
Gradle User Manual
Version 8.12

Version 8.12

Table of Contents
OVERVIEW. 5

Gradle User Manual. 5

RELEASES . 7

Installing Gradle . 7

Compatibility Matrix . 12

The Feature Lifecycle . 14

UPGRADING . 18

Upgrading your build from Gradle 8.x to the latest. 18

RUNNING GRADLE BUILDS . 79

CORE CONCEPTS . 80

Gradle Basics . 80

Gradle Wrapper Basics . 82

Command-Line Interface Basics. 85

Settings File Basics . 87

Build File Basics . 88

Dependency Management Basics. 91

Task Basics . 93

Plugin Basics . 96

Gradle Incremental Builds and Build Caching . 99

Build Scans . 102

AUTHORING GRADLE BUILDS . 105

CORE CONCEPTS. 106

Gradle Directories . 106

Multi-Project Build Basics . 108

Build Lifecycle . 116

Writing Settings Files . 121

Writing Build Scripts. 128

Using Tasks . 148

Writing Tasks . 161

Using Plugins. 166

Writing Plugins. 189

GRADLE TYPES . 198

Understanding Properties and Providers . 198

Understanding Collections. 207

Understanding Services and Service Injection . 213

STRUCTURING BUILDS . 234

Structuring Projects with Gradle . 234

Declaring Dependencies between Subprojects. 240

Sharing Build Logic between Subprojects . 244

Composite Builds . 254

Configuration On Demand. 263

DEVELOPING TASKS . 266

Understanding Tasks. 266

Controlling Task Execution . 284

Organizing Tasks . 300

Configuring Tasks Lazily . 308

Developing Parallel Tasks . 335

Advanced Tasks . 350

Using Shared Build Services . 366

DEVELOPING PLUGINS. 375

Understanding Plugins . 375

Understanding Implementation Options for Plugins . 386

Implementing Pre-compiled Script Plugins. 387

Implementing Binary Plugins. 394

Testing Gradle plugins . 424

Publishing Plugins to the Gradle Plugin Portal. 437

OTHER TOPICS . 450

Working With Files . 450

Initialization Scripts . 503

Dataflow Actions . 511

Testing Build Logic with TestKit . 514

Using Ant from Gradle . 526

OPTIMIZING BUILD PERFORMANCE . 541

Configuring the Build Environment . 541

Gradle-managed Directories . 551

Logging . 558

Improve the Performance of Gradle Builds . 568

Configuration cache . 589

Continuous Builds . 631

Inspecting Gradle Builds . 632

Isolated Projects . 637

File System Watching . 641

THE BUILD CACHE . 645

Build Cache . 645

Use cases for the build cache . 658

Build cache performance. 661

Important concepts . 665

Caching Java projects . 670

Caching Android projects . 675

Debugging and diagnosing cache misses . 678

Solving common problems . 686

DEPENDENCY MANAGEMENT . 696

CORE CONCEPTS. 697

1. Declaring dependencies. 697

2. Dependency Configurations . 703

3. Declaring repositories . 706

4. Centralizing dependencies . 711

5. Dependency Constraints and Conflict Resolution . 715

6. Dependency Resolution . 716

7. Variant Aware Dependency Resolution . 724

DECLARING DEPENDENCIES. 729

Declaring Dependencies Basics . 729

Viewing Dependencies . 739

Declaring Versions and Ranges . 745

Declaring Dependency Constraints . 757

Declaring Dependency Configurations. 761

DECLARING REPOSITORIES. 773

Declaring Repositories Basics . 773

Centralizing Repository Declarations . 778

Repository Types . 780

Metadata Formats . 788

Supported Protocols . 792

Filtering Repository Content . 804

CENTRALIZING DEPENDENCIES . 809

Platforms . 809

Version Catalogs . 812

Using Catalogs with Platforms . 827

MANAGING DEPENDENCIES . 831

Locking Versions . 831

Using Resolution Rules . 841

Modifying Dependency Metadata . 866

Dependency Caching. 889

UNDERSTANDING DEPENDENCY RESOLUTION . 896

Understanding the Dependency Resolution Model . 896

Capabilities . 916

Variants and Attributes . 921

CONTROLLING DEPENDENCY RESOLUTION. 933

Dependency Resolution Basics . 933

Dependency Graph Resolution . 934

Artifact Resolution. 939

Artifact Transforms. 950

PUBLISHING LIBRARIES. 973

Publishing a project as module . 973

Understanding Gradle Module Metadata. 977

Signing artifacts . 982

Customizing publishing . 983

The Maven Publish Plugin . 994

The Ivy Publish Plugin . 1011

OTHER TOPICS . 1022

Verifying dependencies . 1022

Aligning dependency versions . 1046

Modeling library features . 1053

PLATFORMS . 1065

JVM BUILDS . 1066

Building Java & JVM projects . 1066

Testing in Java & JVM projects . 1091

Managing Dependencies of JVM Projects . 1124

JAVA TOOLCHAINS. 1129

Toolchains for JVM projects . 1129

Toolchain Resolver Plugins . 1145

JVM PLUGINS . 1148

The Java Library Plugin . 1148

The Application Plugin . 1160

The Java Platform Plugin . 1167

The Groovy Plugin. 1173

The Scala Plugin. 1182

INTEGRATION . 1194

Gradle & Third-party Tools . 1194

REFERENCE . 1198

Gradle Wrapper Reference . 1198

Gradle Daemon . 1208

Command-Line Interface Reference . 1216

GRADLE DSL/API . 1235

A Groovy Build Script Primer . 1235

Gradle Kotlin DSL Primer . 1240

CORE PLUGINS . 1271

Gradle Plugin Reference . 1271

HOW TO GUIDES . 1274

How to share outputs between projects. 1274

LICENSE INFORMATION . 1281

License Information . 1281

OVERVIEW

Gradle User Manual

Gradle Build Tool

 Gradle Build Tool is a fast, dependable, and adaptable open-source build
automation tool with an elegant and extensible declarative build language.

In this User Manual, Gradle Build Tool is abbreviated Gradle.

Why Gradle?

Gradle is a widely used and mature tool with an active community and a strong developer
ecosystem.

• Gradle is the most popular build system for the JVM and is the default system for Android and
Kotlin Multi-Platform projects. It has a rich community plugin ecosystem.

• Gradle can automate a wide range of software build scenarios using either its built-in
functionality, third-party plugins, or custom build logic.

• Gradle provides a high-level, declarative, and expressive build language that makes it easy to
read and write build logic.

• Gradle is fast, scalable, and can build projects of any size and complexity.

• Gradle produces dependable results while benefiting from optimizations such as incremental
builds, build caching, and parallel execution.

Gradle, Inc. provides a free service called Build Scan® that provides extensive information and
insights about your builds. You can view scans to identify problems or share them for debugging
help.

Supported Languages and Frameworks

Gradle supports Android, Java, Kotlin Multiplatform, Groovy, Scala, Javascript, and C/C++.

Compatible IDEs

All major IDEs support Gradle, including Android Studio, IntelliJ IDEA, Visual Studio Code, Eclipse,

https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Build_automation
https://scans.gradle.com/

and NetBeans.

You can also invoke Gradle via its command-line interface (CLI) in your terminal or through your
continuous integration (CI) server.

Releases

Information on Gradle releases and how to install Gradle is found on the Installation page.

User Manual

The Gradle User Manual is the official documentation for the Gradle Build Tool:

• Running Gradle Builds — Learn how to use Gradle with your project.

• Authoring Gradle Builds — Learn how to develop tasks and plugins to customize your build.

• Working with Dependencies — Learn how to add dependencies to your build.

• Authoring JVM Builds — Learn how to use Gradle with your Java project.

• Optimizing Builds — Learn how to use caches and other tools to optimize your build.

Education

• Training Courses — Head over to the courses page to sign up for free Gradle training.

Support

• Forum — The fastest way to get help is through the Gradle Forum.

• Slack — Community members and core contributors answer questions directly on our Slack
Channel.

Licenses

Gradle Build Tool source code is open and licensed under the Apache License 2.0. Gradle user
manual and DSL reference manual are licensed under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

Copyright

Copyright © 2024 Gradle, Inc. All rights reserved. Gradle is a trademark of Gradle, Inc.

For inquiries related to commercial use or licensing, contact Gradle Inc. directly.

getting_started_eng.pdf#introduction
getting_started_dev.pdf#dev_introduction
getting_started_dep_man.pdf#dependency-management-in-gradle
https://gradle.org/courses/
https://discuss.gradle.org/
https://gradle-community.slack.com/
https://gradle-community.slack.com/
https://github.com/gradle/gradle/blob/master/LICENSE
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

RELEASES

Installing Gradle

Gradle Installation

If all you want to do is run an existing Gradle project, then you don’t need to install Gradle if the
build uses the Gradle Wrapper. This is identifiable by the presence of the gradlew or gradlew.bat
files in the root of the project:

. ①
├── gradle
│ └── wrapper ②
├── gradlew ③
├── gradlew.bat ③
└── ⋮

① Project root directory.

② Gradle Wrapper.

③ Scripts for executing Gradle builds.

If the gradlew or gradlew.bat files are already present in your project, you do not need to install
Gradle. But you need to make sure your system satisfies Gradle’s prerequisites.

You can follow the steps in the Upgrading Gradle section if you want to update the Gradle version
for your project. Please use the Gradle Wrapper to upgrade Gradle.

Android Studio comes with a working installation of Gradle, so you don’t need to install Gradle
separately when only working within that IDE.

If you do not meet the criteria above and decide to install Gradle on your machine, first check if
Gradle is already installed by running gradle -v in your terminal. If the command does not return
anything, then Gradle is not installed, and you can follow the instructions below.

You can install Gradle Build Tool on Linux, macOS, or Windows. The installation can be done
manually or using a package manager like SDKMAN! or Homebrew.

You can find all Gradle releases and their checksums on the releases page.

Prerequisites

Gradle runs on all major operating systems. It requires Java Development Kit (JDK) version 8 or
higher to run. You can check the compatibility matrix for more information.

To check, run java -version:

❯ java -version

https://sdkman.io/
https://brew.sh/
https://gradle.org/releases
https://jdk.java.net/

openjdk version "11.0.18" 2023-01-17
OpenJDK Runtime Environment Homebrew (build 11.0.18+0)
OpenJDK 64-Bit Server VM Homebrew (build 11.0.18+0, mixed mode)

Gradle uses the JDK it finds in your path, the JDK used by your IDE, or the JDK specified by your
project. In this example, the $PATH points to JDK17:

❯ echo $PATH
/opt/homebrew/opt/openjdk@17/bin

You can also set the JAVA_HOME environment variable to point to a specific JDK installation directory.
This is especially useful when multiple JDKs are installed:

❯ echo %JAVA_HOME%
C:\Program Files\Java\jdk1.7.0_80

❯ echo $JAVA_HOME
/Library/Java/JavaVirtualMachines/jdk-16.jdk/Contents/Home

Gradle supports Kotlin and Groovy as the main build languages. Gradle ships with its own Kotlin
and Groovy libraries, therefore they do not need to be installed. Existing installations are ignored
by Gradle.

See the full compatibility notes for Java, Groovy, Kotlin, and Android.

Linux installation

▼ Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). Gradle is deployed and
maintained by SDKMAN!:

❯ sdk install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc. Linux package managers may distribute a modified version of Gradle
that is incompatible or incomplete when compared to the official version.

▼ Installing manually

Step 1 - Download the latest Gradle distribution

The distribution ZIP file comes in two flavors:

• Binary-only (bin)

https://kotlinlang.org/
https://groovy-lang.org/
#ex-installing-with-a-package-manager
http://sdkman.io
#ex-installing-manually
https://gradle.org/releases

• Complete (all) with docs and sources

We recommend downloading the bin file; it is a smaller file that is quick to download (and the
latest documentation is available online).

Step 2 - Unpack the distribution

Unzip the distribution zip file in the directory of your choosing, e.g.:

❯ mkdir /opt/gradle
❯ unzip -d /opt/gradle gradle-8.12-bin.zip
❯ ls /opt/gradle/gradle-8.12
LICENSE NOTICE bin README init.d lib media

Step 3 - Configure your system environment

To install Gradle, the path to the unpacked files needs to be in your Path. Configure your PATH
environment variable to include the bin directory of the unzipped distribution, e.g.:

❯ export PATH=$PATH:/opt/gradle/gradle-8.12/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, simply change
the GRADLE_HOME environment variable.

export GRADLE_HOME=/opt/gradle/gradle-8.12
export PATH=${GRADLE_HOME}/bin:${PATH}

macOS installation

▼ Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). Gradle is deployed and
maintained by SDKMAN!:

❯ sdk install gradle

Using Homebrew:

❯ brew install gradle

Using MacPorts:

#ex-installing-with-a-package-manager
http://sdkman.io
http://brew.sh
https://www.macports.org

❯ sudo port install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc.

▼ Installing manually

Step 1 - Download the latest Gradle distribution

The distribution ZIP file comes in two flavors:

• Binary-only (bin)

• Complete (all) with docs and sources

We recommend downloading the bin file; it is a smaller file that is quick to download (and the
latest documentation is available online).

Step 2 - Unpack the distribution

Unzip the distribution zip file in the directory of your choosing, e.g.:

❯ mkdir /usr/local/gradle
❯ unzip gradle-8.12-bin.zip -d /usr/local/gradle
❯ ls /usr/local/gradle/gradle-8.12
LICENSE NOTICE README bin init.d lib

Step 3 - Configure your system environment

To install Gradle, the path to the unpacked files needs to be in your Path. Configure your PATH
environment variable to include the bin directory of the unzipped distribution, e.g.:

❯ export PATH=$PATH:/usr/local/gradle/gradle-8.12/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, simply change
the GRADLE_HOME environment variable.

It’s a good idea to edit .bash_profile in your home directory to add GRADLE_HOME variable:

export GRADLE_HOME=/usr/local/gradle/gradle-8.12
export PATH=$GRADLE_HOME/bin:$PATH

Windows installation

#ex-installing-manually
https://gradle.org/releases

▼ Installing manually

Step 1 - Download the latest Gradle distribution

The distribution ZIP file comes in two flavors:

• Binary-only (bin)

• Complete (all) with docs and sources

We recommend downloading the bin file.

Step 2 - Unpack the distribution

Create a new directory C:\Gradle with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution was
downloaded. Double-click the ZIP archive to expose the content. Drag the content folder gradle-
8.12 to your newly created C:\Gradle folder.

Alternatively, you can unpack the Gradle distribution ZIP into C:\Gradle using the archiver tool of
your choice.

Step 3 - Configure your system environment

To install Gradle, the path to the unpacked files needs to be in your Path.

In File Explorer right-click on the This PC (or Computer) icon, then click Properties → Advanced
System Settings → Environmental Variables.

Under System Variables select Path, then click Edit. Add an entry for C:\Gradle\gradle-8.12\bin.
Click OK to save.

Alternatively, you can add the environment variable GRADLE_HOME and point this to the unzipped
distribution. Instead of adding a specific version of Gradle to your Path, you can add
%GRADLE_HOME%\bin to your Path. When upgrading to a different version of Gradle, just change the
GRADLE_HOME environment variable.

Verify the installation

Open a console (or a Windows command prompt) and run gradle -v to run gradle and display the
version, e.g.:

❯ gradle -v

--
Gradle 8.12
--

Build time: 2024-06-17 18:10:00 UTC
Revision: 6028379bb5a8512d0b2c1be6403543b79825ef08

#ex-installing-manually
https://gradle.org/releases

Kotlin: 1.9.23
Groovy: 3.0.21
Ant: Apache Ant(TM) version 1.10.13 compiled on January 4 2023
Launcher JVM: 11.0.23 (Eclipse Adoptium 11.0.23+9)
Daemon JVM: /Library/Java/JavaVirtualMachines/temurin-11.jdk/Contents/Home (no JDK
specified, using current Java home)
OS: Mac OS X 14.5 aarch64

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available
from the releases page) and following these verification instructions.

Compatibility Matrix
The sections below describe Gradle’s compatibility with several integrations. Versions not listed
here may or may not work.

Java Runtime

Gradle runs on the Java Virtual Machine (JVM), which is often provided by either a JDK or JRE. A
JVM version between 8 and 23 is required to execute Gradle. JVM 24 and later versions are not yet
supported.

Executing the Gradle daemon with JVM 16 or earlier has been deprecated and will become an error
in Gradle 9.0. The Gradle wrapper, Gradle client, Tooling API client, and TestKit client will remain
compatible with JVM 8.

JDK 6 and 7 can be used for compilation. Testing with JVM 6 and 7 is deprecated and will not be
supported in Gradle 9.0.

Any fully supported version of Java can be used for compilation or testing. However, the latest Java
version may only be supported for compilation or testing, not for running Gradle. Support is
achieved using toolchains and applies to all tasks supporting toolchains.

See the table below for the Java version supported by a specific Gradle release:

Table 1. Java Compatibility

Java version Support for toolchains Support for running Gradle

8 N/A 2.0

9 N/A 4.3

10 N/A 4.7

11 N/A 5.0

12 N/A 5.4

13 N/A 6.0

14 N/A 6.3

15 6.7 6.7

https://gradle.org/releases

Java version Support for toolchains Support for running Gradle

16 7.0 7.0

17 7.3 7.3

18 7.5 7.5

19 7.6 7.6

20 8.1 8.3

21 8.4 8.5

22 8.7 8.8

23 8.10 8.10

24 N/A N/A

Kotlin

Gradle is tested with Kotlin 1.6.10 through 2.1.0-Beta2. Beta and RC versions may or may not work.

Table 2. Embedded Kotlin version

Embedded Kotlin version Minimum Gradle version Kotlin Language version

1.3.10 5.0 1.3

1.3.11 5.1 1.3

1.3.20 5.2 1.3

1.3.21 5.3 1.3

1.3.31 5.5 1.3

1.3.41 5.6 1.3

1.3.50 6.0 1.3

1.3.61 6.1 1.3

1.3.70 6.3 1.3

1.3.71 6.4 1.3

1.3.72 6.5 1.3

1.4.20 6.8 1.3

1.4.31 7.0 1.4

1.5.21 7.2 1.4

1.5.31 7.3 1.4

1.6.21 7.5 1.4

1.7.10 7.6 1.4

1.8.10 8.0 1.8

1.8.20 8.2 1.8

Embedded Kotlin version Minimum Gradle version Kotlin Language version

1.9.0 8.3 1.8

1.9.10 8.4 1.8

1.9.20 8.5 1.8

1.9.22 8.7 1.8

1.9.23 8.9 1.8

1.9.24 8.10 1.8

2.0.20 8.11 1.8

2.0.21 8.12 1.8

Groovy

Gradle is tested with Groovy 1.5.8 through 4.0.0.

Gradle plugins written in Groovy must use Groovy 3.x for compatibility with Gradle and Groovy
DSL build scripts.

Android

Gradle is tested with Android Gradle Plugin 7.3 through 8.7. Alpha and beta versions may or may
not work.

The Feature Lifecycle
Gradle is under constant development. New versions are delivered on a regular and frequent basis
(approximately every six weeks) as described in the section on end-of-life support.

Continuous improvement combined with frequent delivery allows new features to be available to
users early. Early users provide invaluable feedback, which is incorporated into the development
process.

Getting new functionality into the hands of users regularly is a core value of the Gradle platform.

At the same time, API and feature stability are taken very seriously and considered a core value of
the Gradle platform. Design choices and automated testing are engineered into the development
process and formalized by the section on backward compatibility.

The Gradle feature lifecycle has been designed to meet these goals. It also communicates to users of
Gradle what the state of a feature is. The term feature typically means an API or DSL method or
property in this context, but it is not restricted to this definition. Command line arguments and
modes of execution (e.g. the Build Daemon) are two examples of other features.

Feature States

Features can be in one of four states:

1. Internal

2. Incubating

3. Public

4. Deprecated

1. Internal

Internal features are not designed for public use and are only intended to be used by Gradle itself.
They can change in any way at any point in time without any notice. Therefore, we recommend
avoiding the use of such features. Internal features are not documented. If it appears in this User
Manual, the DSL Reference, or the API Reference, then the feature is not internal.

Internal features may evolve into public features.

2. Incubating

Features are introduced in the incubating state to allow real-world feedback to be incorporated into
the feature before making it public. It also gives users willing to test potential future changes early
access.

A feature in an incubating state may change in future Gradle versions until it is no longer
incubating. Changes to incubating features for a Gradle release will be highlighted in the release
notes for that release. The incubation period for new features varies depending on the feature’s
scope, complexity, and nature.

Features in incubation are indicated. In the source code, all methods/properties/classes that are
incubating are annotated with incubating. This results in a special mark for them in the DSL and
API references.

If an incubating feature is discussed in this User Manual, it will be explicitly said to be in the
incubating state.

Feature Preview API

The feature preview API allows certain incubating features to be activated by adding
enableFeaturePreview('FEATURE') in your settings file. Individual preview features will be
announced in release notes.

When incubating features are either promoted to public or removed, the feature preview flags for
them become obsolete, have no effect, and should be removed from the settings file.

3. Public

The default state for a non-internal feature is public. Anything documented in the User Manual, DSL
Reference, or API reference that is not explicitly said to be incubating or deprecated is considered
public. Features are said to be promoted from an incubating state to public. The release notes for
each release indicate which previously incubating features are being promoted by the release.

A public feature will never be removed or intentionally changed without undergoing deprecation.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Incubating.html

All public features are subject to the backward compatibility policy.

4. Deprecated

Some features may be replaced or become irrelevant due to the natural evolution of Gradle. Such
features will eventually be removed from Gradle after being deprecated. A deprecated feature may
become stale until it is finally removed according to the backward compatibility policy.

Deprecated features are indicated to be so. In the source code, all methods/properties/classes that
are deprecated are annotated with “@java.lang.Deprecated” which is reflected in the DSL and API
References. In most cases, there is a replacement for the deprecated element, which will be
described in the documentation. Using a deprecated feature will result in a runtime warning in
Gradle’s output.

The use of deprecated features should be avoided. The release notes for each release indicate any
features being deprecated by the release.

Backward compatibility policy

Gradle provides backward compatibility across major versions (e.g., 1.x, 2.x, etc.). Once a public
feature is introduced in a Gradle release, it will remain indefinitely unless deprecated. Once
deprecated, it may be removed in the next major release. Deprecated features may be supported
across major releases, but this is not guaranteed.

Release end-of-life Policy

Every day, a new nightly build of Gradle is created.

This contains all of the changes made through Gradle’s extensive continuous integration tests
during that day. Nightly builds may contain new changes that may or may not be stable.

The Gradle team creates a pre-release distribution called a release candidate (RC) for each minor or
major release. When no problems are found after a short time (usually a week), the release
candidate is promoted to a general availability (GA) release. If a regression is found in the release
candidate, a new RC distribution is created, and the process repeats. Release candidates are
supported for as long as the release window is open, but they are not intended to be used for
production. Bug reports are greatly appreciated during the RC phase.

The Gradle team may create additional patch releases to replace the final release due to critical bug
fixes or regressions. For instance, Gradle 5.2.1 replaces the Gradle 5.2 release.

Once a release candidate has been made, all feature development moves on to the next release for
the latest major version. As such, each minor Gradle release causes the previous minor releases in
the same major version to become end-of-life (EOL). EOL releases do not receive bug fixes or
feature backports.

For major versions, Gradle will backport critical fixes and security fixes to the last minor in the
previous major version. For example, when Gradle 7 was the latest major version, several releases
were made in the 6.x line, including Gradle 6.9 (and subsequent releases).

As such, each major Gradle release causes:

• The previous major version becomes maintenance only. It will only receive critical bug fixes
and security fixes.

• The major version before the previous one to become end-of-life (EOL), and that release line
will not receive any new fixes.

UPGRADING

Upgrading your build from Gradle 8.x to the latest
This chapter provides the information you need to migrate your Gradle 8.x builds to the latest
Gradle release. For migrating from Gradle 4.x, 5.x, 6.x, or 7.x, see the older migration guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

This lets you see any deprecation warnings that apply to your build.

Alternatively, you can run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle because they use internal APIs that
have been removed or changed. The previous step will help you identify potential problems by
issuing deprecation warnings when a plugin tries to use a deprecated part of the API.

3. Run gradle wrapper --gradle-version 8.12 to update the project to 8.12.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

Upgrading from 8.11 and earlier

Potential breaking changes

Upgrade to Kotlin 2.0.21

The embedded Kotlin has been updated from 2.0.20 to Kotlin 2.0.21.

upgrading_version_7.pdf#upgrading_version_7
https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality
troubleshooting.pdf#troubleshooting
https://github.com/JetBrains/kotlin/releases/tag/v2.0.21

Upgrade to Ant 1.10.15

Ant has been updated to Ant 1.10.15.

Upgrade to Zinc 1.10.4

Zinc has been updated to 1.10.4.

Swift SDK discovery

To determine the location of the Mac OS X SDK for Swift, Gradle now passes the --sdk macosx
arguments to xcrun. This is necessary because the SDK could be discovered inconsistently without
this argument across different environments.

Source level deprecation of TaskContainer.create methods

Eager task creation methods on the TaskContainer interface have been marked @Deprecated and will
generate compiler and IDE warnings when used in build scripts or plugin code. There is not yet a
Gradle deprecation warning emitted for their use.

However, if the build is configured to fail on warnings during Kotlin script or plugin code
compilation, this behavior may cause the build to fail.

A standard Gradle deprecation warning will be printed upon use when these methods are fully
deprecated in a future version.

Deprecations

Deprecated Ambiguous Transformation Chains

Previously, when at least two equal-length chains of artifact transforms were available that would
produce compatible variants that would each satisfy a resolution request, Gradle would arbitrarily,
and silently, pick one.

Now, Gradle emits a deprecation warning that explains this situation:

There are multiple distinct artifact transformation chains of the same length that
would satisfy this request. This behavior has been deprecated. This will fail with an
error in Gradle 9.0.
Found multiple transformation chains that produce a variant of 'root project :' with
requested attributes:
 - color 'red'
 - texture 'smooth'
Found the following transformation chains:
 - From configuration ':squareBlueSmoothElements':
 - With source attributes:
 - artifactType 'txt'
 - color 'blue'
 - shape 'square'
 - texture 'smooth'
 - Candidate transformation chains:

https://github.com/apache/ant/blob/rel/1.10.15/WHATSNEW
https://github.com/sbt/zinc/releases/tag/v1.10.4
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html

 - Transformation chain: 'ColorTransform':
 - 'BrokenColorTransform':
 - Converts from attributes:
 - color 'blue'
 - texture 'smooth'
 - To attributes:
 - color 'red'
 - Transformation chain: 'ColorTransform2':
 - 'BrokenColorTransform2':
 - Converts from attributes:
 - color 'blue'
 - texture 'smooth'
 - To attributes:
 - color 'red'
 Remove one or more registered transforms, or add additional attributes to them to
ensure only a single valid transformation chain exists.

In such a scenario, Gradle has no way to know which of the two (or more) possible transformation
chains should be used. Picking an arbitrary chain can lead to inefficient performance or
unexpected behavior changes when seemingly unrelated parts of the build are modified. This is
potentially a very complex situation and the message now fully explains the situation by printing
all the registered transforms in order, along with their source (input) variants for each candidate
chain.

When encountering this type of failure, build authors should either:

1. Add additional, distinguishing attributes when registering transforms present in the chain, to
ensure that only a single chain will be selectable to satisfy the request

2. Request additional attributes to disambiguate which chain is selected (if they result in non-
identical final attributes)

3. Remove unnecessary registered transforms from the build

This will become an error in Gradle 9.0.

init must run alone

The init task must run by itself. This task should not be combined with other tasks in a single
Gradle invocation.

Running init in the same invocation as other tasks will become an error in Gradle 9.0.

For instance, this wil not be allowed:

> gradlew init tasks

Calling Task.getProject() from a task action

Calling Task.getProject() from a task action at execution time is now deprecated and will be made

build_init_plugin.pdf#sec:build_init_tasks
build_init_plugin.pdf#sec:build_init_tasks
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#getProject--

an error in Gradle 10.0. This method can still be used during configuration time.

The deprecation is only issued if the configuration cache is not enabled. When the configuration
cache is enabled, calls to Task.getProject() are reported as configuration cache problems instead.

This deprecation was originally introduced in Gradle 7.4 but was only issued when the
STABLE_CONFIGURATION_CACHE feature flag was enabled. That feature flag no longer controls this
deprecation. This is another step towards moving users away from idioms that are incompatible
with the configuration cache, which will become the only mode supported by Gradle in a future
release.

Please refer to the configuration cache documentation for alternatives to invoking
Task.getProject() at execution time that are compatible with the configuration cache.

Groovy "space assignment" syntax

Currently, there are multiple ways to set a property with Groovy DSL syntax:

propertyName = value
setPropertyName(value)
setPropertyName value
propertyName(value)
propertyName value

The latter one, "space-assignment", is a Gradle-specific feature that is not part of the Groovy
language. In regular Groovy, this is just a method call: propertyName(value), and Gradle generates
propertyName method in the runtime if this method hasn’t been present already. This feature may be
a source of confusion (especially for new users) and adds an extra layer of complexity for users and
the Gradle codebase without providing any significant value. Sometimes, classes declare methods
with the same name, and these may even have semantics that are different from a plain
assignment.

These generated methods are now deprecated and will be removed in Gradle 10.0, and both
propertyName value and propertyName(value) will stop working unless the explicit method
propertyName is defined. Use explicit assignment propertyName = value instead.

For explicit methods, consider using the propertyName(value) syntax instead of propertyName value
for clarity. For example, jvmArgs "some", "arg" can be replaced with jvmArgs("some", "arg") or with
jvmArgs = ["some", "arg"] for Test tasks.

If you have a big project, to replace occurrences of space-assignment syntax you can use, for
example, the following sed command:

find . -name 'build.gradle' -type f -exec sed -i.bak -E 's/([^A-Za-z]|^)(replaceme)[
\t]*([^= \t{])/\1\2 = \3/g' {} +

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#getProject--
upgrading_version_7.pdf#task_project

You should replace replaceme with one or more property names you want to replace, separated by |,
e.g. (url|group).

DependencyInsightReportTask.getDependencySpec

The method was deprecated because it was not intended for public use in build scripts.

ReportingExtension.baseDir

ReportingExtension.getBaseDir(), `ReportingExtension.setBaseDir(File), and
ReportingExtension.setBaseDir(Object) were deprecated. They should be replaced with
ReportingExtension.getBaseDirectory() property.

Upgrading from 8.10 and earlier

Potential breaking changes

Upgrade to Kotlin 2.0.20

The embedded Kotlin has been updated from 1.9.24 to Kotlin 2.0.20. Also see the Kotlin 2.0.10 and
Kotlin 2.0.0 release notes.

The default kotlin-test version in JVM test suites has been upgraded to 2.0.20 as well.

Kotlin DSL scripts are still compiled with Kotlin language version set to 1.8 for backward
compatibility.

Gradle daemon JVM configuration via toolchain

The type of the property UpdateDaemonJvm.jvmVersion is now Property<JavaLanguageVersion>.

If you configured the task in a build script, you will need to replace:

jvmVersion = JavaVersion.VERSION_17

With:

jvmVersion = JavaLanguageVersion.of(17)

Using the CLI options to configure which JVM version to use for the Gradle Daemon has no impact.

Name matching changes

The name-matching logic has been updated to treat numbers as word boundaries for camelCase
names. Previously, a request like unique would match both uniqueA and unique1. Such a request will
now fail due to ambiguity. To avoid issues, use the exact name instead of a shortened version.

This change impacts:

• Task selection

https://github.com/JetBrains/kotlin/releases/tag/v2.0.20
https://github.com/JetBrains/kotlin/releases/tag/v2.0.10
https://github.com/JetBrains/kotlin/releases/tag/v2.0.0

• Project selection

• Configuration selection in dependency report tasks

Deprecations

Deprecated JavaHome property of ForkOptions

The JavaHome property of the ForkOptions type has been deprecated and will be removed in Gradle
9.0.

Use JVM Toolchains, or the executable property instead.

Deprecated mutating buildscript configurations

Starting in Gradle 9.0, mutating configurations in a script’s buildscript block will result in an error.
This applies to project, settings, init, and standalone scripts.

The buildscript configurations block is only intended to control buildscript classpath resolution.

Consider the following script that creates a new buildscript configuration in a Settings script and
resolves it:

buildscript {
 configurations {
 create("myConfig")
 }
 dependencies {
 "myConfig"("org:foo:1.0")
 }
}

val files = buildscript.configurations["myConfig"].files

This pattern is sometimes used to resolve dependencies in Settings, where there is no other way to
obtain a Configuration. Resolving dependencies in this context is not recommended. Using a
detached configuration is a possible but discouraged alternative.

The above example can be modified to use a detached configuration:

val myConfig = buildscript.configurations.detachedConfiguration(
 buildscript.dependencies.create("org:foo:1.0")
)

val files = myConfig.files

Selecting Maven variants by configuration name

Starting in Gradle 9.0, selecting variants by name from non-Ivy external components will be
forbidden.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/compile/ForkOptions.html#getJavaHome()-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/compile/ForkOptions.html#getExecutable()-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Script.html#buildscript-groovy.lang.Closure-

Selecting variants by name from local components will still be permitted; however, this pattern is
discouraged. Variant aware dependency resolution should be preferred over selecting variants by
name for local components.

The following dependencies will fail to resolve when targeting a non-Ivy external component:

dependencies {
 implementation(group: "com.example", name: "example", version: "1.0",
configuration: "conf")
 implementation("com.example:example:1.0") {
 targetConfiguration = "conf"
 }
}

Deprecated manually adding to configuration container

Starting in Gradle 9.0, manually adding configuration instances to a configuration container will
result in an error. Configurations should only be added to the container through the eager or lazy
factory methods. Detached configurations and copied configurations should not be added to the
container.

Calling the following methods on ConfigurationContainer will be forbidden: - add(Configuration) -
addAll(Collection) - addLater(Provider) - addAllLater(Provider)

Deprecated ProjectDependency#getDependencyProject()

The ProjectDependency#getDependencyProject() method has been deprecated and will be removed in
Gradle 9.0.

Accessing the mutable project instance of other projects should be avoided.

To discover details about all projects that were included in a resolution, inspect the full
ResolutionResult. Project dependencies are exposed in the DependencyResult. See the user guide
section on programmatic dependency resolution for more details on this API. This is the only
reliable way to find all projects that are used in a resolution. Inspecting only the declared
`ProjectDependency`s may miss transitive or substituted project dependencies.

To get the identity of the target project, use the new Isolated Projects safe project path method:
ProjectDependency#getPath().

To access or configure the target project, consider this direct replacement:

val projectDependency: ProjectDependency = getSomeProjectDependency()

// Old way:
val someProject = projectDependency.dependencyProject

// New way:
val someProject = project.project(projectDependency.path)

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ConfigurationContainer.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ProjectDependency.html#getDependencyProject()
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/result/DependencyResult.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ProjectDependency.html#getPath()

This approach will not fetch project instances from different builds.

Deprecated ResolvedConfiguration.getFiles() and LenientConfiguration.getFiles()

The ResolvedConfiguration.getFiles() and LenientConfiguration.getFiles() methods have been
deprecated and will be removed in Gradle 9.0.

These deprecated methods do not track task dependencies, unlike their replacements.

val deprecated: Set<File> = conf.resolvedConfiguration.files
val replacement: FileCollection = conf.incoming.files

val lenientDeprecated: Set<File> =
conf.resolvedConfiguration.lenientConfiguration.files
val lenientReplacement: FileCollection = conf.incoming.artifactView {
 isLenient = true
}.files

Deprecated AbstractOptions

The AbstractOptions class has been deprecated and will be removed in Gradle 9.0. All classes
extending AbstractOptions will no longer extend it.

As a result, the AbstractOptions#define(Map) method will no longer be present. This method exposes
a non-type-safe API and unnecessarily relies on reflection. It can be replaced by directly setting the
properties specified in the map.

Additionally, CompileOptions#fork(Map), CompileOptions#debug(Map), and
GroovyCompileOptions#fork(Map), which depend on define, are also deprecated for removal in Gradle
9.0.

Consider the following example of the deprecated behavior and its replacement:

tasks.withType(JavaCompile) {
 // Deprecated behavior
 options.define(encoding: 'UTF-8')
 options.fork(memoryMaximumSize: '1G')
 options.debug(debugLevel: 'lines')

 // Can be replaced by
 options.encoding = 'UTF-8'

 options.fork = true
 options.forkOptions.memoryMaximumSize = '1G'

 options.debug = true
 options.debugOptions.debugLevel = 'lines'
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ResolvedConfiguration.html#getFiles()
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/LenientConfiguration.html#getFiles()

Deprecated Dependency#contentEquals(Dependency)

The Dependency#contentEquals(Dependency) method has been deprecated and will be removed in
Gradle 9.0.

The method was originally intended to compare dependencies based on their actual target
component, regardless of whether they were of different dependency type. The existing method
does not behave as specified by its Javadoc, and we do not plan to introduce a replacement that
does.

Potential migrations include using Object.equals(Object) directly, or comparing the fields of
dependencies manually.

Deprecated Project#exec and Project#javaexec

The Project#exec(Closure), Project#exec(Action), Project#javaexec(Closure),
Project#javaexec(Action) methods have been deprecated and will be removed in Gradle 9.0.

These methods are scheduled for removal as part of the ongoing effort to make writing
configuration-cache-compatible code easier. There is no way to use these methods without breaking
configuration cache requirements so it is recommended to migrate to a compatible alternative. The
appropriate replacement for your use case depends on the context in which the method was
previously called.

At execution time, for example in @TaskAction or doFirst/doLast callbacks, the use of Project
instance is not allowed when the configuration cache is enabled. To run external processes, tasks
should use an injected ExecOperation service, which has the same API and can act as a drop-in
replacement. The standard Java/Groovy/Kotlin process APIs, like java.lang.ProcessBuilder can be
used as well.

At configuration time, only special Provider-based APIs must be used to run external processes
when the configuration cache is enabled. You can use ProviderFactory.exec and
ProviderFactory.javaexec to obtain the output of the process. A custom ValueSource implementation
can be used for more sophisticated scenarios. The configuration cache guide has a more elaborate
example of using these APIs.

Detached Configurations should not use extendsFrom

Detached configurations should not extend other configurations using extendsFrom.

This behavior has been deprecated and will become an error in Gradle 9.0.

To create extension relationships between configurations, you should change to using non-
detached configurations created via the other factory methods present in the project’s
ConfigurationContainer.

Deprecated customized Gradle logging

The Gradle#useLogger(Object) method has been deprecated and will be removed in Gradle 9.0.

This method was originally intended to customize logs printed by Gradle. However, it only allows

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Dependency.html#contentEquals(org.gradle.api.artifacts.Dependency)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#exec(groovy.lang.Closure)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#exec(org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#javaexec(groovy.lang.Closure)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#javaexec(org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/ProviderFactory.html#exec(org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/ProviderFactory.html#javaexec(org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/ValueSource.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ConfigurationContainer.html#detachedConfiguration(org.gradle.api.artifacts.Dependency…​)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Configuration.html#extendsFrom(org.gradle.api.artifacts.Configuration…​)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ConfigurationContainer.html)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/invocation/Gradle.html#useLogger(java.lang.Object)

intercepting a subset of the logs and cannot work with the configuration cache. We do not plan to
introduce a replacement for this feature.

Unnecessary options on compile options and doc tasks have been deprecated

Gradle’s API allowed some properties that represented nested groups of properties to be replaced
wholesale with a setter method. This was awkward and unusual to do and would sometimes
require the use of internal APIs. The setters for these properties will be removed in Gradle 9.0 to
simplify the API and ensure consistent behavior. Instead of using the setter method, these
properties should be configured by calling the getter and configuring the object directly or using
the convenient configuration method. For example, in CompileOptions, instead of calling the
setForkOptions setter, you can call getForkOptions() or forkOptions(Action).

The affected properties are:

• CompileOptions.getDebugOptions

• CompileOptions.getForkOptions

• GroovyCompileOptions.getForkOptions

• ScalaDoc.getScalaDocOptions

• BaseScalaCompileOptions.getForkOptions

• BaseScalaCompileOptions.getIncrementalOptions

Deprecated Javadoc.isVerbose() and Javadoc.setVerbose(boolean)

These methods on Javadoc have been deprecated and will be removed in Gradle 9.0.

• isVerbose() is replaced by getOptions().isVerbose()

• Calling setVerbose(boolean) with true is replaced by getOptions().verbose()

• Calling setVerbose(false) did nothing.

Upgrading from 8.9 and earlier

Potential breaking changes

JavaCompile tasks may fail when using a JRE even if compilation is not necessary

The JavaCompile tasks may sometimes fail when using a JRE instead of a JDK. This is due to changes
in the toolchain resolution code, which enforces the presence of a compiler when one is requested.
The java-base plugin uses the JavaCompile tasks it creates to determine the default source and target
compatibility when sourceCompatibility/targetCompatibility or release are not set. With the new
enforcement, the absence of a compiler causes this to fail when only a JRE is provided, even if no
compilation is needed (e.g., in projects with no sources).

This can be fixed by setting the sourceCompatibility/targetCompatibility explicitly in the java
extension, or by setting sourceCompatibility/targetCompatibility or release in the relevant task(s).

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/compile/CompileOptions.html#getDebugOptions()
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/compile/CompileOptions.html#getForkOptions()
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/compile/GroovyCompileOptions.html#getForkOptions()
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/scala/ScalaDoc.html#getScalaDocOptions()
https://docs.gradle.org/8.12/javadoc/org/gradle/language/scala/tasks/BaseScalaCompileOptions.html#getForkOptions()
https://docs.gradle.org/8.12/javadoc/org/gradle/language/scala/tasks/BaseScalaCompileOptions.html#getIncrementalOptions()
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/javadoc/Javadoc.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/javadoc/Javadoc.html#isVerbose()
https://docs.gradle.org/8.12/javadoc/org/gradle/external/javadoc/MinimalJavadocOptions.html#isVerbose()
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/javadoc/Javadoc.html#setVerbose(boolean)
https://docs.gradle.org/8.12/javadoc/org/gradle/external/javadoc/MinimalJavadocOptions.html#verbose()

Upgrade to Kotlin 1.9.24

The embedded Kotlin has been updated from 1.9.23 to Kotlin 1.9.24.

Upgrade to Ant 1.10.14

Ant has been updated to Ant 1.10.14.

Upgrade to JaCoCo 0.8.12

JaCoCo has been updated to 0.8.12.

Upgrade to Groovy 3.0.22

Groovy has been updated to Groovy 3.0.22.

Deprecations

Running Gradle on older JVMs

Starting in Gradle 9.0, Gradle will require JVM 17 or later to run. Most Gradle APIs will be compiled
to target JVM 17 bytecode.

Gradle will still support compiling Java code to target JVM version 6 or later. The target JVM version
of the compiled code can be configured separately from the JVM version used to run Gradle.

All Gradle clients (wrapper, launcher, Tooling API and TestKit) will remain compatible with JVM 8
and will be compiled to target JVM 8 bytecode. Only the Gradle daemon will require JVM 17 or later.
These clients can be configured to run Gradle builds with a different JVM version than the one used
to run the client:

• Using Daemon JVM criteria (an incubating feature)

• Setting the org.gradle.java.home Gradle property

• Using the ConfigurableLauncher#setJavaHome method on the Tooling API

Alternatively, the JAVA_HOME environment variable can be set to a JVM 17 or newer, which will run
both the client and daemon with the same version of the JVM.

Running Gradle builds with --no-daemon or using ProjectBuilder in tests will require JVM version
17 or later. The worker API will remain compatible with JVM 8, and running JVM tests will require
JVM 8.

We decided to upgrade the minimum version of the Java runtime for a number of reasons:

• Dependencies are beginning to drop support for older versions and may not release security
patches.

• Significant language improvements between Java 8 and Java 17 cannot be used without
upgrading.

• Some of the most popular plugins already require JVM 17 or later.

• Download metrics for Gradle distributions show that JVM 17 is widely used.

https://github.com/JetBrains/kotlin/releases/tag/v1.9.24
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.10.14.html
https://www.jacoco.org/jacoco/trunk/doc/changes.html
https://groovy-lang.org/changelogs/changelog-3.0.22.html
https://docs.gradle.org/8.12/javadoc/org/gradle/tooling/ConfigurableLauncher.html#setJavaHome(java.io.File)
https://docs.gradle.org/8.12/javadoc/org/gradle/testfixtures/ProjectBuilder.html

Deprecated consuming non-consumable configurations from Ivy

In prior versions of Gradle, it was possible to consume non-consumable configurations of a project
using published Ivy metadata. An Ivy dependency may sometimes be substituted for a project
dependency, either explicitly through the DependencySubstitutions API or through included builds.
When this happens, configurations in the substituted project could be selected that were marked as
non-consumable.

Consuming non-consumable configurations in this manner is deprecated and will result in an error
in Gradle 9.0.

Deprecated extending configurations in the same project

In prior versions of Gradle, it was possible to extend a configuration in a different project.

The hierarchy of a Project’s configurations should not be influenced by configurations in other
projects. Cross-project hierarchies can lead to unexpected behavior when configurations are
extended in a way that is not intended by the configuration’s owner.

Projects should also never access the mutable state of another project. Since Configurations are
mutable, extending configurations across project boundaries restricts the parallelism that Gradle
can apply.

Extending configurations in different projects is deprecated and will result in an error in Gradle
9.0.

Upgrading from 8.8 and earlier

Potential breaking changes

Change to toolchain provisioning

In previous versions of Gradle, toolchain provisioning could leave a partially provisioned toolchain
in place with a marker file indicating that the toolchain was fully provisioned. This could lead
to strange behavior with the toolchain. In Gradle 8.9, the toolchain is fully provisioned before the
marker file is written. However, to not detect potentially broken toolchains, a different marker file
(.ready) is used. This means all your existing toolchains will be re-provisioned the first time you use
them with Gradle 8.9. Gradle 8.9 also writes the old marker file (provisioned.ok) to indicate that the
toolchain was fully provisioned. This means that if you return to an older version of Gradle, an 8.9-
provisioned toolchain will not be re-provisioned.

Upgrade to Kotlin 1.9.23

The embedded Kotlin has been updated from 1.9.22 to Kotlin 1.9.23.

Change the encoding of daemon log files

In previous versions of Gradle, the daemon log file, located at $GRADLE_USER_HOME/daemon/8.12/, was
encoded with the default JVM encoding. This file is now always encoded with UTF-8 to prevent
clients who may use different default encodings from reading data incorrectly. This change may
affect third-party tools trying to read this file.

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.DependencySubstitutions.html
https://github.com/JetBrains/kotlin/releases/tag/v1.9.23

Compiling against Gradle implementation classpath

In previous versions of Gradle, Java projects that had no declared dependencies could implicitly
compile against Gradle’s runtime classes. This means that some projects were able to compile
without any declared dependencies even though they referenced Gradle runtime classes. This
situation is unlikely to arise in projects since IDE integration and test execution would be
compromised. However, if you need to utilize the Gradle API, declare a gradleApi dependency or
apply the java-gradle-plugin plugin.

Configuration cache implementation packages now under org.gradle.internal

References to Gradle types not part of the public API should be avoided, as their direct use is
unsupported. Gradle internal implementation classes may suffer breaking changes (or be renamed
or removed) from one version to another without warning.

Users need to distinguish between the API and internal parts of the Gradle codebase. This is
typically achieved by including internal in the implementation package names. However, before
this release, the configuration cache subsystem did not follow this pattern.

To address this issue, all code initially under the org.gradle.configurationcache* packages has been
moved to new internal packages (org.gradle.internal.*).

File-system watching on macOS 11 (Big Sur) and earlier is disabled

Since Gradle 8.8, file-system watching has only been supported on macOS 12 (Monterey) and later.
We added a check to automatically disable file-system watching on macOS 11 (Big Sur) and earlier
versions.

Possible change to JDK8-based compiler output when annotation processors are used

The Java compilation infrastructure has been updated to use the Problems API. This change will
supply the Tooling API clients with structured, rich information about compilation issues.

The feature should not have any visible impact on the usual build output, with JDK8 being an
exception. When annotation processors are used in the compiler, the output message differs
slightly from the previous ones.

The change mainly manifests itself in typename printed. For example, Java standard types like
java.lang.String will be reported as java.lang.String instead of String.

Upgrading from 8.7 and earlier

Deprecations

Deprecate mutating configuration after observation

To ensure the accuracy of dependency resolution, Gradle checks that Configurations are not
mutated after they have been used as part of a dependency graph.

• Resolvable configurations should not have their resolution strategy, dependencies, hierarchy,
etc., modified after they have been resolved.

• Consumable configurations should not have their dependencies, hierarchy, attributes, etc.
modified after they have been published or consumed as a variant.

• Dependency scope configurations should not have their dependencies, constraints, etc.,
modified after a configuration that extends from them is observed.

