| Back to Multiple platform build/check report for BioC 3.12 |
|
This page was generated on 2021-05-06 12:32:37 -0400 (Thu, 06 May 2021).
|
To the developers/maintainers of the OmicsMarkeR package: Please make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 1256/1974 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
Charles E. Determan Jr.
| malbec1 | Linux (Ubuntu 18.04.5 LTS) / x86_64 | OK | OK | ERROR | |||||||||
| tokay1 | Windows Server 2012 R2 Standard / x64 | OK | OK | ERROR | OK | |||||||||
| merida1 | macOS 10.14.6 Mojave / x86_64 | OK | OK | ERROR | OK | |||||||||
| Package: OmicsMarkeR |
| Version: 1.22.0 |
| Command: C:\Users\biocbuild\bbs-3.12-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:OmicsMarkeR.install-out.txt --library=C:\Users\biocbuild\bbs-3.12-bioc\R\library --no-vignettes --timings OmicsMarkeR_1.22.0.tar.gz |
| StartedAt: 2021-05-06 05:12:28 -0400 (Thu, 06 May 2021) |
| EndedAt: 2021-05-06 05:16:01 -0400 (Thu, 06 May 2021) |
| EllapsedTime: 212.8 seconds |
| RetCode: 1 |
| Status: ERROR |
| CheckDir: OmicsMarkeR.Rcheck |
| Warnings: NA |
##############################################################################
##############################################################################
###
### Running command:
###
### C:\Users\biocbuild\bbs-3.12-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:OmicsMarkeR.install-out.txt --library=C:\Users\biocbuild\bbs-3.12-bioc\R\library --no-vignettes --timings OmicsMarkeR_1.22.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'C:/Users/biocbuild/bbs-3.12-bioc/meat/OmicsMarkeR.Rcheck'
* using R version 4.0.5 (2021-03-31)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'OmicsMarkeR/DESCRIPTION' ... OK
* this is package 'OmicsMarkeR' version '1.22.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'OmicsMarkeR' can be installed ... WARNING
Found the following significant warnings:
Warning: Package 'OmicsMarkeR' is deprecated and will be removed from
See 'C:/Users/biocbuild/bbs-3.12-bioc/meat/OmicsMarkeR.Rcheck/00install.out' for details.
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking installed files from 'inst/doc' ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... ERROR
Running examples in 'OmicsMarkeR-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: fit.only.model
> ### Title: Fit Models without Feature Selection
> ### Aliases: fit.only.model
>
> ### ** Examples
>
> dat.discr <- create.discr.matrix(
+ create.corr.matrix(
+ create.random.matrix(nvar = 50,
+ nsamp = 100,
+ st.dev = 1,
+ perturb = 0.2)),
+ D = 10
+ )
solo last variable>
> vars <- dat.discr$discr.mat
> groups <- dat.discr$classes
>
> fit <- fit.only.model(X=vars,
+ Y=groups,
+ method="plsda",
+ p = 0.9)
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Loaded gbm 2.1.8
Loading required package: cluster
Loading required package: survival
Loading required package: Matrix
Loaded glmnet 4.1-1
Calculating Model Performance Statistics
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
OmicsMarkeR
--- call from context ---
prediction.metrics(finalModel = finalModel, method = method,
raw.data = raw.data, inTrain = inTrain, outTrain = outTrain,
features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters,
grp.levs = grp.levs, stability.metric = NULL)
--- call from argument ---
if (class(inTrain) == "list" & class(outTrain) == "list") {
inTrain.list <- rep(inTrain, length(method))
outTrain.list <- rep(outTrain, length(method))
} else {
inTrain.list <- rep(list(inTrain), length(finalModel))
outTrain.list <- rep(list(outTrain), length(finalModel))
}
--- R stacktrace ---
where 1: prediction.metrics(finalModel = finalModel, method = method,
raw.data = raw.data, inTrain = inTrain, outTrain = outTrain,
features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters,
grp.levs = grp.levs, stability.metric = NULL)
where 2: fit.only.model(X = vars, Y = groups, method = "plsda", p = 0.9)
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
function (finalModel, method, raw.data, inTrain, outTrain, features,
bestTune, grp.levs, stability.metric)
{
raw.data.vars <- raw.data[, !colnames(raw.data) %in% c(".classes")]
raw.data.grps <- raw.data[, colnames(raw.data) %in% c(".classes")]
if (class(inTrain) == "list" & class(outTrain) == "list") {
inTrain.list <- rep(inTrain, length(method))
outTrain.list <- rep(outTrain, length(method))
}
else {
