | 0.00 | 0.01 | |
| combiningMappings | 0.02 | 0.00 | 0.02 | |
| createOmicsExpressionSet | 0.11 | 0.02 | 0.12 | |
| getInitialData | 0.48 | 0.37 | 0.86 | |
| getLoadings | 0.63 | 0.33 | 0.96 | |
| getMethodInfo | 0.79 | 0.26 | 1.06 | |
| getPreprocessing | 0.97 | 0.49 | 1.45 | |
| getScores | 0.64 | 0.30 | 0.93 | |
| getVAF | 0.49 | 0.34 | 0.83 | |
| holistOmics | 0.01 | 0.00 | 0.01 | |
| modelSelection | 1.69 | 0.83 | 2.52 | |
| omicsCompAnalysis | 4.0 | 0.5 | 4.5 | |
| omicsNPC | 0 | 0 | 0 | |
| plotRes | 5.84 | 0.34 | 6.19 | |
| plotVAF | 3.66 | 0.30 | 3.95 | |