In prior versions of Gradle, many of these circumstances were detected and handled by failing the
build. However, some cases went undetected or did not trigger build failures. In Gradle 9.0, all
changes to a configuration, once observed, will become an error. After a configuration of any type
has been observed, it should be considered immutable. This validation covers the following
properties of a configuration:

• Resolution Strategy

• Dependencies

• Constraints

• Exclude Rules

• Artifacts

• Role (consumable, resolvable, dependency scope)

• Hierarchy (extendsFrom)

• Others (Transitive, Visible)

Starting in Gradle 8.8, a deprecation warning will be emitted in cases that were not already an
error. Usually, this deprecation is caused by mutating a configuration in a beforeResolve hook. This
hook is only executed after a configuration is fully resolved but not when it is partially resolved for
computing task dependencies.

Consider the following code that showcases the deprecated behavior:

build.gradle.kts

plugins {
 id("java-library")
}

configurations.runtimeClasspath {
 // `beforeResolve` is not called before the configuration is partially
resolved for
 // build dependencies, but only before a full graph resolution.
 // Configurations should not be mutated in this hook
 incoming.beforeResolve {
 // Add a dependency on `com:foo` if not already present
 if (allDependencies.none { it.group == "com" && it.name == "foo" }) {

configurations.implementation.get().dependencies.add(project.dependencies.cre
ate("com:foo:1.0"))
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#beforeResolve-org.gradle.api.Action-

 }
}

tasks.register("resolve") {
 val conf: FileCollection = configurations["runtimeClasspath"]

 // Wire build dependencies
 dependsOn(conf)

 // Resolve dependencies
 doLast {
 assert(conf.files.map { it.name } == listOf("foo-1.0.jar"))
 }
}

For the following use cases, consider these alternatives when replacing a beforeResolve hook:

• Adding dependencies: Use a DependencyFactory and addLater or addAllLater on
DependencySet.

• Changing dependency versions: Use preferred version constraints.

• Adding excludes: Use Component Metadata Rules to adjust dependency-level excludes, or
withDependencies to add excludes to a configuration.

• Roles: Configuration roles should be set upon creation and not changed afterward.

• Hierarchy: Configuration hierarchy (extendsFrom) should be set upon creation. Mutating the
hierarchy prior to resolution is highly discouraged but permitted within a withDependencies
hook.

• Resolution Strategy: Mutating a configuration’s ResolutionStrategy is still permitted in a
beforeResolve hook; however, this is not recommended.

Filtered Configuration file and fileCollection methods are deprecated

In an ongoing effort to simplify the Gradle API, the following methods that support filtering based
on declared dependencies have been deprecated:

On Configuration:

• files(Dependency…)

• files(Spec)

• files(Closure)

• fileCollection(Dependency…)

• fileCollection(Spec)

• fileCollection(Closure)

On ResolvedConfiguration:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/dsl/DependencyFactory.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/DependencySet.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Configuration.html#withDependencies-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Configuration.html#withDependencies-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Configuration.html--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ResolvedConfiguration.html--

• getFiles(Spec)

• getFirstLevelModuleDependencies(Spec)

On LenientConfiguration:

• getFirstLevelModuleDependencies(Spec)

• getFiles(Spec)

• getArtifacts(Spec)

To mitigate this deprecation, consider the example below that leverages the ArtifactView API along
with the componentFilter method to select a subset of a Configuration’s artifacts:

build.gradle.kts

val conf by configurations.creating

dependencies {
 conf("com.thing:foo:1.0")
 conf("org.example:bar:1.0")
}

tasks.register("filterDependencies") {
 val files: FileCollection = conf.incoming.artifactView {
 componentFilter {
 when(it) {
 is ModuleComponentIdentifier ->
 it.group == "com.thing" && it.module == "foo"
 else -> false
 }
 }
 }.files

 doLast {
 assert(files.map { it.name } == listOf("foo-1.0.jar"))
 }
}

build.gradle

configurations {
 conf
}

dependencies {
 conf "com.thing:foo:1.0"
 conf "org.example:bar:1.0"

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/LenientConfiguration.html--

}

tasks.register("filterDependencies") {
 FileCollection files = configurations.conf.incoming.artifactView {
 componentFilter {
 it instanceof ModuleComponentIdentifier
 && it.group == "com.thing"
 && it.module == "foo"
 }
 }.files

 doLast {
 assert files*.name == ["foo-1.0.jar"]
 }
}

Contrary to the deprecated Dependency filtering methods, componentFilter does not consider the
transitive dependencies of the component being filtered. This allows for more granular control over
which artifacts are selected.

Deprecated Namer of Task and Configuration

Task and Configuration have a Namer inner class (also called Namer) that can be used as a common
way to retrieve the name of a task or configuration. Now that these types implement Named, these
classes are no longer necessary and have been deprecated. They will be removed in Gradle 9.0. Use
Named.Namer.INSTANCE instead.

The super interface, Namer, is not being deprecated.

Unix mode-based file permissions deprecated

A new API for defining file permissions has been added in Gradle 8.3, see:

• FilePermissions.

• ConfigurableFilePermissions.

The new API has now been promoted to stable, and the old methods have been deprecated:

• CopyProcessingSpec.getFileMode

• CopyProcessingSpec.setFileMode

• CopyProcessingSpec.getDirMode

• CopyProcessingSpec.setDirMode

• FileTreeElement.getMode

• FileCopyDetails.setMode

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Namer.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Named.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Named.Namer.html#INSTANCE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Namer.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FilePermissions.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFilePermissions.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopyProcessingSpec.html#getFileMode--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopyProcessingSpec.html#setFileMode-java.lang.Integer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopyProcessingSpec.html#getDirMode--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopyProcessingSpec.html#setDirMode-java.lang.Integer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTreeElement.html#getMode--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileCopyDetails.html#setMode-int-

Deprecated setting retention period directly on local build cache

In previous versions, cleanup of the local build cache entries ran every 24 hours, and this interval
could not be configured. The retention period was configured using
buildCache.local.removeUnusedEntriesAfterDays.

In Gradle 8.0, a new mechanism was added to configure the cleanup and retention periods for
various resources in Gradle User Home. In Gradle 8.8, this mechanism was extended to permit the
retention configuration of local build cache entries, providing improved control and consistency.

• Specifying Cleanup.DISABLED or Cleanup.ALWAYS will now prevent or force the cleanup of the local
build cache

• Build cache entry retention is now configured via an init-script, in the same manner as other
caches.

If you want build cache entries to be retained for 30 days, remove any calls to the deprecated
method:

buildCache {
 local {
 // Remove this line
 removeUnusedEntriesAfterDays = 30
 }
}

Add a file like this in ~/.gradle/init.d:

beforeSettings {
 caches {
 buildCache.setRemoveUnusedEntriesAfterDays(30)
 }
}

Calling buildCache.local.removeUnusedEntriesAfterDays is deprecated, and this method will be
removed in Gradle 9.0. If set to a non-default value, this deprecated setting will take precedence
over Settings.caches.buildCache.setRemoveUnusedEntriesAfterDays().

Deprecated Kotlin DSL gradle-enterprise plugin block extension

In settings.gradle.kts (Kotlin DSL), you can use gradle-enterprise in the plugins block to apply the
Gradle Enterprise plugin with the same version as gradle --scan.

plugins {
 `gradle-enterprise`
}

There is no equivalent to this in settings.gradle (Groovy DSL).

directory_layout.html#dir:gradle_user_home:configure_cache_cleanup
directory_layout.html#dir:gradle_user_home:configure_cache_cleanup
directory_layout.html#dir:gradle_user_home:configure_cache_cleanup
https://docs.gradle.org/8.12/javadoc/org/gradle/caching/local/DirectoryBuildCache.html#setRemoveUnusedEntriesAfterDays-int-

Gradle Enterprise has been renamed Develocity, and the com.gradle.enterprise plugin has been
renamed com.gradle.develocity. Therefore, the gradle-enterprise plugin block extension has been
deprecated and will be removed in Gradle 9.0.

The Develocity plugin must be applied with an explicit plugin ID and version. There is no
develocity shorthand available in the plugins block:

plugins {
 id("com.gradle.develocity") version "3.17.3"
}

If you want to continue using the Gradle Enterprise plugin, you can specify the deprecated plugin
ID:

plugins {
 id("com.gradle.enterprise") version "3.17.3"
}

We encourage you to use the latest released Develocity plugin version, even when using an older
Gradle version.

Potential breaking changes

Changes in the Problems API

We have implemented several refactorings of the Problems API, including a significant change in
how problem definitions and contextual information are handled. The complete design
specification can be found here.

In implementing this spec, we have introduced the following breaking changes to the ProblemSpec
interface:

• The label(String) and description(String) methods have been replaced with the id(String,
String) method and its overloaded variants.

Changes to collection properties

The following incubating API introduced in 8.7 have been removed:

• MapProperty.insert*(…)

• HasMultipleValues.append*(…)

Replacements that better handle conventions are under consideration for a future 8.x release.

Upgrade to Groovy 3.0.21

Groovy has been updated to Groovy 3.0.21.

Since the previous version was 3.0.17, the 3.0.18 and 3.0.19, and 3.0.20 changes are also included.

https://plugins.gradle.org/plugin/com.gradle.develocity
https://docs.google.com/document/d/1T_vM-Upa23aA21sanFTTLZa3j9xV6R32djJk6-muWzI/edit#heading=h.610fausqnpu6
https://groovy-lang.org/changelogs/changelog-3.0.21.html
https://groovy-lang.org/changelogs/changelog-3.0.18.html
https://groovy-lang.org/changelogs/changelog-3.0.19.html
https://groovy-lang.org/changelogs/changelog-3.0.20.html

Some changes in static type checking have resulted in source-code incompatibilities. Starting with
3.0.18, if you cast a closure to an Action without generics, the closure parameter will be Object
instead of any explicit type specified. This can be fixed by adding the appropriate type to the cast,
and the redundant parameter declaration can be removed:

// Before
tasks.create("foo", { Task it -> it.description = "Foo task" } as Action)

// Fixed
tasks.create("foo", { it.description = "Foo task" } as Action<Task>)

Upgrade to ASM 9.7

ASM was upgraded from 9.6 to 9.7 to ensure earlier compatibility for Java 23.

Upgrading from 8.6 and earlier

Potential breaking changes

Upgrade to Kotlin 1.9.22

The embedded Kotlin has been updated from 1.9.10 to Kotlin 1.9.22.

Upgrade to Apache SSHD 2.10.0

Apache SSHD has been updated from 2.0.0 to 2.10.0.

Replacement and upgrade of JSch

JSch has been replaced by com.github.mwiede:jsch and updated from 0.1.55 to 0.2.16

Upgrade to Eclipse JGit 5.13.3

Eclipse JGit has been updated from 5.7.0 to 5.13.3.

This includes reworking the way that Gradle configures JGit for SSH operations by moving from
JSch to Apache SSHD.

Upgrade to Apache Commons Compress 1.25.0

Apache Commons Compress has been updated from 1.21 to 1.25.0. This change may affect the
checksums of the produced jars, zips, and other archive types because the metadata of the
produced artifacts may differ.

Upgrade to ASM 9.6

ASM was upgraded from 9.5 to 9.6 for better support of multi-release jars.

Upgrade of the version catalog parser

The version catalog parser has been upgraded and is now compliant with version 1.0.0 of the TOML

https://asm.ow2.io/versions.html
https://github.com/JetBrains/kotlin/releases/tag/v1.9.22
https://mina.apache.org/sshd-project/download_2.10.0.html
http://www.jcraft.com/jsch/
https://github.com/mwiede/jsch
https://github.com/mwiede/jsch/releases/tag/jsch-0.2.16
https://projects.eclipse.org/projects/technology.jgit/releases/5.13.3
https://commons.apache.org/proper/commons-compress/changes-report.html#a1.25.0
https://asm.ow2.io/versions.html
https://toml.io/en/v1.0.0

spec.

This should not impact catalogs that use the recommended syntax or were generated by Gradle for
publication.

Deprecations

Deprecated registration of plugin conventions

Using plugin conventions has been emitting warnings since Gradle 8.2. Now, registering plugin
conventions will also trigger deprecation warnings. For more information, see the section about
plugin convention deprecation.

Referencing tasks and domain objects by "name"() in Kotlin DSL

In Kotlin DSL, it is possible to reference a task or other domain object by its name using the
"name"() notation.

There are several ways to look up an element in a container by name:

tasks {
 "wrapper"() // 1 - returns TaskProvider<Task>
 "wrapper"(Wrapper::class) // 2 - returns TaskProvider<Wrapper>
 "wrapper"(Wrapper::class) { // 3 - configures a task named wrapper of type Wrapper
 }
 "wrapper" { // 4 - configures a task named wrapper of type Task
 }
}

The first notation is deprecated and will be removed in Gradle 9.0. Instead of using "name"() to
reference a task or domain object, use named("name") or one of the other supported notations.

The above example would be written as:

tasks {
 named("wrapper") // returns TaskProvider<Task>
}

The Gradle API and Groovy build scripts are not impacted by this.

Deprecated invalid URL decoding behavior

Before Gradle 8.3, Gradle would decode a CharSequence given to Project.uri(Object) using an
algorithm that accepted invalid URLs and improperly decoded others. Gradle now uses the URI class
to parse and decode URLs, but with a fallback to the legacy behavior in the event of an error.

Starting in Gradle 9.0, the fallback will be removed, and an error will be thrown instead.

To fix a deprecation warning, invalid URLs that require the legacy behavior should be re-encoded

https://toml.io/en/v1.0.0
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:uri(java.lang.Object)

to be valid URLs, such as in the following examples:

Table 3. Legacy URL Conversions

Original Input New Input Reasoning

file:relative/path relative/path The file scheme does not
support relative paths.

file:relative/path%21 relative/path! Without a scheme, the path is
taken as-is, without decoding.

https://example.com/my folder/ https://example.com/
my%20folder/

Spaces are not valid in URLs.

https://example.com/
my%%badly%encoded%path

https://example.com/
my%25%25badly%25encoded%25path

% must be encoded as %25 in
URLs, and no %-escapes should
be invalid.

Deprecated SelfResolvingDependency

The SelfResolvingDependency interface has been deprecated for removal in Gradle 9.0. This type
dates back to the first versions of Gradle, where some dependencies could be resolved
independently. Now, all dependencies should be resolved as part of a dependency graph using a
Configuration.

Currently, ProjectDependency and FileCollectionDependency implement this interface. In Gradle 9.0,
these types will no longer implement SelfResolvingDependency. Instead, they will both directly
implement Dependency.

As such, the following methods of ProjectDependency and FileCollectionDependency will no longer be
available:

• resolve

• resolve(boolean)

• getBuildDependencies

Consider the following scripts that showcase the deprecated interface and its replacement:

build.gradle.kts

plugins {
 id("java-library")
}

dependencies {
 implementation(files("bar.txt"))
 implementation(project(":foo"))
}

tasks.register("resolveDeprecated") {

https://example.com/my
https://example.com/my%20folder/
https://example.com/my%20folder/
https://example.com/my%%badly%encoded%path
https://example.com/my%%badly%encoded%path
https://example.com/my%25%25badly%25encoded%25path
https://example.com/my%25%25badly%25encoded%25path

 // Wire build dependencies (calls getBuildDependencies)
 dependsOn(configurations["implementation"].dependencies.toSet())

 // Resolve dependencies
 doLast {

configurations["implementation"].dependencies.withType<FileCollectionDependen
cy>() {
 assert(resolve().map { it.name } == listOf("bar.txt"))
 assert(resolve(true).map { it.name } == listOf("bar.txt"))
 }

configurations["implementation"].dependencies.withType<ProjectDependency>() {
 // These methods do not even work properly.
 assert(resolve().map { it.name } == listOf<String>())
 assert(resolve(true).map { it.name } == listOf<String>())
 }
 }
}

tasks.register("resolveReplacement") {
 val conf = configurations["runtimeClasspath"]

 // Wire build dependencies
 dependsOn(conf)

 // Resolve dependencies
 val files = conf.files
 doLast {
 assert(files.map { it.name } == listOf("bar.txt", "foo.jar"))
 }
}

Deprecated members of the org.gradle.util package now report their deprecation

These members will be removed in Gradle 9.0.

• Collection.stringize(Collection)

Upgrading from 8.5 and earlier

Potential breaking changes

Upgrade to JaCoCo 0.8.11

JaCoCo has been updated to 0.8.11.

https://www.jacoco.org/jacoco/trunk/doc/changes.html

DependencyAdder renamed to DependencyCollector

The incubating DependencyAdder interface has been renamed to DependencyCollector. A
getDependencies method has been added to the interface that returns all declared dependencies.

Deprecations

Deprecated calling registerFeature using the main source set

Calling registerFeature on the java extension using the main source set is deprecated and will
change behavior in Gradle 9.0.

Currently, features created while calling usingSourceSet with the main source set are initialized
differently than features created while calling usingSourceSet with any other source set. Previously,
when using the main source set, new implementation, compileOnly, runtimeOnly, api, and
compileOnlyApi configurations were created, and the compile and runtime classpaths of the main
source set were configured to extend these configurations.

Starting in Gradle 9.0, the main source set will be treated like any other source set. With the java-
library plugin applied (or any other plugin that applies the java plugin), calling usingSourceSet with
the main source set will throw an exception. This is because the java plugin already configures a
main feature. Only if the java plugin is not applied will the main source set be permitted when calling
usingSourceSet.

Code that currently registers features with the main source set, such as:

build.gradle.kts

plugins {
 id("java-library")
}

java {
 registerFeature("feature") {
 usingSourceSet(sourceSets["main"])
 }
}

build.gradle

plugins {
 id("java-library")
}

java {
 registerFeature("feature") {
 usingSourceSet(sourceSets.main)
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/dsl/DependencyCollector.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/JavaPluginExtension.html#registerFeature-java.lang.String-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/JavaPluginExtension.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/FeatureSpec.html#usingSourceSet-org.gradle.api.tasks.SourceSet-

}

Should instead, create a separate source set for the feature and register the feature with that source
set:

build.gradle.kts

plugins {
 id("java-library")
}

sourceSets {
 create("feature")
}

java {
 registerFeature("feature") {
 usingSourceSet(sourceSets["feature"])
 }
}

build.gradle

plugins {
 id("java-library")
}

sourceSets {
 feature
}

java {
 registerFeature("feature") {
 usingSourceSet(sourceSets.feature)
 }
}

Deprecated publishing artifact dependencies with explicit name to Maven repositories

Publishing dependencies with an explicit artifact with a name different from the dependency’s
artifactId to Maven repositories has been deprecated. This behavior is still permitted when
publishing to Ivy repositories. It will result in an error in Gradle 9.0.

When publishing to Maven repositories, Gradle will interpret the dependency below as if it were
declared with coordinates org:notfoo:1.0:

build.gradle.kts

dependencies {
 implementation("org:foo:1.0") {
 artifact {
 name = "notfoo"
 }
 }
}

build.gradle

dependencies {
 implementation("org:foo:1.0") {
 artifact {
 name = "notfoo"
 }
 }
}

Instead, this dependency should be declared as:

build.gradle.kts

dependencies {
 implementation("org:notfoo:1.0")
}

build.gradle

dependencies {
 implementation("org:notfoo:1.0")
}

Deprecated ArtifactIdentifier

The ArtifactIdentifier class has been deprecated for removal in Gradle 9.0.

Deprecate mutating DependencyCollector dependencies after observation

Starting in Gradle 9.0, mutating dependencies sourced from a DependencyCollector, after those
dependencies have been observed will result in an error. The DependencyCollector interface is used
to declare dependencies within the test suites DSL.

Consider the following example where a test suite’s dependency is mutated after it is observed:

build.gradle.kts

plugins {
 id("java-library")
}

testing.suites {
 named<JvmTestSuite>("test") {
 dependencies {
 // Dependency is declared on a `DependencyCollector`
 implementation("com:foo")
 }
 }
}

configurations.testImplementation {
 // Calling `all` here realizes/observes all lazy sources, including the
`DependencyCollector`
 // from the test suite block. Operations like resolving a configuration
similarly realize lazy sources.
 dependencies.all {
 if (this is ExternalDependency && group == "com" && name == "foo" &&
version == null) {
 // Dependency is mutated after observation
 version {
 require("2.0")
 }
 }
 }
}

In the above example, the build logic uses iteration and mutation to try to set a default version for a
particular dependency if the version is not already set. Build logic like the above example creates
challenges in resolving declared dependencies, as reporting tools will display this dependency as if
the user declared the version as "2.0", even though they never did. Instead, the build logic can avoid
iteration and mutation by declaring a preferred version constraint on the dependency’s

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/dsl/DependencyCollector.html

coordinates. This allows the dependency management engine to use the version declared on the
constraint if no other version is declared.

Consider the following example that replaces the above iteration with an indiscriminate preferred
version constraint:

build.gradle.kts

dependencies {
 constraints {
 testImplementation("com:foo") {
 version {
 prefer("2.0")
 }
 }
 }
}

Upgrading from 8.4 and earlier

Potential breaking changes

Upgrade to Kotlin 1.9.20

The embedded Kotlin has been updated to Kotlin 1.9.20.

Changes to Groovy task conventions

The groovy-base plugin is now responsible for configuring source and target compatibility version
conventions on all GroovyCompile tasks.

If you are using this task without applying grooy-base, you will have to manually set compatibility
versions on these tasks. In general, the groovy-base plugin should be applied whenever working
with Groovy language tasks.

Provider.filter

The type of argument passed to Provider.filter is changed from Predicate to Spec for a more
consistent API. This change should not affect anyone using Provider.filter with a lambda
expression. However, this might affect plugin authors if they don’t use SAM conversions to create a
lambda.

Deprecations

Deprecated members of the org.gradle.util package now report their deprecation

These members will be removed in Gradle 9.0:

https://github.com/JetBrains/kotlin/releases/tag/v1.9.20

• VersionNumber.parse(String)

• VersionNumber.compareTo(VersionNumber)

Deprecated depending on resolved configuration

When resolving a Configuration, selecting that same configuration as a variant is sometimes
possible. Configurations should be used for one purpose (resolution, consumption or dependency
declarations), so this can only occur when a configuration is marked as both consumable and
resolvable.

This can lead to circular dependency graphs, as the resolved configuration is used for two purposes.

To avoid this problem, plugins should mark all resolvable configurations as canBeConsumed=false or
use the resolvable(String) configuration factory method when creating configurations meant for
resolution.

In Gradle 9.0, consuming configurations in this manner will no longer be allowed and result in an
error.

Including projects without an existing directory

Gradle will warn if a project is added to the build where the associated projectDir does not exist or
is not writable. Starting with version 9.0, Gradle will not run builds if a project directory is missing
or read-only. If you intend to dynamically synthesize projects, make sure to create directories for
them as well:

settings.gradle.kts

include("project-without-directory")
project(":project-without-directory").projectDir.mkdirs()

settings.gradle

include 'project-without-directory'
project(":project-without-directory").projectDir.mkdirs()

Upgrading from 8.3 and earlier

Potential breaking changes

Upgrade to Kotlin 1.9.10

The embedded Kotlin has been updated to Kotlin 1.9.10.

https://github.com/JetBrains/kotlin/releases/tag/v1.9.10

XML parsing now requires recent parsers

Gradle 8.4 now configures XML parsers with security features enabled. If your build logic depends
on old XML parsers that don’t support secure parsing, your build may fail. If you encounter a
failure, check and update or remove any dependency on legacy XML parsers.

If you are an Android user, please upgrade your AGP version to 8.3.0 or higher to fix the issue
caused by AGP itself. See the Update XML parser used in AGP for Gradle 8.4 compatibility for more
details.

If you are unable to upgrade XML parsers coming from your build logic dependencies, you can
force the use of the XML parsers built into the JVM. In OpenJDK, for example, this can be done by
adding the following to gradle.properties:

systemProp.javax.xml.parsers.SAXParserFactory=com.sun.org.apache.xerces.internal.jaxp.
SAXParserFactoryImpl
systemProp.javax.xml.transform.TransformerFactory=com.sun.org.apache.xalan.internal.xs
ltc.trax.TransformerFactoryImpl
systemProp.javax.xml.parsers.DocumentBuilderFactory=com.sun.org.apache.xerces.internal
.jaxp.DocumentBuilderFactoryImpl

See the CVE-2023-42445 advisory for more details and ways to enable secure XML processing on
previous Gradle versions.

EAR plugin with customized JEE 1.3 descriptor

Gradle 8.4 forbids external XML entities when parsing XML documents. If you use the EAR plugin
and configure the application.xml descriptor via the EAR plugin’s DSL and customize the descriptor
using withXml {} and use asElement{} in the customization block, then the build will now fail for
security reasons.

build.gradle.kts

plugins {
 id("ear")
}
ear {
 deploymentDescriptor {
 version = "1.3"
 withXml {
 asElement()
 }
 }
}

https://issuetracker.google.com/u/0/issues/306301014
https://github.com/gradle/gradle/security/advisories/GHSA-mrff-q8qj-xvg8

build.gradle

plugins {
 id("ear")
}
ear {
 deploymentDescriptor {
 version = "1.3"
 withXml {
 asElement()
 }
 }
}

If you happen to use asNode() instead of asElement(), then nothing changes, given asNode() simply
ignores external DTDs.

You can work around this by running your build with the javax.xml.accessExternalDTD system
property set to http.

On the command line, add this to your Gradle invocation:

-Djavax.xml.accessExternalDTD=http

To make this workaround persistent, add the following line to your gradle.properties:

systemProp.javax.xml.accessExternalDTD=http

Note that this will enable HTTP access to external DTDs for the whole build JVM. See the JAXP
documentation for more details.

Deprecations

Deprecated GenerateMavenPom methods

The following methods on GenerateMavenPom are deprecated and will be removed in Gradle 9.0. They
were never intended to be public API.

• getVersionRangeMapper

• withCompileScopeAttributes

• withRuntimeScopeAttributes

https://docs.oracle.com/en/java/javase/13/security/java-api-xml-processing-jaxp-security-guide.html#GUID-8CD65EF5-D113-4D5C-A564-B875C8625FAC
https://docs.oracle.com/en/java/javase/13/security/java-api-xml-processing-jaxp-security-guide.html#GUID-8CD65EF5-D113-4D5C-A564-B875C8625FAC
https://docs.gradle.org/8.12/javadoc/org/gradle/api/publish/maven/tasks/GenerateMavenPom.html

Upgrading from 8.2 and earlier

Potential breaking changes

Deprecated Project.buildDir can cause script compilation failure

With the deprecation of Project.buildDir, buildscripts that are compiled with warnings as errors
could fail if the deprecated field is used.

See the deprecation entry for details.

TestLauncher API no longer ignores build failures

The TestLauncher interface is part of the Tooling API, specialized for running tests. It is a logical
extension of the BuildLauncher that can only launch tasks. A discrepancy has been reported in their
behavior: if the same failing test is executed, BuildLauncher will report a build failure, but
TestLauncher won’t. Originally, this was a design decision in order to continue the execution and
run the tests in all test tasks and not stop at the first failure. At the same time, this behavior can be
confusing for users as they can experience a failing test in a successful build. To make the two APIs
more uniform, we made TestLauncher also fail the build, which is a potential breaking change.
Tooling API clients should explicitly pass --continue to the build to continue the test execution even
if a test task fails.

Fixed variant selection behavior with ArtifactView and ArtifactCollection

The dependency resolution APIs for selecting different artifacts or files
(Configuration.getIncoming().artifactView { } and Configuration.getIncoming().getArtifacts())
captured immutable copies of the underlying `Configuration’s attributes to use for variant
selection. If the `Configuration’s attributes were changed after these methods were called, the
artifacts selected by these methods could be unexpected.

Consider the case where the set of attributes on a Configuration is changed after an ArtifactView is
created:

build.gradle.kts

tasks {
 myTask {
 inputFiles.from(configurations.classpath.incoming.artifactView {
 attributes {
 // Add attributes to select a different type of artifact
 }
 }.files)
 }
}

configurations {
 classpath {
 attributes {

 // Add more attributes to the configuration
 }
 }
}

The inputFiles property of myTask uses an artifact view to select a different type of artifact from the
configuration classpath. Since the artifact view was created before the attributes were added to the
configuration, Gradle could not select the correct artifact.

Some builds may have worked around this by also putting the additional attributes into the artifact
view. This is no longer necessary.

Upgrade to Kotlin 1.9.0

The embedded Kotlin has been updated from 1.8.20 to Kotlin 1.9.0. The Kotlin language and API
levels for the Kotlin DSL are still set to 1.8 for backward compatibility. See the release notes for
Kotlin 1.8.22 and Kotlin 1.8.21.

Kotlin 1.9 dropped support for Kotlin language and API level 1.3. If you build Gradle plugins written
in Kotlin with this version of Gradle and need to support Gradle <7.0 you need to stick to using the
Kotlin Gradle Plugin <1.9.0 and configure the Kotlin language and API levels to 1.3. See the
Compatibility Matrix for details about other versions.

Eager evaluation of Configuration attributes

Gradle 8.3 updates the org.gradle.libraryelements and org.gradle.jvm.version attributes of JVM
Configurations to be present at the time of creation, as opposed to previously, where they were only
present after the Configuration had been resolved or consumed. In particular, the value for
org.gradle.jvm.version relies on the project’s configured toolchain, meaning that querying the
value for this attribute will finalize the value of the project’s Java toolchain.

Plugins or build logic that eagerly queries the attributes of JVM configurations may now cause the
project’s Java toolchain to be finalized earlier than before. Attempting to modify the toolchain after
it has been finalized will result in error messages similar to the following:

The value for property 'implementation' is final and cannot be changed any further.
The value for property 'languageVersion' is final and cannot be changed any further.
The value for property 'vendor' is final and cannot be changed any further.

This situation may arise when plugins or build logic eagerly query an existing JVM Configuration’s
attributes to create a new Configuration with the same attributes. Previously, this logic would have
omitted the two above-noted attributes entirely, while now, the same logic will copy the attributes
and finalize the project’s Java toolchain. To avoid early toolchain finalization, attribute-copying
logic should be updated to query the source Configuration’s attributes lazily:

https://github.com/JetBrains/kotlin/releases/tag/v1.9.0
https://github.com/JetBrains/kotlin/releases/tag/v1.8.22
https://github.com/JetBrains/kotlin/releases/tag/v1.8.21

build.gradle.kts

fun <T> copyAttribute(attribute: Attribute<T>, from: AttributeContainer, to:
AttributeContainer) =
 to.attributeProvider<T>(attribute, provider {
from.getAttribute(attribute)!! })

val source = configurations["runtimeClasspath"].attributes
configurations {
 create("customRuntimeClasspath") {
 source.keySet().forEach { key ->
 copyAttribute(key, source, attributes)
 }
 }
}

build.gradle

def source = configurations.runtimeClasspath.attributes
configurations {
 customRuntimeClasspath {
 source.keySet().each { key ->
 attributes.attributeProvider(key, provider { source.getAttribute
(key) })
 }
 }
}

Deprecations

Deprecated Project.buildDir is to be replaced by Project.layout.buildDirectory

The Project.buildDir property is deprecated. It uses eager APIs and has ordering issues if the value
is read in build logic and then later modified. It could result in outputs ending up in different
locations.

It is replaced by a DirectoryProperty found at Project.layout.buildDirectory. See the ProjectLayout
interface for details.

Note that, at this stage, Gradle will not print deprecation warnings if you still use Project.buildDir.
We know this is a big change, and we want to give the authors of major plugins time to stop using it.

Switching from a File to a DirectoryProperty requires adaptations in build logic. The main impact is
that you cannot use the property inside a String to expand it. Instead, you should leverage the dir
and file methods to compute your desired location.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.file.ProjectLayout.html

Here is an example of creating a file where the following:

build.gradle.kts

// Returns a java.io.File
file("$buildDir/myOutput.txt")

build.gradle

// Returns a java.io.File
file("$buildDir/myOutput.txt")

Should be replaced by:

build.gradle.kts

// Compatible with a number of Gradle lazy APIs that accept also java.io.File
val output: Provider<RegularFile> =
layout.buildDirectory.file("myOutput.txt")

// If you really need the java.io.File for a non lazy API
output.get().asFile

// Or a path for a lazy String based API
output.map { it.asFile.path }

build.gradle

// Compatible with a number of Gradle lazy APIs that accept also java.io.File
Provider<RegularFile> output = layout.buildDirectory.file("myOutput.txt")

// If you really need the java.io.File for a non lazy API
output.get().asFile

// Or a path for a lazy String based API
output.map { it.asFile.path }

Here is another example for creating a directory where the following:

build.gradle.kts

// Returns a java.io.File
file("$buildDir/outputLocation")

build.gradle

// Returns a java.io.File
file("$buildDir/outputLocation")

Should be replaced by:

build.gradle.kts

// Compatible with a number of Gradle APIs that accept a java.io.File
val output: Provider<Directory> = layout.buildDirectory.dir("outputLocation")

// If you really need the java.io.File for a non lazy API
output.get().asFile

// Or a path for a lazy String based API
output.map { it.asFile.path }

build.gradle

// Compatible with a number of Gradle APIs that accept a java.io.File
Provider<Directory> output = layout.buildDirectory.dir("outputLocation")

// If you really need the java.io.File for a non lazy API
output.get().asFile

// Or a path for a lazy String based API
output.map { it.asFile.path }

Deprecated ClientModule dependencies

ClientModule dependencies are deprecated and will be removed in Gradle 9.0.

Client module dependencies were originally intended to allow builds to override incorrect or

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ClientModule.html

missing component metadata of external dependencies by defining the metadata locally. This
functionality has since been replaced by Component Metadata Rules.

Consider the following client module dependency example:

build.gradle.kts

dependencies {
 implementation(module("org:foo:1.0") {
 dependency("org:bar:1.0")
 module("org:baz:1.0") {
 dependency("com:example:1.0")
 }
 })
}

build.gradle

dependencies {
 implementation module("org:foo:1.0") {
 dependency "org:bar:1.0"
 module("org:baz:1.0") {
 dependency "com:example:1.0"
 }
 }
}

This can be replaced with the following component metadata rule:

build-logic/src/main/kotlin/my-plugin.gradle.kts

@CacheableRule
abstract class AddDependenciesRule @Inject constructor(val dependencies:
List<String>) : ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 listOf("compile", "runtime").forEach { base ->
 context.details.withVariant(base) {
 withDependencies {
 dependencies.forEach {
 add(it)
 }
 }
 }
 }

 }
}

build.gradle.kts

dependencies {
 components {
 withModule<AddDependenciesRule>("org:foo") {
 params(listOf(
 "org:bar:1.0",
 "org:baz:1.0"
))
 }
 withModule<AddDependenciesRule>("org:baz") {
 params(listOf("com:example:1.0"))
 }
 }

 implementation("org:foo:1.0")
}

build-logic/src/main/groovy/my-plugin.gradle

@CacheableRule
abstract class AddDependenciesRule implements ComponentMetadataRule {

 List<String> dependencies

 @Inject
 AddDependenciesRule(List<String> dependencies) {
 this.dependencies = dependencies
 }

 @Override
 void execute(ComponentMetadataContext context) {
 ["compile", "runtime"].each { base ->
 context.details.withVariant(base) {
 withDependencies {
 dependencies.each {
 add(it)
 }
 }
 }
 }
 }
}

build.gradle

dependencies {
 components {
 withModule("org:foo", AddDependenciesRule) {
 params([
 "org:bar:1.0",
 "org:baz:1.0"
])
 }
 withModule("org:baz", AddDependenciesRule) {
 params(["com:example:1.0"])
 }
 }

 implementation "org:foo:1.0"
}

Earliest supported Develocity plugin version is 3.13.1

Starting in Gradle 9.0, the earliest supported Develocity plugin version is 3.13.1. The plugin versions
from 3.0 up to 3.13 will be ignored when applied.

Upgrade to version 3.13.1 or later of the Develocity plugin. You can find the latest available version
on the Gradle Plugin Portal. More information on the compatibility can be found here.

Upgrading from 8.1 and earlier

Potential breaking changes

Upgrade to Kotlin 1.8.20

The embedded Kotlin has been updated to Kotlin 1.8.20. For more information, see What’s new in
Kotlin 1.8.20.

Note that there is a known issue with Kotlin compilation avoidance that can cause OutOfMemory
exceptions in compileKotlin tasks if the compilation classpath contains very large JAR files. This
applies to builds applying the Kotlin plugin v1.8.20 or the kotlin-dsl plugin.

You can work around it by disabling Kotlin compilation avoidance in your gradle.properties file:

kotlin.incremental.useClasspathSnapshot=false

See KT-57757 for more information.

Upgrade to Groovy 3.0.17

Groovy has been updated to Groovy 3.0.17.

https://plugins.gradle.org/plugin/com.gradle.enterprise
https://plugins.gradle.org/plugin/com.gradle.enterprise
https://docs.gradle.com/enterprise/compatibility/#build_scans
https://github.com/JetBrains/kotlin/releases/tag/v1.8.20
https://kotlinlang.org/docs/whatsnew1820.html
https://kotlinlang.org/docs/whatsnew1820.html
https://youtrack.jetbrains.com/issue/KT-57757/
https://groovy-lang.org/changelogs/changelog-3.0.17.html

Since the previous version was 3.0.15, the 3.0.16 changes are also included.

Upgrade to Ant 1.10.13

Ant has been updated to Ant 1.10.13.

Since the previous version was 1.10.11, the 1.10.12 changes are also included.

Upgrade to CodeNarc 3.2.0

The default version of CodeNarc has been updated to CodeNarc 3.2.0.

Upgrade to PMD 6.55.0

PMD has been updated to PMD 6.55.0.

Since the previous version was 6.48.0, all changes since then are included.

Upgrade to JaCoCo 0.8.9

JaCoCo has been updated to 0.8.9.

Plugin compatibility changes

A plugin compiled with Gradle >= 8.2 that makes use of the Kotlin DSL functions Project.the<T>(),
Project.the(KClass) or Project.configure<T> {} cannot run on Gradle ⇐ 6.1.

Deferred or avoided configuration of some tasks

When performing dependency resolution, Gradle creates an internal representation of the
available Configurations. This requires inspecting all configurations and artifacts. Processing
artifacts created by tasks causes those tasks to be realized and configured.

This internal representation is now created more lazily, which can change the order in which tasks
are configured. Some tasks may never be configured.

This change may cause code paths that relied on a particular order to no longer function, such as
conditionally adding attributes to a configuration based on the presence of certain attributes.

This impacted the bnd plugin and JUnit5 build.

We recommend not modifying domain objects (configurations, source sets, tasks, etc) from
configuration blocks for other domain objects that may not be configured.

For example, avoid doing something like this:

 configurations {
 val myConfig = create("myConfig")
 }

 tasks.register("myTask") {
 // This is not safe, as the execution of this block may not occur, or may

https://groovy-lang.org/changelogs/changelog-3.0.16.html
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.10.13.html
https://github.com/apache/ant/blob/rel/1.10.12/WHATSNEW
https://github.com/CodeNarc/CodeNarc/blob/v3.2.0/CHANGELOG.md#version-320----jan-2023
https://docs.pmd-code.org/pmd-doc-6.55.0/pmd_release_notes.html
https://www.jacoco.org/jacoco/trunk/doc/changes.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/the.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/the.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/configure.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Configuration.html
https://github.com/bndtools/bnd/issues/5695

not occur in the order expected
 configurations["myConfig"].attributes {
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage::class.java,
Usage.JAVA_RUNTIME))
 }
 }

Deprecations

CompileOptions method deprecations

The following methods on CompileOptions are deprecated:

• getAnnotationProcessorGeneratedSourcesDirectory()

• setAnnotationProcessorGeneratedSourcesDirectory(File)

• setAnnotationProcessorGeneratedSourcesDirectory(Provider<File>)

Current usages of these methods should migrate to DirectoryProperty
getGeneratedSourceOutputDirectory()

Using configurations incorrectly

Gradle will now warn at runtime when methods of Configuration are called inconsistently with the
configuration’s intended usage.

This change is part of a larger ongoing effort to make the intended behavior of configurations more
consistent and predictable and to unlock further speed and memory improvements.

Currently, the following methods should only be called with these listed allowed usages:

• resolve() - RESOLVABLE configurations only

• files(Closure), files(Spec), files(Dependency…), fileCollection(Spec), fileCollection(Closure),
fileCollection(Dependency…) - RESOLVABLE configurations only

• getResolvedConfigurations() - RESOLVABLE configurations only

• defaultDependencies(Action) - DECLARABLE configurations only

• shouldResolveConsistentlyWith(Configuration) - RESOLVABLE configurations only

• disableConsistentResolution() - RESOLVABLE configurations only

• getDependencyConstraints() - DECLARABLE configurations only

• copy(), copy(Spec), copy(Closure), copyRecursive(), copyRecursive(Spec), copyRecursive(Closure) -
RESOLVABLE configurations only

Intended usage is noted in the Configuration interface’s Javadoc. This list is likely to grow in future
releases.

Starting in Gradle 9.0, using a configuration inconsistently with its intended usage will be
prohibited.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/compile/CompileOptions.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/compile/CompileOptions.html#getGeneratedSourceOutputDirectory--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/compile/CompileOptions.html#getGeneratedSourceOutputDirectory--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Configuration.html

Also note that although it is not currently restricted, the getDependencies() method is only intended
for use with DECLARABLE configurations. The getAllDependencies() method, which retrieves all
declared dependencies on a configuration and any superconfigurations, will not be restricted to
any particular usage.

Deprecated access to plugin conventions

The concept of conventions is outdated and superseded by extensions to provide custom DSLs.

To reflect this in the Gradle API, the following elements are deprecated:

• org.gradle.api.Project.getConvention()

• org.gradle.api.plugins.Convention

• org.gradle.api.internal.HasConvention

Gradle Core plugins still register their conventions in addition to their extensions for backwards
compatibility.

It is deprecated to access any of these conventions and their properties. Doing so will now emit a
deprecation warning. This will become an error in Gradle 9.0. You should prefer accessing the
extensions and their properties instead.

For specific examples, see the next sections.

Prominent community plugins already migrated to using extensions to provide custom DSLs. Some
of them still register conventions for backward compatibility. Registering conventions does not emit
a deprecation warning yet to provide a migration window. Future Gradle versions will do.

Also note that Plugins compiled with Gradle ⇐ 8.1 that make use of the Kotlin DSL functions
Project.the<T>(), Project.the(KClass) or Project.configure<T> {} will emit a deprecation warning
when run on Gradle >= 8.2. To fix this these plugins should be recompiled with Gradle >= 8.2 or
changed to access extensions directly using extensions.getByType<T>() instead.

Deprecated base plugin conventions

The convention properties contributed by the base plugin have been deprecated and scheduled for
removal in Gradle 9.0. For more context, see the section about plugin convention deprecation.

The conventions are replaced by the base { } configuration block backed by BasePluginExtension.
The old convention object defines the distsDirName, libsDirName, and archivesBaseName properties
with simple getter and setter methods. Those methods are available in the extension only to
maintain backward compatibility. Build scripts should solely use the properties of type Property:

build.gradle.kts

plugins {
 base
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#getConvention--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/Convention.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/the.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/the.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/configure.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.BasePluginExtension.html

base {
 archivesName.set("gradle")
 distsDirectory.set(layout.buildDirectory.dir("custom-dist"))
 libsDirectory.set(layout.buildDirectory.dir("custom-libs"))
}

build.gradle

plugins {
 id 'base'
}

base {
 archivesName = "gradle"
 distsDirectory = layout.buildDirectory.dir('custom-dist')
 libsDirectory = layout.buildDirectory.dir('custom-libs')
}

Deprecated application plugin conventions

The convention properties the application plugin contributed have been deprecated and scheduled
for removal in Gradle 9.0. For more context, see the section about plugin convention deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts

plugins {
 application
}

applicationDefaultJvmArgs = listOf("-Dgreeting.language=en") // Accessing a
convention

build.gradle

plugins {
 id 'application'
}

applicationDefaultJvmArgs = ['-Dgreeting.language=en'] // Accessing a
convention

This should be changed to use the application { } configuration block, backed by JavaApplication,
instead:

build.gradle.kts

plugins {
 application
}

application {
 applicationDefaultJvmArgs = listOf("-Dgreeting.language=en")
}

build.gradle

plugins {
 id 'application'
}

application {
 applicationDefaultJvmArgs = ['-Dgreeting.language=en']
}

Deprecated java plugin conventions

The convention properties the java plugin contributed have been deprecated and scheduled for
removal in Gradle 9.0. For more context, see the section about plugin convention deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts

plugins {
 id("java")
}

configure<JavaPluginConvention> { // Accessing a convention
 sourceCompatibility = JavaVersion.VERSION_18
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.JavaApplication.html

build.gradle

plugins {
 id 'java'
}

sourceCompatibility = 18 // Accessing a convention

This should be changed to use the java { } configuration block, backed by JavaPluginExtension,
instead:

build.gradle.kts

plugins {
 id("java")
}

java {
 sourceCompatibility = JavaVersion.VERSION_18
}

build.gradle

plugins {
 id 'java'
}

java {
 sourceCompatibility = JavaVersion.VERSION_18
}

Deprecated war plugin conventions

The convention properties contributed by the war plugin have been deprecated and scheduled for
removal in Gradle 9.0. For more context, see the section about plugin convention deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts

plugins {

https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.JavaPluginExtension.html

 id("war")
}

configure<WarPluginConvention> { // Accessing a convention
 webAppDirName = "src/main/webapp"
}

build.gradle

plugins {
 id 'war'
}

webAppDirName = 'src/main/webapp' // Accessing a convention

Clients should configure the war task directly. Also, tasks.withType(War.class).configureEach(…) can
be used to configure each task of type War.

build.gradle.kts

plugins {
 id("war")
}

tasks.war {
 webAppDirectory.set(file("src/main/webapp"))
}

build.gradle

plugins {
 id 'war'
}

war {
 webAppDirectory = file('src/main/webapp')
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/DomainObjectCollection.html#withType-java.lang.Class-

Deprecated ear plugin conventions

The convention properties contributed by the ear plugin have been deprecated and scheduled for
removal in Gradle 9.0. For more context, see the section about plugin convention deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts

plugins {
 id("ear")
}

configure<EarPluginConvention> { // Accessing a convention
 appDirName = "src/main/app"
}

build.gradle

plugins {
 id 'ear'
}

appDirName = 'src/main/app' // Accessing a convention

Clients should configure the ear task directly. Also, tasks.withType(Ear.class).configureEach(…) can
be used to configure each task of type Ear.

build.gradle.kts

plugins {
 id("ear")
}

tasks.ear {
 appDirectory.set(file("src/main/app"))
}

build.gradle

plugins {
 id 'ear'

https://docs.gradle.org/8.12/javadoc/org/gradle/api/DomainObjectCollection.html#withType-java.lang.Class-

}

ear {
 appDirectory = file('src/main/app') // use application metadata found in
this folder
}

Deprecated project-report plugin conventions

The convention properties contributed by the project-reports plugin have been deprecated and
scheduled for removal in Gradle 9.0. For more context, see the section about plugin convention
deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts

plugins {
 `project-report`
}

configure<ProjectReportsPluginConvention> {
 projectReportDirName = "custom" // Accessing a convention
}

build.gradle

plugins {
 id 'project-report'
}

projectReportDirName = "custom" // Accessing a convention

Configure your report task instead:

build.gradle.kts

plugins {
 `project-report`
}

tasks.withType<HtmlDependencyReportTask>() {

projectReportDirectory.set(project.layout.buildDirectory.dir("reports/custom"
))
}

build.gradle

plugins {
 id 'project-report'
}

tasks.withType(HtmlDependencyReportTask) {
 projectReportDirectory = project.layout.buildDirectory.dir(
"reports/custom")
}

Configuration method deprecations

The following method on Configuration is deprecated for removal:

• getAll()

Obtain the set of all configurations from the project’s configurations container instead.

Relying on automatic test framework implementation dependencies

In some cases, Gradle will load JVM test framework dependencies from the Gradle distribution to
execute tests. This existing behavior can lead to test framework dependency version conflicts on
the test classpath. To avoid these conflicts, this behavior is deprecated and will be removed in
Gradle 9.0. Tests using TestNG are unaffected.

To prepare for this change in behavior, either declare the required dependencies explicitly or
migrate to Test Suites, where these dependencies are managed automatically.

Test Suites

Builds that use test suites will not be affected by this change. Test suites manage the test framework
dependencies automatically and do not require dependencies to be explicitly declared. See the user
manual for further information on migrating to test suites.

Manually declaring dependencies

In the absence of test suites, dependencies must be manually declared on the test runtime
classpath:

• If using JUnit 5, an explicit runtimeOnly dependency on junit-platform-launcher is required in

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Configuration.html
jvm_test_suite_plugin.html
jvm_test_suite_plugin.html
jvm_test_suite_plugin.html

addition to the existing implementation dependency on the test engine.

• If using JUnit 4, only the existing implementation dependency on junit 4 is required.