inTrain.list <- rep(list(inTrain), length(finalModel))
outTrain.list <- rep(list(outTrain), length(finalModel))
}
if (length(bestTune) != length(finalModel)) {
tmp.mult <- length(finalModel)/length(bestTune)
bestTune <- rep(bestTune, tmp.mult)
names(bestTune) <- names(finalModel)
}
method.names <- unlist(lapply(method, FUN = function(x) {
c(rep(x, length(bestTune)/length(method)))
}))
bestTune <- bestTune[match(method.names, names(bestTune))]
finalModel <- finalModel[match(method.names, names(finalModel))]
if (is.null(features)) {
features <- vector("list", length(finalModel))
for (f in seq(length(finalModel))) {
features[[f]] <- colnames(raw.data.vars)
}
}
features <- features[match(method.names, names(features))]
predicted <- vector("list", length(finalModel))
names(predicted) <- names(finalModel)
for (e in seq(along = finalModel)) {
new.dat <- switch(names(finalModel[e]), svm = {
if (stability.metric %in% c("spearman", "canberra")) {
raw.data.vars[outTrain.list[[e]], , drop = FALSE]
} else {
raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in%
features[[e]]), drop = FALSE]
}
}, glmnet = {
if (stability.metric %in% c("spearman", "canberra")) {
raw.data.vars[outTrain.list[[e]], , drop = FALSE]
} else {
raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in%
features[[e]]), drop = FALSE]
}
}, pam = {
if (stability.metric %in% c("spearman", "canberra")) {
raw.data.vars[outTrain.list[[e]], , drop = FALSE]
} else {
raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in%
features[[e]]), drop = FALSE]
}
}, plsda = , gbm = , rf = {
raw.data.vars[outTrain.list[[e]], , drop = FALSE]
}, )
predicted[[e]] <- predicting(method = names(finalModel)[e],
modelFit = finalModel[[e]], orig.data = raw.data,
indicies = inTrain.list[[e]], newdata = new.dat,
param = bestTune[[e]])
}
for (g in seq(along = finalModel)) {
predicted[[g]] <- factor(as.character(unlist(predicted[[g]])),
levels = grp.levs)
predicted[[g]] <- data.frame(pred = predicted[[g]], obs = raw.data.grps[outTrain.list[[g]]],
stringsAsFactors = FALSE)
}
method.vector <- rep(method, each = length(finalModel)/length(method))
perf.metrics <- mapply(predicted, FUN = function(x, y) perf.calc(x,
lev = grp.levs, model = y), y = method.vector, SIMPLIFY = FALSE)
cells <- lapply(predicted, function(x) flatTable(x$pred,
x$obs))
for (ind in seq(along = cells)) {
perf.metrics[[ind]] <- c(perf.metrics[[ind]], cells[[ind]])
}
final.metrics <- do.call("rbind", perf.metrics)
}
<bytecode: 0x09dfb788>
<environment: namespace:OmicsMarkeR>
--- function search by body ---
Function prediction.metrics in namespace OmicsMarkeR has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
** running examples for arch 'x64' ... ERROR
Running examples in 'OmicsMarkeR-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: fit.only.model
> ### Title: Fit Models without Feature Selection
> ### Aliases: fit.only.model
>
> ### ** Examples
>
> dat.discr <- create.discr.matrix(
+ create.corr.matrix(
+ create.random.matrix(nvar = 50,
+ nsamp = 100,
+ st.dev = 1,
+ perturb = 0.2)),
+ D = 10
+ )
solo last variable>
> vars <- dat.discr$discr.mat
> groups <- dat.discr$classes
>
> fit <- fit.only.model(X=vars,
+ Y=groups,
+ method="plsda",
+ p = 0.9)
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Loaded gbm 2.1.8
Loading required package: cluster
Loading required package: survival
Loading required package: Matrix
Loaded glmnet 4.1-1
Calculating Model Performance Statistics
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
OmicsMarkeR
--- call from context ---
prediction.metrics(finalModel = finalModel, method = method,
raw.data = raw.data, inTrain = inTrain, outTrain = outTrain,
features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters,
grp.levs = grp.levs, stability.metric = NULL)
--- call from argument ---
if (class(inTrain) == "list" & class(outTrain) == "list") {
inTrain.list <- rep(inTrain, length(method))
outTrain.list <- rep(outTrain, length(method))
} else {
inTrain.list <- rep(list(inTrain), length(finalModel))
outTrain.list <- rep(list(outTrain), length(finalModel))
}
--- R stacktrace ---
where 1: prediction.metrics(finalModel = finalModel, method = method,
raw.data = raw.data, inTrain = inTrain, outTrain = outTrain,
features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters,
grp.levs = grp.levs, stability.metric = NULL)
where 2: fit.only.model(X = vars, Y = groups, method = "plsda", p = 0.9)
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
function (finalModel, method, raw.data, inTrain, outTrain, features,
bestTune, grp.levs, stability.metric)
{
raw.data.vars <- raw.data[, !colnames(raw.data) %in% c(".classes")]
raw.data.grps <- raw.data[, colnames(raw.data) %in% c(".classes")]
if (class(inTrain) == "list" & class(outTrain) == "list") {
inTrain.list <- rep(inTrain, length(method))
outTrain.list <- rep(outTrain, length(method))
}
else {
inTrain.list <- rep(list(inTrain), length(finalModel))
outTrain.list <- rep(list(outTrain), length(finalModel))
}
if (length(bestTune) != length(finalModel)) {
tmp.mult <- length(finalModel)/length(bestTune)
bestTune <- rep(bestTune, tmp.mult)
names(bestTune) <- names(finalModel)
}
method.names <- unlist(lapply(method, FUN = function(x) {
c(rep(x, length(bestTune)/length(method)))
}))
bestTune <- bestTune[match(method.names, names(bestTune))]
finalModel <- finalModel[match(method.names, names(finalModel))]
if (is.null(features)) {
features <- vector("list", length(finalModel))
for (f in seq(length(finalModel))) {
features[[f]] <- colnames(raw.data.vars)
}
}
features <- features[match(method.names, names(features))]
predicted <- vector("list", length(finalModel))
names(predicted) <- names(finalModel)
for (e in seq(along = finalModel)) {
new.dat <- switch(names(finalModel[e]), svm = {
if (stability.metric %in% c("spearman", "canberra")) {
raw.data.vars[outTrain.list[[e]], , drop = FALSE]
} else {
raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in%
features[[e]]), drop = FALSE]
}
}, glmnet = {
if (stability.metric %in% c("spearman", "canberra")) {
raw.data.vars[outTrain.list[[e]], , drop = FALSE]
} else {
raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in%
features[[e]]), drop = FALSE]
}
}, pam = {
if (stability.metric %in% c("spearman", "canberra")) {
raw.data.vars[outTrain.list[[e]], , drop = FALSE]
} else {
raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in%
features[[e]]), drop = FALSE]
}
}, plsda = , gbm = , rf = {
raw.data.vars[outTrain.list[[e]], , drop = FALSE]
}, )
predicted[[e]] <- predicting(method = names(finalModel)[e],
modelFit = finalModel[[e]], orig.data = raw.data,
indicies = inTrain.list[[e]], newdata = new.dat,
param = bestTune[[e]])
}
for (g in seq(along = finalModel)) {
predicted[[g]] <- factor(as.character(unlist(predicted[[g]])),
levels = grp.levs)
predicted[[g]] <- data.frame(pred = predicted[[g]], obs = raw.data.grps[outTrain.list[[g]]],
stringsAsFactors = FALSE)
}
method.vector <- rep(method, each = length(finalModel)/length(method))
perf.metrics <- mapply(predicted, FUN = function(x, y) perf.calc(x,
lev = grp.levs, model = y), y = method.vector, SIMPLIFY = FALSE)
cells <- lapply(predicted, function(x) flatTable(x$pred,
x$obs))
for (ind in seq(along = cells)) {
perf.metrics[[ind]] <- c(perf.metrics[[ind]], cells[[ind]])
}
final.metrics <- do.call("rbind", perf.metrics)
}
<bytecode: 0x000000001a41f4c0>
<environment: namespace:OmicsMarkeR>
--- function search by body ---
Function prediction.metrics in namespace OmicsMarkeR has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
Running 'testthat.R'
ERROR
Running the tests in 'tests/testthat.R' failed.
Last 13 lines of output:
aggregation(efs = x, metric = aggregation.metric, f = f)
})
ensemble.results <- list(Methods = method, ensemble.results = agg,
Number.Bags = bags, Agg.metric = aggregation.metric,
Number.features = f)
out <- list(results = ensemble.results, bestTunes = resample.tunes)
out
}
<bytecode: 0x0a5ba3c0>
<environment: namespace:OmicsMarkeR>
--- function search by body ---
Function bagging.wrapper in namespace OmicsMarkeR has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
** running tests for arch 'x64' ...
Running 'testthat.R'
ERROR
Running the tests in 'tests/testthat.R' failed.
Last 13 lines of output:
aggregation(efs = x, metric = aggregation.metric, f = f)
})
ensemble.results <- list(Methods = method, ensemble.results = agg,
Number.Bags = bags, Agg.metric = aggregation.metric,
Number.features = f)
out <- list(results = ensemble.results, bestTunes = resample.tunes)
out
}
<bytecode: 0x000000001055d698>
<environment: namespace:OmicsMarkeR>
--- function search by body ---
Function bagging.wrapper in namespace OmicsMarkeR has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 4 ERRORs, 1 WARNING
See
'C:/Users/biocbuild/bbs-3.12-bioc/meat/OmicsMarkeR.Rcheck/00check.log'
for details.