• If using JUnit 3, a test runtimeOnly dependency on junit 4 is required in addition to a compileOnly
dependency on junit 3.

build.gradle.kts

dependencies {
 // If using JUnit Jupiter
 testImplementation("org.junit.jupiter:junit-jupiter:5.9.2")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")

 // If using JUnit Vintage
 testCompileOnly("junit:junit:4.13.2")
 testRuntimeOnly("org.junit.vintage:junit-vintage-engine:5.9.2")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")

 // If using JUnit 4
 testImplementation("junit:junit:4.13.2")

 // If using JUnit 3
 testCompileOnly("junit:junit:3.8.2")
 testRuntimeOnly("junit:junit:4.13.2")
}

build.gradle

dependencies {
 // If using JUnit Jupiter
 testImplementation 'org.junit.jupiter:junit-jupiter:5.9.2'
 testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

 // If using JUnit Vintage
 testCompileOnly 'junit:junit:4.13.2'
 testRuntimeOnly 'org.junit.vintage:junit-vintage-engine:5.9.2'
 testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

 // If using JUnit 4
 testImplementation 'junit:junit:4.13.2'

 // If using JUnit 3
 testCompileOnly 'junit:junit:3.8.2'
 testRuntimeOnly 'junit:junit:4.13.2'
}

BuildIdentifier and ProjectComponentSelector method deprecations

The following methods on BuildIdentifier are deprecated:

• getName()

• isCurrentBuild()

You could use these methods to distinguish between different project components with the same
name but from different builds. However, for certain composite build setups, these methods do not
provide enough information to guarantee uniqueness.

Current usages of these methods should migrate to BuildIdentifier.getBuildPath().

Similarly, the method ProjectComponentSelector.getBuildName() is deprecated. Use
ProjectComponentSelector.getBuildPath() instead.

Upgrading from 8.0 and earlier

CACHEDIR.TAG files are created in global cache directories

Gradle now emits a CACHEDIR.TAG file in some global cache directories, as specified in Cache
marking.

This may cause these directories to no longer be searched or backed up by some tools. To disable it,
use the following code in an init script in the Gradle User Home:

init.gradle.kts

beforeSettings {
 caches {
 // Disable cache marking for all caches
 markingStrategy.set(MarkingStrategy.NONE)
 }
}

init.gradle

beforeSettings { settings ->
 settings.caches {
 // Disable cache marking for all caches
 markingStrategy = MarkingStrategy.NONE
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/component/BuildIdentifier.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/component/ProjectComponentSelector.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/component/BuildIdentifier.html#getBuildPath--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/component/ProjectComponentSelector.html#getBuildPath--

Configuration cache options renamed

In this release, the configuration cache feature was promoted from incubating to stable. As such, all
properties originally mentioned in the feature documentation (which had an unsafe part in their
names, e.g., org.gradle.unsafe.configuration-cache) were renamed, in some cases, by removing the
unsafe part of the name.

Incubating property Finalized property

org.gradle.unsafe.configuration-cache org.gradle.configuration-cache

org.gradle.unsafe.configuration-cache-problems org.gradle.configuration-cache.problems*

org.gradle.unsafe.configuration-cache.max-
problems

org.gradle.configuration-cache.max-problems

Note that the original org.gradle.unsafe.configuration-cache… properties continue to be honored
in this release, and no warnings will be produced if they are used, but they will be deprecated and
removed in a future release.

Potential breaking changes

Kotlin DSL scripts emit compilation warnings

Compilation warnings from Kotlin DSL scripts are printed to the console output. For example, the
use of deprecated APIs in Kotlin DSL will emit warnings each time the script is compiled.

This is a potentially breaking change if you are consuming the console output of Gradle builds.

Configuring Kotlin compiler options with the kotlin-dsl plugin applied

If you are configuring custom Kotlin compiler options on a project with the kotlin-dsl plugin
applied you might encounter a breaking change.

In previous Gradle versions, the kotlin-dsl plugin was adding required compiler arguments on
afterEvaluate {}. Now that the Kotlin Gradle Plugin provides lazy configuration properties, our
kotlin-dsl plugin switched to adding required compiler arguments to the lazy properties directly.
As a consequence, if you were setting freeCompilerArgs the kotlin-dsl plugin is now failing the
build because its required compiler arguments are overridden by your configuration.

build.gradle.kts

plugins {
 `kotlin-dsl`
}

tasks.withType(KotlinCompile::class).configureEach {
 kotlinOptions { // Deprecated non-lazy configuration options
 freeCompilerArgs = listOf("-Xcontext-receivers")
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#afterEvaluate-org.gradle.api.Action-

With the configuration above you would get the following build failure:

* What went wrong
Execution failed for task ':compileKotlin'.
> Kotlin compiler arguments of task ':compileKotlin' do not work for the `kotlin-dsl`
plugin. The 'freeCompilerArgs' property has been reassigned. It must instead be
appended to. Please use 'freeCompilerArgs.addAll(\"your\", \"args\")' to fix this.

You must change this to adding your custom compiler arguments to the lazy configuration
properties of the Kotlin Gradle Plugin for them to be appended to the ones required by the kotlin-
dsl plugin:

build.gradle.kts

plugins {
 `kotlin-dsl`
}

tasks.withType(KotlinCompile::class).configureEach {
 compilerOptions { // New lazy configuration options
 freeCompilerArgs.addAll("-Xcontext-receivers")
 }
}

If you were already adding to freeCompilerArgs instead of setting its value, you should not
experience a build failure.

New API introduced may clash with existing Gradle DSL code

When a new property or method is added to an existing type in the Gradle DSL, it may clash with
names already used in user code.

When a name clash occurs, one solution is to rename the element in user code.

This is a non-exhaustive list of API additions in 8.1 that may cause name collisions with existing
user code.

• JavaExec.getJvmArguments()

• JavaExecSpec.getJvmArguments()

Using unsupported API to start external processes at configuration time is no longer allowed with the
configuration cache enabled

Since Gradle 7.5, using Project.exec, Project.javaexec, and standard Java and Groovy APIs to run
external processes at configuration time has been considered an error only if the feature preview
STABLE_CONFIGURATION_CACHE was enabled. With the configuration cache promotion to a stable

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/JavaExec.html#getJvmArguments--
https://docs.gradle.org/8.12/javadoc/org/gradle/process/JavaExecSpec.html#getJvmArguments--

feature in Gradle 8.1, this error is detected regardless of the feature preview status. The
configuration cache chapter has more details to help with the migration to the new provider-based
APIs to execute external processes at configuration time.

Builds that do not use the configuration cache, or only start external processes at execution time
are not affected by this change.

Deprecations

Mutating core plugin configuration usage

The allowed usage of a configuration should be immutable after creation. Mutating the allowed
usage on a configuration created by a Gradle core plugin is deprecated. This includes calling any of
the following Configuration methods:

• setCanBeConsumed(boolean)

• setCanBeResolved(boolean)

These methods now emit deprecation warnings on these configurations, except for certain special
cases which make allowances for the existing behavior of popular plugins. This rule does not yet
apply to detached configurations or configurations created in buildscripts and third-party plugins.
Calling setCanBeConsumed(false) on apiElements or runtimeElements is not yet deprecated in order to
avoid warnings that would be otherwise emitted when using select popular third-party plugins.

This change is part of a larger ongoing effort to make the intended behavior of configurations more
consistent and predictable, and to unlock further speed and memory improvements in this area of
Gradle.

The ability to change the allowed usage of a configuration after creation will be removed in Gradle
9.0.

Reserved configuration names

Configuration names "detachedConfiguration" and "detachedConfigurationX" (where X is any
integer) are reserved for internal use when creating detached configurations.

The ability to create non-detached configurations with these names will be removed in Gradle 9.0.

Calling select methods on the JavaPluginExtension without the java component present

Starting in Gradle 8.1, calling any of the following methods on JavaPluginExtension without the
presence of the default java component is deprecated:

• withJavadocJar()

• withSourcesJar()

• consistentResolution(Action)

This java component is added by the JavaPlugin, which is applied by any of the Gradle JVM plugins
including:

• java-library

• application

• groovy

• scala

Starting in Gradle 9.0, calling any of the above listed methods without the presence of the default
java component will become an error.

WarPlugin#configureConfiguration(ConfigurationContainer)

Starting in Gradle 8.1, calling WarPlugin#configureConfiguration(ConfigurationContainer) is
deprecated. This method was intended for internal use and was never intended to be used as part
of the public interface.

Starting in Gradle 9.0, this method will be removed without replacement.

Relying on conventions for custom Test tasks

By default, when applying the java plugin, the testClassesDirs`and `classpath of all Test tasks have
the same convention. Unless otherwise changed, the default behavior is to execute the tests from
the default test TestSuite by configuring the task with the classpath and testClassesDirs from the
test suite. This behavior will be removed in Gradle 9.0.

While this existing default behavior is correct for the use case of executing the default unit test
suite under a different environment, it does not support the use case of executing an entirely
separate set of tests.

If you wish to continue including these tests, use the following code to avoid the deprecation
warning in 8.1 and prepare for the behavior change in 9.0. Alternatively, consider migrating to test
suites.

build.gradle.kts

val test by testing.suites.existing(JvmTestSuite::class)
tasks.named<Test>("myTestTask") {
 testClassesDirs = files(test.map { it.sources.output.classesDirs })
 classpath = files(test.map { it.sources.runtimeClasspath })
}

build.gradle

tasks.myTestTask {
 testClassesDirs = testing.suites.test.sources.output.classesDirs
 classpath = testing.suites.test.sources.runtimeClasspath
}

java_plugin.html
jvm_test_suite_plugin.html

Modifying Gradle Module Metadata after a publication has been populated

Altering the GMM (e.g., changing a component configuration variants) after a Maven or Ivy
publication has been populated from their components is now deprecated. This feature will be
removed in Gradle 9.0.

Eager population of the publication can happen if the following methods are called:

• Maven

◦ MavenPublication.getArtifacts()

• Ivy

◦ IvyPublication.getArtifacts()

◦ IvyPublication.getConfigurations()

◦ IvyPublication.configurations(Action)

Previously, the following code did not generate warnings, but it created inconsistencies between
published artifacts:

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("maven") {
 from(components["java"])
 }
 create<IvyPublication>("ivy") {
 from(components["java"])
 }
 }
}

// These calls eagerly populate the Maven and Ivy publications

(publishing.publications["maven"] as MavenPublication).artifacts
(publishing.publications["ivy"] as IvyPublication).artifacts

val javaComponent = components["java"] as AdhocComponentWithVariants
javaComponent.withVariantsFromConfiguration(configurations["apiElements"]) {
skip() }
javaComponent.withVariantsFromConfiguration(configurations["runtimeElements"]
) { skip() }

build.gradle

publishing {

publishing_gradle_module_metadata.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/publish/maven/MavenPublication.html#getArtifacts--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/publish/ivy/IvyPublication.html#getArtifacts--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/publish/ivy/IvyPublication.html#getConfigurations--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/publish/ivy/IvyPublication.html#configurations(Action)--

 publications {
 maven(MavenPublication) {
 from components.java
 }
 ivy(IvyPublication) {
 from components.java
 }
 }
}

// These calls eagerly populate the Maven and Ivy publications

publishing.publications.maven.artifacts
publishing.publications.ivy.artifacts

components.java.withVariantsFromConfiguration(configurations.apiElements) {
skip() }
components.java.withVariantsFromConfiguration(configurations.runtimeElements)
{ skip() }

In this example, the Maven and Ivy publications will contain the main JAR artifacts for the project,
whereas the GMM module file will omit them.

Running tests on JVM versions 6 and 7

Running JVM tests on JVM versions older than 8 is deprecated. Testing on these versions will
become an error in Gradle 9.0

Applying Kotlin DSL precompiled scripts published with Gradle < 6.0

Applying Kotlin DSL precompiled scripts published with Gradle < 6.0 is deprecated. Please use a
version of the plugin published with Gradle >= 6.0.

Applying the kotlin-dsl together with Kotlin Gradle Plugin < 1.8.0

Applying the kotlin-dsl together with Kotlin Gradle Plugin < 1.8.0 is deprecated. Please let Gradle
control the version of kotlin-dsl by removing any explicit kotlin-dsl version constraints from your
build logic. This will let the kotlin-dsl plugin decide which version of the Kotlin Gradle Plugin to
use. If you explicitly declare which version of the Kotlin Gradle Plugin to use for your build logic,
update it to >= 1.8.0.

Accessing libraries or bundles from dependency version catalogs in the plugins {} block of a Kotlin script

Accessing libraries or bundles from dependency version catalogs in the plugins {} block of a Kotlin
script is deprecated. Please only use versions or plugins from dependency version catalogs in the
plugins {} block.

https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-latest-specification.md

Using ValidatePlugins task without a Java Toolchain

Using a task of type ValidatePlugins without applying the Java Toolchains plugin is deprecated, and
will become an error in Gradle 9.0.

To avoid this warning, please apply the plugin to your project:

build.gradle.kts

plugins {
 id("jvm-toolchains")
}

build.gradle

plugins {
 id 'jvm-toolchains'
}

The Java Toolchains plugin is applied automatically by the Java library plugin or other JVM plugins.
So you can apply any of them to your project and it will fix the warning.

Deprecated members of the org.gradle.util package now report their deprecation

These members will be removed in Gradle 9.0.

• WrapUtil.toDomainObjectSet(…)

• GUtil.toCamelCase(…)

• GUtil.toLowerCase(…)

• ConfigureUtil

Deprecated JVM vendor IBM Semeru

The enum constant JvmVendorSpec.IBM_SEMERU is now deprecated and will be removed in Gradle 9.0.

Please replace it by its equivalent JvmVendorSpec.IBM to avoid warnings and potential errors in the
next major version release.

Setting custom build layout on StartParameter and GradleBuild

Following the related previous deprecation of the behaviour in Gradle 7.1, it is now also deprecated
to use related StartParameter and GradleBuild properties. These properties will be removed in
Gradle 9.0.

Setting custom build file using buildFile property in GradleBuild task has been deprecated.

https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html
toolchains.html
upgrading_version_7.pdf#configuring_custom_build_layout_7
https://docs.gradle.org/8.12/javadoc/org/gradle/StartParameter.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/GradleBuild.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.GradleBuild.html#org.gradle.api.tasks.GradleBuild:buildFile
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.GradleBuild.html

Please use the dir property instead to specify the root of the nested build. Alternatively, consider
using one of the recommended alternatives for GradleBuild task.

Setting custom build layout using StartParameter methods setBuildFile(File) and
setSettingsFile(File) as well as the counterpart getters getBuildFile() and getSettingsFile() have been
deprecated.

Please use standard locations for settings and build files:

• settings file in the root of the build

• build file in the root of each subproject

Deprecated org.gradle.cache.cleanup property

The org.gradle.cache.cleanup property in gradle.properties under Gradle User Home has been
deprecated. Please use the cache cleanup DSL instead to disable or modify the cleanup
configuration.

Since the org.gradle.cache.cleanup property may still be needed for older versions of Gradle, this
property may still be present and no deprecation warnings will be printed as long as it is also
configured via the DSL. The DSL value will always take preference over the
org.gradle.cache.cleanup property. If the desired configuration is to disable cleanup for older
versions of Gradle (using org.gradle.cache.cleanup), but to enable cleanup with the default values
for Gradle versions at or above Gradle 8, then cleanup should be configured to use
Cleanup.DEFAULT:

cache-settings.gradle

if (GradleVersion.current() >= GradleVersion.version('8.0')) {
 apply from: "gradle8/cache-settings.gradle"
}

cache-settings.gradle.kts

if (GradleVersion.current() >= GradleVersion.version("8.0")) {
 apply(from = "gradle8/cache-settings.gradle")
}

gradle8/cache-settings.gradle

beforeSettings { settings ->
 settings.caches {
 cleanup = Cleanup.DEFAULT

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.GradleBuild.html#org.gradle.api.tasks.GradleBuild:dir
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.GradleBuild.html
https://docs.gradle.org/8.12/javadoc/org/gradle/StartParameter.html
https://docs.gradle.org/8.12/javadoc/org/gradle/StartParameter.html#setBuildFile-java.io.File-
https://docs.gradle.org/8.12/javadoc/org/gradle/StartParameter.html#setSettingsFile-java.io.File-
https://docs.gradle.org/8.12/javadoc/org/gradle/StartParameter.html#getBuildFile--
https://docs.gradle.org/8.12/javadoc/org/gradle/StartParameter.html#getSettingsFile--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/cache/Cleanup.html#DEFAULT

 }
}

gradle8/cache-settings.gradle.kts

beforeSettings {
 caches {
 cleanup.set(Cleanup.DEFAULT)
 }
}

Deprecated using relative paths to specify Java executables

Using relative file paths to point to Java executables is now deprecated and will become an error in
Gradle 9. This is done to reduce confusion about what such relative paths should resolve against.

Calling Task.getConvention(), Task.getExtensions() from a task action

Calling Task.getConvention(), Task.getExtensions() from a task action at execution time is now
deprecated and will be made an error in Gradle 9.0.

See the configuration cache chapter for details on how to migrate these usages to APIs that are
supported by the configuration cache.

Deprecated running test task successfully when no test executed

Running the Test task successfully when no test was executed is now deprecated and will become
an error in Gradle 9. Note that it is not an error when no test sources are present, in this case the
test task is simply skipped. It is only an error when test sources are present, but no test was
selected for execution. This is changed to avoid accidental successful test runs due to erroneous
configuration.

Changes in the IDE integration

Workaround for false positive errors shown in Kotlin DSL plugins {} block using version catalog is not
needed anymore

Version catalog accessors for plugin aliases in the plugins {} block aren’t shown as errors in IntelliJ
IDEA and Android Studio Kotlin script editor anymore.

If you were using the @Suppress("DSL_SCOPE_VIOLATION") annotation as a workaround, you can now
remove it.

If you were using the Gradle Libs Error Suppressor IntelliJ IDEA plugin, you can now uninstall it.

After upgrading Gradle to 8.1 you will need to clear the IDE caches and restart.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#getConvention--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#getExtensions--
https://plugins.jetbrains.com/plugin/18949-gradle-libs-error-suppressor

Also see the deprecated usages of version catalogs in the Kotlin DSL plugins {} block above.

RUNNING GRADLE BUILDS

CORE CONCEPTS

Gradle Basics
Gradle automates building, testing, and deployment of software from information in build
scripts.

Gradle core concepts

Projects

A Gradle project is a piece of software that can be built, such as an application or a library.

Single project builds include a single project called the root project.

Multi-project builds include one root project and any number of subprojects.

Build Scripts

Build scripts detail to Gradle what steps to take to build the project.

Each project can include one or more build scripts.

Dependency Management

Dependency management is an automated technique for declaring and resolving external
resources required by a project.

Each project typically includes a number of external dependencies that Gradle will resolve during
the build.

Tasks

Tasks are a basic unit of work such as compiling code or running your test.

Each project contains one or more tasks defined inside a build script or a plugin.

Plugins

Plugins are used to extend Gradle’s capability and optionally contribute tasks to a project.

Gradle project structure

Many developers will interact with Gradle for the first time through an existing project.

The presence of the gradlew and gradlew.bat files in the root directory of a project is a clear
indicator that Gradle is used.

A Gradle project will look similar to the following:

project
├── gradle ①
│ ├── libs.versions.toml ②
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew ③
├── gradlew.bat ③
├── settings.gradle(.kts) ④
├── subproject-a
│ ├── build.gradle(.kts) ⑤
│ └── src ⑥
└── subproject-b
 ├── build.gradle(.kts) ⑤
 └── src ⑥

① Gradle directory to store wrapper files and more

② Gradle version catalog for dependency management

③ Gradle wrapper scripts

④ Gradle settings file to define a root project name and subprojects

⑤ Gradle build scripts of the two subprojects - subproject-a and subproject-b

⑥ Source code and/or additional files for the projects

Invoking Gradle

IDE

Gradle is built-in to many IDEs including Android Studio, IntelliJ IDEA, Visual Studio Code, Eclipse,
and NetBeans.

gradle_ides.pdf#gradle_ides

Gradle can be automatically invoked when you build, clean, or run your app in the IDE.

It is recommended that you consult the manual for the IDE of your choice to learn more about how
Gradle can be used and configured.

Command line

Gradle can be invoked in the command line once installed. For example:

$ gradle build

NOTE Most projects do not use the installed version of Gradle.

Gradle Wrapper

The Wrapper is a script that invokes a declared version of Gradle and is the recommended way to
execute a Gradle build. It is found in the project root directory as a gradlew or gradlew.bat file:

$ gradlew build // Linux or OSX
$ gradlew.bat build // Windows

Next Step: Learn about the Gradle Wrapper >>

Gradle Wrapper Basics
The recommended way to execute any Gradle build is with the Gradle Wrapper.

The Wrapper script invokes a declared version of Gradle, downloading it beforehand if necessary.

The Wrapper is available as a gradlew or gradlew.bat file.

The Wrapper provides the following benefits:

• Standardizes a project on a given Gradle version.

• Provisions the same Gradle version for different users.

• Provisions the Gradle version for different execution environments (IDEs, CI servers…).

Using the Gradle Wrapper

It is always recommended to execute a build with the Wrapper to ensure a reliable, controlled, and
standardized execution of the build.

Depending on the operating system, you run gradlew or gradlew.bat instead of the gradle command.

Typical Gradle invocation:

$ gradle build

To run the Wrapper on a Linux or OSX machine:

$./gradlew build

To run the Wrapper on Windows PowerShell:

$.\gradlew.bat build

The command is run in the same directory that the Wrapper is located in. If you want to run the
command in a different directory, you must provide the relative path to the Wrapper:

$../gradlew build

The following console output demonstrates the use of the Wrapper on a Windows machine, in the
command prompt (cmd), for a Java-based project:

$ gradlew.bat build

Downloading https://services.gradle.org/distributions/gradle-5.0-all.zip
...
Unzipping C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac27o8rbd0ic8ih41or9l32mv\gradle-5.0-all.zip to C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-al\ac27o8rbd0ic8ih41or9l32mv
Set executable permissions for: C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac27o8rbd0ic8ih41or9l32mv\gradle-5.0\bin\gradle

BUILD SUCCESSFUL in 12s
1 actionable task: 1 executed

Understanding the Wrapper files

The following files are part of the Gradle Wrapper:

.
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar ①
│ └── gradle-wrapper.properties ②
├── gradlew ③
└── gradlew.bat ④

① gradle-wrapper.jar: This is a small JAR file that contains the Gradle Wrapper code. It is
responsible for downloading and installing the correct version of Gradle for a project if it’s not
already installed.

② gradle-wrapper.properties: This file contains configuration properties for the Gradle Wrapper,
such as the distribution URL (where to download Gradle from) and the distribution type (ZIP or
TARBALL).

③ gradlew: This is a shell script (Unix-based systems) that acts as a wrapper around gradle-
wrapper.jar. It is used to execute Gradle tasks on Unix-based systems without needing to
manually install Gradle.

④ gradlew.bat: This is a batch script (Windows) that serves the same purpose as gradlew but is used
on Windows systems.

IMPORTANT You should never alter these files.

If you want to view or update the Gradle version of your project, use the command line. Do not edit
the wrapper files manually:

$./gradlew --version
$./gradlew wrapper --gradle-version 7.2

$ gradlew.bat --version
$ gradlew.bat wrapper --gradle-version 7.2

Consult the Gradle Wrapper reference to learn more.

Next Step: Learn about the Gradle CLI >>

Command-Line Interface Basics
The command-line interface is the primary method of interacting with Gradle outside the IDE.

Use of the Gradle Wrapper is highly encouraged.

Substitute ./gradlew (in macOS / Linux) or gradlew.bat (in Windows) for gradle in the following
examples.

Executing Gradle on the command line conforms to the following structure:

gradle [taskName...] [--option-name...]

Options are allowed before and after task names.

gradle [--option-name...] [taskName...]

If multiple tasks are specified, you should separate them with a space.

gradle [taskName1 taskName2...] [--option-name...]

Options that accept values can be specified with or without = between the option and argument.
The use of = is recommended.

gradle [...] --console=plain

Options that enable behavior have long-form options with inverses specified with --no-. The
following are opposites.

gradle [...] --build-cache
gradle [...] --no-build-cache

Many long-form options have short-option equivalents. The following are equivalent:

gradle --help
gradle -h

Command-line usage

The following sections describe the use of the Gradle command-line interface. Some plugins also
add their own command line options.

Executing tasks

To execute a task called taskName on the root project, type:

$ gradle :taskName

This will run the single taskName and all of its dependencies.

Specify options for tasks

To pass an option to a task, prefix the option name with -- after the task name:

$ gradle taskName --exampleOption=exampleValue

Consult the Gradle Command Line Interface reference to learn more.

Next Step: Learn about the Settings file >>

Settings File Basics
The settings file is the entry point of every Gradle project.

The primary purpose of the settings file is to add subprojects to your build.

Gradle supports single and multi-project builds.

• For single-project builds, the settings file is optional.

• For multi-project builds, the settings file is mandatory and declares all subprojects.

Settings script

The settings file is a script. It is either a settings.gradle file written in Groovy or a
settings.gradle.kts file in Kotlin.

The Groovy DSL and the Kotlin DSL are the only accepted languages for Gradle scripts.

The settings file is typically found in the root directory of the project.

Let’s take a look at an example and break it down:

settings.gradle.kts

rootProject.name = "root-project" ①

include("sub-project-a") ②

https://docs.gradle.org/8.12/dsl/index.html
https://docs.gradle.org/8.12/kotlin-dsl/index.html

include("sub-project-b")
include("sub-project-c")

① Define the project name.

② Add subprojects.

settings.gradle

rootProject.name = 'root-project' ①

include('sub-project-a') ②
include('sub-project-b')
include('sub-project-c')

① Define the project name.

② Add subprojects.

1. Define the project name

The settings file defines your project name:

rootProject.name = "root-project"

There is only one root project per build.

2. Add subprojects

The settings file defines the structure of the project by including subprojects, if there are any:

include("app")
include("business-logic")
include("data-model")

Consult the Writing Settings File page to learn more.

Next Step: Learn about the Build scripts >>

Build File Basics
Generally, a build script details build configuration, tasks, and plugins.

Every Gradle build comprises at least one build script.

In the build file, two types of dependencies can be added:

1. The libraries and/or plugins on which Gradle and the build script depend.

2. The libraries on which the project sources (i.e., source code) depend.

Build scripts

The build script is either a build.gradle file written in Groovy or a build.gradle.kts file in Kotlin.

The Groovy DSL and the Kotlin DSL are the only accepted languages for Gradle scripts.

Let’s take a look at an example and break it down:

build.gradle.kts

plugins {
 id("application") ①
}

application {
 mainClass = "com.example.Main" ②
}

① Add plugins.

② Use convention properties.

https://docs.gradle.org/8.12/dsl/index.html
https://docs.gradle.org/8.12/kotlin-dsl/index.html

build.gradle

plugins {
 id 'application' ①
}

application {
 mainClass = 'com.example.Main' ②
}

① Add plugins.

② Use convention properties.

1. Add plugins

Plugins extend Gradle’s functionality and can contribute tasks to a project.

Adding a plugin to a build is called applying a plugin and makes additional functionality available.

plugins {
 id("application")
}

The application plugin facilitates creating an executable JVM application.

Applying the Application plugin also implicitly applies the Java plugin. The java plugin adds Java
compilation along with testing and bundling capabilities to a project.

2. Use convention properties

A plugin adds tasks to a project. It also adds properties and methods to a project.

The application plugin defines tasks that package and distribute an application, such as the run
task.

The Application plugin provides a way to declare the main class of a Java application, which is
required to execute the code.

application {
 mainClass = "com.example.Main"
}

In this example, the main class (i.e., the point where the program’s execution begins) is
com.example.Main.

Consult the Writing Build Scripts page to learn more.

java_plugin.pdf#java_plugin

Next Step: Learn about Dependency Management >>

Dependency Management Basics
Gradle has built-in support for dependency management.

Dependency management is an automated technique for declaring and resolving external
resources required by a project.

Gradle build scripts define the process to build projects that may require external dependencies.
Dependencies refer to JARs, plugins, libraries, or source code that support building your project.

Version Catalog

Version catalogs provide a way to centralize your dependency declarations in a libs.versions.toml
file.

The catalog makes sharing dependencies and version configurations between subprojects simple. It
also allows teams to enforce versions of libraries and plugins in large projects.

The version catalog typically contains four sections:

1. [versions] to declare the version numbers that plugins and libraries will reference.

2. [libraries] to define the libraries used in the build files.

3. [bundles] to define a set of dependencies.

4. [plugins] to define plugins.

[versions]

androidGradlePlugin = "7.4.1"
mockito = "2.16.0"

[libraries]
googleMaterial = { group = "com.google.android.material", name = "material", version =
"1.1.0-alpha05" }
mockitoCore = { module = "org.mockito:mockito-core", version.ref = "mockito" }

[plugins]
androidApplication = { id = "com.android.application", version.ref =
"androidGradlePlugin" }

The file is located in the gradle directory so that it can be used by Gradle and IDEs automatically.
The version catalog should be checked into source control: gradle/libs.versions.toml.

Declaring Your Dependencies

To add a dependency to your project, specify a dependency in the dependencies block of your
build.gradle(.kts) file.

The following build.gradle.kts file adds a plugin and two dependencies to the project using the
version catalog above:

plugins {
 alias(libs.plugins.androidApplication) ①
}

dependencies {
 // Dependency on a remote binary to compile and run the code
 implementation(libs.googleMaterial) ②

 // Dependency on a remote binary to compile and run the test code
 testImplementation(libs.mockitoCore) ③
}

① Applies the Android Gradle plugin to this project, which adds several features that are specific to
building Android apps.

② Adds the Material dependency to the project. Material Design provides components for creating
a user interface in an Android App. This library will be used to compile and run the Kotlin
source code in this project.

③ Adds the Mockito dependency to the project. Mockito is a mocking framework for testing Java
code. This library will be used to compile and run the test source code in this project.

Dependencies in Gradle are grouped by configurations.

• The material library is added to the implementation configuration, which is used for compiling
and running production code.

• The mockito-core library is added to the testImplementation configuration, which is used for

compiling and running test code.

NOTE There are many more configurations available.

Viewing Project Dependencies

You can view your dependency tree in the terminal using the ./gradlew :app:dependencies
command:

$./gradlew :app:dependencies

> Task :app:dependencies

--
Project ':app'
--

implementation - Implementation only dependencies for source set 'main'. (n)
\--- com.google.android.material:material:1.1.0-alpha05 (n)

testImplementation - Implementation only dependencies for source set 'test'. (n)
\--- org.mockito:mockito-core:2.16.0 (n)

...

Consult the Dependency Management chapter to learn more.

Next Step: Learn about Tasks >>

Task Basics
A task represents some independent unit of work that a build performs, such as compiling classes,
creating a JAR, generating Javadoc, or publishing archives to a repository.

glossary.pdf#dependency_management_terminology

You run a Gradle build task using the gradle command or by invoking the Gradle Wrapper
(./gradlew or gradlew.bat) in your project directory:

$./gradlew build

Available tasks

All available tasks in your project come from Gradle plugins and build scripts.

You can list all the available tasks in the project by running the following command in the terminal:

$./gradlew tasks

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.

...

Documentation tasks

javadoc - Generates Javadoc API documentation for the main source code.

...

Other tasks

compileJava - Compiles main Java source.

...

Running tasks

The run task is executed with ./gradlew run:

$./gradlew run

> Task :app:compileJava
> Task :app:processResources NO-SOURCE
> Task :app:classes

> Task :app:run
Hello World!

BUILD SUCCESSFUL in 904ms
2 actionable tasks: 2 executed

In this example Java project, the output of the run task is a Hello World statement printed on the
console.

Task dependency

Many times, a task requires another task to run first.

For example, for Gradle to execute the build task, the Java code must first be compiled. Thus, the
build task depends on the compileJava task.

This means that the compileJava task will run before the build task:

$./gradlew build

> Task :app:compileJava
> Task :app:processResources NO-SOURCE
> Task :app:classes
> Task :app:jar
> Task :app:startScripts
> Task :app:distTar
> Task :app:distZip
> Task :app:assemble
> Task :app:compileTestJava
> Task :app:processTestResources NO-SOURCE

> Task :app:testClasses
> Task :app:test
> Task :app:check
> Task :app:build

BUILD SUCCESSFUL in 764ms
7 actionable tasks: 7 executed

Build scripts can optionally define task dependencies. Gradle then automatically determines the
task execution order.

Consult the Task development chapter to learn more.

Next Step: Learn about Plugins >>

Plugin Basics
Gradle is built on a plugin system. Gradle itself is primarily composed of infrastructure, such as a
sophisticated dependency resolution engine. The rest of its functionality comes from plugins.

A plugin is a piece of software that provides additional functionality to the Gradle build system.

Plugins can be applied to a Gradle build script to add new tasks, configurations, or other build-
related capabilities:

The Java Library Plugin - java-library

Used to define and build Java libraries. It compiles Java source code with the compileJava task,
generates Javadoc with the javadoc task, and packages the compiled classes into a JAR file with
the jar task.

The Google Services Gradle Plugin - com.google.gms:google-services

Enables Google APIs and Firebase services in your Android application with a configuration
block called googleServices{} and a task called generateReleaseAssets.

The Gradle Bintray Plugin - com.jfrog.bintray

Allows you to publish artifacts to Bintray by configuring the plugin using the bintray{} block.

Plugin distribution

Plugins are distributed in three ways:

1. Core plugins - Gradle develops and maintains a set of Core Plugins.

2. Community plugins - Gradle’s community shares plugins via the Gradle Plugin Portal.

3. Local plugins - Gradle enables users to create custom plugins using APIs.

Applying plugins

Applying a plugin to a project allows the plugin to extend the project’s capabilities.

You apply plugins in the build script using a plugin id (a globally unique identifier / name) and a
version:

plugins {
 id «plugin id» version «plugin version»
}

1. Core plugins

Gradle Core plugins are a set of plugins that are included in the Gradle distribution itself. These
plugins provide essential functionality for building and managing projects.

Some examples of core plugins include:

• java: Provides support for building Java projects.

• groovy: Adds support for compiling and testing Groovy source files.

• ear: Adds support for building EAR files for enterprise applications.

Core plugins are unique in that they provide short names, such as java for the core JavaPlugin,
when applied in build scripts. They also do not require versions. To apply the java plugin to a
project:

build.gradle.kts

plugins {
 id("java")
}

https://plugins.gradle.org
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/JavaPlugin.html

There are many Gradle Core Plugins users can take advantage of.

2. Community plugins

Community plugins are plugins developed by the Gradle community, rather than being part of the
core Gradle distribution. These plugins provide additional functionality that may be specific to
certain use cases or technologies.

The Spring Boot Gradle plugin packages executable JAR or WAR archives, and runs Spring Boot Java
applications.

To apply the org.springframework.boot plugin to a project:

build.gradle.kts

plugins {
 id("org.springframework.boot") version "3.1.5"
}

Community plugins can be published at the Gradle Plugin Portal, where other Gradle users can
easily discover and use them.

3. Local plugins

Custom or local plugins are developed and used within a specific project or organization. These
plugins are not shared publicly and are tailored to the specific needs of the project or organization.

Local plugins can encapsulate common build logic, provide integrations with internal systems or
tools, or abstract complex functionality into reusable components.

Gradle provides users with the ability to develop custom plugins using APIs. To create your own
plugin, you’ll typically follow these steps:

1. Define the plugin class: create a new class that implements the Plugin<Project> interface.

// Define a 'HelloPlugin' plugin
class HelloPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 // Define the 'hello' task
 val helloTask = project.tasks.register("hello") {
 doLast {
 println("Hello, Gradle!")
 }
 }
 }
}

2. Build and optionally publish your plugin: generate a JAR file containing your plugin code and
optionally publish this JAR to a repository (local or remote) to be used in other projects.

https://plugins.gradle.org/plugin/org.springframework.boot
https://spring.io/
http://plugins.gradle.org/

// Publish the plugin
plugins {
 `maven-publish`
}

publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 from(components["java"])
 }
 }
 repositories {
 mavenLocal()
 }
}

3. Apply your plugin: when you want to use the plugin, include the plugin ID and version in the
plugins{} block of the build file.

// Apply the plugin
plugins {
 id("com.example.hello") version "1.0"
}

Consult the Plugin development chapter to learn more.

Next Step: Learn about Incremental Builds and Build Caching >>

Gradle Incremental Builds and Build Caching
<div class="badge-wrapper">
 <a class="badge" href="https://dpeuniversity.gradle.com/app/courses/ec69d0b8-9171-
4969-ac3e-82dea16f87b0/" target="_blank">
 LEARN
 Incremental Builds and Build Caching with
Gradle >

</div>

Gradle uses two main features to reduce build time: incremental builds and build caching.

Incremental builds

An incremental build is a build that avoids running tasks whose inputs have not changed since the
previous build. Re-executing such tasks is unnecessary if they would only re-produce the same
output.

For incremental builds to work, tasks must define their inputs and outputs. Gradle will determine
whether the input or outputs have changed at build time. If they have changed, Gradle will execute
the task. Otherwise, it will skip execution.

Incremental builds are always enabled, and the best way to see them in action is to turn on verbose
mode. With verbose mode, each task state is labeled during a build:

$./gradlew compileJava --console=verbose

> Task :buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
> Task :buildSrc:extractPrecompiledScriptPluginPlugins UP-TO-DATE
> Task :buildSrc:compilePluginsBlocks UP-TO-DATE
> Task :buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
> Task :buildSrc:generateScriptPluginAdapters UP-TO-DATE
> Task :buildSrc:compileKotlin UP-TO-DATE
> Task :buildSrc:compileJava NO-SOURCE
> Task :buildSrc:compileGroovy NO-SOURCE
> Task :buildSrc:pluginDescriptors UP-TO-DATE
> Task :buildSrc:processResources UP-TO-DATE
> Task :buildSrc:classes UP-TO-DATE
> Task :buildSrc:jar UP-TO-DATE
> Task :list:compileJava UP-TO-DATE
> Task :utilities:compileJava UP-TO-DATE
> Task :app:compileJava UP-TO-DATE

BUILD SUCCESSFUL in 374ms
12 actionable tasks: 12 up-to-date

When you run a task that has been previously executed and hasn’t changed, then UP-TO-DATE is
printed next to the task.

TIP
To permanently enable verbose mode, add org.gradle.console=verbose to your
gradle.properties file.

Build caching

Incremental Builds are a great optimization that helps avoid work already done. If a developer
continuously changes a single file, there is likely no need to rebuild all the other files in the project.

However, what happens when the same developer switches to a new branch created last week? The
files are rebuilt, even though the developer is building something that has been built before.

This is where a build cache is helpful.

The build cache stores previous build results and restores them when needed. It prevents the
redundant work and cost of executing time-consuming and expensive processes.

When the build cache has been used to repopulate the local directory, the tasks are marked as FROM-
CACHE:

$./gradlew compileJava --build-cache

> Task :buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
> Task :buildSrc:extractPrecompiledScriptPluginPlugins UP-TO-DATE
> Task :buildSrc:compilePluginsBlocks UP-TO-DATE
> Task :buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
> Task :buildSrc:generateScriptPluginAdapters UP-TO-DATE
> Task :buildSrc:compileKotlin UP-TO-DATE
> Task :buildSrc:compileJava NO-SOURCE
> Task :buildSrc:compileGroovy NO-SOURCE
> Task :buildSrc:pluginDescriptors UP-TO-DATE
> Task :buildSrc:processResources UP-TO-DATE
> Task :buildSrc:classes UP-TO-DATE
> Task :buildSrc:jar UP-TO-DATE
> Task :list:compileJava FROM-CACHE
> Task :utilities:compileJava FROM-CACHE
> Task :app:compileJava FROM-CACHE

BUILD SUCCESSFUL in 364ms
12 actionable tasks: 3 from cache, 9 up-to-date

Once the local directory has been repopulated, the next execution will mark tasks as UP-TO-DATE and
not FROM-CACHE.

The build cache allows you to share and reuse unchanged build and test outputs across teams. This
speeds up local and CI builds since cycles are not wasted re-building binaries unaffected by new
code changes.

Consult the Build cache chapter to learn more.

Next Step: Learn about Build Scans >>

Build Scans
<div class="badge-wrapper">
 <a class="badge" href="https://dpeuniversity.gradle.com/app/courses/b5069222-cfd0-
4393-b645-7a2c713853d5/" target="_blank">
 LEARN
 How to Use Build Scans >

</div>

A build scan is a representation of metadata captured as you run your build.

Build Scans

Gradle captures your build metadata and sends it to the Build Scan Service. The service then
transforms the metadata into information you can analyze and share with others.

https://scans.gradle.com/

The information that scans collect can be an invaluable resource when troubleshooting,
collaborating on, or optimizing the performance of your builds.

For example, with a build scan, it’s no longer necessary to copy and paste error messages or include
all the details about your environment each time you want to ask a question on Stack Overflow,
Slack, or the Gradle Forum. Instead, copy the link to your latest build scan.

Enable Build Scans

To enable build scans on a gradle command, add --scan to the command line option:

 ./gradlew build --scan

You may be prompted to agree to the terms to use Build Scans.

Vist the Build Scans page to learn more.

Next Step: Start the Tutorial >>

https://scans.gradle.com/
part1_gradle_init.pdf#part1_gradle_init

AUTHORING GRADLE BUILDS

CORE CONCEPTS

Gradle Directories
Gradle uses two main directories to perform and manage its work: the Gradle User Home directory
and the Project Root directory.

Gradle User Home directory

By default, the Gradle User Home (~/.gradle or C:\Users\<USERNAME>\.gradle) stores global
configuration properties, initialization scripts, caches, and log files.

It can be set with the environment variable GRADLE_USER_HOME.

TIP Not to be confused with the GRADLE_HOME, the optional installation directory for Gradle.

It is roughly structured as follows:

├── caches ①
│ ├── 4.8 ②
│ ├── 4.9 ②
│ ├── ⋮
│ ├── jars-3 ③
│ └── modules-2 ③
├── daemon ④
│ ├── ⋮
│ ├── 4.8
│ └── 4.9
├── init.d ⑤
│ └── my-setup.gradle

├── jdks ⑥
│ ├── ⋮
│ └── jdk-14.0.2+12
├── wrapper
│ └── dists ⑦
│ ├── ⋮
│ ├── gradle-4.8-bin
│ ├── gradle-4.9-all
│ └── gradle-4.9-bin
└── gradle.properties ⑧

① Global cache directory (for everything that is not project-specific).

② Version-specific caches (e.g., to support incremental builds).

③ Shared caches (e.g., for artifacts of dependencies).

④ Registry and logs of the Gradle Daemon.

⑤ Global initialization scripts.

⑥ JDKs downloaded by the toolchain support.

⑦ Distributions downloaded by the Gradle Wrapper.

⑧ Global Gradle configuration properties.

Consult the Gradle Directories reference to learn more.

Project Root directory

The project root directory contains all source files from your project.

It also contains files and directories Gradle generates, such as .gradle and build, as well as the
Gradle configuration directory: gradle.

TIP gradle and .gradle directories are different.

While gradle is usually checked into source control, build and .gradle directories contain the
output of your builds, caches, and other transient files Gradle uses to support features like
incremental builds.

The anatomy of a typical project root directory looks as follows:

├── .gradle ①
│ ├── 4.8 ②
│ ├── 4.9 ②
│ └── ⋮
├── build ③
├── gradle
│ └── wrapper ④
├── gradle.properties ⑤
├── gradlew ⑥
├── gradlew.bat ⑥

├── settings.gradle.kts ⑦
├── subproject-one ⑧
| └── build.gradle.kts ⑨
├── subproject-two ⑧
| └── build.gradle.kts ⑨
└── ⋮

① Project-specific cache directory generated by Gradle.

② Version-specific caches (e.g., to support incremental builds).

③ The build directory of this project into which Gradle generates all build artifacts.

④ Contains the JAR file and configuration of the Gradle Wrapper.

⑤ Project-specific Gradle configuration properties.

⑥ Scripts for executing builds using the Gradle Wrapper.

⑦ The project’s settings file where the list of subprojects is defined.

⑧ Usually, a project is organized into one or multiple subprojects.

⑨ Each subproject has its own Gradle build script.

Consult the Gradle Directories reference to learn more.

Next Step: Learn how to structure Multi-Project Builds >>

Multi-Project Build Basics
Gradle supports multi-project builds.

While some small projects and monolithic applications may contain a single build file and source

tree, it is often more common for a project to have been split into smaller, interdependent modules.
The word "interdependent" is vital, as you typically want to link the many modules together
through a single build.

Gradle supports this scenario through multi-project builds. This is sometimes referred to as a multi-
module project. Gradle refers to modules as subprojects.

A multi-project build consists of one root project and one or more subprojects.

Multi-Project structure

The following represents the structure of a multi-project build that contains three subprojects:

The directory structure should look as follows:

├── .gradle
│ └── ⋮
├── gradle
│ ├── libs.versions.toml
│ └── wrapper
├── gradlew
├── gradlew.bat
├── settings.gradle.kts ①
├── sub-project-1
│ └── build.gradle.kts ②
├── sub-project-2
│ └── build.gradle.kts ②
└── sub-project-3
 └── build.gradle.kts ②

① The settings.gradle.kts file should include all subprojects.

② Each subproject should have its own build.gradle.kts file.

Multi-Project standards

The Gradle community has two standards for multi-project build structures:

1. Multi-Project Builds using buildSrc - where buildSrc is a subproject-like directory at the
Gradle project root containing all the build logic.

2. Composite Builds - a build that includes other builds where build-logic is a build directory at
the Gradle project root containing reusable build logic.

1. Multi-Project Builds using buildSrc

Multi-project builds allow you to organize projects with many modules, wire dependencies between
those modules, and easily share common build logic amongst them.

For example, a build that has many modules called mobile-app, web-app, api, lib, and documentation
could be structured as follows:

.
├── gradle
├── gradlew
├── settings.gradle.kts
├── buildSrc
│ ├── build.gradle.kts
│ └── src/main/kotlin/shared-build-conventions.gradle.kts
├── mobile-app
│ └── build.gradle.kts
├── web-app
│ └── build.gradle.kts
├── api
│ └── build.gradle.kts
├── lib
│ └── build.gradle.kts

└── documentation
 └── build.gradle.kts

The modules will have dependencies between them such as web-app and mobile-app depending on
lib. This means that in order for Gradle to build web-app or mobile-app, it must build lib first.

In this example, the root settings file will look as follows:

settings.gradle.kts

include("mobile-app", "web-app", "api", "lib", "documentation")

settings.gradle

include("mobile-app", "web-app", "api", "lib", "documentation")

NOTE The order in which the subprojects (modules) are included does not matter.

The buildSrc directory is automatically recognized by Gradle. It is a good place to define and
maintain shared configuration or imperative build logic, such as custom tasks or plugins.

buildSrc is automatically included in your build as a special subproject if a build.gradle(.kts) file is
found under buildSrc.

If the java plugin is applied to the buildSrc project, the compiled code from buildSrc/src/main/java
is put in the classpath of the root build script, making it available to any subproject (web-app, mobile-
app, lib, etc…) in the build.

Consult how to declare dependencies between subprojects to learn more.

2. Composite Builds

Composite Builds, also referred to as included builds, are best for sharing logic between builds (not
subprojects) or isolating access to shared build logic (i.e., convention plugins).

Let’s take the previous example. The logic in buildSrc has been turned into a project that contains
plugins and can be published and worked on independently of the root project build.

The plugin is moved to its own build called build-logic with a build script and settings file:

.
├── gradle
├── gradlew
├── settings.gradle.kts

├── build-logic
│ ├── settings.gradle.kts
│ └── conventions
│ ├── build.gradle.kts
│ └── src/main/kotlin/shared-build-conventions.gradle.kts
├── mobile-app
│ └── build.gradle.kts
├── web-app
│ └── build.gradle.kts
├── api
│ └── build.gradle.kts
├── lib
│ └── build.gradle.kts
└── documentation
 └── build.gradle.kts

NOTE
The fact that build-logic is located in a subdirectory of the root project is irrelevant.
The folder could be located outside the root project if desired.

The root settings file includes the entire build-logic build:

settings.gradle.kts

pluginManagement {
 includeBuild("build-logic")
}
include("mobile-app", "web-app", "api", "lib", "documentation")

Consult how to create composite builds with includeBuild to learn more.

Multi-Project path

A project path has the following pattern: it starts with an optional colon, which denotes the root
project.

The root project, :, is the only project in a path not specified by its name.

The rest of a project path is a colon-separated sequence of project names, where the next project is
a subproject of the previous project:

:sub-project-1

You can see the project paths when running gradle projects:

--
Root project 'project'
--

Root project 'project'
+--- Project ':sub-project-1'
\--- Project ':sub-project-2'

Project paths usually reflect the filesystem layout, but there are exceptions. Most notably for
composite builds.