OmicsMarkeR.Rcheck/00install.out
##############################################################################
##############################################################################
###
### Running command:
###
### C:\cygwin\bin\curl.exe -O http://172.29.0.3/BBS/3.12/bioc/src/contrib/OmicsMarkeR_1.22.0.tar.gz && rm -rf OmicsMarkeR.buildbin-libdir && mkdir OmicsMarkeR.buildbin-libdir && C:\Users\biocbuild\bbs-3.12-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=OmicsMarkeR.buildbin-libdir OmicsMarkeR_1.22.0.tar.gz && C:\Users\biocbuild\bbs-3.12-bioc\R\bin\R.exe CMD INSTALL OmicsMarkeR_1.22.0.zip && rm OmicsMarkeR_1.22.0.tar.gz OmicsMarkeR_1.22.0.zip
###
##############################################################################
##############################################################################
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 236k 100 236k 0 0 23.6M 0 --:--:-- --:--:-- --:--:-- 25.6M
install for i386
* installing *source* package 'OmicsMarkeR' ...
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
converting help for package 'OmicsMarkeR'
finding HTML links ... done
CLA html
EE html
EM html
ES html
RPT html
aggregation html
bagging.wrapper html
canberra html
canberra_stability html
create.corr.matrix html
create.discr.matrix html
create.random.matrix html
denovo.grid html
extract.args html
extract.features html
feature.table html
fit.only.model html
fs.ensembl.stability html
fs.stability html
jaccard html
kuncheva html
modelList html
modelTuner html
modelTuner_loo html
noise.matrix html
ochiai html
optimize.model html
pairwise.model.stability html
pairwise.stability html
params html
perf.calc html
finding level-2 HTML links ... done
performance.metrics html
performance.stats html
perm.class html
perm.features html
pof html
predictNewClasses html
predicting html
prediction.metrics html
sequester html
sorensen html
spearman html
svm.weights html
svmrfeFeatureRanking html
svmrfeFeatureRankingForMulticlass html
training html
tune.instructions html
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
Warning: Package 'OmicsMarkeR' is deprecated and will be removed from
Bioconductor version 3.13
** testing if installed package can be loaded from final location
Warning: Package 'OmicsMarkeR' is deprecated and will be removed from
Bioconductor version 3.13
** testing if installed package keeps a record of temporary installation path
install for x64
* installing *source* package 'OmicsMarkeR' ...
** testing if installed package can be loaded
Warning: Package 'OmicsMarkeR' is deprecated and will be removed from
Bioconductor version 3.13
* MD5 sums
packaged installation of 'OmicsMarkeR' as OmicsMarkeR_1.22.0.zip
* DONE (OmicsMarkeR)
* installing to library 'C:/Users/biocbuild/bbs-3.12-bioc/R/library'
package 'OmicsMarkeR' successfully unpacked and MD5 sums checked
|
OmicsMarkeR.Rcheck/tests_i386/testthat.Rout.fail
R version 4.0.5 (2021-03-31) -- "Shake and Throw"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(testthat)
> library(OmicsMarkeR)
Warning message:
Package 'OmicsMarkeR' is deprecated and will be removed from
Bioconductor version 3.13
>
> test_check("OmicsMarkeR")
solo last variable ----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
OmicsMarkeR
--- call from context ---
bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags,
f = f, aggregation.metric = aggregation.metric, k.folds = k.folds,
repeats = repeats, res = resolution, tuning.grid = tuning.grid,
optimize = optimize, optimize.resample = optimize.resample,
metric = metric, model.features = model.features, verbose = verbose,
allowParallel = allowParallel, theDots = theDots)
--- call from argument ---
if (class(features[[j]]) != "data.frame") {
features[[j]] <- data.frame(features[[j]])
}
--- R stacktrace ---
where 1: bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags,
f = f, aggregation.metric = aggregation.metric, k.folds = k.folds,
repeats = repeats, res = resolution, tuning.grid = tuning.grid,
optimize = optimize, optimize.resample = optimize.resample,
metric = metric, model.features = model.features, verbose = verbose,
allowParallel = allowParallel, theDots = theDots)
where 2: fs.ensembl.stability(vars, groups, method = c("svm", "plsda"),
f = 10, k = 3, bags = 3, stability.metric = "canberra", k.folds = 3,
verbose = "none")
where 3: withCallingHandlers(expr, warning = function(w) if (inherits(w,
classes)) tryInvokeRestart("muffleWarning"))
where 4 at test_fs.ensembl.stability.R#39: suppressWarnings(fs.ensembl.stability(vars, groups, method = c("svm",
"plsda"), f = 10, k = 3, bags = 3, stability.metric = "canberra",
k.folds = 3, verbose = "none"))
where 5: eval(code, test_env)
where 6: eval(code, test_env)
where 7: withCallingHandlers({
eval(code, test_env)
if (!handled && !is.null(test)) {
skip_empty()
}
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning,
message = handle_message, error = handle_error)
where 8: doTryCatch(return(expr), name, parentenv, handler)
where 9: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 10: tryCatchList(expr, names[-nh], parentenv, handlers[-nh])
where 11: doTryCatch(return(expr), name, parentenv, handler)
where 12: tryCatchOne(tryCatchList(expr, names[-nh], parentenv, handlers[-nh]),
names[nh], parentenv, handlers[[nh]])
where 13: tryCatchList(expr, classes, parentenv, handlers)
where 14: tryCatch(withCallingHandlers({
eval(code, test_env)
if (!handled && !is.null(test)) {
skip_empty()
}
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning,
message = handle_message, error = handle_error), error = handle_fatal,
skip = function(e) {
})
where 15: test_code(NULL, exprs, env)
where 16: source_file(path, child_env(env), wrap = wrap)
where 17: FUN(X[[i]], ...)
where 18: lapply(test_paths, test_one_file, env = env, wrap = wrap)
where 19: force(code)
where 20: doWithOneRestart(return(expr), restart)
where 21: withOneRestart(expr, restarts[[1L]])
where 22: withRestarts(testthat_abort_reporter = function() NULL, force(code))
where 23: with_reporter(reporters$multi, lapply(test_paths, test_one_file,
env = env, wrap = wrap))
where 24: test_files(test_dir = test_dir, test_package = test_package,
test_paths = test_paths, load_helpers = load_helpers, reporter = reporter,
env = env, stop_on_failure = stop_on_failure, stop_on_warning = stop_on_warning,
wrap = wrap, load_package = load_package)
where 25: test_files(test_dir = path, test_paths = test_paths, test_package = package,
reporter = reporter, load_helpers = load_helpers, env = env,
stop_on_failure = stop_on_failure, stop_on_warning = stop_on_warning,
wrap = wrap, load_package = load_package, parallel = parallel)
where 26: test_dir("testthat", package = package, reporter = reporter,
..., load_package = "installed")
where 27: test_check("OmicsMarkeR")
--- value of length: 2 type: logical ---
[1] TRUE TRUE
--- function from context ---
function (X, Y, method, bags, f, aggregation.metric, k.folds,
repeats, res, tuning.grid, optimize, optimize.resample, metric,
model.features, allowParallel, verbose, theDots)
{
rownames(X) <- NULL
var.names <- colnames(X)
nr <- nrow(X)
nc <- ncol(X)
num.group = nlevels(Y)
grp.levs <- levels(Y)
trainVars.list <- vector("list", bags)
trainGroup.list <- vector("list", bags)
if (optimize == TRUE & optimize.resample == TRUE) {
resample.tunes <- vector("list", bags)
names(resample.tunes) <- paste("Bag", 1:bags, sep = ".")
}
else {
resample.tunes <- NULL
}
for (i in 1:bags) {
boot = sample(nr, nr, replace = TRUE)
trainVars <- X[boot, ]
trainGroup <- Y[boot]
trainVars.list[[i]] <- trainVars
trainGroup.list[[i]] <- trainGroup
trainData <- as.data.frame(trainVars)
trainData$.classes <- trainGroup
rownames(trainData) <- NULL
if (optimize == TRUE) {
if (optimize.resample == TRUE) {
tuned.methods <- optimize.model(trainVars = trainVars,
trainGroup = trainGroup, method = method, k.folds = k.folds,
repeats = repeats, res = res, grid = tuning.grid,
metric = metric, allowParallel = allowParallel,
verbose = verbose, theDots = theDots)
if (i == 1) {
finalModel <- tuned.methods$finalModel
}
else {
finalModel <- append(finalModel, tuned.methods$finalModel)
}
names(tuned.methods$bestTune) = method
resample.tunes[[i]] <- tuned.methods$bestTune
}
else {
if (i == 1) {
tuned.methods <- optimize.model(trainVars = trainVars,
trainGroup = trainGroup, method = method,
k.folds = k.folds, repeats = repeats, res = res,
grid = tuning.grid, metric = metric, allowParallel = allowParallel,
verbose = verbose, theDots = theDots)
finalModel <- tuned.methods$finalModel
names(tuned.methods$bestTune) <- method
}
else {
tmp <- vector("list", length(method))
names(tmp) <- method
for (d in seq(along = method)) {
tmp[[d]] <- training(data = trainData, method = method[d],
tuneValue = tuned.methods$bestTune[[d]],
obsLevels = grp.levs, theDots = theDots)$fit
}
finalModel <- append(finalModel, tmp)
}
}
}
else {
names(theDots) <- paste(".", names(theDots), sep = "")
args.seq <- sequester(theDots, method)
names(theDots) <- sub(".", "", names(theDots))
moreDots <- theDots[!names(theDots) %in% args.seq$pnames]
if (length(moreDots) == 0) {
moreDots <- NULL
}
finalModel <- vector("list", length(method))
for (q in seq(along = method)) {
finalModel[[q]] <- training(data = trainData,
method = method[q], tuneValue = args.seq$parameters[[q]],
obsLevels = grp.levs, theDots = moreDots)
}
}
}
method.names <- unlist(lapply(method, FUN = function(x) paste(c(rep(x,
bags)), seq(bags), sep = ".")))