Identifying project structure

You can use the gradle projects command to identify the project structure.

As an example, let’s use a multi-project build with the following structure:

$ gradle -q projects

Projects:

--
Root project 'multiproject'
--

Root project 'multiproject'
+--- Project ':api'
+--- Project ':services'
| +--- Project ':services:shared'
| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

Multi-project builds are collections of tasks you can run. The difference is that you may want to
control which project’s tasks get executed.

The following sections will cover your two options for executing tasks in a multi-project build.

Executing tasks by name

The command gradle test will execute the test task in any subprojects relative to the current
working directory that has that task.

If you run the command from the root project directory, you will run test in api, shared,
services:shared and services:webservice.

If you run the command from the services project directory, you will only execute the task in
services:shared and services:webservice.

The basic rule behind Gradle’s behavior is to execute all tasks down the hierarchy with this
name. And complain if there is no such task found in any of the subprojects traversed.

NOTE
Some task selectors, like help or dependencies, will only run the task on the project
they are invoked on and not on all the subprojects to reduce the amount of
information printed on the screen.

Executing tasks by fully qualified name

You can use a task’s fully qualified name to execute a specific task in a particular subproject. For
example: gradle :services:webservice:build will run the build task of the webservice subproject.

The fully qualified name of a task is its project path plus the task name.

This approach works for any task, so if you want to know what tasks are in a particular subproject,
use the tasks task, e.g. gradle :services:webservice:tasks.

Multi-Project building and testing

The build task is typically used to compile, test, and check a single project.

In multi-project builds, you may often want to do all of these tasks across various projects. The
buildNeeded and buildDependents tasks can help with this.

In this example, the :services:person-service project depends on both the :api and :shared
projects. The :api project also depends on the :shared project.

Assuming you are working on a single project, the :api project, you have been making changes but
have not built the entire project since performing a clean. You want to build any necessary
supporting JARs but only perform code quality and unit tests on the parts of the project you have
changed.

The build task does this:

$ gradle :api:build
> Task :shared:compileJava
> Task :shared:processResources
> Task :shared:classes
> Task :shared:jar
> Task :api:compileJava
> Task :api:processResources
> Task :api:classes
> Task :api:jar
> Task :api:assemble
> Task :api:compileTestJava
> Task :api:processTestResources
> Task :api:testClasses
> Task :api:test
> Task :api:check
> Task :api:build

BUILD SUCCESSFUL in 0s

If you have just gotten the latest version of the source from your version control system, which
included changes in other projects that :api depends on, you might want to build all the projects
you depend on AND test them too.

The buildNeeded task builds AND tests all the projects from the project dependencies of the
testRuntime configuration:

$ gradle :api:buildNeeded
> Task :shared:compileJava
> Task :shared:processResources
> Task :shared:classes
> Task :shared:jar
> Task :api:compileJava
> Task :api:processResources
> Task :api:classes
> Task :api:jar
> Task :api:assemble
> Task :api:compileTestJava
> Task :api:processTestResources
> Task :api:testClasses
> Task :api:test
> Task :api:check
> Task :api:build
> Task :shared:assemble
> Task :shared:compileTestJava
> Task :shared:processTestResources
> Task :shared:testClasses
> Task :shared:test
> Task :shared:check
> Task :shared:build
> Task :shared:buildNeeded
> Task :api:buildNeeded

BUILD SUCCESSFUL in 0s

You may want to refactor some part of the :api project used in other projects. If you make these
changes, testing only the :api project is insufficient. You must test all projects that depend on the
:api project.

The buildDependents task tests ALL the projects that have a project dependency (in the testRuntime
configuration) on the specified project:

$ gradle :api:buildDependents
> Task :shared:compileJava
> Task :shared:processResources
> Task :shared:classes
> Task :shared:jar
> Task :api:compileJava
> Task :api:processResources

> Task :api:classes
> Task :api:jar
> Task :api:assemble
> Task :api:compileTestJava
> Task :api:processTestResources
> Task :api:testClasses
> Task :api:test
> Task :api:check
> Task :api:build
> Task :services:person-service:compileJava
> Task :services:person-service:processResources
> Task :services:person-service:classes
> Task :services:person-service:jar
> Task :services:person-service:assemble
> Task :services:person-service:compileTestJava
> Task :services:person-service:processTestResources
> Task :services:person-service:testClasses
> Task :services:person-service:test
> Task :services:person-service:check
> Task :services:person-service:build
> Task :services:person-service:buildDependents
> Task :api:buildDependents

BUILD SUCCESSFUL in 0s

Finally, you can build and test everything in all projects. Any task you run in the root project folder
will cause that same-named task to be run on all the children.

You can run gradle build to build and test ALL projects.

Consult the Structuring Builds chapter to learn more.

Next Step: Learn about the Gradle Build Lifecycle >>

Build Lifecycle
As a build author, you define tasks and specify dependencies between them. Gradle guarantees that
tasks will execute in the order dictated by these dependencies.

Your build scripts and plugins configure this task dependency graph.

For example, if your project includes tasks such as build, assemble, and createDocs, you can
configure the build script so that they are executed in the order: build → assemble → createDocs.

Task Graphs

Gradle builds the task graph before executing any task.

Across all projects in the build, tasks form a Directed Acyclic Graph (DAG).

http://en.wikipedia.org/wiki/Directed_acyclic_graph

This diagram shows two example task graphs, one abstract and the other concrete, with
dependencies between tasks represented as arrows:

Both plugins and build scripts contribute to the task graph via the task dependency mechanism and
annotated inputs/outputs.

Build Phases

A Gradle build has three distinct phases.

Gradle runs these phases in order:

Phase 1. Initialization

• Detects the settings.gradle(.kts) file.

• Creates a Settings instance.

• Evaluates the settings file to determine which projects (and included builds) make up the
build.

• Creates a Project instance for every project.

incremental_build.pdf#sec:task_inputs_outputs
https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html

Phase 2. Configuration

• Evaluates the build scripts, build.gradle(.kts), of every project participating in the build.

• Creates a task graph for requested tasks.

Phase 3. Execution

• Schedules and executes the selected tasks.

• Dependencies between tasks determine execution order.

• Execution of tasks can occur in parallel.

Example

The following example shows which parts of settings and build files correspond to various build
phases:

settings.gradle.kts

rootProject.name = "basic"
println("This is executed during the initialization phase.")

build.gradle.kts

println("This is executed during the configuration phase.")

tasks.register("configured") {
 println("This is also executed during the configuration phase, because
:configured is used in the build.")
}

tasks.register("test") {
 doLast {
 println("This is executed during the execution phase.")
 }
}

tasks.register("testBoth") {
 doFirst {
 println("This is executed first during the execution phase.")
 }
 doLast {
 println("This is executed last during the execution phase.")
 }
 println("This is executed during the configuration phase as well, because
:testBoth is used in the build.")
}

settings.gradle

rootProject.name = 'basic'
println 'This is executed during the initialization phase.'

build.gradle

println 'This is executed during the configuration phase.'

tasks.register('configured') {
 println 'This is also executed during the configuration phase, because
:configured is used in the build.'
}

tasks.register('test') {
 doLast {
 println 'This is executed during the execution phase.'
 }
}

tasks.register('testBoth') {
 doFirst {
 println 'This is executed first during the execution phase.'
 }
 doLast {

 println 'This is executed last during the execution phase.'
 }
 println 'This is executed during the configuration phase as well, because
:testBoth is used in the build.'
}

The following command executes the test and testBoth tasks specified above. Because Gradle only
configures requested tasks and their dependencies, the configured task never configures:

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :
This is executed during the configuration phase.
This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :
This is executed during the configuration phase.
This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Phase 1. Initialization

In the initialization phase, Gradle detects the set of projects (root and subprojects) and included
builds participating in the build.

Gradle first evaluates the settings file, settings.gradle(.kts), and instantiates a Settings object.
Then, Gradle instantiates Project instances for each project.

Phase 2. Configuration

In the configuration phase, Gradle adds tasks and other properties to the projects found by the
initialization phase.

Phase 3. Execution

In the execution phase, Gradle runs tasks.

Gradle uses the task execution graphs generated by the configuration phase to determine which
tasks to execute.

Next Step: Learn how to write Settings files >>

Writing Settings Files
The settings file is the entry point of every Gradle build.

Early in the Gradle Build lifecycle, the initialization phase finds the settings file in your project root
directory.

When the settings file settings.gradle(.kts) is found, Gradle instantiates a Settings object.

One of the purposes of the Settings object is to allow you to declare all the projects to be included in
the build.

https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.Settings.html

Settings Scripts

The settings script is either a settings.gradle file in Groovy or a settings.gradle.kts file in Kotlin.

Before Gradle assembles the projects for a build, it creates a Settings instance and executes the
settings file against it.

As the settings script executes, it configures this Settings. Therefore, the settings file defines the
Settings object.

IMPORTANT
There is a one-to-one correspondence between a Settings instance and a
settings.gradle(.kts) file.

The Settings Object

The Settings object is part of the Gradle API.

• In the Groovy DSL, the Settings object documentation is found here.

• In the Kotlin DSL, the Settings object documentation is found here.

Many top-level properties and blocks in a settings script are part of the Settings API.

For example, we can set the root project name in the settings script using the Settings.rootProject
property:

settings.rootProject.name = "application"

Which is usually shortened to:

settings.gradle.kts

rootProject.name = "application"

settings.gradle

rootProject.name = 'application'

https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/Settings.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.api.initialization/-settings/index.html

Standard Settings properties

The Settings object exposes a standard set of properties in your settings script.

The following table lists a few commonly used properties:

Name Description

buildCache The build cache configuration.

plugins The container of plugins that have been applied to the settings.

rootDir The root directory of the build. The root directory is the project directory of the root
project.

rootProjec
t

The root project of the build.

settings Returns this settings object.

The following table lists a few commonly used methods:

Name Description

include() Adds the given projects to the build.

includeBuild() Includes a build at the specified path to the composite build.

Settings Script structure

A Settings script is a series of method calls to the Gradle API that often use { … }, a special
shortcut in both the Groovy and Kotlin languages. A { } block is called a lambda in Kotlin or a
closure in Groovy.

Simply put, the plugins{ } block is a method invocation in which a Kotlin lambda object or Groovy
closure object is passed as the argument. It is the short form for:

plugins(function() {
 id("plugin")
})

Blocks are mapped to Gradle API methods.

The code inside the function is executed against a this object called a receiver in Kotlin lambda and
a delegate in Groovy closure. Gradle determines the correct this object and invokes the correct
corresponding method. The this of the method invocation id("plugin") object is of type
PluginDependenciesSpec.

The settings file is composed of Gradle API calls built on top of the DSLs. Gradle executes the script
line by line, top to bottom.

Let’s take a look at an example and break it down:

https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

settings.gradle.kts

pluginManagement { ①
 repositories {
 gradlePluginPortal()
 }
}

plugins { ②
 id("org.gradle.toolchains.foojay-resolver-convention") version "0.8.0"
}

rootProject.name = "simple-project" ③

dependencyResolutionManagement { ④
 repositories {
 mavenCentral()
 }
}

include("sub-project-a") ⑤
include("sub-project-b")
include("sub-project-c")

settings.gradle

pluginManagement { ①
 repositories {
 gradlePluginPortal()
 }
}

plugins { ②
 id("org.gradle.toolchains.foojay-resolver-convention") version "0.8.0"
}

rootProject.name = 'simple-project' ③

dependencyResolutionManagement { ④
 repositories {
 mavenCentral()
 }
}

include("sub-project-a") ⑤
include("sub-project-b")

include("sub-project-c")

① Define the location of plugins

② Apply settings plugins.

③ Define the root project name.

④ Define dependency resolution strategies.

⑤ Add subprojects to the build.

1. Define the location of plugins

The settings file can manage plugin versions and repositories for your build using the
pluginManagement block. It provides a way to define which plugins should be used in your project
and from which repositories they should be resolved.

settings.gradle.kts

pluginManagement { ①
 repositories {
 gradlePluginPortal()
 }
}

settings.gradle

pluginManagement { ①
 repositories {
 gradlePluginPortal()
 }
}

2. Apply settings plugins

The settings file can optionally apply plugins that are required for configuring the settings of the
project. These are commonly the Develocity plugin and the Toolchain Resolver plugin in the
example below.

Plugins applied in the settings file only affect the Settings object.

https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/management/PluginManagementSpec.html
https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html
https://plugins.gradle.org/plugin/com.gradle.develocity
https://plugins.gradle.org/plugin/org.gradle.toolchains.foojay-resolver-convention

settings.gradle.kts

plugins { ②
 id("org.gradle.toolchains.foojay-resolver-convention") version "0.8.0"
}

settings.gradle

plugins { ②
 id("org.gradle.toolchains.foojay-resolver-convention") version "0.8.0"
}

3. Define the root project name

The settings file defines your project name using the rootProject.name property:

settings.gradle.kts

rootProject.name = "simple-project" ③

settings.gradle

rootProject.name = 'simple-project' ③

There is only one root project per build.

4. Define dependency resolution strategies

The settings file can optionally define rules and configurations for dependency resolution across
your project(s). It provides a centralized way to manage and customize dependency resolution.

settings.gradle.kts

dependencyResolutionManagement { ④
 repositories {
 mavenCentral()
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/ProjectDescriptor.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/ProjectDescriptor.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/resolve/DependencyResolutionManagement.html

}

settings.gradle

dependencyResolutionManagement { ④
 repositories {
 mavenCentral()
 }
}

You can also include version catalogs in this section.

5. Add subprojects to the build

The settings file defines the structure of the project by adding all the subprojects using the include
statement:

settings.gradle.kts

include("sub-project-a") ⑤
include("sub-project-b")
include("sub-project-c")

settings.gradle

include("sub-project-a") ⑤
include("sub-project-b")
include("sub-project-c")

You can also include entire builds using includeBuild.

Settings File Scripting

There are many more properties and methods on the Settings object that you can use to configure
your build.

It’s important to remember that while many Gradle scripts are typically written in short Groovy or
Kotlin syntax, every item in the settings script is essentially invoking a method on the Settings
object in the Gradle API:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/Settings.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/IncludedBuild.html

include("app")

Is actually:

settings.include("app")

Additionally, the full power of the Groovy and Kotlin languages is available to you.

For example, instead of using include many times to add subprojects, you can iterate over the list of
directories in the project root folder and include them automatically:

rootDir.listFiles().filter { it.isDirectory && (new File(it,
"build.gradle.kts").exists()) }.forEach {
 include(it.name)
}

TIP This type of logic should be developed in a plugin.

Next Step: Learn how to write Build scripts >>

Writing Build Scripts
The initialization phase in the Gradle Build lifecycle finds the root project and subprojects included
in your project root directory using the settings file.

Then, for each project included in the settings file, Gradle creates a Project instance.

Gradle then looks for a corresponding build script file, which is used in the configuration phase.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html

Build Scripts

Every Gradle build comprises one or more projects; a root project and subprojects.

A project typically corresponds to a software component that needs to be built, like a library or an
application. It might represent a library JAR, a web application, or a distribution ZIP assembled
from the JARs produced by other projects.

On the other hand, it might represent a thing to be done, such as deploying your application to
staging or production environments.

Gradle scripts are written in either Groovy DSL or Kotlin DSL (domain-specific language).

A build script configures a project and is associated with an object of type Project.

As the build script executes, it configures Project.

The build script is either a *.gradle file in Groovy or a *.gradle.kts file in Kotlin.

IMPORTANT Build scripts configure Project objects and their children.

The Project object

The Project object is part of the Gradle API:

• In the Groovy DSL, the Project object documentation is found here.

• In the Kotlin DSL, the Project object documentation is found here.

Many top-level properties and blocks in a build script are part of the Project API.

For example, the following build script uses the Project.name property to print the name of the
project:

build.gradle.kts

println(name)
println(project.name)

build.gradle

println name

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.api/-project/index.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name

println project.name

$ gradle -q check
project-api
project-api

Both println statements print out the same property.

The first uses the top-level reference to the name property of the Project object. The second
statement uses the project property available to any build script, which returns the associated
Project object.

Standard project properties

The Project object exposes a standard set of properties in your build script.

The following table lists a few commonly used properties:

Name Type Description

name String The name of the project directory.

path String The fully qualified name of the project.

description String A description for the project.

dependencies DependencyHandler Returns the dependency handler of the project.

repositories RepositoryHandler Returns the repository handler of the project.

layout ProjectLayout Provides access to several important locations for a project.

group Object The group of this project.

version Object The version of this project.

The following table lists a few commonly used methods:

Name Description

uri() Resolves a file path to a URI, relative to the project directory of this project.

task() Creates a Task with the given name and adds it to this project.

Build Script structure

The Build script is composed of { … }, a special object in both Groovy and Kotlin. This object is
called a lambda in Kotlin or a closure in Groovy.

Simply put, the plugins{ } block is a method invocation in which a Kotlin lambda object or Groovy
closure object is passed as the argument. It is the short form for:

plugins(function() {
 id("plugin")
})

Blocks are mapped to Gradle API methods.

The code inside the function is executed against a this object called a receiver in Kotlin lambda and
a delegate in Groovy closure. Gradle determines the correct this object and invokes the correct
corresponding method. The this of the method invocation id("plugin") object is of type
PluginDependenciesSpec.

The build script is essentially composed of Gradle API calls built on top of the DSLs. Gradle executes
the script line by line, top to bottom.

Let’s take a look at an example and break it down:

build.gradle.kts

plugins { ①
 id("application")
}

repositories { ②
 mavenCentral()
}

dependencies { ③
 testImplementation("org.junit.jupiter:junit-jupiter-engine:5.9.3")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
 implementation("com.google.guava:guava:32.1.1-jre")
}

application { ④
 mainClass = "com.example.Main"
}

tasks.named<Test>("test") { ⑤
 useJUnitPlatform()
}

tasks.named<Javadoc>("javadoc").configure {
 exclude("app/Internal*.java")
 exclude("app/internal/*")
}

tasks.register<Zip>("zip-reports") {
 from("Reports/")
 include("*")

https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

 archiveFileName.set("Reports.zip")
 destinationDirectory.set(file("/dir"))
}

build.gradle

plugins { ①
 id 'application'
}

repositories { ②
 mavenCentral()
}

dependencies { ③
 testImplementation 'org.junit.jupiter:junit-jupiter-engine:5.9.3'
 testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
 implementation 'com.google.guava:guava:32.1.1-jre'
}

application { ④
 mainClass = 'com.example.Main'
}

tasks.named('test', Test) { ⑤
 useJUnitPlatform()
}

tasks.named('javadoc', Javadoc).configure {
 exclude 'app/Internal*.java'
 exclude 'app/internal/*'
}

tasks.register('zip-reports', Zip) {
 from 'Reports/'
 include '*'
 archiveFileName = 'Reports.zip'
 destinationDirectory = file('/dir')
}

① Apply plugins to the build.

② Define the locations where dependencies can be found.

③ Add dependencies.

④ Set properties.

⑤ Register and configure tasks.

1. Apply plugins to the build

Plugins are used to extend Gradle. They are also used to modularize and reuse project
configurations.

Plugins can be applied using the PluginDependenciesSpec plugins script block.

The plugins block is preferred:

build.gradle.kts

plugins { ①
 id("application")
}

build.gradle

plugins { ①
 id 'application'
}

In the example, the application plugin, which is included with Gradle, has been applied, describing
our project as a Java application.

2. Define the locations where dependencies can be found

A project generally has a number of dependencies it needs to do its work. Dependencies include
plugins, libraries, or components that Gradle must download for the build to succeed.

The build script lets Gradle know where to look for the binaries of the dependencies. More than one
location can be provided:

build.gradle.kts

repositories { ②
 mavenCentral()
}

build.gradle

repositories { ②
 mavenCentral()
}

In the example, the guava library and the JetBrains Kotlin plugin (org.jetbrains.kotlin.jvm) will be
downloaded from the Maven Central Repository.

3. Add dependencies

A project generally has a number of dependencies it needs to do its work. These dependencies are
often libraries of precompiled classes that are imported in the project’s source code.

Dependencies are managed via configurations and are retrieved from repositories.

Use the DependencyHandler returned by Project.getDependencies() method to manage the
dependencies. Use the RepositoryHandler returned by Project.getRepositories() method to manage
the repositories.

build.gradle.kts

dependencies { ③
 testImplementation("org.junit.jupiter:junit-jupiter-engine:5.9.3")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
 implementation("com.google.guava:guava:32.1.1-jre")
}

build.gradle

dependencies { ③
 testImplementation 'org.junit.jupiter:junit-jupiter-engine:5.9.3'
 testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
 implementation 'com.google.guava:guava:32.1.1-jre'
}

In the example, the application code uses Google’s guava libraries. Guava provides utility methods
for collections, caching, primitives support, concurrency, common annotations, string processing,
I/O, and validations.

https://repo.maven.apache.org/maven2/
glossary.pdf#sub:terminology_configuration

4. Set properties

A plugin can add properties and methods to a project using extensions.

The Project object has an associated ExtensionContainer object that contains all the settings and
properties for the plugins that have been applied to the project.

In the example, the application plugin added an application property, which is used to detail the
main class of our Java application:

build.gradle.kts

application { ④
 mainClass = "com.example.Main"
}

build.gradle

application { ④
 mainClass = 'com.example.Main'
}

5. Register and configure tasks

Tasks perform some basic piece of work, such as compiling classes, or running unit tests, or zipping
up a WAR file.

While tasks are typically defined in plugins, you may need to register or configure tasks in build
scripts.

Registering a task adds the task to your project.

You can register tasks in a project using the TaskContainer.register(java.lang.String) method:

build.gradle.kts

tasks.register<Zip>("zip-reports") {
 from("Reports/")
 include("*")
 archiveFileName.set("Reports.zip")
 destinationDirectory.set(file("/dir"))
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/ExtensionContainer.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html

build.gradle

tasks.register('zip-reports', Zip) {
 from 'Reports/'
 include '*'
 archiveFileName = 'Reports.zip'
 destinationDirectory = file('/dir')
}

You may have seen usage of the TaskContainer.create(java.lang.String) method which should be
avoided.

tasks.create<Zip>("zip-reports") { }

TIP register(), which enables task configuration avoidance, is preferred over create().

You can locate a task to configure it using the TaskCollection.named(java.lang.String) method:

build.gradle.kts

tasks.named<Test>("test") { ⑤
 useJUnitPlatform()
}

build.gradle

tasks.named('test', Test) { ⑤
 useJUnitPlatform()
}

The example below configures the Javadoc task to automatically generate HTML documentation
from Java code:

build.gradle.kts

tasks.named<Javadoc>("javadoc").configure {
 exclude("app/Internal*.java")
 exclude("app/internal/*")

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html
task_configuration_avoidance.pdf#task_configuration_avoidance
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.javadoc.Javadoc.html

}

build.gradle

tasks.named('javadoc', Javadoc).configure {
 exclude 'app/Internal*.java'
 exclude 'app/internal/*'
}

Build Scripting

A build script is made up of zero or more statements and script blocks:

println(project.layout.projectDirectory);

Statements can include method calls, property assignments, and local variable definitions:

version = '1.0.0.GA'

A script block is a method call which takes a closure/lambda as a parameter:

configurations {
}

The closure/lambda configures some delegate object as it executes:

repositories {
 google()
}

A build script is also a Groovy or a Kotlin script:

build.gradle.kts

tasks.register("upper") {
 doLast {
 val someString = "mY_nAmE"
 println("Original: $someString")
 println("Upper case: ${someString.toUpperCase()}")
 }

}

build.gradle

tasks.register('upper') {
 doLast {
 String someString = 'mY_nAmE'
 println "Original: $someString"
 println "Upper case: ${someString.toUpperCase()}"
 }
}

$ gradle -q upper
Original: mY_nAmE
Upper case: MY_NAME

It can contain elements allowed in a Groovy or Kotlin script, such as method definitions and class
definitions:

build.gradle.kts

tasks.register("count") {
 doLast {
 repeat(4) { print("$it ") }
 }
}

build.gradle

tasks.register('count') {
 doLast {
 4.times { print "$it " }
 }
}

$ gradle -q count
0 1 2 3

Flexible task registration

Using the capabilities of the Groovy or Kotlin language, you can register multiple tasks in a loop:

build.gradle.kts

repeat(4) { counter ->
 tasks.register("task$counter") {
 doLast {
 println("I'm task number $counter")
 }
 }
}

build.gradle

4.times { counter ->
 tasks.register("task$counter") {
 doLast {
 println "I'm task number $counter"
 }
 }
}

$ gradle -q task1
I'm task number 1

Gradle Types

In Gradle, types, properties, and providers are foundational for managing and configuring build
logic:

• Types: Gradle defines types (like Task, Configuration, File, etc.) to represent build components.
You can extend these types to create custom tasks or domain objects.

• Properties: Gradle properties (e.g., Property<T>, ListProperty<T>, SetProperty<T>) are used for
build configuration. They allow lazy evaluation, meaning their values are calculated only when
needed, enhancing flexibility and performance.

• Providers: A Provider<T> represents a value that is computed or retrieved lazily. Providers are
often used with properties to defer value computation until necessary. This is especially useful
for integrating dynamic, runtime values into your build.

You can learn more about this in Understanding Gradle Types.

Declare Variables

Build scripts can declare two variables: local variables and extra properties.

Local Variables

Declare local variables with the val keyword. Local variables are only visible in the scope where
they have been declared. They are a feature of the underlying Kotlin language.

Declare local variables with the def keyword. Local variables are only visible in the scope where
they have been declared. They are a feature of the underlying Groovy language.

build.gradle.kts

val dest = "dest"

tasks.register<Copy>("copy") {
 from("source")
 into(dest)
}

build.gradle

def dest = 'dest'

tasks.register('copy', Copy) {
 from 'source'
 into dest
}

Extra Properties

Gradle’s enhanced objects, including projects, tasks, and source sets, can hold user-defined
properties.

Add, read, and set extra properties via the owning object’s extra property. Alternatively, you can
access extra properties via Kotlin delegated properties using by extra.

Add, read, and set extra properties via the owning object’s ext property. Alternatively, you can use
an ext block to add multiple properties simultaneously.

build.gradle.kts

plugins {

 id("java-library")
}

val springVersion by extra("3.1.0.RELEASE")
val emailNotification by extra { "build@master.org" }

sourceSets.all { extra["purpose"] = null }

sourceSets {
 main {
 extra["purpose"] = "production"
 }
 test {
 extra["purpose"] = "test"
 }
 create("plugin") {
 extra["purpose"] = "production"
 }
}

tasks.register("printProperties") {
 val springVersion = springVersion
 val emailNotification = emailNotification
 val productionSourceSets = provider {
 sourceSets.matching { it.extra["purpose"] == "production" }.map {
it.name }
 }
 doLast {
 println(springVersion)
 println(emailNotification)
 productionSourceSets.get().forEach { println(it) }
 }
}

build.gradle

plugins {
 id 'java-library'
}

ext {
 springVersion = "3.1.0.RELEASE"
 emailNotification = "build@master.org"
}

sourceSets.all { ext.purpose = null }

sourceSets {
 main {

 purpose = "production"
 }
 test {
 purpose = "test"
 }
 plugin {
 purpose = "production"
 }
}

tasks.register('printProperties') {
 def springVersion = springVersion
 def emailNotification = emailNotification
 def productionSourceSets = provider {
 sourceSets.matching { it.purpose == "production" }.collect { it.name
}
 }
 doLast {
 println springVersion
 println emailNotification
 productionSourceSets.get().each { println it }
 }
}

$ gradle -q printProperties
3.1.0.RELEASE
build@master.org
main
plugin

This example adds two extra properties to the project object via by extra. Additionally, this
example adds a property named purpose to each source set by setting extra["purpose"] to null. Once
added, you can read and set these properties via extra.

This example adds two extra properties to the project object via an ext block. Additionally, this
example adds a property named purpose to each source set by setting ext.purpose to null. Once
added, you can read and set all these properties just like predefined ones.

Gradle requires special syntax for adding a property so that it can fail fast. For example, this allows
Gradle to recognize when a script attempts to set a property that does not exist. You can access
extra properties anywhere where you can access their owning object. This gives extra properties a
wider scope than local variables. Subprojects can access extra properties on their parent projects.

For more information about extra properties, see ExtraPropertiesExtension in the API
documentation.

https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

Configure Arbitrary Objects

The example greet() task shows an example of arbitrary object configuration:

build.gradle.kts

class UserInfo(
 var name: String? = null,
 var email: String? = null
)

tasks.register("greet") {
 val user = UserInfo().apply {
 name = "Isaac Newton"
 email = "isaac@newton.me"
 }
 doLast {
 println(user.name)
 println(user.email)
 }
}

build.gradle

class UserInfo {
 String name
 String email
}

tasks.register('greet') {
 def user = configure(new UserInfo()) {
 name = "Isaac Newton"
 email = "isaac@newton.me"
 }
 doLast {
 println user.name
 println user.email
 }
}

$ gradle -q greet
Isaac Newton
isaac@newton.me

Closure Delegates

Each closure has a delegate object. Groovy uses this delegate to look up variable and method
references to nonlocal variables and closure parameters. Gradle uses this for configuration closures,
where the delegate object refers to the object being configured.

build.gradle

dependencies {
 assert delegate == project.dependencies
 testImplementation('junit:junit:4.13')
 delegate.testImplementation('junit:junit:4.13')
}

Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to scripts.

As a result, instead of writing throw new org.gradle.api.tasks.StopExecutionException(), you can
write throw new StopExecutionException() instead.

Gradle implicitly adds the following imports to each script:

import org.gradle.*
import org.gradle.api.*
import org.gradle.api.artifacts.*
import org.gradle.api.artifacts.capability.*
import org.gradle.api.artifacts.component.*
import org.gradle.api.artifacts.dsl.*
import org.gradle.api.artifacts.ivy.*
import org.gradle.api.artifacts.maven.*
import org.gradle.api.artifacts.query.*
import org.gradle.api.artifacts.repositories.*
import org.gradle.api.artifacts.result.*
import org.gradle.api.artifacts.transform.*
import org.gradle.api.artifacts.type.*
import org.gradle.api.artifacts.verification.*
import org.gradle.api.attributes.*
import org.gradle.api.attributes.java.*
import org.gradle.api.attributes.plugin.*
import org.gradle.api.cache.*
import org.gradle.api.capabilities.*
import org.gradle.api.component.*
import org.gradle.api.configuration.*
import org.gradle.api.credentials.*
import org.gradle.api.distribution.*
import org.gradle.api.distribution.plugins.*

import org.gradle.api.execution.*
import org.gradle.api.file.*
import org.gradle.api.flow.*
import org.gradle.api.initialization.*
import org.gradle.api.initialization.definition.*
import org.gradle.api.initialization.dsl.*
import org.gradle.api.initialization.resolve.*
import org.gradle.api.invocation.*
import org.gradle.api.java.archives.*
import org.gradle.api.jvm.*
import org.gradle.api.launcher.cli.*
import org.gradle.api.logging.*
import org.gradle.api.logging.configuration.*
import org.gradle.api.model.*
import org.gradle.api.plugins.*
import org.gradle.api.plugins.antlr.*
import org.gradle.api.plugins.catalog.*
import org.gradle.api.plugins.jvm.*
import org.gradle.api.plugins.quality.*
import org.gradle.api.plugins.scala.*
import org.gradle.api.problems.*
import org.gradle.api.project.*
import org.gradle.api.provider.*
import org.gradle.api.publish.*
import org.gradle.api.publish.ivy.*
import org.gradle.api.publish.ivy.plugins.*
import org.gradle.api.publish.ivy.tasks.*
import org.gradle.api.publish.maven.*
import org.gradle.api.publish.maven.plugins.*
import org.gradle.api.publish.maven.tasks.*
import org.gradle.api.publish.plugins.*
import org.gradle.api.publish.tasks.*
import org.gradle.api.reflect.*
import org.gradle.api.reporting.*
import org.gradle.api.reporting.components.*
import org.gradle.api.reporting.dependencies.*
import org.gradle.api.reporting.dependents.*
import org.gradle.api.reporting.model.*
import org.gradle.api.reporting.plugins.*
import org.gradle.api.resources.*
import org.gradle.api.services.*
import org.gradle.api.specs.*
import org.gradle.api.tasks.*
import org.gradle.api.tasks.ant.*
import org.gradle.api.tasks.application.*
import org.gradle.api.tasks.bundling.*
import org.gradle.api.tasks.compile.*
import org.gradle.api.tasks.diagnostics.*
import org.gradle.api.tasks.diagnostics.configurations.*
import org.gradle.api.tasks.incremental.*
import org.gradle.api.tasks.javadoc.*

import org.gradle.api.tasks.options.*
import org.gradle.api.tasks.scala.*
import org.gradle.api.tasks.testing.*
import org.gradle.api.tasks.testing.junit.*
import org.gradle.api.tasks.testing.junitplatform.*
import org.gradle.api.tasks.testing.testng.*
import org.gradle.api.tasks.util.*
import org.gradle.api.tasks.wrapper.*
import org.gradle.api.toolchain.management.*
import org.gradle.authentication.*
import org.gradle.authentication.aws.*
import org.gradle.authentication.http.*
import org.gradle.build.event.*
import org.gradle.buildconfiguration.tasks.*
import org.gradle.buildinit.*
import org.gradle.buildinit.plugins.*
import org.gradle.buildinit.specs.*
import org.gradle.buildinit.tasks.*
import org.gradle.caching.*
import org.gradle.caching.configuration.*
import org.gradle.caching.http.*
import org.gradle.caching.local.*
import org.gradle.concurrent.*
import org.gradle.external.javadoc.*
import org.gradle.ide.visualstudio.*
import org.gradle.ide.visualstudio.plugins.*
import org.gradle.ide.visualstudio.tasks.*
import org.gradle.ide.xcode.*
import org.gradle.ide.xcode.plugins.*
import org.gradle.ide.xcode.tasks.*
import org.gradle.ivy.*
import org.gradle.jvm.*
import org.gradle.jvm.application.scripts.*
import org.gradle.jvm.application.tasks.*
import org.gradle.jvm.tasks.*
import org.gradle.jvm.toolchain.*
import org.gradle.language.*
import org.gradle.language.assembler.*
import org.gradle.language.assembler.plugins.*
import org.gradle.language.assembler.tasks.*
import org.gradle.language.base.*
import org.gradle.language.base.artifact.*
import org.gradle.language.base.compile.*
import org.gradle.language.base.plugins.*
import org.gradle.language.base.sources.*
import org.gradle.language.c.*
import org.gradle.language.c.plugins.*
import org.gradle.language.c.tasks.*
import org.gradle.language.cpp.*
import org.gradle.language.cpp.plugins.*
import org.gradle.language.cpp.tasks.*

import org.gradle.language.java.artifact.*
import org.gradle.language.jvm.tasks.*
import org.gradle.language.nativeplatform.*
import org.gradle.language.nativeplatform.tasks.*
import org.gradle.language.objectivec.*
import org.gradle.language.objectivec.plugins.*
import org.gradle.language.objectivec.tasks.*
import org.gradle.language.objectivecpp.*
import org.gradle.language.objectivecpp.plugins.*
import org.gradle.language.objectivecpp.tasks.*
import org.gradle.language.plugins.*
import org.gradle.language.rc.*
import org.gradle.language.rc.plugins.*
import org.gradle.language.rc.tasks.*
import org.gradle.language.scala.tasks.*
import org.gradle.language.swift.*
import org.gradle.language.swift.plugins.*
import org.gradle.language.swift.tasks.*
import org.gradle.maven.*
import org.gradle.model.*
import org.gradle.nativeplatform.*
import org.gradle.nativeplatform.platform.*
import org.gradle.nativeplatform.plugins.*
import org.gradle.nativeplatform.tasks.*
import org.gradle.nativeplatform.test.*
import org.gradle.nativeplatform.test.cpp.*
import org.gradle.nativeplatform.test.cpp.plugins.*
import org.gradle.nativeplatform.test.cunit.*
import org.gradle.nativeplatform.test.cunit.plugins.*
import org.gradle.nativeplatform.test.cunit.tasks.*
import org.gradle.nativeplatform.test.googletest.*
import org.gradle.nativeplatform.test.googletest.plugins.*
import org.gradle.nativeplatform.test.plugins.*
import org.gradle.nativeplatform.test.tasks.*
import org.gradle.nativeplatform.test.xctest.*
import org.gradle.nativeplatform.test.xctest.plugins.*
import org.gradle.nativeplatform.test.xctest.tasks.*
import org.gradle.nativeplatform.toolchain.*
import org.gradle.nativeplatform.toolchain.plugins.*
import org.gradle.normalization.*
import org.gradle.platform.*
import org.gradle.platform.base.*
import org.gradle.platform.base.binary.*
import org.gradle.platform.base.component.*
import org.gradle.platform.base.plugins.*
import org.gradle.plugin.devel.*
import org.gradle.plugin.devel.plugins.*
import org.gradle.plugin.devel.tasks.*
import org.gradle.plugin.management.*
import org.gradle.plugin.use.*
import org.gradle.plugins.ear.*

import org.gradle.plugins.ear.descriptor.*
import org.gradle.plugins.ide.*
import org.gradle.plugins.ide.api.*
import org.gradle.plugins.ide.eclipse.*
import org.gradle.plugins.ide.idea.*
import org.gradle.plugins.signing.*
import org.gradle.plugins.signing.signatory.*
import org.gradle.plugins.signing.signatory.pgp.*
import org.gradle.plugins.signing.type.*
import org.gradle.plugins.signing.type.pgp.*
import org.gradle.process.*
import org.gradle.swiftpm.*
import org.gradle.swiftpm.plugins.*
import org.gradle.swiftpm.tasks.*
import org.gradle.testing.base.*
import org.gradle.testing.base.plugins.*
import org.gradle.testing.jacoco.plugins.*
import org.gradle.testing.jacoco.tasks.*
import org.gradle.testing.jacoco.tasks.rules.*
import org.gradle.testkit.runner.*
import org.gradle.util.*
import org.gradle.vcs.*
import org.gradle.vcs.git.*
import org.gradle.work.*
import org.gradle.workers.*

Next Step: Learn how to use Tasks >>

Using Tasks
The work that Gradle can do on a project is defined by one or more tasks.

A task represents some independent unit of work that a build performs. This might be compiling
some classes, creating a JAR, generating Javadoc, or publishing some archives to a repository.

When a user runs ./gradlew build in the command line, Gradle will execute the build task along
with any other tasks it depends on.

List available tasks

Gradle provides several default tasks for a project, which are listed by running ./gradlew tasks:

> Task :tasks

--
Tasks runnable from root project 'myTutorial'
--

Build Setup tasks

init - Initializes a new Gradle build.
wrapper - Generates Gradle wrapper files.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project
'myTutorial'.
...

Tasks either come from build scripts or plugins.

Once we apply a plugin to our project, such as the application plugin, additional tasks become
available:

build.gradle.kts

plugins {
 id("application")
}

build.gradle

plugins {
 id 'application'
}

$./gradlew tasks

> Task :tasks

--
Tasks runnable from project ':app'
--

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.

Documentation tasks

javadoc - Generates Javadoc API documentation for the main source code.

Other tasks

compileJava - Compiles main Java source.

...

Many of these tasks, such as assemble, build, and run, should be familiar to a developer.

Task classification

There are two classes of tasks that can be executed:

1. Actionable tasks have some action(s) attached to do work in your build: compileJava.

2. Lifecycle tasks are tasks with no actions attached: assemble, build.

Typically, a lifecycle tasks depends on many actionable tasks, and is used to execute many tasks at
once.

Task registration and action

Let’s take a look at a simple "Hello World" task in a build script:

build.gradle.kts

tasks.register("hello") {
 doLast {
 println("Hello world!")
 }
}

build.gradle

tasks.register('hello') {
 doLast {
 println 'Hello world!'
 }
}

In the example, the build script registers a single task called hello using the TaskContainer API,
and adds an action to it.

If the tasks in the project are listed, the hello task is available to Gradle:

$./gradlew app:tasks --all

> Task :app:tasks

--
Tasks runnable from project ':app'
--

Other tasks

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html

compileJava - Compiles main Java source.
compileTestJava - Compiles test Java source.
hello
processResources - Processes main resources.
processTestResources - Processes test resources.
startScripts - Creates OS-specific scripts to run the project as a JVM application.

You can execute the task in the build script with ./gradlew hello:

$./gradlew hello
Hello world!

When Gradle executes the hello task, it executes the action provided. In this case, the action is
simply a block containing some code: println("Hello world!").

Task group and description

The hello task from the previous section can be detailed with a description and assigned to a
group with the following update:

build.gradle.kts

tasks.register("hello") {
 group = "Custom"
 description = "A lovely greeting task."
 doLast {
 println("Hello world!")
 }
}

build.gradle

tasks.register('hello') {
 group = 'Custom'
 description = 'A lovely greeting task.'
 doLast {
 println 'Hello world!'
 }
}

Once the task is assigned to a group, it will be listed by ./gradlew tasks:

$./gradlew tasks

> Task :tasks

Custom tasks

hello - A lovely greeting task.

To view information about a task, use the help --task <task-name> command:

$./gradlew help --task hello

> Task :help
Detailed task information for hello

Path
:app:hello

Type
Task (org.gradle.api.Task)

Options
--rerun Causes the task to be re-run even if up-to-date.

Description
A lovely greeting task.

Group
Custom

As we can see, the hello task belongs to the custom group.

Task dependencies

You can declare tasks that depend on other tasks:

build.gradle.kts

tasks.register("hello") {
 doLast {
 println("Hello world!")
 }
}
tasks.register("intro") {
 dependsOn("hello")
 doLast {
 println("I'm Gradle")

 }
}

build.gradle

tasks.register('hello') {
 doLast {
 println 'Hello world!'
 }
}
tasks.register('intro') {
 dependsOn tasks.hello
 doLast {
 println "I'm Gradle"
 }
}

$ gradle -q intro
Hello world!
I'm Gradle

The dependency of taskX to taskY may be declared before taskY is defined:

build.gradle.kts

tasks.register("taskX") {
 dependsOn("taskY")
 doLast {
 println("taskX")
 }
}
tasks.register("taskY") {
 doLast {
 println("taskY")
 }
}

build.gradle

tasks.register('taskX') {
 dependsOn 'taskY'
 doLast {

 println 'taskX'
 }
}
tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}

$ gradle -q taskX
taskY
taskX

The hello task from the previous example is updated to include a dependency:

build.gradle.kts

tasks.register("hello") {
 group = "Custom"
 description = "A lovely greeting task."
 doLast {
 println("Hello world!")
 }
 dependsOn(tasks.assemble)
}

build.gradle

tasks.register('hello') {
 group = "Custom"
 description = "A lovely greeting task."
 doLast {
 println("Hello world!")
 }
 dependsOn(tasks.assemble)
}

The hello task now depends on the assemble task, which means that Gradle must execute the
assemble task before it can execute the hello task:

$./gradlew :app:hello

> Task :app:compileJava UP-TO-DATE
> Task :app:processResources NO-SOURCE
> Task :app:classes UP-TO-DATE
> Task :app:jar UP-TO-DATE
> Task :app:startScripts UP-TO-DATE
> Task :app:distTar UP-TO-DATE
> Task :app:distZip UP-TO-DATE
> Task :app:assemble UP-TO-DATE

> Task :app:hello
Hello world!

Task configuration

Once registered, tasks can be accessed via the TaskProvider API for further configuration.

For instance, you can use this to add dependencies to a task at runtime dynamically:

build.gradle.kts

repeat(4) { counter ->
 tasks.register("task$counter") {
 doLast {
 println("I'm task number $counter")
 }
 }
}
tasks.named("task0") { dependsOn("task2", "task3") }

build.gradle

4.times { counter ->
 tasks.register("task$counter") {
 doLast {
 println "I'm task number $counter"
 }
 }
}
tasks.named('task0') { dependsOn('task2', 'task3') }

$ gradle -q task0
I'm task number 2
I'm task number 3

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskProvider.html

I'm task number 0

Or you can add behavior to an existing task:

build.gradle.kts

tasks.register("hello") {
 doLast {
 println("Hello Earth")
 }
}
tasks.named("hello") {
 doFirst {
 println("Hello Venus")
 }
}
tasks.named("hello") {
 doLast {
 println("Hello Mars")
 }
}
tasks.named("hello") {
 doLast {
 println("Hello Jupiter")
 }
}

build.gradle

tasks.register('hello') {
 doLast {
 println 'Hello Earth'
 }
}
tasks.named('hello') {
 doFirst {
 println 'Hello Venus'
 }
}
tasks.named('hello') {
 doLast {
 println 'Hello Mars'
 }
}
tasks.named('hello') {
 doLast {

 println 'Hello Jupiter'
 }
}

$ gradle -q hello
Hello Venus
Hello Earth
Hello Mars
Hello Jupiter

TIP
The calls doFirst and doLast can be executed multiple times. They add an action to the
beginning or the end of the task’s actions list. When the task executes, the actions in
the action list are executed in order.

Here is an example of the named method being used to configure a task added by a plugin:

build.gradle.kts

tasks.dokkaHtml.configure {
 outputDirectory.set(buildDir)
}

build.gradle

tasks.named("dokkaHtml") {
 outputDirectory.set(buildDir)
}

Task types

Gradle tasks are a subclass of Task.

In the build script, the HelloTask class is created by extending DefaultTask:

build.gradle.kts

// Extend the DefaultTask class to create a HelloTask class
abstract class HelloTask : DefaultTask() {
 @TaskAction

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/DefaultTask.html

 fun hello() {
 println("hello from HelloTask")
 }
}

// Register the hello Task with type HelloTask
tasks.register<HelloTask>("hello") {
 group = "Custom tasks"
 description = "A lovely greeting task."
}

build.gradle

// Extend the DefaultTask class to create a HelloTask class
class HelloTask extends DefaultTask {
 @TaskAction
 void hello() {
 println("hello from HelloTask")
 }
}

// Register the hello Task with type HelloTask
tasks.register("hello", HelloTask) {
 group = "Custom tasks"
 description = "A lovely greeting task."
}

The hello task is registered with the type HelloTask.

Executing our new hello task:

$./gradlew hello

> Task :app:hello
hello from HelloTask

Now the hello task is of type HelloTask instead of type Task.

The Gradle help task reveals the change:

$./gradlew help --task hello

> Task :help
Detailed task information for hello

Path
:app:hello

Type
HelloTask (Build_gradle$HelloTask)

Options
--rerun Causes the task to be re-run even if up-to-date.

Description
A lovely greeting task.

Group
Custom tasks

Built-in task types

Gradle provides many built-in task types with common and popular functionality, such as copying
or deleting files.

This example task copies *.war files from the source directory to the target directory using the Copy
built-in task:

build.gradle.kts

tasks.register<Copy>("copyTask") {
 from("source")
 into("target")
 include("*.war")
}

build.gradle

tasks.register('copyTask', Copy) {
 from("source")
 into("target")
 include("*.war")
}

There are many task types developers can take advantage of, including GroovyDoc, Zip, Jar,
JacocoReport, Sign, or Delete, which are available in the link:DSL.

Next Step: Learn how to write Tasks >>

https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Writing Tasks
Gradle tasks are created by extending DefaultTask.

However, the generic DefaultTask provides no action for Gradle. If users want to extend the
capabilities of Gradle and their build script, they must either use a built-in task or create a custom
task:

1. Built-in task - Gradle provides built-in utility tasks such as Copy, Jar, Zip, Delete, etc…

2. Custom task - Gradle allows users to subclass DefaultTask to create their own task types.

Create a task

The simplest and quickest way to create a custom task is in a build script:

To create a task, inherit from the DefaultTask class and implement a @TaskAction handler:

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
 @TaskAction
 fun action() {
 val file = File("myfile.txt")
 file.createNewFile()
 file.writeText("HELLO FROM MY TASK")
 }
}

build.gradle

class CreateFileTask extends DefaultTask {
 @TaskAction
 void action() {
 def file = new File("myfile.txt")
 file.createNewFile()
 file.text = "HELLO FROM MY TASK"
 }
}

The CreateFileTask implements a simple set of actions. First, a file called "myfile.txt" is created in
the main project. Then, some text is written to the file.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskAction.html

Register a task

A task is registered in the build script using the TaskContainer.register() method, which allows it
to be then used in the build logic.

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
 @TaskAction
 fun action() {
 val file = File("myfile.txt")
 file.createNewFile()
 file.writeText("HELLO FROM MY TASK")
 }
}

tasks.register<CreateFileTask>("createFileTask")

build.gradle

class CreateFileTask extends DefaultTask {
 @TaskAction
 void action() {
 def file = new File("myfile.txt")
 file.createNewFile()
 file.text = "HELLO FROM MY TASK"
 }
}

tasks.register("createFileTask", CreateFileTask)

Task group and description

Setting the group and description properties on your tasks can help users understand how to use
your task:

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
 @TaskAction
 fun action() {
 val file = File("myfile.txt")
 file.createNewFile()

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html

 file.writeText("HELLO FROM MY TASK")
 }
}

tasks.register<CreateFileTask>("createFileTask") {
 group = "custom"
 description = "Create myfile.txt in the current directory"
}

build.gradle

class CreateFileTask extends DefaultTask {
 @TaskAction
 void action() {
 def file = new File("myfile.txt")
 file.createNewFile()
 file.text = "HELLO FROM MY TASK"
 }
}

tasks.register("createFileTask", CreateFileTask) {
 group = "custom"
 description = "Create myfile.txt in the current directory"
}

Once a task is added to a group, it is visible when listing tasks.