names(finalModel) <- paste(method, rep(seq(bags), each = length(method)),
sep = ".")
finalModel <- finalModel[match(method.names, names(finalModel))]
features <- vector("list", length(method))
names(features) <- tolower(method)
for (j in seq(along = method)) {
mydata <- vector("list", bags)
if (method[j] == "pam") {
for (t in 1:bags) {
mydata[[t]] <- list(x = t(trainVars.list[[t]]),
y = factor(trainGroup.list[[t]]), geneid = as.character(colnames(trainVars.list[[t]])))
}
}
else {
for (t in 1:bags) {
mydata[[t]] <- trainVars.list[[t]]
}
}
if (j == 1) {
start <- 1
end <- bags
}
if (method[j] == "svm" | method[j] == "pam" | method[j] ==
"glmnet") {
bt <- vector("list", bags)
for (l in seq(bags)) {
if (optimize == TRUE) {
if (optimize.resample == FALSE) {
bt[[l]] <- tuned.methods$bestTune[[j]]
}
else {
bt[[l]] <- tuned.methods$bestTune[[l]]
}
}
}
}
else {
bt <- vector("list", bags)
}
if (method[j] == "plsda") {
cc <- vector("list", bags)
for (c in seq(bags)) {
if (optimize == TRUE) {
if (optimize.resample == FALSE) {
cc[[c]] <- tuned.methods$bestTune[[j]]
}
else {
cc[[c]] <- tuned.methods$bestTune[[c]]
}
}
}
}
finalModel.bag <- finalModel[start:end]
tmp <- vector("list", bags)
for (s in seq(bags)) {
tmp[[s]] <- extract.features(x = finalModel.bag[s],
dat = mydata[[s]], grp = trainGroup.list[[s]],
bestTune = bt[[s]], model.features = FALSE, method = method[j],
f = NULL, comp.catch = cc)
}
if (method[j] == "glmnet") {
features[[j]] <- data.frame(do.call("cbind", unlist(unlist(tmp,
recursive = FALSE), recursive = FALSE)))
}
else {
features[[j]] <- do.call("cbind", unlist(tmp, recursive = FALSE))
if (class(features[[j]]) != "data.frame") {
features[[j]] <- data.frame(features[[j]])
}
}
rownames(features[[j]]) <- colnames(X)
start <- start + bags
end <- end + bags
}
features.num <- lapply(features, FUN = function(z) {
sapply(z, FUN = function(x) as.numeric(as.character(x)))
})
features.num <- lapply(features.num, function(x) {
rownames(x) <- var.names
return(x)
})
agg <- lapply(features.num, FUN = function(x) {
aggregation(efs = x, metric = aggregation.metric, f = f)
})
ensemble.results <- list(Methods = method, ensemble.results = agg,
Number.Bags = bags, Agg.metric = aggregation.metric,
Number.features = f)
out <- list(results = ensemble.results, bestTunes = resample.tunes)
out
}
<bytecode: 0x0a5ba3c0>
<environment: namespace:OmicsMarkeR>
--- function search by body ---
Function bagging.wrapper in namespace OmicsMarkeR has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
|
OmicsMarkeR.Rcheck/tests_x64/testthat.Rout.fail
R version 4.0.5 (2021-03-31) -- "Shake and Throw"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(testthat)
> library(OmicsMarkeR)
Warning message:
Package 'OmicsMarkeR' is deprecated and will be removed from
Bioconductor version 3.13
>
> test_check("OmicsMarkeR")
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
OmicsMarkeR
--- call from context ---
bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags,
f = f, aggregation.metric = aggregation.metric, k.folds = k.folds,
repeats = repeats, res = resolution, tuning.grid = tuning.grid,
optimize = optimize, optimize.resample = optimize.resample,
metric = metric, model.features = model.features, verbose = verbose,
allowParallel = allowParallel, theDots = theDots)
--- call from argument ---
if (class(features[[j]]) != "data.frame") {
features[[j]] <- data.frame(features[[j]])
}
--- R stacktrace ---
where 1: bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags,