Task input and outputs

For the task to do useful work, it typically needs some inputs. A task typically produces outputs.

build.gradle.kts

abstract class CreateAFileTask : DefaultTask() {
 @get:Input
 abstract val fileText: Property<String>

 @Input
 val fileName = "myfile.txt"

 @OutputFile
 val myFile: File = File(fileName)

 @TaskAction
 fun action() {

 myFile.createNewFile()
 myFile.writeText(fileText.get())
 }
}

build.gradle

abstract class CreateAFileTask extends DefaultTask {
 @Input
 abstract Property<String> getFileText()

 @Input
 final String fileName = "myfile.txt"

 @OutputFile
 final File myFile = new File(fileName)

 @TaskAction
 void action() {
 myFile.createNewFile()
 myFile.text = fileText.get()
 }
}

Configure a task

A task is optionally configured in a build script using the TaskCollection.named() method.

The CreateAFileTask class is updated so that the text in the file is configurable:

build.gradle.kts

abstract class CreateAFileTask : DefaultTask() {
 @get:Input
 abstract val fileText: Property<String>

 @Input
 val fileName = "myfile.txt"

 @OutputFile
 val myFile: File = File(fileName)

 @TaskAction
 fun action() {
 myFile.createNewFile()

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskCollection.html

 myFile.writeText(fileText.get())
 }
}

tasks.register<CreateAFileTask>("createAFileTask") {
 group = "custom"
 description = "Create myfile.txt in the current directory"
 fileText.convention("HELLO FROM THE CREATE FILE TASK METHOD") // Set
convention
}

tasks.named<CreateAFileTask>("createAFileTask") {
 fileText.set("HELLO FROM THE NAMED METHOD") // Override with custom
message
}

build.gradle

abstract class CreateAFileTask extends DefaultTask {
 @Input
 abstract Property<String> getFileText()

 @Input
 final String fileName = "myfile.txt"

 @OutputFile
 final File myFile = new File(fileName)

 @TaskAction
 void action() {
 myFile.createNewFile()
 myFile.text = fileText.get()
 }
}

tasks.register("createAFileTask", CreateAFileTask) {
 group = "custom"
 description = "Create myfile.txt in the current directory"
 fileText.convention("HELLO FROM THE CREATE FILE TASK METHOD") // Set
convention
}

tasks.named("createAFileTask", CreateAFileTask) {
 fileText.set("HELLO FROM THE NAMED METHOD") // Override with custom
message
}

In the named() method, we find the createAFileTask task and set the text that will be written to the
file.

When the task is executed:

$./gradlew createAFileTask

> Configure project :app

> Task :app:createAFileTask

BUILD SUCCESSFUL in 5s
2 actionable tasks: 1 executed, 1 up-to-date

A text file called myfile.txt is created in the project root folder:

myfile.txt

HELLO FROM THE NAMED METHOD

Consult the Developing Gradle Tasks chapter to learn more.

Next Step: Learn how to use Plugins >>

Using Plugins
Much of Gradle’s functionality is delivered via plugins, including core plugins distributed with
Gradle, third-party plugins, and script plugins defined within builds.

Plugins introduce new tasks (e.g., JavaCompile), domain objects (e.g., SourceSet), conventions (e.g.,
locating Java source at src/main/java), and extend core or other plugin objects.

Plugins in Gradle are essential for automating common build tasks, integrating with external tools
or services, and tailoring the build process to meet specific project needs. They also serve as the
primary mechanism for organizing build logic.

Benefits of plugins

Writing many tasks and duplicating configuration blocks in build scripts can get messy. Plugins
offer several advantages over adding logic directly to the build script:

• Promotes Reusability: Reduces the need to duplicate similar logic across projects.

• Enhances Modularity: Allows for a more modular and organized build script.

• Encapsulates Logic: Keeps imperative logic separate, enabling more declarative build scripts.

Plugin distribution

You can leverage plugins from Gradle and the Gradle community or create your own.

Plugins are available in three ways:

1. Core plugins - Gradle develops and maintains a set of Core Plugins.

2. Community plugins - Gradle plugins shared in a remote repository such as Maven or the
Gradle Plugin Portal.

3. Custom plugins - Gradle enables users to create plugins using APIs.

Types of plugins

Plugins can be implemented as binary plugins, precompiled script plugins, or script plugins:

1. Script Plugins

Script plugins are Groovy DSL or Kotlin DSL scripts that are applied directly to a Gradle build script
using the apply from: syntax. They are applied inline within a build script to add functionality or
customize the build process. They are not recommended but it’s important to understand how to
work:

build.gradle.kts

// Define a plugin
class HelloWorldPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 project.tasks.register("helloWorld") {
 group = "Example"
 description = "Prints 'Hello, World!' to the console"
 doLast {
 println("Hello, World!")
 }
 }
 }
}

// Apply the plugin
apply<HelloWorldPlugin>()

2. Precompiled Script Plugins

Precompiled script plugins are Groovy DSL or Kotlin DSL scripts compiled and distributed as Java
class files packaged in some library. They are meant to be consumed as a binary Gradle plugin, so
they are applied to a project using the plugins {} block. The plugin ID by which the precompiled
script can be referenced is derived from its name and optional package declaration.

https://plugins.gradle.org
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Plugin.html

plugin/src/main/kotlin/my-plugin.gradle.kts

// This script is automatically exposed to downstream consumers as the `my-plugin`
plugin
tasks {
 register("myCopyTask", Copy::class) {
 group = "sample"
 from("build.gradle.kts")
 into("build/copy")
 }
}

consumer/build.gradle.kts

plugins {
 id("my-plugin") version "1.0"
}

3. BuildSrc and Convention Plugins

These are a hybrid of precompiled plugins and binary plugins that provide a way to reuse complex
logic across projects and allow for better organization of build logic.

buildSrc/src/main/kotlin/shared-build-conventions.gradle.kts

plugins {
 java
}

repositories {
 mavenCentral()
}

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.8.1")
 implementation("com.google.guava:guava:30.1.1-jre")
}

tasks.named<Test>("test") {
 useJUnitPlatform()
}

tasks.register<Copy>("backupTestXml") {
 from("build/test-results/test")
 into("/tmp/results/")
 exclude("binary/**")
}

app/build.gradle.kts

plugins {
 application
 id("shared-build-conventions")
}

4. Binary Plugins

Binary plugins are compiled plugins typically written in Java or Kotlin DSL that are packaged as
JAR files. They are applied to a project using the plugins {} block. They offer better performance
and maintainability compared to script plugins or precompiled script plugins.

plugin/src/main/kotlin/plugin/MyPlugin.kt

class MyPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 project.run {
 tasks {
 register("myCopyTask", Copy::class) {
 group = "sample"
 from("build.gradle.kts")
 into("build/copy")
 }
 }
 }
 }
}

consumer/build.gradle.kts

plugins {
 id("my-plugin") version "1.0"
}

The difference between a binary plugin and a script plugin lies in how they are shared and
executed:

• A binary plugin is compiled into bytecode, and the bytecode is shared.

• A script plugin is shared as source code, and it is compiled at the time of use.

Binary plugins can be written in any language that produces JVM bytecode, such as Java, Kotlin, or
Groovy. In contrast, script plugins can only be written using Kotlin DSL or Groovy DSL.

However, there is also a middle ground: precompiled script plugins. These are written in Kotlin
DSL or Groovy DSL, like script plugins, but are compiled into bytecode and shared like binary
plugins.

A plugin often starts as a script plugin (because they are easy to write). Then, as the code becomes

more valuable, it’s migrated to a binary plugin that can be easily tested and shared between
multiple projects or organizations.

Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to
resolve the plugin, and then it needs to apply the plugin to the target, usually a Project.

1. Resolving a plugin means finding the correct version of the JAR that contains a given plugin
and adding it to the script classpath. Once a plugin is resolved, its API can be used in a build
script. Script plugins are self-resolving in that they are resolved from the specific file path or
URL provided when applying them. Core binary plugins provided as part of the Gradle
distribution are automatically resolved.

2. Applying a plugin means executing the plugin’s Plugin.apply(T) on a project.

The plugins DSL is recommended to resolve and apply plugins in one step.

Resolving plugins

Gradle provides the core plugins (e.g., JavaPlugin, GroovyPlugin, MavenPublishPlugin, etc.) as part of
its distribution, which means they are automatically resolved.

Core plugins are applied in a build script using the plugin name:

plugins {
 id «plugin name»
}

For example:

plugins {
 id("java")
}

Non-core plugins must be resolved before they can be applied. Non-core plugins are identified by a
unique ID and a version in the build file:

plugins {
 id «plugin id» version «plugin version»
}

And the location of the plugin must be specified in the settings file:

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Plugin.html#apply-T-

settings.gradle.kts

pluginManagement { ①
 repositories {
 gradlePluginPortal()
 }
}

settings.gradle

pluginManagement { ①
 repositories {
 gradlePluginPortal()
 }
}

There are additional considerations for resolving and applying plugins:

To Use For example:

1 Apply a plugin to a
project.

The plugins block in the build
file plugins {

id("org.barfuin.gradle.taskinfo")
version "2.1.0"
}

2 Apply a plugin to
multiple
subprojects.

The subprojects or allprojects
blocks in the root build file. Not
Recommended

plugins {

id("org.barfuin.gradle.taskinfo")
version "2.1.0"
}
allprojects {
 apply(plugin =
"org.barfuin.gradle.taskinfo")
 repositories {
 mavenCentral()
 }
}

To Use For example:

3 Apply a plugin to
multiple
subprojects.

A convention plugin in the
buildSrc directory
Recommended.

plugins {
 id("my-
convention.gradle.taskinfo")
}

4 Apply a plugin
needed for the build
script itself.

The buildscript block in the
build file itself. Legacy. buildscript {

 repositories {
 mavenCentral()
 }
 dependencies {

classpath("org.barfuin.gradle.tas
kinfo:gradle-taskinfo:2.1.0")
 }
}
apply(plugin =
"org.barfuin.gradle.taskinfo")

5 Apply a script
plugins.

The legacy apply() method in the
build file. Not Recommended.
Legacy.

apply<MyCustomBarfuinTaskInfoPlug
in>()

1. Applying plugins using the plugins{} block

The plugin DSL provides a concise and convenient way to declare plugin dependencies.

The plugins block configures an instance of PluginDependenciesSpec:

plugins {
 application // by name
 java // by name
 id("java") // by id - recommended
 id("org.jetbrains.kotlin.jvm") version "1.9.0" // by id - recommended
}

Core Gradle plugins are unique in that they provide short names, such as java for the core
JavaPlugin.

To apply a core plugin, the short name can be used:

build.gradle.kts

plugins {
 java

https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/JavaPlugin.html

}

build.gradle

plugins {
 id 'java'
}

All other binary plugins must use the fully qualified form of the plugin id (e.g., com.github.foo.bar).

To apply a community plugin from Gradle plugin portal, the fully qualified plugin id, a globally
unique identifier, must be used:

build.gradle.kts

plugins {
 id("org.springframework.boot") version "3.3.1"
}

build.gradle

plugins {
 id 'org.springframework.boot' version '3.3.1'
}

See PluginDependenciesSpec for more information on using the Plugin DSL.

Limitations of the plugins DSL

The plugins DSL provides a convenient syntax for users and the ability for Gradle to determine
which plugins are used quickly. This allows Gradle to:

• Optimize the loading and reuse of plugin classes.

• Provide editors with detailed information about the potential properties and values in the build
script.

However, the DSL requires that plugins be defined statically.

There are some key differences between the plugins {} block mechanism and the "traditional"
apply() method mechanism. There are also some constraints and possible limitations.

http://plugins.gradle.org
https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

The plugins{} block can only be used in a project’s build script build.gradle(.kts) and the
settings.gradle(.kts) file. It must appear before any other block. It cannot be used in script plugins
or init scripts.

Constrained Syntax

The plugins {} block does not support arbitrary code.

It is constrained to be idempotent (produce the same result every time) and side effect-free (safe for
Gradle to execute at any time).

The form is:

plugins {
 id(«plugin id») ①
 id(«plugin id») version «plugin version» ②
}

① for core Gradle plugins or plugins already available to the build script

② for binary Gradle plugins that need to be resolved

Where «plugin id» and «plugin version» are a string.

Where «plugin id» and «plugin version» must be constant, literal strings.

The plugins{} block must also be a top-level statement in the build script. It cannot be nested inside
another construct (e.g., an if-statement or for-loop).

2. Applying plugins to all subprojects{} or allprojects{}

Suppose you have a multi-project build, you probably want to apply plugins to some or all of the
subprojects in your build but not to the root project.

While the default behavior of the plugins{} block is to immediately resolve and apply the plugins,
you can use the apply false syntax to tell Gradle not to apply the plugin to the current project.
Then, use the plugins{} block without the version in subprojects' build scripts:

settings.gradle.kts

include("hello-a")
include("hello-b")
include("goodbye-c")

build.gradle.kts

plugins {
 // These plugins are not automatically applied.
 // They can be applied in subprojects as needed (in their respective

build files).
 id("com.example.hello") version "1.0.0" apply false
 id("com.example.goodbye") version "1.0.0" apply false
}

allprojects {
 // Apply the common 'java' plugin to all projects (including the root)
 plugins.apply("java")
}

subprojects {
 // Apply the 'java-library' plugin to all subprojects (excluding the
root)
 plugins.apply("java-library")
}

hello-a/build.gradle.kts

plugins {
 id("com.example.hello")
}

hello-b/build.gradle.kts

plugins {
 id("com.example.hello")
}

goodbye-c/build.gradle.kts

plugins {
 id("com.example.goodbye")
}

settings.gradle

include 'hello-a'
include 'hello-b'
include 'goodbye-c'

build.gradle

plugins {
 // These plugins are not automatically applied.
 // They can be applied in subprojects as needed (in their respective
build files).

 id 'com.example.hello' version '1.0.0' apply false
 id 'com.example.goodbye' version '1.0.0' apply false
}

allprojects {
 // Apply the common 'java' plugin to all projects (including the root)
 apply(plugin: 'java')
}

subprojects {
 // Apply the 'java-library' plugin to all subprojects (excluding the
root)
 apply(plugin: 'java-library')
}

hello-a/build.gradle

plugins {
 id 'com.example.hello'
}

hello-b/build.gradle

plugins {
 id 'com.example.hello'
}

goodbye-c/build.gradle

plugins {
 id 'com.example.goodbye'
}

You can also encapsulate the versions of external plugins by composing the build logic using your
own convention plugins.

3. Applying convention plugins from the buildSrc directory

buildSrc is an optional directory at the Gradle project root that contains build logic (i.e., plugins)
used in building the main project. You can apply plugins that reside in a project’s buildSrc directory
as long as they have a defined ID.

The following example shows how to tie the plugin implementation class my.MyPlugin, defined in
buildSrc, to the id "my-plugin":

buildSrc/build.gradle.kts

plugins {
 `java-gradle-plugin`
}

gradlePlugin {
 plugins {
 create("myPlugins") {
 id = "my-plugin"
 implementationClass = "my.MyPlugin"
 }
 }
}

buildSrc/build.gradle

plugins {
 id 'java-gradle-plugin'
}

gradlePlugin {
 plugins {
 myPlugins {
 id = 'my-plugin'
 implementationClass = 'my.MyPlugin'
 }
 }
}

The plugin can then be applied by ID:

build.gradle.kts

plugins {
 id("my-plugin")
}

build.gradle

plugins {

 id 'my-plugin'
}

4. Applying plugins using the buildscript{} block

To define libraries or plugins used in the build script itself, you can use the buildscript block. The
buildscript block is also used for specifying where to find those dependencies.

This approach is less common with newer versions of Gradle, as the plugins {} block simplifies
plugin usage. However, buildscript {} may be necessary when dealing with custom or non-
standard plugin repositories as well as libraries dependencies:

build.gradle.kts

import org.yaml.snakeyaml.Yaml
import java.io.File

buildscript {
 repositories {
 maven {
 url = uri("https://plugins.gradle.org/m2/")
 }
 mavenCentral() // Where to find the plugin
 }
 dependencies {
 classpath("org.yaml:snakeyaml:1.19") // The library's classpath
dependency
 classpath("com.gradleup.shadow:shadow-gradle-plugin:8.3.4") // Plugin
dependency for legacy plugin application
 }
}

// Applies legacy Shadow plugin
apply(plugin = "com.gradleup.shadow")

// Uses the library in the build script
val yamlContent = """
 name: Project
 """.trimIndent()
val yaml = Yaml()
val data: Map<String, Any> = yaml.load(yamlContent)

build.gradle

import org.yaml.snakeyaml.Yaml

buildscript {
 repositories { // Where to find the plugin or library
 maven {
 url = uri("https://plugins.gradle.org/m2/")
 }
 mavenCentral()
 }
 dependencies {
 classpath 'org.yaml:snakeyaml:1.19' // The library's classpath
dependency
 classpath 'com.gradleup.shadow:shadow-gradle-plugin:8.3.4' // Plugin
dependency for legacy plugin application
 }
}

// Applies legacy Shadow plugin
apply plugin: 'com.gradleup.shadow'

// Uses the library in the build script
def yamlContent = """
 name: Project Name
 """
def yaml = new Yaml()
def data = yaml.load(yamlContent)

5. Applying script plugins using the legacy apply() method

A script plugin is an ad-hoc plugin, typically written and applied in the same build script. It is
applied using the legacy application method:

build.gradle.kts

class MyPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 println("Plugin ${this.javaClass.simpleName} applied on
${project.name}")
 }
}

apply<MyPlugin>()

build.gradle

class MyPlugin implements Plugin<Project> {

 @Override
 void apply(Project project) {
 println("Plugin ${this.getClass().getSimpleName()} applied on
${project.name}")
 }
}

apply plugin: MyPlugin

Plugin Management

The pluginManagement{} block is used to configure repositories for plugin resolution and to define
version constraints for plugins that are applied in the build scripts.

The pluginManagement{} block can be used in a settings.gradle(.kts) file, where it must be the first
block in the file:

settings.gradle.kts

pluginManagement {
 plugins {
 }
 resolutionStrategy {
 }
 repositories {
 }
}
rootProject.name = "plugin-management"

settings.gradle

pluginManagement {
 plugins {
 }
 resolutionStrategy {
 }
 repositories {
 }
}
rootProject.name = 'plugin-management'

The block can also be used in Initialization Script:

init.gradle.kts

settingsEvaluated {
 pluginManagement {
 plugins {
 }
 resolutionStrategy {
 }
 repositories {
 }
 }
}

init.gradle

settingsEvaluated { settings ->
 settings.pluginManagement {
 plugins {
 }
 resolutionStrategy {
 }
 repositories {
 }
 }
}

Custom Plugin Repositories

By default, the plugins{} DSL resolves plugins from the public Gradle Plugin Portal.

Many build authors would also like to resolve plugins from private Maven or Ivy repositories
because they contain proprietary implementation details or to have more control over what
plugins are available to their builds.

To specify custom plugin repositories, use the repositories{} block inside pluginManagement{}:

settings.gradle.kts

pluginManagement {
 repositories {
 maven(url = file("./maven-repo"))
 gradlePluginPortal()
 ivy(url = file("./ivy-repo"))

https://plugins.gradle.org

 }
}

settings.gradle

pluginManagement {
 repositories {
 maven {
 url = file('./maven-repo')
 }
 gradlePluginPortal()
 ivy {
 url = file('./ivy-repo')
 }
 }
}

This tells Gradle to first look in the Maven repository at ../maven-repo when resolving plugins and
then to check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you
don’t want the Gradle Plugin Portal to be searched, omit the gradlePluginPortal() line. Finally, the
Ivy repository at ../ivy-repo will be checked.

Plugin Version Management

A plugins{} block inside pluginManagement{} allows all plugin versions for the build to be defined in
a single location. Plugins can then be applied by id to any build script via the plugins{} block.

One benefit of setting plugin versions this way is that the pluginManagement.plugins{} does not have
the same constrained syntax as the build script plugins{} block. This allows plugin versions to be
taken from gradle.properties, or loaded via another mechanism.

Managing plugin versions via pluginManagement:

settings.gradle.kts

pluginManagement {
 val helloPluginVersion: String by settings
 plugins {
 id("com.example.hello") version "${helloPluginVersion}"
 }
}

build.gradle.kts

plugins {
 id("com.example.hello")
}

gradle.properties

helloPluginVersion=1.0.0

settings.gradle

pluginManagement {
 plugins {
 id 'com.example.hello' version "${helloPluginVersion}"
 }
}

build.gradle

plugins {
 id 'com.example.hello'
}

gradle.properties

helloPluginVersion=1.0.0

The plugin version is loaded from gradle.properties and configured in the settings script, allowing
the plugin to be added to any project without specifying the version.

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in plugins{} blocks, e.g., changing
the requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the resolutionStrategy{} inside the pluginManagement{} block:

settings.gradle.kts

pluginManagement {
 resolutionStrategy {
 eachPlugin {

 if (requested.id.namespace == "com.example") {
 useModule("com.example:sample-plugins:1.0.0")
 }
 }
 }
 repositories {
 maven {
 url = uri("./maven-repo")
 }
 gradlePluginPortal()
 ivy {
 url = uri("./ivy-repo")
 }
 }
}

settings.gradle

pluginManagement {
 resolutionStrategy {
 eachPlugin {
 if (requested.id.namespace == 'com.example') {
 useModule('com.example:sample-plugins:1.0.0')
 }
 }
 }
 repositories {
 maven {
 url = file('./maven-repo')
 }
 gradlePluginPortal()
 ivy {
 url = file('./ivy-repo')
 }
 }
}

This tells Gradle to use the specified plugin implementation artifact instead of its built-in default
mapping from plugin ID to Maven/Ivy coordinates.

Custom Maven and Ivy plugin repositories must contain plugin marker artifacts and the artifacts
that implement the plugin. Read Gradle Plugin Development Plugin for more information on
publishing plugins to custom repositories.

See PluginManagementSpec for complete documentation for using the pluginManagement{} block.

java_gradle_plugin.pdf#java_gradle_plugin
https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/management/PluginManagementSpec.html

Plugin Marker Artifacts

Since the plugins{} DSL block only allows for declaring plugins by their globally unique plugin id
and version properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact.

To do so, Gradle will look for a Plugin Marker Artifact with the coordinates
plugin.id:plugin.id.gradle.plugin:plugin.version. This marker needs to have a dependency on the
actual plugin implementation. Publishing these markers is automated by the java-gradle-plugin.

For example, the following complete sample from the sample-plugins project shows how to publish
a com.example.hello plugin and a com.example.goodbye plugin to both an Ivy and Maven repository
using the combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish
plugin.

build.gradle.kts

plugins {
 `java-gradle-plugin`
 `maven-publish`
 `ivy-publish`
}

group = "com.example"
version = "1.0.0"

gradlePlugin {
 plugins {
 create("hello") {
 id = "com.example.hello"
 implementationClass = "com.example.hello.HelloPlugin"
 }
 create("goodbye") {
 id = "com.example.goodbye"
 implementationClass = "com.example.goodbye.GoodbyePlugin"
 }
 }
}

publishing {
 repositories {
 maven {
 url = uri(layout.buildDirectory.dir("maven-repo"))
 }
 ivy {
 url = uri(layout.buildDirectory.dir("ivy-repo"))
 }
 }
}

java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin

build.gradle

plugins {
 id 'java-gradle-plugin'
 id 'maven-publish'
 id 'ivy-publish'
}

group = 'com.example'
version = '1.0.0'

gradlePlugin {
 plugins {
 hello {
 id = 'com.example.hello'
 implementationClass = 'com.example.hello.HelloPlugin'
 }
 goodbye {
 id = 'com.example.goodbye'
 implementationClass = 'com.example.goodbye.GoodbyePlugin'
 }
 }
}

publishing {
 repositories {
 maven {
 url = layout.buildDirectory.dir('maven-repo')
 }
 ivy {
 url = layout.buildDirectory.dir('ivy-repo')
 }
 }
}

Running gradle publish in the sample directory creates the following Maven repository layout (the
Ivy layout is similar):

Legacy Plugin Application

With the introduction of the plugins DSL, users should have little reason to use the legacy method
of applying plugins. It is documented here in case a build author cannot use the plugin DSL due to
restrictions in how it currently works.

build.gradle.kts

apply(plugin = "java")

build.gradle

apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name "java" to
apply the JavaPlugin.

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the
plugin:

build.gradle.kts

apply<JavaPlugin>()

https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/JavaPlugin.html

build.gradle

apply plugin: JavaPlugin

The JavaPlugin symbol in the above sample refers to the JavaPlugin. This class does not strictly need
to be imported as the org.gradle.api.plugins package is automatically imported in all build scripts
(see Default imports).

Furthermore, one needs to append the ::class suffix to identify a class literal in Kotlin instead of
.class in Java.

Furthermore, it is unnecessary to append .class to identify a class literal in Groovy as it is in Java.

You may also see the apply method used to include an entire build file:

build.gradle.kts

apply(from = "other.gradle.kts")

build.gradle

apply from: 'other.gradle'

Using a Version Catalog

When a project uses a version catalog, plugins can be referenced via aliases when applied.

Let’s take a look at a simple Version Catalog:

libs.versions.toml

[versions]
groovy = "3.0.5"
checkstyle = "8.37"

[libraries]
groovy-core = { module = "org.codehaus.groovy:groovy", version.ref = "groovy"
}
groovy-json = { module = "org.codehaus.groovy:groovy-json", version.ref =
"groovy" }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/JavaPlugin.html

groovy-nio = { module = "org.codehaus.groovy:groovy-nio", version.ref =
"groovy" }
commons-lang3 = { group = "org.apache.commons", name = "commons-lang3",
version = { strictly = "[3.8, 4.0[", prefer="3.9" } }

[bundles]
groovy = ["groovy-core", "groovy-json", "groovy-nio"]

[plugins]
versions = { id = "com.github.ben-manes.versions", version = "0.45.0" }

Then a plugin can be applied to any build script using the alias method:

build.gradle.kts

plugins {
 `java-library`
 alias(libs.plugins.versions)
}

build.gradle

plugins {
 id 'java-library'
 alias(libs.plugins.versions)
}

TIP Gradle generates type safe accessors for catalog items.

Next Step: Learn how to write Plugins >>

Writing Plugins
If Gradle or the Gradle community does not offer the specific capabilities your project needs,
creating your own custom plugin could be a solution.

Additionally, if you find yourself duplicating build logic across subprojects and need a better way to
organize it, convention plugins can help.

Script plugin

A plugin is any class that implements the Plugin interface. For example, this is a "hello world"
plugin:

build.gradle.kts

abstract class SamplePlugin : Plugin<Project> { ①
 override fun apply(project: Project) { ②
 project.tasks.register("ScriptPlugin") {
 doLast {
 println("Hello world from the build file!")
 }
 }
 }
}

apply<SamplePlugin>() ③

build.gradle

class SamplePlugin implements Plugin<Project> { ①
 void apply(Project project) { ②
 project.tasks.register("ScriptPlugin") {
 doLast {
 println("Hello world from the build file!")
 }
 }
 }
}

apply plugin: SamplePlugin ③

① Extend the org.gradle.api.Plugin interface.

② Override the apply method.

③ apply the plugin to the project.

1. Extend the org.gradle.api.Plugin interface

Create a class that extends the Plugin interface:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Plugin.html

build.gradle.kts

abstract class SamplePlugin : Plugin<Project> {
}

build.gradle

class SamplePlugin implements Plugin<Project> {
}

2. Override the apply method

Add tasks and other logic in the apply() method:

build.gradle.kts

override fun apply() {

}

build.gradle

void apply(Project project) {

}

3. apply the plugin to your project

When SamplePlugin is applied in your project, Gradle calls the fun apply() {} method defined. This
adds the ScriptPlugin task to your project:

build.gradle.kts

apply<SamplePlugin>()

build.gradle

apply plugin: SamplePlugin

Note that this is a simple hello-world example and does not reflect best practices.

IMPORTANT Script plugins are not recommended.

The best practice for developing plugins is to create convention plugins or binary plugins.

Pre-compiled script plugin

Pre-compiled script plugins offer an easy way to rapidly prototype and experiment. They let you
package build logic as *.gradle(.kts) script files using the Groovy or Kotlin DSL. These scripts
reside in specific directories, such as src/main/groovy or src/main/kotlin.

To apply one, simply use its ID derived from the script filename (without .gradle). You can think of
the file itself as the plugin, so you do not need to subclass the Plugin interface in a precompiled
script.

Let’s take a look at an example with the following structure:

.
└── buildSrc
 ├── build.gradle.kts
 └── src
 └── main
 └── kotlin
 └── my-create-file-plugin.gradle.kts

Our my-create-file-plugin.gradle.kts file contains the following code:

buildSrc/src/main/kotlin/my-create-file-plugin.gradle.kts

abstract class CreateFileTask : DefaultTask() {
 @get:Input
 abstract val fileText: Property<String>

 @Input
 val fileName = "myfile.txt"

 @OutputFile
 val myFile: File = File(fileName)

 @TaskAction

 fun action() {
 myFile.createNewFile()
 myFile.writeText(fileText.get())
 }
}

tasks.register<CreateFileTask>("createMyFileTaskInConventionPlugin") {
 group = "from my convention plugin"
 description = "Create myfile.txt in the current directory"
 fileText.set("HELLO FROM MY CONVENTION PLUGIN")
}

buildSrc/src/main/groovy/my-create-file-plugin.gradle

abstract class CreateFileTask extends DefaultTask {
 @Input
 abstract Property<String> getFileText()

 @Input
 String fileName = "myfile.txt"

 @OutputFile
 File getMyFile() {
 return new File(fileName)
 }

 @TaskAction
 void action() {
 myFile.createNewFile()
 myFile.writeText(fileText.get())
 }
}

tasks.register("createMyFileTaskInConventionPlugin", CreateFileTask) {
 group = "from my convention plugin"
 description = "Create myfile.txt in the current directory"
 fileText.set("HELLO FROM MY CONVENTION PLUGIN")
}

The pre-compiled script can now be applied in the build.gradle(.kts) file of any subproject:

build.gradle.kts

plugins {
 id("my-create-file-plugin") // Apply the pre-compiled convention plugin

 `kotlin-dsl`
}

build.gradle

plugins {
 id 'my-create-file-plugin' // Apply the pre-compiled convention plugin
 id 'groovy' // Apply the Groovy DSL plugin
}

The createFileTask task from the plugin is now available in your subproject.

Binary Plugins

A binary plugin is a plugin that is implemented in a compiled language and is packaged as a JAR
file. It is resolved as a dependency rather than compiled from source.

For most use cases, convention plugins must be updated infrequently. Having each developer
execute the plugin build as part of their development process is wasteful, and we can instead
distribute them as binary dependencies.

There are two ways to update the convention plugin in the example above into a binary plugin.

1. Use composite builds:

settings.gradle.kts

includeBuild("my-plugin")

2. Publish the plugin to a repository:

build.gradle.kts

plugins {
 id("com.gradle.plugin.my-plugin") version "1.0.0"
}

Let’s go with the second solution. This plugin has been re-written in Kotlin and is called
MyCreateFileBinaryPlugin.kt. It is still stored in buildSrc:

buildSrc/src/main/kotlin/MyCreateFileBinaryPlugin.kt

import org.gradle.api.DefaultTask
import org.gradle.api.Plugin

import org.gradle.api.Project
import org.gradle.api.provider.Property
import org.gradle.api.tasks.Input
import org.gradle.api.tasks.OutputFile
import org.gradle.api.tasks.TaskAction
import java.io.File

abstract class CreateFileTask : DefaultTask() {
 @get:Input
 abstract val fileText: Property<String>

 @Input
 val fileName = project.rootDir.toString() + "/myfile.txt"

 @OutputFile
 val myFile: File = File(fileName)

 @TaskAction
 fun action() {
 myFile.createNewFile()
 myFile.writeText(fileText.get())
 }
}

class MyCreateFileBinaryPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 project.tasks.register("createFileTaskFromBinaryPlugin",
CreateFileTask::class.java) {
 group = "from my binary plugin"
 description = "Create myfile.txt in the current directory"
 fileText.set("HELLO FROM MY BINARY PLUGIN")
 }
 }
}

The plugin can be published and given an id using a gradlePlugin{} block so that it can be
referenced in the root:

buildSrc/build.gradle.kts

group = "com.example"
version = "1.0.0"

gradlePlugin {
 plugins {
 create("my-binary-plugin") {
 id = "com.example.my-binary-plugin"

 implementationClass = "MyCreateFileBinaryPlugin"
 }
 }
}

publishing {
 repositories {
 mavenLocal()
 }
}

buildSrc/build.gradle

group = 'com.example'
version = '1.0.0'

gradlePlugin {
 plugins {
 create("my-binary-plugin") {
 id = "com.example.my-binary-plugin"
 implementationClass = "MyCreateFileBinaryPlugin"
 }
 }
}

publishing {
 repositories {
 mavenLocal()
 }
}

Then, the plugin can be applied in the build file:

build.gradle.kts

plugins {
 id("my-create-file-plugin") // Apply the pre-compiled convention plugin
 id("com.example.my-binary-plugin") // Apply the binary plugin
 `kotlin-dsl`
}

build.gradle

plugins {
 id 'my-create-file-plugin' // Apply the pre-compiled convention plugin
 id 'com.example.my-binary-plugin' // Apply the binary plugin
 id 'groovy' // Apply the Groovy DSL plugin
}

Consult the Developing Plugins chapter to learn more.

GRADLE TYPES

Understanding Properties and Providers
Gradle provides properties that are important for lazy configuration. When implementing a custom
task or plugin, it’s imperative that you use these lazy properties.

Gradle represents lazy properties with two interfaces:

1. Property - Represents a value that can be queried and changed.

2. Provider - Represents a value that can only be queried and cannot be changed.

Properties and providers manage values and configurations in a build script.

In this example, configuration is a Property<String> that is set to the configurationProvider
Provider<String>. The configurationProvider lazily provides the value "Hello, Gradle!":

build.gradle.kts

abstract class MyIntroTask : DefaultTask() {
 @get:Input
 abstract val configuration: Property<String>

 @TaskAction
 fun printConfiguration() {
 println("Configuration value: ${configuration.get()}")
 }
}

val configurationProvider: Provider<String> = project.provider { "Hello,
Gradle!" }

tasks.register("myIntroTask", MyIntroTask::class) {
 configuration.set(configurationProvider)
}

build.gradle

abstract class MyIntroTask extends DefaultTask {

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html

 @Input
 abstract Property<String> getConfiguration()

 @TaskAction
 void printConfiguration() {
 println "Configuration value: ${configuration.get()}"
 }
}

Provider<String> configurationProvider = project.provider { "Hello, Gradle!"
}

tasks.register("myIntroTask", MyIntroTask) {
 it.setConfiguration(configurationProvider)
}

Understanding Properties

Properties in Gradle are variables that hold values. They can be defined and accessed within the
build script to store information like file paths, version numbers, or custom values.

Properties can be set and retrieved using the project object:

build.gradle.kts

// Setting a property
val simpleMessageProperty: Property<String> =
project.objects.property(String::class)
simpleMessageProperty.set("Hello, World from a Property!")
// Accessing a property
println(simpleMessageProperty.get())

build.gradle

// Setting a property
def simpleMessageProperty = project.objects.property(String)
simpleMessageProperty.set("Hello, World from a Property!")
// Accessing a property
println(simpleMessageProperty.get())

Properties:

• Properties with these types are configurable.

• Property extends the Provider interface.

• The method Property.set(T) specifies a value for the property, overwriting whatever value may
have been present.

• The method Property.set(Provider) specifies a Provider for the value for the property,
overwriting whatever value may have been present. This allows you to wire together Provider
and Property instances before the values are configured.

• A Property can be created by the factory method ObjectFactory.property(Class).

Understanding Providers

Providers are objects that represent a value that may not be immediately available. Providers are
useful for lazy evaluation and can be used to model values that may change over time or depend on
other tasks or inputs:

build.gradle.kts

// Setting a provider
val simpleMessageProvider: Provider<String> = project.providers.provider {
"Hello, World from a Provider!" }
// Accessing a provider
println(simpleMessageProvider.get())

build.gradle

// Setting a provider
def simpleMessageProvider = project.providers.provider { "Hello, World from a
Provider!" }
// Accessing a provider
println(simpleMessageProvider.get())

Providers:

• Properties with these types are read-only.

• The method Provider.get() returns the current value of the property.

• A Provider can be created from another Provider using Provider.map(Transformer).

• Many other types extend Provider and can be used wherever a Provider is required.

Using Gradle Managed Properties

Gradle’s managed properties allow you to declare properties as abstract getters (Java, Groovy) or
abstract properties (Kotlin).

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html#set-T-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#get--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-

Gradle then automatically provides the implementation for these properties, managing their state.

A property may be mutable, meaning that it has both a get() method and set() method:

build.gradle.kts

abstract class MyPropertyTask : DefaultTask() {
 @get:Input
 abstract val messageProperty: Property<String> // message property

 @TaskAction
 fun printMessage() {
 println(messageProperty.get())
 }
}

tasks.register<MyPropertyTask>("myPropertyTask") {
 messageProperty.set("Hello, Gradle!")
}

build.gradle

abstract class MyPropertyTask extends DefaultTask {
 @Input
 abstract Property<String> messageProperty = project.objects.property
(String)

 @TaskAction
 void printMessage() {
 println(messageProperty.get())
 }
}

tasks.register('myPropertyTask', MyPropertyTask) {
 messageProperty.set("Hello, Gradle!")
}

Or read-only, meaning that it has only a get() method. The read-only properties are providers:

build.gradle.kts

abstract class MyProviderTask : DefaultTask() {
 final val messageProvider: Provider<String> = project.providers.provider
{ "Hello, Gradle!" } // message provider

 @TaskAction
 fun printMessage() {
 println(messageProvider.get())
 }
}

tasks.register<MyProviderTask>("MyProviderTask") {

}

build.gradle

abstract class MyProviderTask extends DefaultTask {
 final Provider<String> messageProvider = project.providers.provider {
"Hello, Gradle!" }

 @TaskAction
 void printMessage() {
 println(messageProvider.get())
 }
}

tasks.register('MyProviderTask', MyProviderTask)

Mutable Managed Properties

A mutable managed property is declared using an abstract getter method of type Property<T>,
where T can be any serializable type or a fully managed Gradle type. The property must not have
any setter methods.

Here is an example of a task type with an uri property of type URI:

Download.java

public abstract class Download extends DefaultTask {
 @Input
 public abstract Property<URI> getUri(); // abstract getter of type Property<T>

 @TaskAction
 void run() {
 System.out.println("Downloading " + getUri().get()); // Use the `uri` property
 }
}

Note that for a property to be considered a mutable managed property, the property’s getter

methods must be abstract and have public or protected visibility.

The property type must be one of the following:

Property Type Note

Property<T> Where T is typically Double, Integer, Long, String,
or Bool

RegularFileProperty Configurable regular file location, whose value
is mutable

DirectoryProperty Configurable directory location, whose value is
mutable

ListProperty<T> List of elements of type T

SetProperty<T> Set of elements of type T

MapProperty<K, V> Map of K type keys with V type values

ConfigurableFileCollection A mutable FileCollection which represents a
collection of file system locations

ConfigurableFileTree A mutable FileTree which represents a
hierarchy of files

Read-only Managed Properties (Providers)

You can declare a read-only managed property, also known as a provider, using a getter method of
type Provider<T>. The method implementation needs to derive the value. It can, for example, derive
the value from other properties.

Here is an example of a task type with a uri provider that is derived from a location property:

Download.java

public abstract class Download extends DefaultTask {
 @Input
 public abstract Property<String> getLocation();

 @Internal
 public Provider<URI> getUri() {
 return getLocation().map(l -> URI.create("https://" + l));
 }

 @TaskAction
 void run() {
 System.out.println("Downloading " + getUri().get()); // Use the `uri`
provider (read-only property)
 }
}

Read-only Managed Nested Properties (Nested Providers)

You can declare a read-only managed nested property by adding an abstract getter method for the
property to a type annotated with @Nested. The property should not have any setter methods. Gradle
provides the implementation for the getter method and creates a value for the property.

This pattern is useful when a custom type has a nested complex type which has the same lifecycle.
If the lifecycle is different, consider using Property<NestedType> instead.

Here is an example of a task type with a resource property. The Resource type is also a custom
Gradle type and defines some managed properties:

Download.java

public abstract class Download extends DefaultTask {
 @Nested
 public abstract Resource getResource(); // Use an abstract getter method annotated
with @Nested

 @TaskAction
 void run() {
 // Use the `resource` property
 System.out.println("Downloading https://" + getResource().getHostName().get()
+ "/" + getResource().getPath().get());
 }
}

public interface Resource {
 @Input
 Property<String> getHostName();
 @Input
 Property<String> getPath();
}

Read-only Managed "name" Property (Provider)

If the type contains an abstract property called "name" of type String, Gradle provides an
implementation for the getter method, and extends each constructor with a "name" parameter,
which comes before all other constructor parameters.

If the type is an interface, Gradle will provide a constructor with a single "name" parameter and
@Inject semantics.

You can have your type implement or extend the Named interface, which defines such a read-only
"name" property:

import org.gradle.api.Named

interface MyType : Named {
 // Other properties and methods...

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Named.html

}

class MyTypeImpl(override val name: String) : MyType {
 // Implement other properties and methods...
}

// Usage
val instance = MyTypeImpl("myName")
println(instance.name) // Prints: myName

Using Gradle Managed Types

A managed type as an abstract class or interface with no fields and whose properties are all
managed. These types have their state entirely managed by Gradle.

For example, this managed type is defined as an interface:

Resource.java

public interface Resource {
 @Input
 Property<String> getHostName();
 @Input
 Property<String> getPath();
}

A named managed type is a managed type that additionally has an abstract property "name" of type
String. Named managed types are especially useful as the element type of
NamedDomainObjectContainer:

build.gradle.kts

interface MyNamedType {
 val name: String
}

class MyNamedTypeImpl(override val name: String) : MyNamedType

class MyPluginExtension(project: Project) {
 val myNamedContainer: NamedDomainObjectContainer<MyNamedType> =
 project.container(MyNamedType::class.java) { name ->
 project.objects.newInstance(MyNamedTypeImpl::class.java, name)
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/NamedDomainObjectContainer.html

build.gradle

interface MyNamedType {
 String getName()
}

class MyNamedTypeImpl implements MyNamedType {
 String name

 MyNamedTypeImpl(String name) {
 this.name = name
 }
}

class MyPluginExtension {
 NamedDomainObjectContainer<MyNamedType> myNamedContainer

 MyPluginExtension(Project project) {
 myNamedContainer = project.container(MyNamedType) { name ->
 new MyNamedTypeImpl(name)
 }
 }
}

Using Java Bean Properties

Sometimes you may see properties implemented in the Java bean property style. That is, they do
not use a Property<T> or Provider<T> types but are instead implemented with concrete setter and
getter methods (or corresponding conveniences in Groovy or Kotlin).

This style of property definition is legacy in Gradle and is discouraged:

public class MyTask extends DefaultTask {
 private String someProperty;

 public String getSomeProperty() {
 return someProperty;
 }

 public void setSomeProperty(String someProperty) {
 this.someProperty = someProperty;
 }

 @TaskAction
 public void myAction() {
 System.out.println("SomeProperty: " + someProperty);
 }

}

Understanding Collections
Gradle provides types for maintaining collections of objects, intended to work well to extends
Gradle’s DSLs and provide useful features such as lazy configuration.

Available collections

These collection types are used for managing collections of objects, particularly in the context of
build scripts and plugins:

1. DomainObjectSet<T>: Represents a set of objects of type T. This set does not allow duplicate
elements, and you can add, remove, and query objects in the set.

2. NamedDomainObjectSet<T>: A specialization of DomainObjectSet where each object has a unique
name associated with it. This is often used for collections where each element needs to be
uniquely identified by a name.

3. NamedDomainObjectList<T>: Similar to NamedDomainObjectSet, but represents a list of objects where
order matters. Each element has a unique name associated with it, and you can access elements
by index as well as by name.

4. NamedDomainObjectContainer<T>: A container for managing objects of type T, where each object
has a unique name. This container provides methods for adding, removing, and querying
objects by name.

5. ExtensiblePolymorphicDomainObjectContainer<T>: An extension of NamedDomainObjectContainer
that allows you to define instantiation strategies for different types of objects. This is useful
when you have a container that can hold multiple types of objects, and you want to control how
each type of object is instantiated.

These types are commonly used in Gradle plugins and build scripts to manage collections of objects,
such as tasks, configurations, or custom domain objects.

1. DomainObjectSet

A DomainObjectSet simply holds a set of configurable objects.

Compared to NamedDomainObjectContainer, a DomainObjectSet doesn’t manage the objects in the
collection. They need to be created and added manually.

You can create an instance using the ObjectFactory.domainObjectSet() method:

build.gradle.kts

abstract class MyPluginExtensionDomainObjectSet {
 // Define a domain object set to hold strings
 val myStrings: DomainObjectSet<String> =

https://docs.gradle.org/8.12/javadoc/org/gradle/api/DomainObjectSet.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#domainObjectSet-java.lang.Class-

project.objects.domainObjectSet(String::class)

 // Add some strings to the domain object set
 fun addString(value: String) {
 myStrings.add(value)
 }
}

build.gradle

abstract class MyPluginExtensionDomainObjectSet {
 // Define a domain object set to hold strings
 DomainObjectSet<String> myStrings = project.objects.domainObjectSet
(String)

 // Add some strings to the domain object set
 void addString(String value) {
 myStrings.add(value)
 }
}

2. NamedDomainObjectSet

A NamedDomainObjectSet holds a set of configurable objects, where each element has a name
associated with it.

This is similar to NamedDomainObjectContainer, however a NamedDomainObjectSet doesn’t manage the
objects in the collection. They need to be created and added manually.

You can create an instance using the ObjectFactory.namedDomainObjectSet() method.

build.gradle.kts

abstract class Person(val name: String)

abstract class MyPluginExtensionNamedDomainObjectSet {
 // Define a named domain object set to hold Person objects
 private val people: NamedDomainObjectSet<Person> =
project.objects.namedDomainObjectSet(Person::class)

 // Add a person to the set
 fun addPerson(name: String) {
 people.plus(name)
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/NamedDomainObjectSet.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#namedDomainObjectSet-java.lang.Class-

}

build.gradle

abstract class Person {
 String name
}

abstract class MyPluginExtensionNamedDomainObjectSet {
 // Define a named domain object set to hold Person objects
 NamedDomainObjectSet<Person> people = project.objects
.namedDomainObjectSet(Person)

 // Add a person to the set
 void addPerson(String name) {
 people.create(name)
 }
}

3. NamedDomainObjectList

A NamedDomainObjectList holds a list of configurable objects, where each element has a name
associated with it.

This is similar to NamedDomainObjectContainer, however a NamedDomainObjectList doesn’t manage the
objects in the collection. They need to be created and added manually.

You can create an instance using the ObjectFactory.namedDomainObjectList() method.

build.gradle.kts

abstract class Person(val name: String)

abstract class MyPluginExtensionNamedDomainObjectList {
 // Define a named domain object list to hold Person objects
 private val people: NamedDomainObjectList<Person> =
project.objects.namedDomainObjectList(Person::class)

 // Add a person to the container
 fun addPerson(name: String) {
 people.plus(name)
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/NamedDomainObjectList.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#namedDomainObjectList-java.lang.Class-

build.gradle

abstract class Person {
 String name
}

abstract class MyPluginExtensionNamedDomainObjectList {
 // Define a named domain object container to hold Person objects
 NamedDomainObjectList<Person> people = project.container(Person)

 // Add a person to the container
 void addPerson(String name) {
 people.create(name: name)
 }
}

4. NamedDomainObjectContainer

A NamedDomainObjectContainer manages a set of objects, where each element has a name associated
with it.

The container takes care of creating and configuring the elements, and provides a DSL that build
scripts can use to define and configure elements. It is intended to hold objects which are themselves
configurable, for example a set of custom Gradle objects.

Gradle uses NamedDomainObjectContainer type extensively throughout the API. For example, the
project.tasks object used to manage the tasks of a project is a NamedDomainObjectContainer<Task>.

You can create a container instance using the ObjectFactory service, which provides the
ObjectFactory.domainObjectContainer() method. This is also available using the Project.container()
method, however in a custom Gradle type it’s generally better to use the injected ObjectFactory
service instead of passing around a Project instance.