f = f, aggregation.metric = aggregation.metric, k.folds = k.folds,
repeats = repeats, res = resolution, tuning.grid = tuning.grid,
optimize = optimize, optimize.resample = optimize.resample,
metric = metric, model.features = model.features, verbose = verbose,
allowParallel = allowParallel, theDots = theDots)
where 2: fs.ensembl.stability(vars, groups, method = c("svm", "plsda"),
f = 10, k = 3, bags = 3, stability.metric = "canberra", k.folds = 3,
verbose = "none")
where 3: withCallingHandlers(expr, warning = function(w) if (inherits(w,
classes)) tryInvokeRestart("muffleWarning"))
where 4 at test_fs.ensembl.stability.R#39: suppressWarnings(fs.ensembl.stability(vars, groups, method = c("svm",
"plsda"), f = 10, k = 3, bags = 3, stability.metric = "canberra",
k.folds = 3, verbose = "none"))
where 5: eval(code, test_env)
where 6: eval(code, test_env)
where 7: withCallingHandlers({
eval(code, test_env)
if (!handled && !is.null(test)) {
skip_empty()
}
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning,
message = handle_message, error = handle_error)
where 8: doTryCatch(return(expr), name, parentenv, handler)
where 9: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 10: tryCatchList(expr, names[-nh], parentenv, handlers[-nh])
where 11: doTryCatch(return(expr), name, parentenv, handler)
where 12: tryCatchOne(tryCatchList(expr, names[-nh], parentenv, handlers[-nh]),
names[nh], parentenv, handlers[[nh]])
where 13: tryCatchList(expr, classes, parentenv, handlers)
where 14: tryCatch(withCallingHandlers({
eval(code, test_env)
if (!handled && !is.null(test)) {
skip_empty()
}
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning,
message = handle_message, error = handle_error), error = handle_fatal,
skip = function(e) {
})
where 15: test_code(NULL, exprs, env)
where 16: source_file(path, child_env(env), wrap = wrap)
where 17: FUN(X[[i]], ...)
where 18: lapply(test_paths, test_one_file, env = env, wrap = wrap)
where 19: force(code)
where 20: doWithOneRestart(return(expr), restart)
where 21: withOneRestart(expr, restarts[[1L]])
where 22: withRestarts(testthat_abort_reporter = function() NULL, force(code))
where 23: with_reporter(reporters$multi, lapply(test_paths, test_one_file,
env = env, wrap = wrap))
where 24: test_files(test_dir = test_dir, test_package = test_package,
test_paths = test_paths, load_helpers = load_helpers, reporter = reporter,
env = env, stop_on_failure = stop_on_failure, stop_on_warning = stop_on_warning,
wrap = wrap, load_package = load_package)
where 25: test_files(test_dir = path, test_paths = test_paths, test_package = package,
reporter = reporter, load_helpers = load_helpers, env = env,
stop_on_failure = stop_on_failure, stop_on_warning = stop_on_warning,
wrap = wrap, load_package = load_package, parallel = parallel)
where 26: test_dir("testthat", package = package, reporter = reporter,
..., load_package = "installed")
where 27: test_check("OmicsMarkeR")
--- value of length: 2 type: logical ---
[1] TRUE TRUE
--- function from context ---
function (X, Y, method, bags, f, aggregation.metric, k.folds,
repeats, res, tuning.grid, optimize, optimize.resample, metric,
model.features, allowParallel, verbose, theDots)
{
rownames(X) <- NULL
var.names <- colnames(X)
nr <- nrow(X)
nc <- ncol(X)
num.group = nlevels(Y)
grp.levs <- levels(Y)
trainVars.list <- vector("list", bags)
trainGroup.list <- vector("list", bags)
if (optimize == TRUE & optimize.resample == TRUE) {
resample.tunes <- vector("list", bags)
names(resample.tunes) <- paste("Bag", 1:bags, sep = ".")