You can also create a container instance using a read-only managed property.

build.gradle.kts

abstract class Person(val name: String)

abstract class MyPluginExtensionNamedDomainObjectContainer {
 // Define a named domain object container to hold Person objects
 private val people: NamedDomainObjectContainer<Person> =
project.container(Person::class)

 // Add a person to the container
 fun addPerson(name: String) {

https://docs.gradle.org/8.12/javadoc/org/gradle/api/NamedDomainObjectContainer.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#domainObjectContainer-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#container-java.lang.Class-

 people.create(name)
 }
}

build.gradle

abstract class Person {
 String name
}

abstract class MyPluginExtensionNamedDomainObjectContainer {
 // Define a named domain object container to hold Person objects
 NamedDomainObjectContainer<Person> people = project.container(Person)

 // Add a person to the container
 void addPerson(String name) {
 people.create(name: name)
 }
}

In order to use a type with any of the domainObjectContainer() methods, it must either

• be a named managed type; or

• expose a property named “name” as the unique, and constant, name for the object. The
domainObjectContainer(Class) variant of the method creates new instances by calling the
constructor of the class that takes a string argument, which is the desired name of the object.

Objects created this way are treated as custom Gradle types, and so can make use of the features
discussed in this chapter, for example service injection or managed properties.

See the above link for domainObjectContainer() method variants that allow custom instantiation
strategies:

public interface DownloadExtension {
 NamedDomainObjectContainer<Resource> getResources();
}

public interface Resource {
 // Type must have a read-only 'name' property
 String getName();

 Property<URI> getUri();

 Property<String> getUserName();
}

For each container property, Gradle automatically adds a block to the Groovy and Kotlin DSL that
you can use to configure the contents of the container:

build.gradle.kts

plugins {
 id("org.gradle.sample.download")
}

download {
 // Can use a block to configure the container contents
 resources {
 register("gradle") {
 uri = uri("https://gradle.org")
 }
 }
}

build.gradle

plugins {
 id("org.gradle.sample.download")
}

download {
 // Can use a block to configure the container contents
 resources {
 register('gradle') {
 uri = uri('https://gradle.org')
 }
 }
}

5. ExtensiblePolymorphicDomainObjectContainer

An ExtensiblePolymorphicDomainObjectContainer is a NamedDomainObjectContainer that allows you
to define instantiation strategies for different types of objects.

You can create an instance using the ObjectFactory.polymorphicDomainObjectContainer() method:

build.gradle.kts

abstract class Animal(val name: String)

class Dog(name: String, val breed: String) : Animal(name)

https://docs.gradle.org/8.12/javadoc/org/gradle/api/ExtensiblePolymorphicDomainObjectContainer.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#polymorphicDomainObjectContainer-java.lang.Class-

abstract class
MyPluginExtensionExtensiblePolymorphicDomainObjectContainer(objectFactory:
ObjectFactory) {
 // Define a container for animals
 private val animals: ExtensiblePolymorphicDomainObjectContainer<Animal> =
objectFactory.polymorphicDomainObjectContainer(Animal::class)

 // Add a dog to the container
 fun addDog(name: String, breed: String) {
 var dog : Dog = Dog(name, breed)
 animals.add(dog)
 }
}

build.gradle

abstract class Animal {
 String name
}

abstract class Dog extends Animal {
 String breed
}

abstract class MyPluginExtensionExtensiblePolymorphicDomainObjectContainer {
 // Define a container for animals
 ExtensiblePolymorphicDomainObjectContainer<Animal> animals

 MyPluginExtensionExtensiblePolymorphicDomainObjectContainer(ObjectFactory
objectFactory) {
 // Create the container
 animals = objectFactory.polymorphicDomainObjectContainer(Animal)
 }

 // Add a dog to the container
 void addDog(String name, String breed) {
 animals.create(Dog, name: name, breed: breed)
 }
}

Understanding Services and Service Injection
Gradle provides a number of useful services that can be used by custom Gradle types. For example,
the WorkerExecutor service can be used by a task to run work in parallel, as seen in the worker API
section. The services are made available through service injection.

https://docs.gradle.org/8.12/javadoc/org/gradle/workers/WorkerExecutor.html

Available services

The following services are available for injection:

1. ObjectFactory - Allows model objects to be created.

2. ProjectLayout - Provides access to key project locations.

3. BuildLayout - Provides access to important locations for a Gradle build.

4. ProviderFactory - Creates Provider instances.

5. WorkerExecutor - Allows a task to run work in parallel.

6. FileSystemOperations - Allows a task to run operations on the filesystem such as deleting files,
copying files or syncing directories.

7. ArchiveOperations - Allows a task to run operations on archive files such as ZIP or TAR files.

8. ExecOperations - Allows a task to run external processes with dedicated support for running
external java programs.

9. ToolingModelBuilderRegistry - Allows a plugin to registers a Gradle tooling API model.

Out of the above, ProjectLayout and WorkerExecutor services are only available for injection in
project plugins. BuildLayout is only available in settings plugins and settings files. ProjectLayout is
unavailable in Worker API actions.

1. ObjectFactory

ObjectFactory is a service for creating custom Gradle types, allowing you to define nested objects
and DSLs in your build logic. It provides methods for creating instances of different types, such as
properties (Property<T>), collections (ListProperty<T>, SetProperty<T>, MapProperty<K, V>), file-
related objects (RegularFileProperty, DirectoryProperty, ConfigurableFileCollection,
ConfigurableFileTree), and more.

You can obtain an instance of ObjectFactory using the project.objects property. Here’s a simple
example demonstrating how to use ObjectFactory to create a property and set its value:

build.gradle.kts

tasks.register("myObjectFactoryTask") {
 doLast {
 val objectFactory = project.objects
 val myProperty = objectFactory.property(String::class)
 myProperty.set("Hello, Gradle!")
 println(myProperty.get())
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html

build.gradle

tasks.register("myObjectFactoryTask") {
 doLast {
 def objectFactory = project.objects
 def myProperty = objectFactory.property(String)
 myProperty.set("Hello, Gradle!")
 println myProperty.get()
 }
}

TIP It is preferable to let Gradle create objects automatically by using managed properties.

Using ObjectFactory to create these objects ensures that they are properly managed by Gradle,
especially in terms of configuration avoidance and lazy evaluation. This means that the values of
these objects are only calculated when needed, which can improve build performance.

In the following example, a project extension called DownloadExtension receives an ObjectFactory
instance through its constructor. The constructor uses this to create a nested Resource object (also a
custom Gradle type) and makes this object available through the resource property:

DownloadExtension.java

public class DownloadExtension {
 // A nested instance
 private final Resource resource;

 @Inject
 public DownloadExtension(ObjectFactory objectFactory) {
 // Use an injected ObjectFactory to create a Resource object
 resource = objectFactory.newInstance(Resource.class);
 }

 public Resource getResource() {
 return resource;
 }
}

public interface Resource {
 Property<URI> getUri();
}

Here is another example using javax.inject.Inject:

build.gradle.kts

abstract class MyObjectFactoryTask
@Inject constructor(private var objectFactory: ObjectFactory) : DefaultTask()
{

 @TaskAction
 fun doTaskAction() {
 val outputDirectory = objectFactory.directoryProperty()
 outputDirectory.convention(project.layout.projectDirectory)
 println(outputDirectory.get())
 }
}

tasks.register("myInjectedObjectFactoryTask", MyObjectFactoryTask::class) {}

build.gradle

abstract class MyObjectFactoryTask extends DefaultTask {
 private ObjectFactory objectFactory

 @Inject //@javax.inject.Inject
 MyObjectFactoryTask(ObjectFactory objectFactory) {
 this.objectFactory = objectFactory
 }

 @TaskAction
 void doTaskAction() {
 var outputDirectory = objectFactory.directoryProperty()
 outputDirectory.convention(project.layout.projectDirectory)
 println(outputDirectory.get())
 }
}

tasks.register("myInjectedObjectFactoryTask",MyObjectFactoryTask) {}

The MyObjectFactoryTask task uses an ObjectFactory instance, which is injected into the task’s
constructor using the @Inject annotation.

2. ProjectLayout

ProjectLayout is a service that provides access to the layout of a Gradle project’s directories and
files. It’s part of the org.gradle.api.file package and allows you to query the project’s layout to get
information about source sets, build directories, and other file-related aspects of the project.

https://docs.gradle.org/8.12/dsl/org.gradle.api.file.ProjectLayout.html

You can obtain a ProjectLayout instance from a Project object using the project.layout property.
Here’s a simple example:

build.gradle.kts

tasks.register("showLayout") {
 doLast {
 val layout = project.layout
 println("Project Directory: ${layout.projectDirectory}")
 println("Build Directory: ${layout.buildDirectory.get()}")
 }
}

build.gradle

tasks.register('showLayout') {
 doLast {
 def layout = project.layout
 println "Project Directory: ${layout.projectDirectory}"
 println "Build Directory: ${layout.buildDirectory.get()}"
 }
}

Here is an example using javax.inject.Inject:

build.gradle.kts

abstract class MyProjectLayoutTask
@Inject constructor(private var projectLayout: ProjectLayout) : DefaultTask()
{

 @TaskAction
 fun doTaskAction() {
 val outputDirectory = projectLayout.projectDirectory
 println(outputDirectory)
 }
}

tasks.register("myInjectedProjectLayoutTask", MyProjectLayoutTask::class) {}

build.gradle

abstract class MyProjectLayoutTask extends DefaultTask {
 private ProjectLayout projectLayout

 @Inject //@javax.inject.Inject
 MyProjectLayoutTask(ProjectLayout projectLayout) {
 this.projectLayout = projectLayout
 }

 @TaskAction
 void doTaskAction() {
 var outputDirectory = projectLayout.projectDirectory
 println(outputDirectory)
 }
}

tasks.register("myInjectedProjectLayoutTask",MyProjectLayoutTask) {}

The MyProjectLayoutTask task uses a ProjectLayout instance, which is injected into the task’s
constructor using the @Inject annotation.

3. BuildLayout

BuildLayout is a service that provides access to the root and settings directory in a Settings plugin or
a Settings script, it is analogous to ProjectLayout. It’s part of the org.gradle.api.file package to
access standard build-wide file system locations as lazily computed value.

NOTE

These APIs are currently incubating but eventually should replace existing
accessors in Settings, which return eagerly computed locations:
Settings.rootDir → Settings.layout.rootDirectory
Settings.settingsDir → Settings.layout.settingsDirectory

You can obtain a BuildLayout instance from a Settings object using the settings.layout property.
Here’s a simple example:

settings.gradle.kts

println("Root Directory: ${settings.layout.rootDirectory}")
println("Settings Directory: ${settings.layout.settingsDirectory}")

https://docs.gradle.org/8.12/dsl/org.gradle.api.file.BuildLayout.html

settings.gradle

println "Root Directory: ${settings.getLayout().rootDirectory}"
println "Settings Directory: ${settings.getLayout().settingsDirectory}"

Here is an example using javax.inject.Inject:

settings.gradle.kts

abstract class MyBuildLayoutPlugin @Inject constructor(private val
buildLayout: BuildLayout) : Plugin<Settings> {
 override fun apply(settings: Settings) {
 println(buildLayout.rootDirectory)
 }
}

apply<MyBuildLayoutPlugin>()

settings.gradle

abstract class MyBuildLayoutPlugin implements Plugin<Settings> {
 private BuildLayout buildLayout

 @Inject //@javax.inject.Inject
 MyBuildLayoutPlugin(BuildLayout buildLayout) {
 this.buildLayout = buildLayout
 }

 @Override void apply(Settings settings) {
 // the meat and potatoes of the plugin
 println buildLayout.rootDirectory
 }
}

apply plugin: MyBuildLayoutPlugin

This code defines a MyBuildLayoutPlugin plugin that implements the Plugin interface for the Settings
type. The plugin expects a BuildLayout instance to be injected into its constructor using the @Inject
annotation.

4. ProviderFactory

ProviderFactory is a service that provides methods for creating different types of providers.
Providers are used to model values that may be computed lazily in your build scripts.

The ProviderFactory interface provides methods for creating various types of providers, including:

• provider(Callable<T> value) to create a provider with a value that is lazily computed based on a
Callable.

• provider(Provider<T> value) to create a provider that simply wraps an existing provider.

• property(Class<T> type) to create a property provider for a specific type.

• gradleProperty(Class<T> type) to create a property provider that reads its value from a Gradle
project property.

Here’s a simple example demonstrating the use of ProviderFactory using project.providers:

build.gradle.kts

tasks.register("printMessage") {
 doLast {
 val providerFactory = project.providers
 val messageProvider = providerFactory.provider { "Hello, Gradle!" }
 println(messageProvider.get())
 }
}

build.gradle

tasks.register('printMessage') {
 doLast {
 def providerFactory = project.providers
 def messageProvider = providerFactory.provider { "Hello, Gradle!" }
 println messageProvider.get()
 }
}

The task named printMessage uses the ProviderFactory to create a provider that supplies the
message string.

Here is an example using javax.inject.Inject:

https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html

build.gradle.kts

abstract class MyProviderFactoryTask
@Inject constructor(private var providerFactory: ProviderFactory) :
DefaultTask() {

 @TaskAction
 fun doTaskAction() {
 val outputDirectory = providerFactory.provider { "build/my-file.txt"
}
 println(outputDirectory.get())
 }
}

tasks.register("myInjectedProviderFactoryTask", MyProviderFactoryTask::class)
{}

build.gradle

abstract class MyProviderFactoryTask extends DefaultTask {
 private ProviderFactory providerFactory

 @Inject //@javax.inject.Inject
 MyProviderFactoryTask(ProviderFactory providerFactory) {
 this.providerFactory = providerFactory
 }

 @TaskAction
 void doTaskAction() {
 var outputDirectory = providerFactory.provider { "build/my-file.txt"
}
 println(outputDirectory.get())
 }
}

tasks.register("myInjectedProviderFactoryTask",MyProviderFactoryTask) {}

The ProviderFactory service is injected into the MyProviderFactoryTask task’s constructor using the
@Inject annotation.

5. WorkerExecutor

WorkerExecutor is a service that allows you to perform parallel execution of tasks using worker
processes. This is particularly useful for tasks that perform CPU-intensive or long-running

https://docs.gradle.org/8.12/javadoc/org/gradle/workers/WorkerExecutor.html

operations, as it allows them to be executed in parallel, improving build performance.

Using WorkerExecutor, you can submit units of work (called actions) to be executed in separate
worker processes. This helps isolate the work from the main Gradle process, providing better
reliability and performance.

Here’s a basic example of how you might use WorkerExecutor in a build script:

build.gradle.kts

abstract class MyWorkAction : WorkAction<WorkParameters.None> {
 private val greeting: String = "Hello from a Worker!"

 override fun execute() {
 println(greeting)
 }
}

abstract class MyWorkerTask
@Inject constructor(private var workerExecutor: WorkerExecutor) :
DefaultTask() {
 @get:Input
 abstract val booleanFlag: Property<Boolean>
 @TaskAction
 fun doThings() {
 workerExecutor.noIsolation().submit(MyWorkAction::class.java) {}
 }
}

tasks.register("myWorkTask", MyWorkerTask::class) {}

build.gradle

abstract class MyWorkAction implements WorkAction<WorkParameters.None> {
 private final String greeting;

 @Inject
 public MyWorkAction() {
 this.greeting = "Hello from a Worker!";
 }

 @Override
 public void execute() {
 System.out.println(greeting);
 }
}

abstract class MyWorkerTask extends DefaultTask {
 @Input
 abstract Property<Boolean> getBooleanFlag()

 @Inject
 abstract WorkerExecutor getWorkerExecutor()

 @TaskAction
 void doThings() {
 workerExecutor.noIsolation().submit(MyWorkAction) {}
 }
}

tasks.register("myWorkTask", MyWorkerTask) {}

See the worker API for more details.

6. FileSystemOperations

FileSystemOperations is a service that provides methods for performing file system operations such
as copying, deleting, and syncing. It is part of the org.gradle.api.file package and is typically used
in custom tasks or plugins to interact with the file system.

Here is an example using javax.inject.Inject:

build.gradle.kts

abstract class MyFileSystemOperationsTask
@Inject constructor(private var fileSystemOperations: FileSystemOperations) :
DefaultTask() {

 @TaskAction
 fun doTaskAction() {
 fileSystemOperations.sync {
 from("src")
 into("dest")
 }
 }
}

tasks.register("myInjectedFileSystemOperationsTask",
MyFileSystemOperationsTask::class)

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileSystemOperations.html

build.gradle

abstract class MyFileSystemOperationsTask extends DefaultTask {
 private FileSystemOperations fileSystemOperations

 @Inject //@javax.inject.Inject
 MyFileSystemOperationsTask(FileSystemOperations fileSystemOperations) {
 this.fileSystemOperations = fileSystemOperations
 }

 @TaskAction
 void doTaskAction() {
 fileSystemOperations.sync {
 from 'src'
 into 'dest'
 }
 }
}

tasks.register("myInjectedFileSystemOperationsTask",
MyFileSystemOperationsTask)

The FileSystemOperations service is injected into the MyFileSystemOperationsTask task’s constructor
using the @Inject annotation.

With some ceremony, it is possible to use FileSystemOperations in an ad-hoc task defined in a build
script:

build.gradle.kts

interface InjectedFsOps {
 @get:Inject val fs: FileSystemOperations
}

tasks.register("myAdHocFileSystemOperationsTask") {
 val injected = project.objects.newInstance<InjectedFsOps>()
 doLast {
 injected.fs.copy {
 from("src")
 into("dest")
 }
 }
}

build.gradle

interface InjectedFsOps {
 @Inject //@javax.inject.Inject
 FileSystemOperations getFs()
}

tasks.register('myAdHocFileSystemOperationsTask') {
 def injected = project.objects.newInstance(InjectedFsOps)
 doLast {
 injected.fs.copy {
 from 'source'
 into 'destination'
 }
 }
}

First, you need to declare an interface with a property of type FileSystemOperations, here named
InjectedFsOps, to serve as an injection point. Then call the method ObjectFactory.newInstance to
generate an implementation of the interface that holds an injected service.

TIP This is a good time to consider extracting the ad-hoc task into a proper class.

7. ArchiveOperations

ArchiveOperations is a service that provides methods for accessing the contents of archives, such as
ZIP and TAR files. It is part of the org.gradle.api.file package and is typically used in custom tasks
or plugins to unpack archive files.

Here is an example using javax.inject.Inject:

build.gradle.kts

abstract class MyArchiveOperationsTask
@Inject constructor(
 private val archiveOperations: ArchiveOperations,
 private val layout: ProjectLayout,
 private val fs: FileSystemOperations
) : DefaultTask() {
 @TaskAction
 fun doTaskAction() {
 fs.sync {

from(archiveOperations.zipTree(layout.projectDirectory.file("sources.jar")))
 into(layout.buildDirectory.dir("unpacked-sources"))
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#newInstance(java.lang.Class,java.lang.Object%2E%2E%2E)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ArchiveOperations.html

 }
}

tasks.register("myInjectedArchiveOperationsTask",
MyArchiveOperationsTask::class)

build.gradle

abstract class MyArchiveOperationsTask extends DefaultTask {
 private ArchiveOperations archiveOperations
 private ProjectLayout layout
 private FileSystemOperations fs

 @Inject
 MyArchiveOperationsTask(ArchiveOperations archiveOperations,
ProjectLayout layout, FileSystemOperations fs) {
 this.archiveOperations = archiveOperations
 this.layout = layout
 this.fs = fs
 }

 @TaskAction
 void doTaskAction() {
 fs.sync {
 from(archiveOperations.zipTree(layout.projectDirectory.file(
"sources.jar")))
 into(layout.buildDirectory.dir("unpacked-sources"))
 }
 }
}

tasks.register("myInjectedArchiveOperationsTask", MyArchiveOperationsTask)

The ArchiveOperations service is injected into the MyArchiveOperationsTask task’s constructor using
the @Inject annotation.

With some ceremony, it is possible to use ArchiveOperations in an ad-hoc task defined in a build
script:

build.gradle.kts

interface InjectedArcOps {
 @get:Inject val arcOps: ArchiveOperations
}

tasks.register("myAdHocArchiveOperationsTask") {
 val injected = project.objects.newInstance<InjectedArcOps>()
 val archiveFile = "${project.projectDir}/sources.jar"
 doLast {
 injected.arcOps.zipTree(archiveFile)
 }
}

build.gradle

interface InjectedArcOps {
 @Inject //@javax.inject.Inject
 ArchiveOperations getArcOps()
}

tasks.register('myAdHocArchiveOperationsTask') {
 def injected = project.objects.newInstance(InjectedArcOps)
 def archiveFile = "${projectDir}/sources.jar"

 doLast {
 injected.arcOps.zipTree(archiveFile)
 }
}

First, you need to declare an interface with a property of type ArchiveOperations, here named
InjectedArcOps, to serve as an injection point. Then call the method ObjectFactory.newInstance to
generate an implementation of the interface that holds an injected service.

TIP This is a good time to consider extracting the ad-hoc task into a proper class.

8. ExecOperations

ExecOperations is a service that provides methods for executing external processes (commands)
from within a build script. It is part of the org.gradle.process package and is typically used in
custom tasks or plugins to run command-line tools or scripts as part of the build process.

Here is an example using javax.inject.Inject:

build.gradle.kts

abstract class MyExecOperationsTask
@Inject constructor(private var execOperations: ExecOperations) :
DefaultTask() {

https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#newInstance(java.lang.Class,java.lang.Object%2E%2E%2E)
https://docs.gradle.org/8.12/javadoc/org/gradle/process/ExecOperations.html

 @TaskAction
 fun doTaskAction() {
 execOperations.exec {
 commandLine("ls", "-la")
 }
 }
}

tasks.register("myInjectedExecOperationsTask", MyExecOperationsTask::class)

build.gradle

abstract class MyExecOperationsTask extends DefaultTask {
 private ExecOperations execOperations

 @Inject //@javax.inject.Inject
 MyExecOperationsTask(ExecOperations execOperations) {
 this.execOperations = execOperations
 }

 @TaskAction
 void doTaskAction() {
 execOperations.exec {
 commandLine 'ls', '-la'
 }
 }
}

tasks.register("myInjectedExecOperationsTask", MyExecOperationsTask)

The ExecOperations is injected into the MyExecOperationsTask task’s constructor using the @Inject
annotation.

With some ceremony, it is possible to use ExecOperations in an ad-hoc task defined in a build script:

build.gradle.kts

interface InjectedExecOps {
 @get:Inject val execOps: ExecOperations
}

tasks.register("myAdHocExecOperationsTask") {
 val injected = project.objects.newInstance<InjectedExecOps>()

 doLast {

 injected.execOps.exec {
 commandLine("ls", "-la")
 }
 }
}

build.gradle

interface InjectedExecOps {
 @Inject //@javax.inject.Inject
 ExecOperations getExecOps()
}

tasks.register('myAdHocExecOperationsTask') {
 def injected = project.objects.newInstance(InjectedExecOps)

 doLast {
 injected.execOps.exec {
 commandLine 'ls', '-la'
 }
 }
}

First, you need to declare an interface with a property of type ExecOperations, here named
InjectedExecOps, to serve as an injection point. Then call the method ObjectFactory.newInstance to
generate an implementation of the interface that holds an injected service.

TIP This is a good time to consider extracting the ad-hoc task into a proper class.

9. ToolingModelBuilderRegistry

ToolingModelBuilderRegistry is a service that allows you to register custom tooling model builders.
Tooling models are used to provide rich IDE integration for Gradle projects, allowing IDEs to
understand and work with the project’s structure, dependencies, and other aspects.

The ToolingModelBuilderRegistry interface is part of the org.gradle.tooling.provider.model package
and is typically used in custom Gradle plugins that provide enhanced IDE support.

Here’s a simplified example:

build.gradle.kts

// Implements the ToolingModelBuilder interface.
// This interface is used in Gradle to define custom tooling models that can

https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#newInstance(java.lang.Class,java.lang.Object%2E%2E%2E)
https://docs.gradle.org/8.12/javadoc/org/gradle/tooling/provider/model/ToolingModelBuilderRegistry.html

// be accessed by IDEs or other tools through the Gradle tooling API.
class OrtModelBuilder : ToolingModelBuilder {
 private val repositories: MutableMap<String, String> = mutableMapOf()

 private val platformCategories: Set<String> = setOf("platform",
"enforced-platform")

 private val visitedDependencies: MutableSet<ModuleComponentIdentifier> =
mutableSetOf()
 private val visitedProjects: MutableSet<ModuleVersionIdentifier> =
mutableSetOf()

 private val logger = Logging.getLogger(OrtModelBuilder::class.java)
 private val errors: MutableList<String> = mutableListOf()
 private val warnings: MutableList<String> = mutableListOf()

 override fun canBuild(modelName: String): Boolean {
 return false
 }

 override fun buildAll(modelName: String, project: Project): Any? {
 return null
 }
}

// Plugin is responsible for registering a custom tooling model builder
// (OrtModelBuilder) with the ToolingModelBuilderRegistry, which allows
// IDEs and other tools to access the custom tooling model.
class OrtModelPlugin(private val registry: ToolingModelBuilderRegistry) :
Plugin<Project> {
 override fun apply(project: Project) {
 registry.register(OrtModelBuilder())
 }
}

build.gradle

// Implements the ToolingModelBuilder interface.
// This interface is used in Gradle to define custom tooling models that can
// be accessed by IDEs or other tools through the Gradle tooling API.
class OrtModelBuilder implements ToolingModelBuilder {
 private Map<String, String> repositories = [:]

 private Set<String> platformCategories = ["platform", "enforced-platform
"]

 private Set<ModuleComponentIdentifier> visitedDependencies = []
 private Set<ModuleVersionIdentifier> visitedProjects = []

 private static final logger = Logging.getLogger(OrtModelBuilder.class)
 private List<String> errors = []
 private List<String> warnings = []

 @Override
 boolean canBuild(String modelName) {
 return false
 }

 @Override
 Object buildAll(String modelName, Project project) {
 return null
 }
}

// Plugin is responsible for registering a custom tooling model builder
// (OrtModelBuilder) with the ToolingModelBuilderRegistry, which allows
// IDEs and other tools to access the custom tooling model.
class OrtModelPlugin implements Plugin<Project> {
 ToolingModelBuilderRegistry registry

 OrtModelPlugin(ToolingModelBuilderRegistry registry) {
 this.registry = registry
 }

 void apply(Project project) {
 registry.register(new OrtModelBuilder())
 }
}

Constructor injection

There are 2 ways that an object can receive the services that it needs. The first option is to add the
service as a parameter of the class constructor. The constructor must be annotated with the
javax.inject.Inject annotation. Gradle uses the declared type of each constructor parameter to
determine the services that the object requires. The order of the constructor parameters and their
names are not significant and can be whatever you like.

Here is an example that shows a task type that receives an ObjectFactory via its constructor:

Download.java

public class Download extends DefaultTask {
 private final DirectoryProperty outputDirectory;

 // Inject an ObjectFactory into the constructor
 @Inject
 public Download(ObjectFactory objectFactory) {

 // Use the factory
 outputDirectory = objectFactory.directoryProperty();
 }

 @OutputDirectory
 public DirectoryProperty getOutputDirectory() {
 return outputDirectory;
 }

 @TaskAction
 void run() {
 // ...
 }
}

Property injection

Alternatively, a service can be injected by adding a property getter method annotated with the
javax.inject.Inject annotation to the class. This can be useful, for example, when you cannot
change the constructor of the class due to backwards compatibility constraints. This pattern also
allows Gradle to defer creation of the service until the getter method is called, rather than when the
instance is created. This can help with performance. Gradle uses the declared return type of the
getter method to determine the service to make available. The name of the property is not
significant and can be whatever you like.

The property getter method must be public or protected. The method can be abstract or, in cases
where this isn’t possible, can have a dummy method body. The method body is discarded.

Here is an example that shows a task type that receives a two services via property getter methods:

Download.java

public abstract class Download extends DefaultTask {
 // Use an abstract getter method
 @Inject
 protected abstract ObjectFactory getObjectFactory();

 // Alternatively, use a getter method with a dummy implementation
 @Inject
 protected WorkerExecutor getWorkerExecutor() {
 // Method body is ignored
 throw new UnsupportedOperationException();
 }

 @TaskAction
 void run() {
 WorkerExecutor workerExecutor = getWorkerExecutor();
 ObjectFactory objectFactory = getObjectFactory();

 // Use the executor and factory ...
 }
}

STRUCTURING BUILDS

Structuring Projects with Gradle
It is important to structure your Gradle project to optimize build performance. A multi-project build
is the standard in Gradle.

A multi-project build consists of one root project and one or more subprojects. Gradle can build the
root project and any number of the subprojects in a single execution.

Project locations

Multi-project builds contain a single root project in a directory that Gradle views as the root path: ..

Subprojects are located physically under the root path: ./subproject.

A subproject has a path, which denotes the position of that subproject in the multi-project build. In
most cases, the project path is consistent with its location in the file system.

The project structure is created in the settings.gradle(.kts) file. The settings file must be present
in the root directory.

A simple multi-project build

Let’s look at a basic multi-project build example that contains a root project and a single subproject.

The root project is called basic-multiproject, located somewhere on your machine. From Gradle’s
perspective, the root is the top-level directory ..

The project contains a single subproject called ./app:

.

├── app
│ ...
│ └── build.gradle.kts
└── settings.gradle.kts

.
├── app
│ ...
│ └── build.gradle
└── settings.gradle

This is the recommended project structure for starting any Gradle project. The build init plugin also
generates skeleton projects that follow this structure - a root project with a single subproject:

The settings.gradle(.kts) file describes the project structure to Gradle:

settings.gradle.kts

rootProject.name = "basic-multiproject"
include("app")

settings.gradle

rootProject.name = 'basic-multiproject'
include 'app'

In this case, Gradle will look for a build file for the app subproject in the ./app directory.

You can view the structure of a multi-project build by running the projects command:

$./gradlew -q projects

Projects:

--
Root project 'basic-multiproject'
--

Root project 'basic-multiproject'
\--- Project ':app'

build_init_plugin.pdf#build_init_plugin

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :app:tasks

In this example, the app subproject is a Java application that applies the application plugin and
configures the main class. The application prints Hello World to the console:

app/build.gradle.kts

plugins {
 id("application")
}

application {
 mainClass = "com.example.Hello"
}

app/build.gradle

plugins {
 id 'application'
}

application {
 mainClass = 'com.example.Hello'
}

app/src/main/java/com/example/Hello.java

package com.example;

public class Hello {
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

You can run the application by executing the run task from the application plugin in the project
root:

$./gradlew -q run
Hello, world!

Adding a subproject

In the settings file, you can use the include method to add another subproject to the root project:

settings.gradle.kts

include("project1", "project2:child1", "project3:child1")

settings.gradle

include 'project1', 'project2:child1', 'project3:child1'

The include method takes project paths as arguments. The project path is assumed to be equal to
the relative physical file system path. For example, a path services:api is mapped by default to a
folder ./services/api (relative to the project root .).

More examples of how to work with the project path can be found in the DSL documentation of
Settings.include(java.lang.String[]).

Let’s add another subproject called lib to the previously created project.

All we need to do is add another include statement in the root settings file:

settings.gradle.kts

rootProject.name = "basic-multiproject"
include("app")
include("lib")

settings.gradle

rootProject.name = 'basic-multiproject'
include 'app'
include 'lib'

Gradle will then look for the build file of the new lib subproject in the ./lib/ directory:

.

https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

├── app
│ ...
│ └── build.gradle.kts
├── lib
│ ...
│ └── build.gradle.kts
└── settings.gradle.kts

.
├── app
│ ...
│ └── build.gradle
├── lib
│ ...
│ └── build.gradle
└── settings.gradle

Project Descriptors

To further describe the project architecture to Gradle, the settings file provides project descriptors.

You can modify these descriptors in the settings file at any time.

To access a descriptor, you can:

settings.gradle.kts

include("project-a")
println(rootProject.name)
println(project(":project-a").name)

settings.gradle

include('project-a')
println rootProject.name
println project(':project-a').name

Using this descriptor, you can change the name, project directory, and build file of a project:

settings.gradle.kts

rootProject.name = "main"
include("project-a")
project(":project-a").projectDir = file("custom/my-project-a")
project(":project-a").buildFileName = "project-a.gradle.kts"

settings.gradle

rootProject.name = 'main'
include('project-a')
project(':project-a').projectDir = file('custom/my-project-a')
project(':project-a').buildFileName = 'project-a.gradle'

Consult the ProjectDescriptor class in the API documentation for more information.

Modifying a subproject path

Let’s take a hypothetical project with the following structure:

.
├── app
│ ...
│ └── build.gradle.kts
├── subs // Gradle may see this as a subproject
│ └── web // Gradle may see this as a subproject
│ └── my-web-module // Intended subproject
│ ...
│ └── build.gradle.kts
└── settings.gradle.kts

.
├── app
│ ...
│ └── build.gradle
├── subs // Gradle may see this as a subproject
│ └── web // Gradle may see this as a subproject
│ └── my-web-module // Intended subproject
│ ...
│ └── build.gradle

https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

└── settings.gradle

If your settings.gradle(.kts) looks like this:

include(':subs:web:my-web-module')

Gradle sees a subproject with a logical project name of :subs:web:my-web-module and two, possibly
unintentional, other subprojects logically named :subs and :subs:web. This can lead to phantom
build directories, especially when using allprojects{} or subproject{}.

To avoid this, you can use:

include(':my-web-module')
project(':my-web-module').projectDir = "subs/web/my-web-module"

So that you only end up with a single subproject named :my-web-module.

So, while the physical project layout is the same, the logical results are different.

Naming recommendations

As your project grows, naming and consistency get increasingly more important. To keep your
builds maintainable, we recommend the following:

1. Keep default project names for subprojects: It is possible to configure custom project names
in the settings file. However, it’s an unnecessary extra effort for the developers to track which
projects belong to what folders.

2. Use lower case hyphenation for all project names: All letters are lowercase, and words are
separated with a dash (-) character.

3. Define the root project name in the settings file: The rootProject.name effectively assigns a
name to the build, used in reports like Build Scans. If the root project name is not set, the name
will be the container directory name, which can be unstable (i.e., you can check out your project
in any directory). The name will be generated randomly if the root project name is not set and
checked out to a file system’s root (e.g., / or C:\).

Declaring Dependencies between Subprojects
What if one subproject depends on another subproject? What if one project needs the artifact
produced by another project?

This is a common use case for multi-project builds. Gradle offers project dependencies for this.

Depending on another project

Let’s explore a theoretical multi-project build with the following layout:

.
├── api
│ ├── src
│ │ └──...
│ └── build.gradle.kts
├── services
│ └── person-service
│ ├── src
│ │ └──...
│ └── build.gradle.kts
├── shared
│ ├── src
│ │ └──...
│ └── build.gradle.kts
└── settings.gradle.kts

.
├── api
│ ├── src
│ │ └──...
│ └── build.gradle
├── services
│ └── person-service

│ ├── src
│ │ └──...
│ └── build.gradle
├── shared
│ ├── src
│ │ └──...
│ └── build.gradle
└── settings.gradle

In this example, there are three subprojects called shared, api, and person-service:

1. The person-service subproject depends on the other two subprojects, shared and api.

2. The api subproject depends on the shared subproject.

We use the : separator to define a project path such as services:person-service or :shared. Consult
the DSL documentation of Settings.include(java.lang.String[]) for more information about defining
project paths.

settings.gradle.kts

rootProject.name = "dependencies-java"
include("api", "shared", "services:person-service")

shared/build.gradle.kts

plugins {
 id("java")
}

repositories {
 mavenCentral()
}

dependencies {
 testImplementation("junit:junit:4.13")
}

api/build.gradle.kts

plugins {
 id("java")
}

repositories {
 mavenCentral()
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

dependencies {
 testImplementation("junit:junit:4.13")
 implementation(project(":shared"))
}

services/person-service/build.gradle.kts

plugins {
 id("java")
}

repositories {
 mavenCentral()
}

dependencies {
 testImplementation("junit:junit:4.13")
 implementation(project(":shared"))
 implementation(project(":api"))
}

settings.gradle

rootProject.name = 'basic-dependencies'
include 'api', 'shared', 'services:person-service'

shared/build.gradle

plugins {
 id 'java'
}

repositories {
 mavenCentral()
}

dependencies {
 testImplementation "junit:junit:4.13"
}

api/build.gradle

plugins {
 id 'java'
}

repositories {
 mavenCentral()
}

dependencies {
 testImplementation "junit:junit:4.13"
 implementation project(':shared')
}

services/person-service/build.gradle

plugins {
 id 'java'
}

repositories {
 mavenCentral()
}

dependencies {
 testImplementation "junit:junit:4.13"
 implementation project(':shared')
 implementation project(':api')
}

A project dependency affects execution order. It causes the other project to be built first and adds
the output with the classes of the other project to the classpath. It also adds the dependencies of the
other project to the classpath.

If you execute ./gradlew :api:compile, first the shared project is built, and then the api project is
built.

Depending on artifacts produced by another project

Sometimes, you might want to depend on the output of a specific task within another project rather
than the entire project. However, explicitly declaring a task dependency from one project to
another is discouraged as it introduces unnecessary coupling between tasks.

The recommended way to model dependencies, where a task in one project depends on the output
of another, is to produce the output and mark it as an "outgoing" artifact. Gradle’s dependency
management engine allows you to share arbitrary artifacts between projects and build them on
demand.

Sharing Build Logic between Subprojects
Subprojects in a multi-project build typically share some common dependencies.

Instead of copying and pasting the same Java version and libraries in each subproject build script,
Gradle provides a special directory for storing shared build logic that can be automatically applied
to subprojects.

Share logic in buildSrc

buildSrc is a Gradle-recognized and protected directory which comes with some benefits:

1. Reusable Build Logic:

buildSrc allows you to organize and centralize your custom build logic, tasks, and plugins in a
structured manner. The code written in buildSrc can be reused across your project, making it
easier to maintain and share common build functionality.

2. Isolation from the Main Build:

Code placed in buildSrc is isolated from the other build scripts of your project. This helps keep
the main build scripts cleaner and more focused on project-specific configurations.

3. Automatic Compilation and Classpath:

The contents of the buildSrc directory are automatically compiled and included in the classpath
of your main build. This means that classes and plugins defined in buildSrc can be directly used
in your project’s build scripts without any additional configuration.

4. Ease of Testing:

Since buildSrc is a separate build, it allows for easy testing of your custom build logic. You can
write tests for your build code, ensuring that it behaves as expected.

5. Gradle Plugin Development:

If you are developing custom Gradle plugins for your project, buildSrc is a convenient place to
house the plugin code. This makes the plugins easily accessible within your project.

The buildSrc directory is treated as an included build.

For multi-project builds, there can be only one buildSrc directory, which must be in the root project
directory.

NOTE
The downside of using buildSrc is that any change to it will invalidate every task in
your project and require a rerun.

buildSrc uses the same source code conventions applicable to Java, Groovy, and Kotlin projects. It
also provides direct access to the Gradle API.

A typical project including buildSrc has the following layout:

.
├── buildSrc
│ ├── src
│ │ └──main
│ │ └──kotlin
│ │ └──MyCustomTask.kt ①
│ ├── shared.gradle.kts ②
│ └── build.gradle.kts
├── api
│ ├── src
│ │ └──...
│ └── build.gradle.kts ③
├── services
│ └── person-service
│ ├── src
│ │ └──...
│ └── build.gradle.kts ③
├── shared
│ ├── src
│ │ └──...
│ └── build.gradle.kts
└── settings.gradle.kts

① Create the MyCustomTask task.

② A shared build script.

③ Uses the MyCustomTask task and shared build script.

.

java_plugin.pdf#javalayout

├── buildSrc
│ ├── src
│ │ └──main
│ │ └──groovy
│ │ └──MyCustomTask.groovy ①
│ ├── shared.gradle ②
│ └── build.gradle
├── api
│ ├── src
│ │ └──...
│ └── build.gradle ③
├── services
│ └── person-service
│ ├── src
│ │ └──...
│ └── build.gradle ③
├── shared
│ ├── src
│ │ └──...
│ └── build.gradle
└── settings.gradle

① Create the MyCustomTask task.

② A shared build script.

③ Uses the MyCustomTask task and shared build script.

In the buildSrc, the build script shared.gradle(.kts) is created. It contains dependencies and other
build information that is common to multiple subprojects:

shared.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.slf4j:slf4j-api:1.7.32")
}

shared.gradle

repositories {
 mavenCentral()
}

dependencies {

 implementation 'org.slf4j:slf4j-api:1.7.32'
}

In the buildSrc, the MyCustomTask is also created. It is a helper task that is used as part of the build
logic for multiple subprojects:

MyCustomTask.kt

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

open class MyCustomTask : DefaultTask() {
 @TaskAction
 fun calculateSum() {
 // Custom logic to calculate the sum of two numbers
 val num1 = 5
 val num2 = 7
 val sum = num1 + num2

 // Print the result
 println("Sum: $sum")
 }
}

MyCustomTask.groovy

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

class MyCustomTask extends DefaultTask {
 @TaskAction
 void calculateSum() {
 // Custom logic to calculate the sum of two numbers
 int num1 = 5
 int num2 = 7
 int sum = num1 + num2

 // Print the result
 println "Sum: $sum"
 }
}

The MyCustomTask task is used in the build script of the api and shared projects. The task is
automatically available because it’s part of buildSrc.

The shared.gradle(.kts) file is also applied:

build.gradle.kts

// Apply any other configurations specific to your project

// Use the build script defined in buildSrc
apply(from = rootProject.file("buildSrc/shared.gradle.kts"))

// Use the custom task defined in buildSrc
tasks.register<MyCustomTask>("myCustomTask")

build.gradle

// Apply any other configurations specific to your project

// Use the build script defined in buildSrc
apply from: rootProject.file('buildSrc/shared.gradle')

// Use the custom task defined in buildSrc
tasks.register('myCustomTask', MyCustomTask)

Share logic using convention plugins

Gradle’s recommended way of organizing build logic is to use its plugin system.

We can write a plugin that encapsulates the build logic common to several subprojects in a project.
This kind of plugin is called a convention plugin.

While writing plugins is outside the scope of this section, the recommended way to build a Gradle
project is to put common build logic in a convention plugin located in the buildSrc.

Let’s take a look at an example project:

.
├── buildSrc
│ ├── src
│ │ └──main
│ │ └──kotlin
│ │ └──myproject.java-conventions.gradle.kts ①
│ └── build.gradle.kts
├── api
│ ├── src
│ │ └──...

│ └── build.gradle.kts ②
├── services
│ └── person-service
│ ├── src
│ │ └──...
│ └── build.gradle.kts ②
├── shared
│ ├── src
│ │ └──...
│ └── build.gradle.kts ②
└── settings.gradle.kts

① Create the myproject.java-conventions convention plugin.

② Applies the myproject.java-conventions convention plugin.

.
├── buildSrc
│ ├── src
│ │ └──main
│ │ └──groovy
│ │ └──myproject.java-conventions.gradle ①
│ └── build.gradle
├── api
│ ├── src
│ │ └──...
│ └── build.gradle ②
├── services
│ └── person-service
│ ├── src
│ │ └──...
│ └── build.gradle ②
├── shared
│ ├── src
│ │ └──...
│ └── build.gradle ②
└── settings.gradle

① Create the myproject.java-conventions convention plugin.

② Applies the myproject.java-conventions convention plugin.

This build contains three subprojects:

settings.gradle.kts

rootProject.name = "dependencies-java"
include("api", "shared", "services:person-service")

settings.gradle

rootProject.name = 'dependencies-java'
include 'api', 'shared', 'services:person-service'

The source code for the convention plugin created in the buildSrc directory is as follows:

buildSrc/src/main/kotlin/myproject.java-conventions.gradle.kts

plugins {
 id("java")
}

group = "com.example"
version = "1.0"

repositories {
 mavenCentral()
}

dependencies {
 testImplementation("junit:junit:4.13")
}

buildSrc/src/main/groovy/myproject.java-conventions.gradle

plugins {
 id 'java'
}

group = 'com.example'
version = '1.0'

repositories {
 mavenCentral()
}

dependencies {
 testImplementation "junit:junit:4.13"
}

For the convention plugin to compile, basic configuration needs to be applied in the build file of the
buildSrc directory:

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

repositories {
 mavenCentral()
}

buildSrc/build.gradle

plugins {
 id 'groovy-gradle-plugin'
}

The convention plugin is applied to the api, shared, and person-service subprojects:

api/build.gradle.kts

plugins {
 id("myproject.java-conventions")
}

dependencies {
 implementation(project(":shared"))
}

shared/build.gradle.kts

plugins {
 id("myproject.java-conventions")

}

services/person-service/build.gradle.kts

plugins {
 id("myproject.java-conventions")
}

dependencies {
 implementation(project(":shared"))
 implementation(project(":api"))
}

api/build.gradle

plugins {
 id 'myproject.java-conventions'
}

dependencies {
 implementation project(':shared')
}

shared/build.gradle

plugins {
 id 'myproject.java-conventions'
}

services/person-service/build.gradle

plugins {
 id 'myproject.java-conventions'
}

dependencies {
 implementation project(':shared')
 implementation project(':api')
}

Do not use cross-project configuration

An improper way to share build logic between subprojects is cross-project configuration via the
subprojects {} and allprojects {} DSL constructs.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#subprojects-groovy.lang.Closure-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#allprojects-groovy.lang.Closure-

TIP Avoid using subprojects {} and allprojects {}.

With cross-project configuration, build logic can be injected into a subproject which is not obvious
when looking at its build script.

In the long run, cross-project configuration usually grows in complexity and becomes a burden.
Cross-project configuration can also introduce configuration-time coupling between projects, which
can prevent optimizations like configuration-on-demand from working properly.

Convention plugins versus cross-project configuration

The two most common uses of cross-project configuration can be better modeled using convention
plugins:

1. Applying plugins or other configurations to subprojects of a certain type.
Often, the cross-project configuration logic is if subproject is of type X, then configure Y.
This is equivalent to applying X-conventions plugin directly to a subproject.

2. Extracting information from subprojects of a certain type.
This use case can be modeled using outgoing configuration variants.

Composite Builds
A composite build is a build that includes other builds.

A composite build is similar to a Gradle multi-project build, except that instead of including
subprojects, entire builds are included.

Composite builds allow you to:

• Combine builds that are usually developed independently, for instance, when trying out a bug

glossary.pdf#sub:cross_configuration

fix in a library that your application uses.

• Decompose a large multi-project build into smaller, more isolated chunks that can be worked on
independently or together as needed.

A build that is included in a composite build is referred to as an included build. Included builds do
not share any configuration with the composite build or the other included builds. Each included
build is configured and executed in isolation.

Defining a composite build

The following example demonstrates how two Gradle builds, normally developed separately, can be
combined into a composite build.

my-composite
├── gradle
├── gradlew
├── settings.gradle.kts
├── build.gradle.kts
├── my-app
│ ├── settings.gradle.kts
│ └── app
│ ├── build.gradle.kts
│ └── src/main/java/org/sample/my-app/Main.java
└── my-utils
 ├── settings.gradle.kts
 ├── number-utils
 │ ├── build.gradle.kts
 │ └── src/main/java/org/sample/numberutils/Numbers.java
 └── string-utils
 ├── build.gradle.kts
 └── src/main/java/org/sample/stringutils/Strings.java

The my-utils multi-project build produces two Java libraries, number-utils and string-utils. The my-
app build produces an executable using functions from those libraries.

The my-app build does not depend directly on my-utils. Instead, it declares binary dependencies on
the libraries produced by my-utils:

my-app/app/build.gradle.kts

plugins {
 id("application")
}

application {
 mainClass = "org.sample.myapp.Main"
}

dependencies {
 implementation("org.sample:number-utils:1.0")
 implementation("org.sample:string-utils:1.0")
}

my-app/app/build.gradle

plugins {
 id 'application'
}

application {
 mainClass = 'org.sample.myapp.Main'
}

dependencies {
 implementation 'org.sample:number-utils:1.0'
 implementation 'org.sample:string-utils:1.0'
}

Defining a composite build via --include-build

The --include-build command-line argument turns the executed build into a composite,
substituting dependencies from the included build into the executed build.

For example, the output of ./gradlew run --include-build ../my-utils run from my-app:

$./gradlew --include-build ../my-utils run
link:https://docs.gradle.org/8.12/samples/build-organization/composite-
builds/basic/tests/basicCli.out[role=include]

Defining a composite build via the settings file

It’s possible to make the above arrangement persistent by using
Settings.includeBuild(java.lang.Object) to declare the included build in the settings.gradle(.kts)
file.

The settings file can be used to add subprojects and included builds simultaneously.

Included builds are added by location:

settings.gradle.kts

includeBuild("my-utils")

https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

In the example, the settings.gradle(.kts) file combines otherwise separate builds:

settings.gradle.kts

rootProject.name = "my-composite"

includeBuild("my-app")
includeBuild("my-utils")

settings.gradle

rootProject.name = 'my-composite'

includeBuild 'my-app'
includeBuild 'my-utils'

To execute the run task in the my-app build from my-composite, run ./gradlew my-app:app:run.

You can optionally define a run task in my-composite that depends on my-app:app:run so that you can
execute ./gradlew run:

build.gradle.kts

tasks.register("run") {
 dependsOn(gradle.includedBuild("my-app").task(":app:run"))
}

build.gradle

tasks.register('run') {
 dependsOn gradle.includedBuild('my-app').task(':app:run')
}

Including builds that define Gradle plugins

A special case of included builds are builds that define Gradle plugins.

These builds should be included using the includeBuild statement inside the pluginManagement {}
block of the settings file.

Using this mechanism, the included build may also contribute a settings plugin that can be applied
in the settings file itself:

settings.gradle.kts

pluginManagement {
 includeBuild("../url-verifier-plugin")
}

settings.gradle

pluginManagement {
 includeBuild '../url-verifier-plugin'
}

Restrictions on included builds

Most builds can be included in a composite, including other composite builds. There are some
restrictions.

In a regular build, Gradle ensures that each project has a unique project path. It makes projects
identifiable and addressable without conflicts.

In a composite build, Gradle adds additional qualification to each project from an included build to
avoid project path conflicts. The full path to identify a project in a composite build is called a build-
tree path. It consists of a build path of an included build and a project path of the project.

By default, build paths and project paths are derived from directory names and structure on disk.
Since included builds can be located anywhere on disk, their build path is determined by the name
of the containing directory. This can sometimes lead to conflicts.

To summarize, the included builds must fulfill these requirements:

• Each included build must have a unique build path.

• Each included build path must not conflict with any project path of the main build.

These conditions guarantee that each project can be uniquely identified even in a composite build.

If conflicts arise, the way to resolve them is by changing the build name of an included build:

settings.gradle.kts

includeBuild("some-included-build") {
 name = "other-name"

}

NOTE
When a composite build is included in another composite build, both builds have
the same parent. In other words, the nested composite build structure is flattened.

Interacting with a composite build

Interacting with a composite build is generally similar to a regular multi-project build. Tasks can be
executed, tests can be run, and builds can be imported into the IDE.

Executing tasks

Tasks from an included build can be executed from the command-line or IDE in the same way as
tasks from a regular multi-project build. Executing a task will result in task dependencies being
executed, as well as those tasks required to build dependency artifacts from other included builds.

You can call a task in an included build using a fully qualified path, for example, :included-build-
name:project-name:taskName. Project and task names can be abbreviated.

$./gradlew :included-build:subproject-a:compileJava
> Task :included-build:subproject-a:compileJava

$./gradlew :i-b:sA:cJ
> Task :included-build:subproject-a:compileJava

To exclude a task from the command line, you need to provide the fully qualified path to the task.

NOTE
Included build tasks are automatically executed to generate required dependency
artifacts, or the including build can declare a dependency on a task from an
included build.

Importing into the IDE

One of the most useful features of composite builds is IDE integration.

Importing a composite build permits sources from separate Gradle builds to be easily developed
together. For every included build, each subproject is included as an IntelliJ IDEA Module or Eclipse
Project. Source dependencies are configured, providing cross-build navigation and refactoring.

Declaring dependencies substituted by an included build

By default, Gradle will configure each included build to determine the dependencies it can provide.
The algorithm for doing this is simple. Gradle will inspect the group and name for the projects in
the included build and substitute project dependencies for any external dependency matching
${project.group}:${project.name}.

NOTE By default, substitutions are not registered for the main build.

To make the (sub)projects of the main build addressable by
${project.group}:${project.name}, you can tell Gradle to treat the main build like an
included build by self-including it: includeBuild(".").

There are cases when the default substitutions determined by Gradle are insufficient or must be
corrected for a particular composite. For these cases, explicitly declaring the substitutions for an
included build is possible.

For example, a single-project build called anonymous-library, produces a Java utility library but does
not declare a value for the group attribute:

build.gradle.kts

plugins {
 java
}

build.gradle

plugins {
 id 'java'
}

When this build is included in a composite, it will attempt to substitute for the dependency module
undefined:anonymous-library (undefined being the default value for project.group, and anonymous-
library being the root project name). Clearly, this isn’t useful in a composite build.

To use the unpublished library in a composite build, you can explicitly declare the substitutions
that it provides:

settings.gradle.kts

includeBuild("anonymous-library") {
 dependencySubstitution {
 substitute(module("org.sample:number-utils")).using(project(":"))
 }
}

settings.gradle

includeBuild('anonymous-library') {

 dependencySubstitution {
 substitute module('org.sample:number-utils') using project(':')
 }
}

With this configuration, the my-app composite build will substitute any dependency on
org.sample:number-utils with a dependency on the root project of anonymous-library.

Deactivate included build substitutions for a configuration

If you need to resolve a published version of a module that is also available as part of an included
build, you can deactivate the included build substitution rules on the ResolutionStrategy of the
Configuration that is resolved. This is necessary because the rules are globally applied in the build,
and Gradle does not consider published versions during resolution by default.

For example, we create a separate publishedRuntimeClasspath configuration that gets resolved to the
published versions of modules that also exist in one of the local builds. This is done by deactivating
global dependency substitution rules:

build.gradle.kts

configurations.create("publishedRuntimeClasspath") {
 resolutionStrategy.useGlobalDependencySubstitutionRules = false

 extendsFrom(configurations.runtimeClasspath.get())
 isCanBeConsumed = false
 attributes.attribute(Usage.USAGE_ATTRIBUTE,
objects.named(Usage.JAVA_RUNTIME))
}

build.gradle

configurations.create('publishedRuntimeClasspath') {
 resolutionStrategy.useGlobalDependencySubstitutionRules = false

 extendsFrom(configurations.runtimeClasspath)
 canBeConsumed = false
 attributes.attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_RUNTIME))
}

A use-case would be to compare published and locally built JAR files.

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Cases where included build substitutions must be declared

Many builds will function automatically as an included build, without declared substitutions. Here
are some common cases where declared substitutions are required:

• When the archivesBaseName property is used to set the name of the published artifact.

• When a configuration other than default is published.

• When the MavenPom.addFilter() is used to publish artifacts that don’t match the project name.

• When the maven-publish or ivy-publish plugins are used for publishing and the publication
coordinates don’t match ${project.group}:${project.name}.

Cases where composite build substitutions won’t work

Some builds won’t function correctly when included in a composite, even when dependency
substitutions are explicitly declared. This limitation is because a substituted project dependency
will always point to the default configuration of the target project. Any time the artifacts and
dependencies specified for the default configuration of a project don’t match what is published to a
repository, the composite build may exhibit different behavior.

Here are some cases where the published module metadata may be different from the project
default configuration:

• When a configuration other than default is published.

• When the maven-publish or ivy-publish plugins are used.

• When the POM or ivy.xml file is tweaked as part of publication.

Builds using these features function incorrectly when included in a composite build.

Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a
composite build can declare task dependencies on its included builds. The included builds are
accessed using Gradle.getIncludedBuilds() or Gradle.includedBuild(java.lang.String), and a task
reference is obtained via the IncludedBuild.task(java.lang.String) method.

Using these APIs, it is possible to declare a dependency on a task in a particular included build:

build.gradle.kts

tasks.register("run") {
 dependsOn(gradle.includedBuild("my-app").task(":app:run"))
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
https://docs.gradle.org/8.12/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

build.gradle

tasks.register('run') {
 dependsOn gradle.includedBuild('my-app').task(':app:run')
}

Or you can declare a dependency on tasks with a certain path in some or all of the included builds:

build.gradle.kts

tasks.register("publishDeps") {
 dependsOn(gradle.includedBuilds.map {
it.task(":publishMavenPublicationToMavenRepository") })
}

build.gradle

tasks.register('publishDeps') {
 dependsOn gradle.includedBuilds*.task(
':publishMavenPublicationToMavenRepository')
}

Limitations of composite builds

Limitations of the current implementation include:

• No support for included builds with publications that don’t mirror the project default
configuration.
See Cases where composite builds won’t work.

• Multiple composite builds may conflict when run in parallel if more than one includes the same
build.
Gradle does not share the project lock of a shared composite build between Gradle invocations
to prevent concurrent execution.

Configuration On Demand
Configuration-on-demand attempts to configure only the relevant projects for the requested tasks,
i.e., it only evaluates the build script file of projects participating in the build. This way, the
configuration time of a large multi-project build can be reduced.

The configuration-on-demand feature is incubating, so only some builds are guaranteed to work
correctly. The feature works well for decoupled multi-project builds.

In configuration-on-demand mode, projects are configured as follows:

• The root project is always configured.

• The project in the directory where the build is executed is also configured, but only when
Gradle is executed without any tasks.
This way, the default tasks behave correctly when projects are configured on demand.

• The standard project dependencies are supported, and relevant projects are configured.
If project A has a compile dependency on project B, then building A causes the configuration of
both projects.

• The task dependencies declared via the task path are supported and cause relevant projects to
be configured.
Example: someTask.dependsOn(":some-other-project:someOtherTask")

• A task requested via task path from the command line (or tooling API) causes the relevant
project to be configured.
For example, building project-a:project-b:someTask causes configuration of project-b.

Enable configuration-on-demand

You can enable configuration-on-demand using the --configure-on-demand flag or adding
org.gradle.configureondemand=true to the gradle.properties file.

To configure on demand with every build run, see Gradle properties.

To configure on demand for a given build, see command-line performance-oriented options.

Decoupled projects

Gradle allows projects to access each other’s configurations and tasks during the configuration and
execution phases. While this flexibility empowers build authors, it limits Gradle’s ability to perform
optimizations such as parallel project builds and configuration on demand.

Projects are considered decoupled when they interact solely through declared dependencies and
task dependencies. Any direct modification or reading of another project’s object creates coupling
between the projects. Coupling during configuration can result in flawed build outcomes when
using 'configuration on demand', while coupling during execution can affect parallel execution.

One common source of coupling is configuration injection, such as using allprojects{} or
subprojects{} in build scripts.

To avoid coupling issues, it’s recommended to:

• Refrain from referencing other subprojects' build scripts and prefer cross-project configuration
from the root project.

• Avoid dynamically changing other projects' configurations during execution.

glossary.pdf#sub:cross_project_configuration

As Gradle evolves, it aims to provide features that leverage decoupled projects while offering
solutions for common use cases like configuration injection without introducing coupling.

Parallel projects

Gradle’s parallel execution feature optimizes CPU utilization to accelerate builds by concurrently
executing tasks from different projects.

To enable parallel execution, use the --parallel command-line argument or configure your build
environment. Gradle automatically determines the optimal number of parallel threads based on
CPU cores.

During parallel execution, each worker handles a specific project exclusively. Task dependencies
are respected, with workers prioritizing upstream tasks. However, tasks may not execute in
alphabetical order, as in sequential mode. It’s crucial to correctly declare task dependencies and
inputs/outputs to avoid ordering issues.

DEVELOPING TASKS

Understanding Tasks
A task represents some independent unit of work that a build performs, such as compiling classes,
creating a JAR, generating Javadoc, or publishing archives to a repository.

Before reading this chapter, it’s recommended that you first read the Learning The Basics and
complete the Tutorial.

Listing tasks

All available tasks in your project come from Gradle plugins and build scripts.

You can list all the available tasks in a project by running the following command in the terminal:

$./gradlew tasks

Let’s take a very basic Gradle project as an example. The project has the following structure:

gradle-project
├── app
│ ├── build.gradle.kts // empty file - no build logic
│ └── ... // some java code
├── settings.gradle.kts // includes app subproject
├── gradle
│ └── ...

part1_gradle_init_project.pdf#part1_gradle_init

├── gradlew
└── gradlew.bat

gradle-project
├── app
│ ├── build.gradle // empty file - no build logic
│ └── ... // some java code
├── settings.gradle // includes app subproject
├── gradle
│ └── ...
├── gradlew
└── gradlew.bat

The settings file contains the following:

settings.gradle.kts

rootProject.name = "gradle-project"
include("app")

settings.gradle

rootProject.name = 'gradle-project'
include('app')

Currently, the app subproject’s build file is empty.

To see the tasks available in the app subproject, run ./gradlew :app:tasks:

$./gradlew :app:tasks

> Task :app:tasks

--
Tasks runnable from project ':app'
--

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in project ':app'.
dependencies - Displays all dependencies declared in project ':app'.
dependencyInsight - Displays the insight into a specific dependency in project ':app'.
help - Displays a help message.
javaToolchains - Displays the detected java toolchains.
kotlinDslAccessorsReport - Prints the Kotlin code for accessing the currently
available project extensions and conventions.
outgoingVariants - Displays the outgoing variants of project ':app'.
projects - Displays the sub-projects of project ':app'.
properties - Displays the properties of project ':app'.
resolvableConfigurations - Displays the configurations that can be resolved in project
':app'.
tasks - Displays the tasks runnable from project ':app'.

We observe that only a small number of help tasks are available at the moment. This is because the
core of Gradle only provides tasks that analyze your build. Other tasks, such as the those that build
your project or compile your code, are added by plugins.

Let’s explore this by adding the Gradle core base plugin to the app build script:

app/build.gradle.kts

plugins {
 id("base")
}

app/build.gradle

plugins {
 id('base')
}

The base plugin adds central lifecycle tasks. Now when we run ./gradlew app:tasks, we can see the
assemble and build tasks are available:

$./gradlew :app:tasks

> Task :app:tasks

--
Tasks runnable from project ':app'
--

Build tasks

base_plugin.pdf#base_plugin
base_plugin.pdf#base_plugin
base_plugin.pdf#base_plugin

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.
clean - Deletes the build directory.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in project ':app'.
dependencies - Displays all dependencies declared in project ':app'.
dependencyInsight - Displays the insight into a specific dependency in project ':app'.
help - Displays a help message.
javaToolchains - Displays the detected java toolchains.
outgoingVariants - Displays the outgoing variants of project ':app'.
projects - Displays the sub-projects of project ':app'.
properties - Displays the properties of project ':app'.
resolvableConfigurations - Displays the configurations that can be resolved in project
':app'.
tasks - Displays the tasks runnable from project ':app'.

Verification tasks

check - Runs all checks.

Task outcomes

When Gradle executes a task, it labels the task with outcomes via the console.

These labels are based on whether a task has actions to execute and if Gradle executed them.
Actions include, but are not limited to, compiling code, zipping files, and publishing archives.

(no label) or EXECUTED

Task executed its actions.

• Task has actions and Gradle executed them.

• Task has no actions and some dependencies, and Gradle executed one or more of the

dependencies. See also Lifecycle Tasks.

UP-TO-DATE

Task’s outputs did not change.

• Task has outputs and inputs but they have not changed. See Incremental Build.

• Task has actions, but the task tells Gradle it did not change its outputs.

• Task has no actions and some dependencies, but all the dependencies are UP-TO-DATE, SKIPPED
or FROM-CACHE. See Lifecycle Tasks.

• Task has no actions and no dependencies.

FROM-CACHE

Task’s outputs could be found from a previous execution.

• Task has outputs restored from the build cache. See Build Cache.

SKIPPED

Task did not execute its actions.

• Task has been explicitly excluded from the command-line. See Excluding tasks from
execution.

• Task has an onlyIf predicate return false. See Using a predicate.

NO-SOURCE

Task did not need to execute its actions.

• Task has inputs and outputs, but no sources (i.e., inputs were not found).

Task group and description

Task groups and descriptions are used to organize and describe tasks.

Groups

Task groups are used to categorize tasks. When you run ./gradlew tasks, tasks are listed under
their respective groups, making it easier to understand their purpose and relationship to other
tasks. Groups are set using the group property.

Descriptions

Descriptions provide a brief explanation of what a task does. When you run ./gradlew tasks, the
descriptions are shown next to each task, helping you understand its purpose and how to use it.
Descriptions are set using the description property.

Let’s consider a basic Java application as an example. The build contains a subproject called app.

Let’s list the available tasks in app at the moment:

$./gradlew :app:tasks

> Task :app:tasks

incremental_build.pdf#incremental_build
incremental_build.pdf#skip-when-empty

--
Tasks runnable from project ':app'
--

Application tasks

run - Runs this project as a JVM application.

Build tasks

assemble - Assembles the outputs of this project.

Here, the :run task is part of the Application group with the description Runs this project as a JVM
application. In code, it would look something like this:

app/build.gradle.kts

tasks.register("run") {
 group = "Application"
 description = "Runs this project as a JVM application."
}

app/build.gradle

tasks.register("run") {
 group = "Application"
 description = "Runs this project as a JVM application."
}

Private and hidden tasks

Gradle doesn’t support marking a task as private.

However, tasks will only show up when running :tasks if task.group is set or no other task depends
on it.

For instance, the following task will not appear when running ./gradlew :app:tasks because it does
not have a group; it is called a hidden task:

app/build.gradle.kts

tasks.register("helloTask") {

 println("Hello")
}

app/build.gradle

tasks.register("helloTask") {
 println 'Hello'
}

Although helloTask is not listed, it can still be executed by Gradle:

$./gradlew :app:tasks

> Task :app:tasks

--
Tasks runnable from project ':app'
--

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.

Let’s add a group to the same task:

app/build.gradle.kts

tasks.register("helloTask") {
 group = "Other"
 description = "Hello task"
 println("Hello")
}

app/build.gradle

tasks.register("helloTask") {
 group = "Other"
 description = "Hello task"

 println 'Hello'
}

Now that the group is added, the task is visible:

$./gradlew :app:tasks

> Task :app:tasks

--
Tasks runnable from project ':app'
--

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.

Other tasks

helloTask - Hello task

In contrast, ./gradlew tasks --all will show all tasks; hidden and visible tasks are listed.

Grouping tasks

If you want to customize which tasks are shown to users when listed, you can group tasks and set
the visibility of each group.

NOTE
Remember, even if you hide tasks, they are still available, and Gradle can still run
them.

Let’s start with an example built by Gradle init for a Java application with multiple subprojects.
The project structure is as follows:

gradle-project
├── app
│ ├── build.gradle.kts
│ └── src // some java code
│ └── ...
├── utilities
│ ├── build.gradle.kts

│ └── src // some java code
│ └── ...
├── list
│ ├── build.gradle.kts
│ └── src // some java code
│ └── ...
├── buildSrc
│ ├── build.gradle.kts
│ ├── settings.gradle.kts
│ └── src // common build logic
│ └── ...
├── settings.gradle.kts
├── gradle
├── gradlew
└── gradlew.bat

gradle-project
├── app
│ ├── build.gradle
│ └── src // some java code
│ └── ...
├── utilities
│ ├── build.gradle
│ └── src // some java code
│ └── ...
├── list
│ ├── build.gradle
│ └── src // some java code
│ └── ...
├── buildSrc
│ ├── build.gradle
│ ├── settings.gradle
│ └── src // common build logic
│ └── ...
├── settings.gradle
├── gradle
├── gradlew
└── gradlew.bat

Run app:tasks to see available tasks in the app subproject:

$./gradlew :app:tasks

> Task :app:tasks

--
Tasks runnable from project ':app'
--

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
classes - Assembles main classes.
clean - Deletes the build directory.
jar - Assembles a jar archive containing the classes of the 'main' feature.
testClasses - Assembles test classes.

Distribution tasks

assembleDist - Assembles the main distributions
distTar - Bundles the project as a distribution.
distZip - Bundles the project as a distribution.
installDist - Installs the project as a distribution as-is.

Documentation tasks

javadoc - Generates Javadoc API documentation for the 'main' feature.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in project ':app'.
dependencies - Displays all dependencies declared in project ':app'.
dependencyInsight - Displays the insight into a specific dependency in project ':app'.
help - Displays a help message.
javaToolchains - Displays the detected java toolchains.
kotlinDslAccessorsReport - Prints the Kotlin code for accessing the currently
available project extensions and conventions.
outgoingVariants - Displays the outgoing variants of project ':app'.
projects - Displays the sub-projects of project ':app'.
properties - Displays the properties of project ':app'.
resolvableConfigurations - Displays the configurations that can be resolved in project
':app'.
tasks - Displays the tasks runnable from project ':app'.

Verification tasks

check - Runs all checks.
test - Runs the test suite.

If we look at the list of tasks available, even for a standard Java project, it’s extensive. Many of these
tasks are rarely required directly by developers using the build.

We can configure the :tasks task and limit the tasks shown to a certain group.

Let’s create our own group so that all tasks are hidden by default by updating the app build script:

app/build.gradle.kts

val myBuildGroup = "my app build" // Create a group name

tasks.register<TaskReportTask>("tasksAll") { // Register the tasksAll task
group = myBuildGroup
description = "Show additional tasks."
setShowDetail(true)
}

tasks.named<TaskReportTask>("tasks") { // Move all existing tasks to
the group
displayGroup = myBuildGroup
}

app/build.gradle

def myBuildGroup = "my app build" // Create a group name

tasks.register(TaskReportTask, "tasksAll") { // Register the tasksAll task
 group = myBuildGroup
 description = "Show additional tasks."
 setShowDetail(true)
}

tasks.named(TaskReportTask, "tasks") { // Move all existing tasks to
the group
 displayGroup = myBuildGroup
}

Now, when we list tasks available in app, the list is shorter:

$./gradlew :app:tasks

> Task :app:tasks

--
Tasks runnable from project ':app'

--

My app build tasks

tasksAll - Show additional tasks.

Task categories

Gradle distinguishes between two categories of tasks:

1. Lifecycle tasks

2. Actionable tasks

Lifecycle tasks define targets you can call, such as :build your project. Lifecycle tasks do not
provide Gradle with actions. They must be wired to actionable tasks. The base Gradle plugin only
adds lifecycle tasks.

Actionable tasks define actions for Gradle to take, such as :compileJava, which compiles the Java
code of your project. Actions include creating JARs, zipping files, publishing archives, and much
more. Plugins like the java-library plugin adds actionable tasks.

Let’s update the build script of the previous example, which is currently an empty file so that our
app subproject is a Java library:

app/build.gradle.kts

plugins {
 id("java-library")
}

app/build.gradle

plugins {
 id('java-library')
}

Once again, we list the available tasks to see what new tasks are available:

$./gradlew :app:tasks

> Task :app:tasks

--

base_plugin.pdf#base_plugin
base_plugin.pdf#base_plugin

Tasks runnable from project ':app'
--

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
classes - Assembles main classes.
clean - Deletes the build directory.
jar - Assembles a jar archive containing the classes of the 'main' feature.
testClasses - Assembles test classes.

Documentation tasks

javadoc - Generates Javadoc API documentation for the 'main' feature.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in project ':app'.
dependencies - Displays all dependencies declared in project ':app'.
dependencyInsight - Displays the insight into a specific dependency in project ':app'.
help - Displays a help message.
javaToolchains - Displays the detected java toolchains.
outgoingVariants - Displays the outgoing variants of project ':app'.
projects - Displays the sub-projects of project ':app'.
properties - Displays the properties of project ':app'.
resolvableConfigurations - Displays the configurations that can be resolved in project
':app'.
tasks - Displays the tasks runnable from project ':app'.

Verification tasks

check - Runs all checks.
test - Runs the test suite.

We see that many new tasks are available such as jar and testClasses.

Additionally, the java-library plugin has wired actionable tasks to lifecycle tasks. If we call the
:build task, we can see several tasks have been executed, including the :app:compileJava task.

$./gradlew :app:build

> Task :app:compileJava
> Task :app:processResources NO-SOURCE
> Task :app:classes
> Task :app:jar
> Task :app:assemble
> Task :app:compileTestJava

> Task :app:processTestResources NO-SOURCE
> Task :app:testClasses
> Task :app:test
> Task :app:check
> Task :app:build

The actionable :compileJava task is wired to the lifecycle :build task.

Incremental tasks

A key feature of Gradle tasks is their incremental nature.

Gradle can reuse results from prior builds. Therefore, if we’ve built our project before and made
only minor changes, rerunning :build will not require Gradle to perform extensive work.

For example, if we modify only the test code in our project, leaving the production code unchanged,
executing the build will solely recompile the test code. Gradle marks the tasks for the production
code as UP-TO-DATE, indicating that it remains unchanged since the last successful build:

$./gradlew :app:build

gradle@MacBook-Pro temp1 % ./gradlew :app:build
> Task :app:compileJava UP-TO-DATE
> Task :app:processResources NO-SOURCE
> Task :app:classes UP-TO-DATE
> Task :app:jar UP-TO-DATE
> Task :app:assemble UP-TO-DATE
> Task :app:compileTestJava
> Task :app:processTestResources NO-SOURCE
> Task :app:testClasses
> Task :app:test
> Task :app:check UP-TO-DATE
> Task :app:build UP-TO-DATE

Caching tasks

Gradle can reuse results from past builds using the build cache.

To enable this feature, activate the build cache by using the --build-cache command line parameter
or by setting org.gradle.caching=true in your gradle.properties file.

This optimization has the potential to accelerate your builds significantly:

$./gradlew :app:clean :app:build --build-cache

> Task :app:compileJava FROM-CACHE
> Task :app:processResources NO-SOURCE
> Task :app:classes UP-TO-DATE

> Task :app:jar
> Task :app:assemble
> Task :app:compileTestJava FROM-CACHE
> Task :app:processTestResources NO-SOURCE
> Task :app:testClasses UP-TO-DATE
> Task :app:test FROM-CACHE
> Task :app:check UP-TO-DATE
> Task :app:build

When Gradle can fetch outputs of a task from the cache, it labels the task with FROM-CACHE.

The build cache is handy if you switch between branches regularly. Gradle supports both local and
remote build caches.

Developing tasks

When developing Gradle tasks, you have two choices:

1. Use an existing Gradle task type such as Zip, Copy, or Delete

2. Create your own Gradle task type such as MyResolveTask or CustomTaskUsingToolchains.

Task types are simply subclasses of the Gradle Task class.

With Gradle tasks, there are three states to consider:

1. Registering a task - using a task (implemented by you or provided by Gradle) in your build
logic.

2. Configuring a task - defining inputs and outputs for a registered task.

3. Implementing a task - creating a custom task class (i.e., custom class type).

Registration is commonly done with the register() method.
Configuring a task is commonly done with the named() method.
Implementing a task is commonly done by extending Gradle’s DefaultTask class:

tasks.register<Copy>("myCopy") ①

tasks.named<Copy>("myCopy") { ②
 from("resources")
 into("target")
 include("**/*.txt", "**/*.xml", "**/*.properties")
}

abstract class MyCopyTask : DefaultTask() { ③
 @TaskAction
 fun copyFiles() {
 val sourceDir = File("sourceDir")
 val destinationDir = File("destinationDir")

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskCollection.html#named-java.lang.String-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/DefaultTask.html

 sourceDir.listFiles()?.forEach { file ->
 if (file.isFile && file.extension == "txt") {
 file.copyTo(File(destinationDir, file.name))
 }
 }
 }
}

① Register the myCopy task of type Copy to let Gradle know we intend to use it in our build
logic.

② Configure the registered myCopy task with the inputs and outputs it needs according to
its API.

③ Implement a custom task type called MyCopyTask which extends DefaultTask and defines
the copyFiles task action.

tasks.register(Copy, "myCopy") ①

tasks.named(Copy, "myCopy") { ②
 from "resources"
 into "target"
 include "**/*.txt", "**/*.xml", "**/*.properties"
}

abstract class MyCopyTask extends DefaultTask { ③
 @TaskAction
 void copyFiles() {
 fileTree('sourceDir').matching {
 include '**/*.txt'
 }.forEach { file ->
 file.copyTo(file.path.replace('sourceDir', 'destinationDir'))
 }
 }
}

① Register the myCopy task of type Copy to let Gradle know we intend to use it in our build
logic.

② Configure the registered myCopy task with the inputs and outputs it needs according to
its API.

③ Implement a custom task type called MyCopyTask which extends DefaultTask and defines
the copyFiles task action.

1. Registering tasks

You define actions for Gradle to take by registering tasks in build scripts or plugins.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/Copy.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/Copy.html

Tasks are defined using strings for task names:

build.gradle.kts

tasks.register("hello") {
 doLast {
 println("hello")
 }
}

build.gradle

tasks.register('hello') {
 doLast {
 println 'hello'
 }
}

In the example above, the task is added to the TasksCollection using the register() method in
TaskContainer.

2. Configuring tasks

Gradle tasks must be configured to complete their action(s) successfully. If a task needs to ZIP a file,
it must be configured with the file name and location. You can refer to the API for the Gradle Zip
task to learn how to configure it appropriately.

Let’s look at the Copy task provided by Gradle as an example. We first register a task called myCopy of
type Copy in the build script:

build.gradle.kts

tasks.register<Copy>("myCopy")

build.gradle

tasks.register('myCopy', Copy)

This registers a copy task with no default behavior. Since the task is of type Copy, a Gradle supported

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskCollection.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/bundling/Zip.html

task type, it can be configured using its API.

The following examples show several ways to achieve the same configuration:

1. Using the named() method:

Use named() to configure an existing task registered elsewhere:

build.gradle.kts

tasks.named<Copy>("myCopy") {
 from("resources")
 into("target")
 include("**/*.txt", "**/*.xml", "**/*.properties")
}

build.gradle

tasks.named('myCopy') {
 from 'resources'
 into 'target'
 include('**/*.txt', '**/*.xml', '**/*.properties')
}

2. Using a configuration block:

Use a block to configure the task immediately upon registering it:

build.gradle.kts

tasks.register<Copy>("copy") {
 from("resources")
 into("target")
 include("**/*.txt", "**/*.xml", "**/*.properties")
}

build.gradle

tasks.register('copy', Copy) {
 from 'resources'
 into 'target'
 include('**/*.txt', '**/*.xml', '**/*.properties')

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/Copy.html

}

3. Name method as call:

A popular option that is only supported in Groovy is the shorthand notation:

copy {
 from("resources")
 into("target")
 include("**/*.txt", "**/*.xml", "**/*.properties")
}

NOTE This option breaks task configuration avoidance and is not recommended!

Regardless of the method chosen, the task is configured with the name of the files to be copied and
the location of the files.

3. Implementing tasks

Gradle provides many task types including Delete, Javadoc, Copy, Exec, Tar, and Pmd. You can
implement a custom task type if Gradle does not provide a task type that meets your build logic
needs.

To create a custom task class, you extend DefaultTask and make the extending class abstract:

app/build.gradle.kts

abstract class MyCopyTask : DefaultTask() {

}

app/build.gradle

abstract class MyCopyTask extends DefaultTask {

}

Controlling Task Execution
Task dependencies allow tasks to be executed in a specific order based on their dependencies. This

https://docs.gradle.org/8.12/javadoc/org/gradle/api/DefaultTask.html

ensures that tasks dependent on others are only executed after those dependencies have
completed.

Task dependencies can be categorized as either implicit or explicit:

Implicit dependencies

These dependencies are automatically inferred by Gradle based on the tasks' actions and
configuration. For example, if taskB uses the output of taskA (e.g., a file generated by taskA),
Gradle will automatically ensure that taskA is executed before taskB to fulfill this dependency.

Explicit dependencies

These dependencies are explicitly declared in the build script using the dependsOn, mustRunAfter,
or shouldRunAfter methods. For example, if you want to ensure that taskB always runs after
taskA, you can explicitly declare this dependency using taskB.mustRunAfter(taskA).

Both implicit and explicit dependencies play a crucial role in defining the order of task execution
and ensuring that tasks are executed in the correct sequence to produce the desired build output.

Task dependencies

Gradle inherently understands the dependencies among tasks. Consequently, it can determine the
tasks that need execution when you target a specific task.

Let’s take an example application with an app subproject and a some-logic subproject:

settings.gradle.kts

rootProject.name = "gradle-project"
include("app")
include("some-logic")

settings.gradle

rootProject.name = 'gradle-project'

include('app')
include('some-logic')

Let’s imagine that the app subproject depends on the subproject called some-logic, which contains
some Java code. We add this dependency in the app build script:

app/build.gradle.kts

plugins {
 id("application") // app is now a java application
}

application {
 mainClass.set("hello.HelloWorld") // main class name required by
the application plugin
}

dependencies {
 implementation(project(":some-logic")) // dependency on some-logic
}

app/build.gradle

plugins {
 id('application') // app is now a java application
}

application {
 mainClass = 'hello.HelloWorld' // main class name required by
the application plugin
}

dependencies {
 implementation(project(':some-logic')) // dependency on some-logic
}

If we run :app:build again, we see the Java code of some-logic is also compiled by Gradle
automatically:

$./gradlew :app:build

> Task :app:processResources NO-SOURCE

> Task :app:processTestResources NO-SOURCE
> Task :some-logic:compileJava UP-TO-DATE
> Task :some-logic:processResources NO-SOURCE
> Task :some-logic:classes UP-TO-DATE
> Task :some-logic:jar UP-TO-DATE
> Task :app:compileJava
> Task :app:classes
> Task :app:jar UP-TO-DATE
> Task :app:startScripts
> Task :app:distTar
> Task :app:distZip
> Task :app:assemble
> Task :app:compileTestJava UP-TO-DATE
> Task :app:testClasses UP-TO-DATE
> Task :app:test
> Task :app:check
> Task :app:build

BUILD SUCCESSFUL in 430ms
9 actionable tasks: 5 executed, 4 up-to-date

Adding dependencies

There are several ways you can define the dependencies of a task.

Defining dependencies using task names and the dependsOn()` method is simplest.

The following is an example which adds a dependency from taskX to taskY:

tasks.register("taskX") {
 dependsOn("taskY")
}

tasks.register("taskX") {
 dependsOn "taskY"
}

$ gradle -q taskX
taskY
taskX

https://docs.gradle.org/8.12/javadoc/org/gradle/api/DefaultTask.html#dependsOn-java.lang.Object…​-

For more information about task dependencies, see the Task API.

Ordering tasks

In some cases, it is useful to control the order in which two tasks will execute, without introducing
an explicit dependency between those tasks.

The primary difference between a task ordering and a task dependency is that an ordering rule does
not influence which tasks will be executed, only the order in which they will be executed.

Task ordering can be useful in a number of scenarios:

• Enforce sequential ordering of tasks (e.g., build never runs before clean).

• Run build validations early in the build (e.g., validate I have the correct credentials before
starting the work for a release build).

• Get feedback faster by running quick verification tasks before long verification tasks (e.g., unit
tests should run before integration tests).

• A task that aggregates the results of all tasks of a particular type (e.g., test report task combines
the outputs of all executed test tasks).

Two ordering rules are available: "must run after" and "should run after".

To specify a "must run after" or "should run after" ordering between 2 tasks, you use the
Task.mustRunAfter(java.lang.Object...) and Task.shouldRunAfter(java.lang.Object...) methods. These
methods accept a task instance, a task name, or any other input accepted by
Task.dependsOn(java.lang.Object...).

When you use "must run after", you specify that taskY must always run after taskX when the build
requires the execution of taskX and taskY. So if you only run taskY with mustRunAfter, you won’t
cause taskX to run. This is expressed as taskY.mustRunAfter(taskX).

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}
taskY {
 mustRunAfter(taskX)
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#mustRunAfter-java.lang.Object…​-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#shouldRunAfter-java.lang.Object…​-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#dependsOn-java.lang.Object…​-

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}
taskY.configure {
 mustRunAfter taskX
}

$ gradle -q taskY taskX
taskX
taskY

The "should run after" ordering rule is similar but less strict, as it will be ignored in two situations:

1. If using that rule introduces an ordering cycle.

2. When using parallel execution and all task dependencies have been satisfied apart from the
"should run after" task, then this task will be run regardless of whether or not its "should run
after" dependencies have been run.

You should use "should run after" where the ordering is helpful but not strictly required:

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}
taskY {
 shouldRunAfter(taskX)
}

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}
taskY.configure {
 shouldRunAfter taskX
}

$ gradle -q taskY taskX
taskX
taskY

In the examples above, it is still possible to execute taskY without causing taskX to run:

$ gradle -q taskY
taskY

The “should run after” ordering rule will be ignored if it introduces an ordering cycle:

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}
val taskZ by tasks.registering {
 doLast {
 println("taskZ")

 }
}
taskX { dependsOn(taskY) }
taskY { dependsOn(taskZ) }
taskZ { shouldRunAfter(taskX) }

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}
def taskZ = tasks.register('taskZ') {
 doLast {
 println 'taskZ'
 }
}
taskX.configure { dependsOn(taskY) }
taskY.configure { dependsOn(taskZ) }
taskZ.configure { shouldRunAfter(taskX) }

$ gradle -q taskX
taskZ
taskY
taskX

Note that taskY.mustRunAfter(taskX) or taskY.shouldRunAfter(taskX) does not imply any execution
dependency between the tasks:

• It is possible to execute taskX and taskY independently. The ordering rule only has an effect
when both tasks are scheduled for execution.

• When run with --continue, it is possible for taskY to execute if taskX fails.

Finalizer tasks

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to
run.

To specify a finalizer task, you use the Task.finalizedBy(java.lang.Object…) method. This method

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#finalizedBy-java.lang.Object…​-

accepts a task instance, a task name, or any other input accepted by
Task.dependsOn(java.lang.Object…):

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}

taskX { finalizedBy(taskY) }

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}

taskX.configure { finalizedBy taskY }

$ gradle -q taskX
taskX
taskY

Finalizer tasks are executed even if the finalized task fails or if the finalized task is considered UP-
TO-DATE:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#dependsOn-java.lang.Object…​-

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 throw RuntimeException()
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}

taskX { finalizedBy(taskY) }

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 throw new RuntimeException()
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}

taskX.configure { finalizedBy taskY }

$ gradle -q taskX
taskX
taskY

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/build.gradle' line: 4

* What went wrong:
Execution failed for task ':taskX'.
> java.lang.RuntimeException (no error message)

* Try:
> Run with --stacktrace option to get the stack trace.
> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.
> Get more help at https://help.gradle.org.

BUILD FAILED in 0s

Finalizer tasks are useful when the build creates a resource that must be cleaned up, regardless of
whether the build fails or succeeds. An example of such a resource is a web container that is started
before an integration test task and must be shut down, even if some tests fail.

Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

1. Using a predicate

You can use Task.onlyIf to attach a predicate to a task. The task’s actions will only be executed if the
predicate is evaluated to be true.

The predicate is passed to the task as a parameter and returns true if the task will execute and
false if the task will be skipped. The predicate is evaluated just before the task is executed.

Passing an optional reason string to onlyIf() is useful for explaining why the task is skipped:

build.gradle.kts

val hello by tasks.registering {
 doLast {
 println("hello world")
 }
}

hello {
 val skipProvider = providers.gradleProperty("skipHello")
 onlyIf("there is no property skipHello") {
 !skipProvider.isPresent()
 }
}

build.gradle

def hello = tasks.register('hello') {
 doLast {
 println 'hello world'

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#onlyIf-org.gradle.api.specs.Spec-

 }
}

hello.configure {
 def skipProvider = providers.gradleProperty("skipHello")
 onlyIf("there is no property skipHello") {
 !skipProvider.present
 }
}

$ gradle hello -PskipHello
> Task :hello SKIPPED

BUILD SUCCESSFUL in 0s

To find why a task was skipped, run the build with the --info logging level.

$ gradle hello -PskipHello --info
...

> Task :hello SKIPPED
Skipping task ':hello' as task onlyIf 'there is no property skipHello' is false.
:hello (Thread[included builds,5,main]) completed. Took 0.018 secs.

BUILD SUCCESSFUL in 13s

2. Using StopExecutionException

If the logic for skipping a task can’t be expressed with a predicate, you can use the
StopExecutionException.

If this exception is thrown by an action, the task action as well as the execution of any following
action is skipped. The build continues by executing the next task:

build.gradle.kts

val compile by tasks.registering {
 doLast {
 println("We are doing the compile.")
 }
}

compile {

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/StopExecutionException.html

 doFirst {
 // Here you would put arbitrary conditions in real life.
 if (true) {
 throw StopExecutionException()
 }
 }
}
tasks.register("myTask") {
 dependsOn(compile)
 doLast {
 println("I am not affected")
 }
}

build.gradle

def compile = tasks.register('compile') {
 doLast {
 println 'We are doing the compile.'
 }
}

compile.configure {
 doFirst {
 // Here you would put arbitrary conditions in real life.
 if (true) {
 throw new StopExecutionException()
 }
 }
}
tasks.register('myTask') {
 dependsOn('compile')
 doLast {
 println 'I am not affected'
 }
}

$ gradle -q myTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional
execution of the built-in actions of such a task.[1]

3. Enabling and Disabling tasks

Every task has an enabled flag, which defaults to true. Setting it to false prevents executing the
task’s actions.

A disabled task will be labeled SKIPPED:

build.gradle.kts

val disableMe by tasks.registering {
 doLast {
 println("This should not be printed if the task is disabled.")
 }
}

disableMe {
 enabled = false
}

build.gradle

def disableMe = tasks.register('disableMe') {
 doLast {
 println 'This should not be printed if the task is disabled.'
 }
}

disableMe.configure {
 enabled = false
}

$ gradle disableMe
> Task :disableMe SKIPPED

BUILD SUCCESSFUL in 0s

4. Task timeouts

Every task has a timeout property, which can be used to limit its execution time. When a task
reaches its timeout, its task execution thread is interrupted. The task will be marked as FAILED.

Finalizer tasks are executed. If --continue is used, other tasks continue running.

Tasks that don’t respond to interrupts can’t be timed out. All of Gradle’s built-in tasks respond to

timeouts.

build.gradle.kts

tasks.register("hangingTask") {
 doLast {
 Thread.sleep(100000)
 }
 timeout = Duration.ofMillis(500)
}

build.gradle

tasks.register("hangingTask") {
 doLast {
 Thread.sleep(100000)
 }
 timeout = Duration.ofMillis(500)
}

Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value
range of parameters. A very nice and expressive way to provide such tasks are task rules:

build.gradle.kts

tasks.addRule("Pattern: ping<ID>") {
 val taskName = this
 if (startsWith("ping")) {
 task(taskName) {
 doLast {
 println("Pinging: " + (taskName.replace("ping", "")))
 }
 }
 }
}

build.gradle

tasks.addRule("Pattern: ping<ID>") { String taskName ->

 if (taskName.startsWith("ping")) {
 task(taskName) {
 doLast {
 println "Pinging: " + (taskName - 'ping')
 }
 }
 }
}

$ gradle -q pingServer1
Pinging: Server1

The String parameter is used as a description for the rule, which is shown with ./gradlew tasks.

Rules are not only used when calling tasks from the command line. You can also create dependsOn
relations on rule based tasks:

build.gradle.kts

tasks.addRule("Pattern: ping<ID>") {
 val taskName = this
 if (startsWith("ping")) {
 task(taskName) {
 doLast {
 println("Pinging: " + (taskName.replace("ping", "")))
 }
 }
 }
}

tasks.register("groupPing") {
 dependsOn("pingServer1", "pingServer2")
}

build.gradle

tasks.addRule("Pattern: ping<ID>") { String taskName ->

 if (taskName.startsWith("ping")) {
 task(taskName) {
 doLast {
 println "Pinging: " + (taskName - 'ping')
 }

 }
 }
}

tasks.register('groupPing') {
 dependsOn 'pingServer1', 'pingServer2'
}

$ gradle -q groupPing
Pinging: Server1
Pinging: Server2

If you run ./gradlew -q tasks, you won’t find a task named pingServer1 or pingServer2, but this
script is executing logic based on the request to run those tasks.

Exclude tasks from execution

You can exclude a task from execution using the -x or --exclude-task command-line option and
provide the task’s name to exclude.

$./gradlew build -x test

For instance, you can run the check task but exclude the test task from running. This approach can
lead to unexpected outcomes, particularly if you exclude an actionable task that produces results
needed by other tasks. Instead of relying on the -x parameter, defining a suitable lifecycle task for
the desired action is recommended.

Using -x is a practice that should be avoided, although still commonly observed.

Organizing Tasks
There are two types of tasks, actionable and lifecycle tasks.

Actionable tasks in Gradle are tasks that perform actual work, such as compiling code. Lifecycle
tasks are tasks that do not do work themselves. These tasks have no actions, instead, they bundle
actionable tasks and serve as targets for the build.

A well-organized setup of lifecycle tasks enhances the accessibility of your build for new users and
simplifies integration with CI.

Lifecycle tasks

Lifecycle tasks can be particularly beneficial for separating work between users or machines (CI vs
local). For example, a developer on a local machine might not want to run an entire build on every
single change.

Let’s take a standard app as an example which applies the base plugin.

NOTE
The Gradle base plugin defines several lifecycle tasks, including build, assemble, and
check.

We group the build, check task, and the run task by adding the following lines to the app build script:

app/build.gradle.kts

tasks.build {
 group = myBuildGroup
}

tasks.check {
 group = myBuildGroup
 description = "Runs checks (including tests)."
}

tasks.named("run") {
 group = myBuildGroup
}

base_plugin.pdf#base_plugin
base_plugin.pdf#base_plugin
base_plugin.pdf#base_plugin

app/build.gradle

tasks.build {
 group = myBuildGroup
}

tasks.check {
 group = myBuildGroup
 description = "Runs checks (including tests)."
}

tasks.named('run') {
 group = myBuildGroup
}

If we now look at the app:tasks list, we can see the three tasks are available:

$./gradlew :app:tasks

> Task :app:tasks

--
Tasks runnable from project ':app'
--

My app build tasks

build - Assembles and tests this project.
check - Runs checks (including tests).
run - Runs this project as a JVM application
tasksAll - Show additional tasks.

This is already useful if the standard lifecycle tasks are sufficient. Moving the groups around helps
clarify the tasks you expect to used in your build.

In many cases, there are more specific requirements that you want to address. One common
scenario is running quality checks without running tests. Currently, the :check task runs tests and
the code quality checks. Instead, we want to run code quality checks all the time, but not the
lengthy test.

To add a quality check lifecycle task, we introduce an additional lifecycle task called qualityCheck
and a plugin called spotbugs.

To add a lifecycle task, use tasks.register(). The only thing you need to provide is a name. Put this
task in our group and wire the actionable tasks that belong to this new lifecycle task using the
dependsOn() method:

https://github.com/spotbugs/spotbugs
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/DefaultTask.html#dependsOn-java.lang.Object…​-

app/build.gradle.kts

plugins {
 id("com.github.spotbugs") version "6.0.7" // spotbugs plugin
}

tasks.register("qualityCheck") { // qualityCheck task
 group = myBuildGroup // group
 description = "Runs checks (excluding tests)." // description
 dependsOn(tasks.classes, tasks.spotbugsMain) // dependencies
 dependsOn(tasks.testClasses, tasks.spotbugsTest) // dependencies
}

app/build.gradle

plugins {
 id 'com.github.spotbugs' version '6.0.7' // spotbugs plugin
}

tasks.register('qualityCheck') { // qualityCheck task
 group = myBuildGroup // group
 description = 'Runs checks (excluding tests).' // description
 dependsOn tasks.classes, tasks.spotbugsMain // dependencies
 dependsOn tasks.testClasses, tasks.spotbugsTest // dependencies
}

Note that you don’t need to list all the tasks that Gradle will execute. Just specify the targets you
want to collect here. Gradle will determine which other tasks it needs to call to reach these goals.

In the example, we add the classes task, a lifecycle task to compile all our production code, and the
spotbugsMain task, which checks our production code.

We also add a description that will show up in the task list that helps distinguish the two check
tasks better.

Now, if run './gradlew :app:tasks', we can see that our new qualityCheck lifecycle task is available:

$./gradlew :app:tasks

> Task :app:tasks

--
Tasks runnable from project ':app'
--

My app build tasks

build - Assembles and tests this project.
check - Runs checks (including tests).
qualityCheck - Runs checks (excluding tests).
run - Runs this project as a JVM application
tasksAll - Show additional tasks.

If we run it, we can see that it runs checkstyle but not the tests:

$./gradlew :app:qualityCheck

> Task :buildSrc:checkKotlinGradlePluginConfigurationErrors
> Task :buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
> Task :buildSrc:extractPrecompiledScriptPluginPlugins UP-TO-DATE
> Task :buildSrc:compilePluginsBlocks UP-TO-DATE
> Task :buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
> Task :buildSrc:generateScriptPluginAdapters UP-TO-DATE
> Task :buildSrc:compileKotlin UP-TO-DATE
> Task :buildSrc:compileJava NO-SOURCE
> Task :buildSrc:compileGroovy NO-SOURCE
> Task :buildSrc:pluginDescriptors UP-TO-DATE
> Task :buildSrc:processResources UP-TO-DATE
> Task :buildSrc:classes UP-TO-DATE
> Task :buildSrc:jar UP-TO-DATE
> Task :app:processResources NO-SOURCE
> Task :app:processTestResources NO-SOURCE
> Task :list:compileJava UP-TO-DATE
> Task :utilities:compileJava UP-TO-DATE
> Task :app:compileJava
> Task :app:classes
> Task :app:compileTestJava
> Task :app:testClasses
> Task :app:spotbugsTest
> Task :app:spotbugsMain
> Task :app:qualityCheck

BUILD SUCCESSFUL in 1s
16 actionable tasks: 5 executed, 11 up-to-date

So far, we have looked at tasks in individual subprojects, which is useful for local development
when you work on code in one subproject.