}
else {
resample.tunes <- NULL
}
for (i in 1:bags) {
boot = sample(nr, nr, replace = TRUE)
trainVars <- X[boot, ]
trainGroup <- Y[boot]
trainVars.list[[i]] <- trainVars
trainGroup.list[[i]] <- trainGroup
trainData <- as.data.frame(trainVars)
trainData$.classes <- trainGroup
rownames(trainData) <- NULL
if (optimize == TRUE) {
if (optimize.resample == TRUE) {
tuned.methods <- optimize.model(trainVars = trainVars,
trainGroup = trainGroup, method = method, k.folds = k.folds,
repeats = repeats, res = res, grid = tuning.grid,
metric = metric, allowParallel = allowParallel,
verbose = verbose, theDots = theDots)
if (i == 1) {
finalModel <- tuned.methods$finalModel
}
else {
finalModel <- append(finalModel, tuned.methods$finalModel)
}
names(tuned.methods$bestTune) = method
resample.tunes[[i]] <- tuned.methods$bestTune
}
else {
if (i == 1) {
tuned.methods <- optimize.model(trainVars = trainVars,
trainGroup = trainGroup, method = method,
k.folds = k.folds, repeats = repeats, res = res,
grid = tuning.grid, metric = metric, allowParallel = allowParallel,
verbose = verbose, theDots = theDots)
finalModel <- tuned.methods$finalModel
names(tuned.methods$bestTune) <- method
}
else {
tmp <- vector("list", length(method))
names(tmp) <- method
for (d in seq(along = method)) {
tmp[[d]] <- training(data = trainData, method = method[d],
tuneValue = tuned.methods$bestTune[[d]],
obsLevels = grp.levs, theDots = theDots)$fit
}
finalModel <- append(finalModel, tmp)
}
}
}
else {
names(theDots) <- paste(".", names(theDots), sep = "")
args.seq <- sequester(theDots, method)
names(theDots) <- sub(".", "", names(theDots))
moreDots <- theDots[!names(theDots) %in% args.seq$pnames]
if (length(moreDots) == 0) {
moreDots <- NULL
}
finalModel <- vector("list", length(method))
for (q in seq(along = method)) {
finalModel[[q]] <- training(data = trainData,
method = method[q], tuneValue = args.seq$parameters[[q]],
obsLevels = grp.levs, theDots = moreDots)
}
}
}
method.names <- unlist(lapply(method, FUN = function(x) paste(c(rep(x,
bags)), seq(bags), sep = ".")))
names(finalModel) <- paste(method, rep(seq(bags), each = length(method)),
sep = ".")
finalModel <- finalModel[match(method.names, names(finalModel))]
features <- vector("list", length(method))
names(features) <- tolower(method)
for (j in seq(along = method)) {
mydata <- vector("list", bags)
if (method[j] == "pam") {
for (t in 1:bags) {
mydata[[t]] <- list(x = t(trainVars.list[[t]]),
y = factor(trainGroup.list[[t]]), geneid = as.character(colnames(trainVars.list[[t]])))
}
}
else {
for (t in 1:bags) {
mydata[[t]] <- trainVars.list[[t]]
}
}
if (j == 1) {
start <- 1
end <- bags
}
if (method[j] == "svm" | method[j] == "pam" | method[j] ==
"glmnet") {
bt <- vector("list", bags)
for (l in seq(bags)) {
if (optimize == TRUE) {
if (optimize.resample == FALSE) {
bt[[l]] <- tuned.methods$bestTune[[j]]
}
else {
bt[[l]] <- tuned.methods$bestTune[[l]]
}
}
}
}
else {
bt <- vector("list", bags)
}
if (method[j] == "plsda") {
cc <- vector("list", bags)
for (c in seq(bags)) {
if (optimize == TRUE) {
if (optimize.resample == FALSE) {
cc[[c]] <- tuned.methods$bestTune[[j]]
}
else {
cc[[c]] <- tuned.methods$bestTune[[c]]
}
}
}
}
finalModel.bag <- finalModel[start:end]
tmp <- vector("list", bags)
for (s in seq(bags)) {
tmp[[s]] <- extract.features(x = finalModel.bag[s],
dat = mydata[[s]], grp = trainGroup.list[[s]],
bestTune = bt[[s]], model.features = FALSE, method = method[j],
f = NULL, comp.catch = cc)
}
if (method[j] == "glmnet") {
features[[j]] <- data.frame(do.call("cbind", unlist(unlist(tmp,
recursive = FALSE), recursive = FALSE)))
}
else {
features[[j]] <- do.call("cbind", unlist(tmp, recursive = FALSE))
if (class(features[[j]]) != "data.frame") {
features[[j]] <- data.frame(features[[j]])
}
}
rownames(features[[j]]) <- colnames(X)
start <- start + bags
end <- end + bags
}
features.num <- lapply(features, FUN = function(z) {
sapply(z, FUN = function(x) as.numeric(as.character(x)))
})
features.num <- lapply(features.num, function(x) {
rownames(x) <- var.names
return(x)
})
agg <- lapply(features.num, FUN = function(x) {
aggregation(efs = x, metric = aggregation.metric, f = f)
})
ensemble.results <- list(Methods = method, ensemble.results = agg,
Number.Bags = bags, Agg.metric = aggregation.metric,
Number.features = f)
out <- list(results = ensemble.results, bestTunes = resample.tunes)
out
}
<bytecode: 0x000000001055d698>
<environment: namespace:OmicsMarkeR>
--- function search by body ---
Function bagging.wrapper in namespace OmicsMarkeR has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
|
|
OmicsMarkeR.Rcheck/examples_i386/OmicsMarkeR-Ex.timings
|
OmicsMarkeR.Rcheck/examples_x64/OmicsMarkeR-Ex.timings
|