With this setup, developers only need to know that they can call Gradle with :subproject-
name:tasks to see which tasks are available and useful for them.

Global lifecycle tasks

Another place to invoke lifecycle tasks is within the root build; this is especially useful for
Continuous Integration (CI).

Gradle tasks play a crucial role in CI or CD systems, where activities like compiling all code, running
tests, or building and packaging the complete application are typical. To facilitate this, you can
include lifecycle tasks that span multiple subprojects.

NOTE

Gradle has been around for a long time, and you will frequently observe build files
in the root directory serving various purposes. In older Gradle versions, many tasks
were defined within the root Gradle build file, resulting in various issues.
Therefore, exercise caution when determining the content of this file.

One of the few elements that should be placed in the root build file is global lifecycle tasks.

Let’s continue using the Gradle init Java application multi-project as an example.

This time, we’re incorporating a build script in the root project. We’ll establish two groups for our
global lifecycle tasks: one for tasks relevant to local development, such as running all checks, and
another exclusively for our CI system.

Once again, we narrowed down the tasks listed to our specific groups:

build.gradle.kts

val globalBuildGroup = "My global build"
val ciBuildGroup = "My CI build"

tasks.named<TaskReportTask>("tasks") {
 displayGroups = listOf<String>(globalBuildGroup, ciBuildGroup)
}

build.gradle

def globalBuildGroup = "My global build"
def ciBuildGroup = "My CI build"

tasks.named(TaskReportTask, "tasks") {
 displayGroups = [globalBuildGroup, ciBuildGroup]
}

You could hide the CI tasks if you wanted to by updating displayGroups.

Currently, the root project exposes no tasks:

$./gradlew :tasks

> Task :tasks

--
Tasks runnable from root project 'gradle-project'
--

No tasks

NOTE In this file, we don’t apply a plugin!

Let’s add a qualityCheckApp task to execute all code quality checks in the app subproject. Similarly,
for CI purposes, we implement a checkAll task that runs all tests:

build.gradle.kts

tasks.register("qualityCheckApp") {
 group = globalBuildGroup
 description = "Runs checks on app (globally)"
 dependsOn(":app:qualityCheck")
}

tasks.register("checkAll") {
 group = ciBuildGroup
 description = "Runs checks for all projects (CI)"
 dependsOn(subprojects.map { ":${it.name}:check" })
 dependsOn(gradle.includedBuilds.map { it.task(":checkAll") })
}

build.gradle

tasks.register("qualityCheckApp") {
 group = globalBuildGroup
 description = "Runs checks on app (globally)"
 dependsOn(":app:qualityCheck")
}

tasks.register("checkAll") {
 group = ciBuildGroup
 description = "Runs checks for all projects (CI)"
 dependsOn subprojects.collect { ":${it.name}:check" }
 dependsOn gradle.includedBuilds.collect { it.task(":checkAll") }
}

So we can now ask Gradle to show us the tasks for the root project and, by default, it will only show
us the qualityCheckAll task (and optionally the checkAll task depending on the value of
displayGroups).

It should be clear what a user should run locally:

$./gradlew :tasks

> Task :tasks

--
Tasks runnable from root project 'gradle-project'
--

My CI build tasks

checkAll - Runs checks for all projects (CI)

My global build tasks

qualityCheckApp - Runs checks on app (globally)

If we run the :checkAll task, we see that it compiles all the code and runs the code quality checks
(including spotbug):

$./gradlew :checkAll

> Task :buildSrc:checkKotlinGradlePluginConfigurationErrors
> Task :buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
> Task :buildSrc:extractPrecompiledScriptPluginPlugins UP-TO-DATE
> Task :buildSrc:compilePluginsBlocks UP-TO-DATE
> Task :buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
> Task :buildSrc:generateScriptPluginAdapters UP-TO-DATE
> Task :buildSrc:compileKotlin UP-TO-DATE
> Task :buildSrc:compileJava NO-SOURCE
> Task :buildSrc:compileGroovy NO-SOURCE
> Task :buildSrc:pluginDescriptors UP-TO-DATE
> Task :buildSrc:processResources UP-TO-DATE
> Task :buildSrc:classes UP-TO-DATE
> Task :buildSrc:jar UP-TO-DATE
> Task :utilities:processResources NO-SOURCE
> Task :app:processResources NO-SOURCE
> Task :utilities:processTestResources NO-SOURCE
> Task :app:processTestResources NO-SOURCE
> Task :list:compileJava
> Task :list:processResources NO-SOURCE
> Task :list:classes
> Task :list:jar
> Task :utilities:compileJava

> Task :utilities:classes
> Task :utilities:jar
> Task :utilities:compileTestJava NO-SOURCE
> Task :utilities:testClasses UP-TO-DATE
> Task :utilities:test NO-SOURCE
> Task :utilities:check UP-TO-DATE
> Task :list:compileTestJava
> Task :list:processTestResources NO-SOURCE
> Task :list:testClasses
> Task :app:compileJava
> Task :app:classes
> Task :app:compileTestJava
> Task :app:testClasses
> Task :list:test
> Task :list:check
> Task :app:test
> Task :app:spotbugsTest
> Task :app:spotbugsMain
> Task :app:check
> Task :checkAll

BUILD SUCCESSFUL in 1s
21 actionable tasks: 12 executed, 9 up-to-date

Configuring Tasks Lazily
Knowing when and where a particular value is configured is difficult to track as a build grows in
complexity. Gradle provides several ways to manage this using lazy configuration.

Understanding Lazy properties

Gradle provides lazy properties, which delay calculating a property’s value until it’s actually
required.

Lazy properties provide three main benefits:

1. Deferred Value Resolution: Allows wiring Gradle models without needing to know when a
property’s value will be known. For example, you may want to set the input source files of a
task based on the source directories property of an extension, but the extension property value
isn’t known until the build script or some other plugin configures them.

2. Automatic Task Dependency Management: Connects output of one task to input of another,

automatically determining task dependencies. Property instances carry information about
which task, if any, produces their value. Build authors do not need to worry about keeping task
dependencies in sync with configuration changes.

3. Improved Build Performance: Avoids resource-intensive work during configuration,
impacting build performance positively. For example, when a configuration value comes from
parsing a file but is only used when functional tests are run, using a property instance to
capture this means that the file is parsed only when the functional tests are run (and not when
clean is run, for example).

Gradle represents lazy properties with two interfaces:

Provider

Represents a value that can only be queried and cannot be changed.

• Properties with these types are read-only.

• The method Provider.get() returns the current value of the property.

• A Provider can be created from another Provider using Provider.map(Transformer).

• Many other types extend Provider and can be used wherever a Provider is required.

Property

Represents a value that can be queried and changed.

• Properties with these types are configurable.

• Property extends the Provider interface.

• The method Property.set(T) specifies a value for the property, overwriting whatever value
may have been present.

• The method Property.set(Provider) specifies a Provider for the value for the property,
overwriting whatever value may have been present. This allows you to wire together
Provider and Property instances before the values are configured.

• A Property can be created by the factory method ObjectFactory.property(Class).

Lazy properties are intended to be passed around and only queried when required. This typically
happens during the execution phase.

The following demonstrates a task with a configurable greeting property and a read-only message
property:

build.gradle.kts

abstract class Greeting : DefaultTask() { ①
 @get:Input
 abstract val greeting: Property<String> ②

 @Internal
 val message: Provider<String> = greeting.map { it + " from Gradle" } ③

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#get--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html#set-T-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

 @TaskAction
 fun printMessage() {
 logger.quiet(message.get())
 }
}

tasks.register<Greeting>("greeting") {
 greeting.set("Hi") ④
 greeting = "Hi" ⑤
}

build.gradle

abstract class Greeting extends DefaultTask { ①
 @Input
 abstract Property<String> getGreeting() ②

 @Internal
 final Provider<String> message = greeting.map { it + ' from Gradle' } ③

 @TaskAction
 void printMessage() {
 logger.quiet(message.get())
 }
}

tasks.register("greeting", Greeting) {
 greeting.set('Hi') ④
 greeting = 'Hi' ⑤
}

① A task that displays a greeting

② A configurable greeting

③ Read-only property calculated from the greeting

④ Configure the greeting

⑤ Alternative notation to calling Property.set()

$ gradle greeting

> Task :greeting
Hi from Gradle

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

The Greeting task has a property of type Property<String> to represent the configurable greeting
and a property of type Provider<String> to represent the calculated, read-only, message. The
message Provider is created from the greeting Property using the map() method; its value is kept up-
to-date as the value of the greeting property changes.

Creating a Property or Provider instance

Neither Provider nor its subtypes, such as Property, are intended to be implemented by a build
script or plugin. Gradle provides factory methods to create instances of these types instead.

In the previous example, two factory methods were presented:

• ObjectFactory.property(Class) create a new Property instance. An instance of the ObjectFactory
can be referenced from Project.getObjects() or by injecting ObjectFactory through a constructor
or method.

• Provider.map(Transformer) creates a new Provider from an existing Provider or Property
instance.

See the Quick Reference for all of the types and factories available.

A Provider can also be created by the factory method ProviderFactory.provider(Callable).

NOTE

There are no specific methods to create a provider using a groovy.lang.Closure.

When writing a plugin or build script with Groovy, you can use the map(Transformer)
method with a closure, and Groovy will convert the closure to a Transformer.

Similarly, when writing a plugin or build script with Kotlin, the Kotlin compiler will
convert a Kotlin function into a Transformer.

Connecting properties together

An important feature of lazy properties is that they can be connected together so that changes to
one property are automatically reflected in other properties.

Here is an example where the property of a task is connected to a property of a project extension:

build.gradle.kts

// A project extension
interface MessageExtension {
 // A configurable greeting
 abstract val greeting: Property<String>
}

// A task that displays a greeting

https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#getObjects--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:provider(java.util.concurrent.Callable)

abstract class Greeting : DefaultTask() {
 // Configurable by the user
 @get:Input
 abstract val greeting: Property<String>

 // Read-only property calculated from the greeting
 @Internal
 val message: Provider<String> = greeting.map { it + " from Gradle" }

 @TaskAction
 fun printMessage() {
 logger.quiet(message.get())
 }
}

// Create the project extension
val messages = project.extensions.create<MessageExtension>("messages")

// Create the greeting task
tasks.register<Greeting>("greeting") {
 // Attach the greeting from the project extension
 // Note that the values of the project extension have not been configured
yet
 greeting = messages.greeting
}

messages.apply {
 // Configure the greeting on the extension
 // Note that there is no need to reconfigure the task's `greeting`
property. This is automatically updated as the extension property changes
 greeting = "Hi"
}

build.gradle

// A project extension
interface MessageExtension {
 // A configurable greeting
 Property<String> getGreeting()
}

// A task that displays a greeting
abstract class Greeting extends DefaultTask {
 // Configurable by the user
 @Input
 abstract Property<String> getGreeting()

 // Read-only property calculated from the greeting
 @Internal

 final Provider<String> message = greeting.map { it + ' from Gradle' }

 @TaskAction
 void printMessage() {
 logger.quiet(message.get())
 }
}

// Create the project extension
project.extensions.create('messages', MessageExtension)

// Create the greeting task
tasks.register("greeting", Greeting) {
 // Attach the greeting from the project extension
 // Note that the values of the project extension have not been configured
yet
 greeting = messages.greeting
}

messages {
 // Configure the greeting on the extension
 // Note that there is no need to reconfigure the task's `greeting`
property. This is automatically updated as the extension property changes
 greeting = 'Hi'
}

$ gradle greeting

> Task :greeting
Hi from Gradle

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

This example calls the Property.set(Provider) method to attach a Provider to a Property to supply the
value of the property. In this case, the Provider happens to be a Property as well, but you can
connect any Provider implementation, for example one created using Provider.map()

Working with files

In Working with Files, we introduced four collection types for File-like objects:

Read-only Type Configurable Type

FileCollection ConfigurableFileCollection

FileTree ConfigurableFileTree

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFileTree.html

All of these types are also considered lazy types.

There are more strongly typed models used to represent elements of the file system: Directory and
RegularFile. These types shouldn’t be confused with the standard Java File type as they are used to
tell Gradle that you expect more specific values such as a directory or a non-directory, regular file.

Gradle provides two specialized Property subtypes for dealing with values of these types:
RegularFileProperty and DirectoryProperty. ObjectFactory has methods to create these:
ObjectFactory.fileProperty() and ObjectFactory.directoryProperty().

A DirectoryProperty can also be used to create a lazily evaluated Provider for a Directory and
RegularFile via DirectoryProperty.dir(String) and DirectoryProperty.file(String) respectively. These
methods create providers whose values are calculated relative to the location for the
DirectoryProperty they were created from. The values returned from these providers will reflect
changes to the DirectoryProperty.

build.gradle.kts

// A task that generates a source file and writes the result to an output
directory
abstract class GenerateSource : DefaultTask() {
 // The configuration file to use to generate the source file
 @get:InputFile
 abstract val configFile: RegularFileProperty

 // The directory to write source files to
 @get:OutputDirectory
 abstract val outputDir: DirectoryProperty

 @TaskAction
 fun compile() {
 val inFile = configFile.get().asFile
 logger.quiet("configuration file = $inFile")
 val dir = outputDir.get().asFile
 logger.quiet("output dir = $dir")
 val className = inFile.readText().trim()
 val srcFile = File(dir, "${className}.java")
 srcFile.writeText("public class ${className} { }")
 }
}

// Create the source generation task
tasks.register<GenerateSource>("generate") {
 // Configure the locations, relative to the project and build directories
 configFile = layout.projectDirectory.file("src/config.txt")
 outputDir = layout.buildDirectory.dir("generated-source")
}

// Change the build directory

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/Directory.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/RegularFile.html
https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#fileProperty--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#directoryProperty--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-

// Don't need to reconfigure the task properties. These are automatically
updated as the build directory changes
layout.buildDirectory = layout.projectDirectory.dir("output")

build.gradle

// A task that generates a source file and writes the result to an output
directory
abstract class GenerateSource extends DefaultTask {
 // The configuration file to use to generate the source file
 @InputFile
 abstract RegularFileProperty getConfigFile()

 // The directory to write source files to
 @OutputDirectory
 abstract DirectoryProperty getOutputDir()

 @TaskAction
 def compile() {
 def inFile = configFile.get().asFile
 logger.quiet("configuration file = $inFile")
 def dir = outputDir.get().asFile
 logger.quiet("output dir = $dir")
 def className = inFile.text.trim()
 def srcFile = new File(dir, "${className}.java")
 srcFile.text = "public class ${className} { ... }"
 }
}

// Create the source generation task
tasks.register('generate', GenerateSource) {
 // Configure the locations, relative to the project and build directories
 configFile = layout.projectDirectory.file('src/config.txt')
 outputDir = layout.buildDirectory.dir('generated-source')
}

// Change the build directory
// Don't need to reconfigure the task properties. These are automatically
updated as the build directory changes
layout.buildDirectory = layout.projectDirectory.dir('output')

$ gradle generate

> Task :generate
configuration file = /home/user/gradle/samples/src/config.txt
output dir = /home/user/gradle/samples/output/generated-source

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

$ gradle generate

> Task :generate
configuration file = /home/user/gradle/samples/kotlin/src/config.txt
output dir = /home/user/gradle/samples/kotlin/output/generated-source

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

This example creates providers that represent locations in the project and build directories through
Project.getLayout() with ProjectLayout.getBuildDirectory() and ProjectLayout.getProjectDirectory().

To close the loop, note that a DirectoryProperty, or a simple Directory, can be turned into a FileTree
that allows the files and directories contained in the directory to be queried with
DirectoryProperty.getAsFileTree() or Directory.getAsFileTree(). From a DirectoryProperty or a
Directory, you can create FileCollection instances containing a set of the files contained in the
directory with DirectoryProperty.files(Object...) or Directory.files(Object...).

Working with task inputs and outputs

Many builds have several tasks connected together, where one task consumes the outputs of
another task as an input.

To make this work, we need to configure each task to know where to look for its inputs and where
to place its outputs. Ensure that the producing and consuming tasks are configured with the same
location and attach task dependencies between the tasks. This can be cumbersome and brittle if any
of these values are configurable by a user or configured by multiple plugins, as task properties need
to be configured in the correct order and locations, and task dependencies kept in sync as values
change.

The Property API makes this easier by keeping track of the value of a property and the task that
produces the value.

As an example, consider the following plugin with a producer and consumer task which are wired
together:

build.gradle.kts

abstract class Producer : DefaultTask() {
 @get:OutputFile
 abstract val outputFile: RegularFileProperty

 @TaskAction

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#getLayout--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html#getAsFileTree--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/Directory.html#getAsFileTree--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html#files-java.lang.Object...-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/Directory.html#files-java.lang.Object...-

 fun produce() {
 val message = "Hello, World!"
 val output = outputFile.get().asFile
 output.writeText(message)
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer : DefaultTask() {
 @get:InputFile
 abstract val inputFile: RegularFileProperty

 @TaskAction
 fun consume() {
 val input = inputFile.get().asFile
 val message = input.readText()
 logger.quiet("Read '${message}' from ${input}")
 }
}

val producer = tasks.register<Producer>("producer")
val consumer = tasks.register<Consumer>("consumer")

consumer {
 // Connect the producer task output to the consumer task input
 // Don't need to add a task dependency to the consumer task. This is
automatically added
 inputFile = producer.flatMap { it.outputFile }
}

producer {
 // Set values for the producer lazily
 // Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
 outputFile = layout.buildDirectory.file("file.txt")
}

// Change the build directory.
// Don't need to update producer.outputFile and consumer.inputFile. These are
automatically updated as the build directory changes
layout.buildDirectory = layout.projectDirectory.dir("output")

build.gradle

abstract class Producer extends DefaultTask {
 @OutputFile
 abstract RegularFileProperty getOutputFile()

 @TaskAction

 void produce() {
 String message = 'Hello, World!'
 def output = outputFile.get().asFile
 output.text = message
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer extends DefaultTask {
 @InputFile
 abstract RegularFileProperty getInputFile()

 @TaskAction
 void consume() {
 def input = inputFile.get().asFile
 def message = input.text
 logger.quiet("Read '${message}' from ${input}")
 }
}

def producer = tasks.register("producer", Producer)
def consumer = tasks.register("consumer", Consumer)

consumer.configure {
 // Connect the producer task output to the consumer task input
 // Don't need to add a task dependency to the consumer task. This is
automatically added
 inputFile = producer.flatMap { it.outputFile }
}

producer.configure {
 // Set values for the producer lazily
 // Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
 outputFile = layout.buildDirectory.file('file.txt')
}

// Change the build directory.
// Don't need to update producer.outputFile and consumer.inputFile. These are
automatically updated as the build directory changes
layout.buildDirectory = layout.projectDirectory.dir('output')

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/output/file.txt

> Task :consumer

Read 'Hello, World!' from /home/user/gradle/samples/output/file.txt

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/file.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/file.txt

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

In the example above, the task outputs and inputs are connected before any location is defined. The
setters can be called at any time before the task is executed, and the change will automatically
affect all related input and output properties.

Another important thing to note in this example is the absence of any explicit task dependency.
Task outputs represented using Providers keep track of which task produces their value, and using
them as task inputs will implicitly add the correct task dependencies.

Implicit task dependencies also work for input properties that are not files:

build.gradle.kts

abstract class Producer : DefaultTask() {
 @get:OutputFile
 abstract val outputFile: RegularFileProperty

 @TaskAction
 fun produce() {
 val message = "Hello, World!"
 val output = outputFile.get().asFile
 output.writeText(message)
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer : DefaultTask() {
 @get:Input
 abstract val message: Property<String>

 @TaskAction
 fun consume() {
 logger.quiet(message.get())

 }
}

val producer = tasks.register<Producer>("producer") {
 // Set values for the producer lazily
 // Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
 outputFile = layout.buildDirectory.file("file.txt")
}
tasks.register<Consumer>("consumer") {
 // Connect the producer task output to the consumer task input
 // Don't need to add a task dependency to the consumer task. This is
automatically added
 message = producer.flatMap { it.outputFile }.map { it.asFile.readText() }
}

build.gradle

abstract class Producer extends DefaultTask {
 @OutputFile
 abstract RegularFileProperty getOutputFile()

 @TaskAction
 void produce() {
 String message = 'Hello, World!'
 def output = outputFile.get().asFile
 output.text = message
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer extends DefaultTask {
 @Input
 abstract Property<String> getMessage()

 @TaskAction
 void consume() {
 logger.quiet(message.get())
 }
}

def producer = tasks.register('producer', Producer) {
 // Set values for the producer lazily
 // Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
 outputFile = layout.buildDirectory.file('file.txt')
}
tasks.register('consumer', Consumer) {
 // Connect the producer task output to the consumer task input

 // Don't need to add a task dependency to the consumer task. This is
automatically added
 message = producer.flatMap { it.outputFile }.map { it.asFile.text }
}

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/build/file.txt

> Task :consumer
Hello, World!

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/build/file.txt

> Task :consumer
Hello, World!

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Working with collections

Gradle provides two lazy property types to help configure Collection properties.

These work exactly like any other Provider and, just like file providers, they have additional
modeling around them:

• For List values the interface is called ListProperty.
You can create a new ListProperty using ObjectFactory.listProperty(Class) and specifying the
element type.

• For Set values the interface is called SetProperty.
You can create a new SetProperty using ObjectFactory.setProperty(Class) and specifying the
element type.

This type of property allows you to overwrite the entire collection value with
HasMultipleValues.set(Iterable) and HasMultipleValues.set(Provider) or add new elements through
the various add methods:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/ListProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/SetProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-

• HasMultipleValues.add(T): Add a single element to the collection

• HasMultipleValues.add(Provider): Add a lazily calculated element to the collection

• HasMultipleValues.addAll(Provider): Add a lazily calculated collection of elements to the list

Just like every Provider, the collection is calculated when Provider.get() is called. The following
example shows the ListProperty in action:

build.gradle.kts

abstract class Producer : DefaultTask() {
 @get:OutputFile
 abstract val outputFile: RegularFileProperty

 @TaskAction
 fun produce() {
 val message = "Hello, World!"
 val output = outputFile.get().asFile
 output.writeText(message)
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer : DefaultTask() {
 @get:InputFiles
 abstract val inputFiles: ListProperty<RegularFile>

 @TaskAction
 fun consume() {
 inputFiles.get().forEach { inputFile ->
 val input = inputFile.asFile
 val message = input.readText()
 logger.quiet("Read '${message}' from ${input}")
 }
 }
}

val producerOne = tasks.register<Producer>("producerOne")
val producerTwo = tasks.register<Producer>("producerTwo")
tasks.register<Consumer>("consumer") {
 // Connect the producer task outputs to the consumer task input
 // Don't need to add task dependencies to the consumer task. These are
automatically added
 inputFiles.add(producerOne.get().outputFile)
 inputFiles.add(producerTwo.get().outputFile)
}

// Set values for the producer tasks lazily
// Don't need to update the consumer.inputFiles property. This is
automatically updated as producer.outputFile changes

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-T-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/HasMultipleValues.html#addAll-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#get--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/ListProperty.html

producerOne { outputFile = layout.buildDirectory.file("one.txt") }
producerTwo { outputFile = layout.buildDirectory.file("two.txt") }

// Change the build directory.
// Don't need to update the task properties. These are automatically updated
as the build directory changes
layout.buildDirectory = layout.projectDirectory.dir("output")

build.gradle

abstract class Producer extends DefaultTask {
 @OutputFile
 abstract RegularFileProperty getOutputFile()

 @TaskAction
 void produce() {
 String message = 'Hello, World!'
 def output = outputFile.get().asFile
 output.text = message
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer extends DefaultTask {
 @InputFiles
 abstract ListProperty<RegularFile> getInputFiles()

 @TaskAction
 void consume() {
 inputFiles.get().each { inputFile ->
 def input = inputFile.asFile
 def message = input.text
 logger.quiet("Read '${message}' from ${input}")
 }
 }
}

def producerOne = tasks.register('producerOne', Producer)
def producerTwo = tasks.register('producerTwo', Producer)
tasks.register('consumer', Consumer) {
 // Connect the producer task outputs to the consumer task input
 // Don't need to add task dependencies to the consumer task. These are
automatically added
 inputFiles.add(producerOne.get().outputFile)
 inputFiles.add(producerTwo.get().outputFile)
}

// Set values for the producer tasks lazily
// Don't need to update the consumer.inputFiles property. This is

automatically updated as producer.outputFile changes
producerOne.configure { outputFile = layout.buildDirectory.file('one.txt') }
producerTwo.configure { outputFile = layout.buildDirectory.file('two.txt') }

// Change the build directory.
// Don't need to update the task properties. These are automatically updated
as the build directory changes
layout.buildDirectory = layout.projectDirectory.dir('output')

$ gradle consumer

> Task :producerOne
Wrote 'Hello, World!' to /home/user/gradle/samples/output/one.txt

> Task :producerTwo
Wrote 'Hello, World!' to /home/user/gradle/samples/output/two.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/output/one.txt
Read 'Hello, World!' from /home/user/gradle/samples/output/two.txt

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 executed

$ gradle consumer

> Task :producerOne
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/one.txt

> Task :producerTwo
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/two.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/one.txt
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/two.txt

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 executed

Working with maps

Gradle provides a lazy MapProperty type to allow Map values to be configured. You can create a
MapProperty instance using ObjectFactory.mapProperty(Class, Class).

Similar to other property types, a MapProperty has a set() method that you can use to specify the
value for the property. Some additional methods allow entries with lazy values to be added to the

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/MapProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#mapProperty-java.lang.Class-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/MapProperty.html#set-java.util.Map-

map.

build.gradle.kts

abstract class Generator: DefaultTask() {
 @get:Input
 abstract val properties: MapProperty<String, Int>

 @TaskAction
 fun generate() {
 properties.get().forEach { entry ->
 logger.quiet("${entry.key} = ${entry.value}")
 }
 }
}

// Some values to be configured later
var b = 0
var c = 0

tasks.register<Generator>("generate") {
 properties.put("a", 1)
 // Values have not been configured yet
 properties.put("b", providers.provider { b })
 properties.putAll(providers.provider { mapOf("c" to c, "d" to c + 1) })
}

// Configure the values. There is no need to reconfigure the task
b = 2
c = 3

build.gradle

abstract class Generator extends DefaultTask {
 @Input
 abstract MapProperty<String, Integer> getProperties()

 @TaskAction
 void generate() {
 properties.get().each { key, value ->
 logger.quiet("${key} = ${value}")
 }
 }
}

// Some values to be configured later
def b = 0

def c = 0

tasks.register('generate', Generator) {
 properties.put("a", 1)
 // Values have not been configured yet
 properties.put("b", providers.provider { b })
 properties.putAll(providers.provider { [c: c, d: c + 1] })
}

// Configure the values. There is no need to reconfigure the task
b = 2
c = 3

$ gradle generate

> Task :generate
a = 1
b = 2
c = 3
d = 4

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Applying a convention to a property

Often, you want to apply some convention, or default value to a property to be used if no value has
been configured. You can use the convention() method for this. This method accepts either a value
or a Provider, and this will be used as the value until some other value is configured.

build.gradle.kts

tasks.register("show") {
 val property = objects.property(String::class)

 // Set a convention
 property.convention("convention 1")

 println("value = " + property.get())

 // Can replace the convention
 property.convention("convention 2")
 println("value = " + property.get())

 property.set("explicit value")

 // Once a value is set, the convention is ignored
 property.convention("ignored convention")

 doLast {
 println("value = " + property.get())
 }
}

build.gradle

tasks.register("show") {
 def property = objects.property(String)

 // Set a convention
 property.convention("convention 1")

 println("value = " + property.get())

 // Can replace the convention
 property.convention("convention 2")
 println("value = " + property.get())

 property.set("explicit value")

 // Once a value is set, the convention is ignored
 property.convention("ignored convention")

 doLast {
 println("value = " + property.get())
 }
}

$ gradle show
value = convention 1
value = convention 2

> Task :show
value = explicit value

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Where to apply conventions from?

There are several appropriate locations for setting a convention on a property at configuration time

(i.e., before execution).

build.gradle.kts

// setting convention when registering a task from plugin
class GreetingPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 project.getTasks().register<GreetingTask>("hello") {
 greeter.convention("Greeter")
 }
 }
}

apply<GreetingPlugin>()

tasks.withType<GreetingTask>().configureEach {
 // setting convention from build script
 guest.convention("Guest")
}

abstract class GreetingTask : DefaultTask() {
 // setting convention from constructor
 @get:Input
 abstract val guest: Property<String>

 init {
 guest.convention("person2")
 }

 // setting convention from declaration
 @Input
 val greeter = project.objects.property<String>().convention("person1")

 @TaskAction
 fun greet() {
 println("hello, ${guest.get()}, from ${greeter.get()}")
 }
}

build.gradle

// setting convention when registering a task from plugin
class GreetingPlugin implements Plugin<Project> {
 void apply(Project project) {
 project.getTasks().register("hello", GreetingTask) {
 greeter.convention("Greeter")
 }

 }
}

apply plugin: GreetingPlugin

tasks.withType(GreetingTask).configureEach {
 // setting convention from build script
 guest.convention("Guest")
}

abstract class GreetingTask extends DefaultTask {
 // setting convention from constructor
 @Input
 abstract Property<String> getGuest()

 GreetingTask() {
 guest.convention("person2")
 }

 // setting convention from declaration
 @Input
 final Property<String> greeter = project.objects.property(String)
.convention("person1")

 @TaskAction
 void greet() {
 println("hello, ${guest.get()}, from ${greeter.get()}")
 }
}

From a plugin’s apply() method

Plugin authors may configure a convention on a lazy property from a plugin’s apply() method,
while performing preliminary configuration of the task or extension defining the property. This
works well for regular plugins (meant to be distributed and used in the wild), and internal
convention plugins (which often configure properties defined by third party plugins in a uniform
way for the entire build).

build.gradle.kts

// setting convention when registering a task from plugin
class GreetingPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 project.getTasks().register<GreetingTask>("hello") {
 greeter.convention("Greeter")
 }
 }

}

build.gradle

// setting convention when registering a task from plugin
class GreetingPlugin implements Plugin<Project> {
 void apply(Project project) {
 project.getTasks().register("hello", GreetingTask) {
 greeter.convention("Greeter")
 }
 }
}

From a build script

Build engineers may configure a convention on a lazy property from shared build logic that is
configuring tasks (for instance, from third-party plugins) in a standard way for the entire build.

build.gradle.kts

apply<GreetingPlugin>()

tasks.withType<GreetingTask>().configureEach {
 // setting convention from build script
 guest.convention("Guest")
}

build.gradle

tasks.withType(GreetingTask).configureEach {
 // setting convention from build script
 guest.convention("Guest")
}

Note that for project-specific values, instead of conventions, you should prefer setting explicit
values (using Property.set(…) or ConfigurableFileCollection.setFrom(…), for instance), as
conventions are only meant to define defaults.

From the task initialization

A task author may configure a convention on a lazy property from the task constructor or (if in
Kotlin) initializer block. This approach works for properties with trivial defaults, but it is not
appropriate if additional context (external to the task implementation) is required in order to set a
suitable default.

build.gradle.kts

// setting convention from constructor
@get:Input
abstract val guest: Property<String>

init {
 guest.convention("person2")
}

build.gradle

// setting convention from constructor
@Input
abstract Property<String> getGuest()

GreetingTask() {
 guest.convention("person2")
}

Next to the property declaration

You may configure a convention on a lazy property next to the place where the property is
declared. Note this option is not available for managed properties, and has the same caveats as
configuring a convention from the task constructor.

build.gradle.kts

// setting convention from declaration
@Input
val greeter = project.objects.property<String>().convention("person1")

build.gradle

// setting convention from declaration
@Input
final Property<String> greeter = project.objects.property(String).convention
("person1")

Making a property unmodifiable

Most properties of a task or project are intended to be configured by plugins or build scripts so that
they can use specific values for that build.

For example, a property that specifies the output directory for a compilation task may start with a
value specified by a plugin. Then a build script might change the value to some custom location,
then this value is used by the task when it runs. However, once the task starts to run, we want to
prevent further property changes. This way we avoid errors that result from different consumers,
such as the task action, Gradle’s up-to-date checks, build caching, or other tasks, using different
values for the property.

Lazy properties provide several methods that you can use to disallow changes to their value once
the value has been configured. The finalizeValue() method calculates the final value for the
property and prevents further changes to the property.

libVersioning.version.finalizeValue()

When the property’s value comes from a Provider, the provider is queried for its current value, and
the result becomes the final value for the property. This final value replaces the provider and the
property no longer tracks the value of the provider. Calling this method also makes a property
instance unmodifiable and any further attempts to change the value of the property will fail. Gradle
automatically makes the properties of a task final when the task starts execution.

The finalizeValueOnRead() method is similar, except that the property’s final value is not calculated
until the value of the property is queried.

modifiedFiles.finalizeValueOnRead()

In other words, this method calculates the final value lazily as required, whereas finalizeValue()
calculates the final value eagerly. This method can be used when the value may be expensive to
calculate or may not have been configured yet. You also want to ensure that all consumers of the
property see the same value when they query the value.

Using the Provider API

Guidelines to be successful with the Provider API:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html#finalizeValue--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/HasConfigurableValue.html#finalizeValueOnRead--

1. The Property and Provider types have all of the overloads you need to query or configure a
value. For this reason, you should follow the following guidelines:

◦ For configurable properties, expose the Property directly through a single getter.

◦ For non-configurable properties, expose an Provider directly through a single getter.

2. Avoid simplifying calls like obj.getProperty().get() and obj.getProperty().set(T) in your code
by introducing additional getters and setters.

3. When migrating your plugin to use providers, follow these guidelines:

◦ If it’s a new property, expose it as a Property or Provider using a single getter.

◦ If it’s incubating, change it to use a Property or Provider using a single getter.

◦ If it’s a stable property, add a new Property or Provider and deprecate the old one. You
should wire the old getter/setters into the new property as appropriate.

Provider Files API Reference

Use these types for read-only values:

Provider<RegularFile>

File on disk

Factories

• Provider.map(Transformer).

• Provider.flatMap(Transformer).

• DirectoryProperty.file(String)

Provider<Directory>

Directory on disk

Factories

• Provider.map(Transformer).

• Provider.flatMap(Transformer).

• DirectoryProperty.dir(String)

FileCollection

Unstructured collection of files

Factories

• Project.files(Object[])

• ProjectLayout.files(Object...)

• DirectoryProperty.files(Object...)

FileTree

Hierarchy of files

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/RegularFile.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/Directory.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html#files-java.lang.Object...-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html

Factories

• Project.fileTree(Object) will produce a ConfigurableFileTree, or you can use
Project.zipTree(Object) and Project.tarTree(Object)

• DirectoryProperty.getAsFileTree()

Property Files API Reference

Use these types for mutable values:

RegularFileProperty

File on disk

Factories

• ObjectFactory.fileProperty()

DirectoryProperty

Directory on disk

Factories

• ObjectFactory.directoryProperty()

ConfigurableFileCollection

Unstructured collection of files

Factories

• ObjectFactory.fileCollection()

ConfigurableFileTree

Hierarchy of files

Factories

• ObjectFactory.fileTree()

SourceDirectorySet

Hierarchy of source directories

Factories

• ObjectFactory.sourceDirectorySet(String, String)

Lazy Collections API Reference

Use these types for mutable values:

ListProperty<T>

a property whose value is List<T>

Factories

• ObjectFactory.listProperty(Class)

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#zipTree-java.lang.Object-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#tarTree-java.lang.Object-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html#getAsFileTree--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#fileProperty--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#directoryProperty--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#fileCollection--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#fileTree--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/SourceDirectorySet.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#sourceDirectorySet-java.lang.String-java.lang.String-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/ListProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-

SetProperty<T>

a property whose value is Set<T>

Factories

• ObjectFactory.setProperty(Class)

Lazy Objects API Reference

Use these types for read only values:

Provider<T>

a property whose value is an instance of T

Factories

• Provider.map(Transformer).

• Provider.flatMap(Transformer).

• ProviderFactory.provider(Callable). Always prefer one of the other factory methods over
this method.

Use these types for mutable values:

Property<T>

a property whose value is an instance of T

Factories

• ObjectFactory.property(Class)

Developing Parallel Tasks
Gradle provides an API that can split tasks into sections that can be executed in parallel.

This allows Gradle to fully utilize the resources available and complete builds faster.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/SetProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:provider(java.util.concurrent.Callable)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

The Worker API

The Worker API provides the ability to break up the execution of a task action into discrete units of
work and then execute that work concurrently and asynchronously.

Worker API example

The best way to understand how to use the API is to go through the process of converting an
existing custom task to use the Worker API:

1. You’ll start by creating a custom task class that generates MD5 hashes for a configurable set of
files.

2. Then, you’ll convert this custom task to use the Worker API.

3. Then, we’ll explore running the task with different levels of isolation.

In the process, you’ll learn about the basics of the Worker API and the capabilities it provides.

Step 1. Create a custom task class

First, create a custom task that generates MD5 hashes of a configurable set of files.

In a new directory, create a buildSrc/build.gradle(.kts) file:

buildSrc/build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 implementation("commons-io:commons-io:2.5")
 implementation("commons-codec:commons-codec:1.9") ①
}

buildSrc/build.gradle

repositories {
 mavenCentral()
}

dependencies {
 implementation 'commons-io:commons-io:2.5'
 implementation 'commons-codec:commons-codec:1.9' ①
}

① Your custom task class will use Apache Commons Codec to generate MD5 hashes.

Next, create a custom task class in your buildSrc/src/main/java directory. You should name this
class CreateMD5:

buildSrc/src/main/java/CreateMD5.java

import org.apache.commons.codec.digest.DigestUtils;
import org.apache.commons.io.FileUtils;
import org.gradle.api.file.DirectoryProperty;
import org.gradle.api.file.RegularFile;
import org.gradle.api.provider.Provider;
import org.gradle.api.tasks.OutputDirectory;
import org.gradle.api.tasks.SourceTask;
import org.gradle.api.tasks.TaskAction;
import org.gradle.workers.WorkerExecutor;

import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;

abstract public class CreateMD5 extends SourceTask { ①

 @OutputDirectory
 abstract public DirectoryProperty getDestinationDirectory(); ②

 @TaskAction
 public void createHashes() {
 for (File sourceFile : getSource().getFiles()) { ③
 try {
 InputStream stream = new FileInputStream(sourceFile);
 System.out.println("Generating MD5 for " + sourceFile.getName() + "
...");
 // Artificially make this task slower.
 Thread.sleep(3000); ④
 Provider<RegularFile> md5File = getDestinationDirectory().file
(sourceFile.getName() + ".md5"); ⑤
 FileUtils.writeStringToFile(md5File.get().getAsFile(), DigestUtils
.md5Hex(stream), (String) null);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
 }
}

① SourceTask is a convenience type for tasks that operate on a set of source files.

② The task output will go into a configured directory.

③ The task iterates over all the files defined as "source files" and creates an MD5 hash of each.

https://commons.apache.org/proper/commons-codec/
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/SourceTask.html

④ Insert an artificial sleep to simulate hashing a large file (the sample files won’t be that large).

⑤ The MD5 hash of each file is written to the output directory into a file of the same name with an
"md5" extension.

Next, create a build.gradle(.kts) that registers your new CreateMD5 task:

build.gradle.kts

plugins { id("base") } ①

tasks.register<CreateMD5>("md5") {
 destinationDirectory = project.layout.buildDirectory.dir("md5") ②
 source(project.layout.projectDirectory.file("src")) ③
}

build.gradle

plugins { id 'base' } ①

tasks.register("md5", CreateMD5) {
 destinationDirectory = project.layout.buildDirectory.dir("md5") ②
 source(project.layout.projectDirectory.file('src')) ③
}

① Apply the base plugin so that you’ll have a clean task to use to remove the output.

② MD5 hash files will be written to build/md5.

③ This task will generate MD5 hash files for every file in the src directory.

You will need some source to generate MD5 hashes from. Create three files in the src directory:

src/einstein.txt

Intellectual growth should commence at birth and cease only at death.

src/feynman.txt

I was born not knowing and have had only a little time to change that here and there.

src/hawking.txt

Intelligence is the ability to adapt to change.

At this point, you can test your task by running it ./gradlew md5:

$ gradle md5

The output should look similar to:

> Task :md5
Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 9s
3 actionable tasks: 3 executed

In the build/md5 directory, you should now see corresponding files with an md5 extension containing
MD5 hashes of the files from the src directory. Notice that the task takes at least 9 seconds to run
because it hashes each file one at a time (i.e., three files at ~3 seconds apiece).

Step 2. Convert to the Worker API

Although this task processes each file in sequence, the processing of each file is independent of any
other file. This work can be done in parallel and take advantage of multiple processors. This is
where the Worker API can help.

To use the Worker API, you need to define an interface that represents the parameters of each unit
of work and extends org.gradle.workers.WorkParameters.

For the generation of MD5 hash files, the unit of work will require two parameters:

1. the file to be hashed and,

2. the file to write the hash to.

There is no need to create a concrete implementation because Gradle will generate one for us at
runtime.

buildSrc/src/main/java/MD5WorkParameters.java

import org.gradle.api.file.RegularFileProperty;
import org.gradle.workers.WorkParameters;

public interface MD5WorkParameters extends WorkParameters {
 RegularFileProperty getSourceFile(); ①
 RegularFileProperty getMD5File();
}

① Use Property objects to represent the source and MD5 hash files.

Then, you need to refactor the part of your custom task that does the work for each individual file

into a separate class. This class is your "unit of work" implementation, and it should be an abstract
class that extends org.gradle.workers.WorkAction:

buildSrc/src/main/java/GenerateMD5.java

import org.apache.commons.codec.digest.DigestUtils;
import org.apache.commons.io.FileUtils;
import org.gradle.workers.WorkAction;

import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;

public abstract class GenerateMD5 implements WorkAction<MD5WorkParameters> { ①
 @Override
 public void execute() {
 try {
 File sourceFile = getParameters().getSourceFile().getAsFile().get();
 File md5File = getParameters().getMD5File().getAsFile().get();
 InputStream stream = new FileInputStream(sourceFile);
 System.out.println("Generating MD5 for " + sourceFile.getName() + "...");
 // Artificially make this task slower.
 Thread.sleep(3000);
 FileUtils.writeStringToFile(md5File, DigestUtils.md5Hex(stream), (String)
null);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
}

① Do not implement the getParameters() method - Gradle will inject this at runtime.

Now, change your custom task class to submit work to the WorkerExecutor instead of doing the
work itself.

buildSrc/src/main/java/CreateMD5.java

import org.gradle.api.Action;
import org.gradle.api.file.RegularFile;
import org.gradle.api.provider.Provider;
import org.gradle.api.tasks.*;
import org.gradle.workers.*;
import org.gradle.api.file.DirectoryProperty;

import javax.inject.Inject;
import java.io.File;

abstract public class CreateMD5 extends SourceTask {

 @OutputDirectory

https://docs.gradle.org/8.12/javadoc/org/gradle/workers/WorkerExecutor.html

 abstract public DirectoryProperty getDestinationDirectory();

 @Inject
 abstract public WorkerExecutor getWorkerExecutor(); ①

 @TaskAction
 public void createHashes() {
 WorkQueue workQueue = getWorkerExecutor().noIsolation(); ②

 for (File sourceFile : getSource().getFiles()) {
 Provider<RegularFile> md5File = getDestinationDirectory().file(sourceFile
.getName() + ".md5");
 workQueue.submit(GenerateMD5.class, parameters -> { ③
 parameters.getSourceFile().set(sourceFile);
 parameters.getMD5File().set(md5File);
 });
 }
 }
}

① The WorkerExecutor service is required in order to submit your work. Create an abstract getter
method annotated javax.inject.Inject, and Gradle will inject the service at runtime when the
task is created.

② Before submitting work, get a WorkQueue object with the desired isolation mode (described
below).

③ When submitting the unit of work, specify the unit of work implementation, in this case
GenerateMD5, and configure its parameters.

At this point, you should be able to rerun your task:

$ gradle clean md5

> Task :md5
Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 3s
3 actionable tasks: 3 executed

The results should look the same as before, although the MD5 hash files may be generated in a
different order since the units of work are executed in parallel. This time, however, the task runs
much faster. This is because the Worker API executes the MD5 calculation for each file in parallel
rather than in sequence.

Step 3. Change the isolation mode

The isolation mode controls how strongly Gradle will isolate items of work from each other and the

https://docs.gradle.org/8.12/javadoc/org/gradle/workers/WorkerExecutor.html

rest of the Gradle runtime.

There are three methods on WorkerExecutor that control this:

1. noIsolation()

2. classLoaderIsolation()

3. processIsolation()

The noIsolation() mode is the lowest level of isolation and will prevent a unit of work from
changing the project state. This is the fastest isolation mode because it requires the least overhead
to set up and execute the work item. However, it will use a single shared classloader for all units of
work. This means that each unit of work can affect one another through static class state. It also
means that every unit of work uses the same version of libraries on the buildscript classpath. If you
wanted the user to be able to configure the task to run with a different (but compatible) version of
the Apache Commons Codec library, you would need to use a different isolation mode.

First, you must change the dependency in buildSrc/build.gradle to be compileOnly. This tells Gradle
that it should use this dependency when building the classes, but should not put it on the build
script classpath:

buildSrc/build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 implementation("commons-io:commons-io:2.5")
 compileOnly("commons-codec:commons-codec:1.9")
}

buildSrc/build.gradle

repositories {
 mavenCentral()
}

dependencies {
 implementation 'commons-io:commons-io:2.5'
 compileOnly 'commons-codec:commons-codec:1.9'
}

Next, change the CreateMD5 task to allow the user to configure the version of the codec library that
they want to use. It will resolve the appropriate version of the library at runtime and configure the

https://commons.apache.org/proper/commons-codec/

workers to use this version.

The classLoaderIsolation() method tells Gradle to run this work in a thread with an isolated
classloader:

buildSrc/src/main/java/CreateMD5.java

import org.gradle.api.Action;
import org.gradle.api.file.ConfigurableFileCollection;
import org.gradle.api.file.DirectoryProperty;
import org.gradle.api.file.RegularFile;
import org.gradle.api.provider.Provider;
import org.gradle.api.tasks.*;
import org.gradle.process.JavaForkOptions;
import org.gradle.workers.*;

import javax.inject.Inject;
import java.io.File;
import java.util.Set;

abstract public class CreateMD5 extends SourceTask {

 @InputFiles
 abstract public ConfigurableFileCollection getCodecClasspath(); ①

 @OutputDirectory
 abstract public DirectoryProperty getDestinationDirectory();

 @Inject
 abstract public WorkerExecutor getWorkerExecutor();

 @TaskAction
 public void createHashes() {
 WorkQueue workQueue = getWorkerExecutor().classLoaderIsolation(workerSpec -> {
 workerSpec.getClasspath().from(getCodecClasspath()); ②
 });

 for (File sourceFile : getSource().getFiles()) {
 Provider<RegularFile> md5File = getDestinationDirectory().file(sourceFile
.getName() + ".md5");
 workQueue.submit(GenerateMD5.class, parameters -> {
 parameters.getSourceFile().set(sourceFile);
 parameters.getMD5File().set(md5File);
 });
 }
 }
}

① Expose an input property for the codec library classpath.

② Configure the classpath on the ClassLoaderWorkerSpec when creating the work queue.

https://docs.gradle.org/8.12/javadoc/org/gradle/workers/ClassLoaderWorkerSpec.html

Next, you need to configure your build so that it has a repository to look up the codec version at
task execution time. We also create a dependency to resolve our codec library from this repository:

build.gradle.kts

plugins { id("base") }

repositories {
 mavenCentral() ①
}

val codec = configurations.create("codec") { ②
 attributes {
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage.JAVA_RUNTIME))
 }
 isVisible = false
 isCanBeConsumed = false
}

dependencies {
 codec("commons-codec:commons-codec:1.10") ③
}

tasks.register<CreateMD5>("md5") {
 codecClasspath.from(codec) ④
 destinationDirectory = project.layout.buildDirectory.dir("md5")
 source(project.layout.projectDirectory.file("src"))
}

build.gradle

plugins { id 'base' }

repositories {
 mavenCentral() ①
}

configurations.create('codec') { ②
 attributes {
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_RUNTIME))
 }
 visible = false
 canBeConsumed = false
}

dependencies {

 codec 'commons-codec:commons-codec:1.10' ③
}

tasks.register('md5', CreateMD5) {
 codecClasspath.from(configurations.codec) ④
 destinationDirectory = project.layout.buildDirectory.dir('md5')
 source(project.layout.projectDirectory.file('src'))
}

① Add a repository to resolve the codec library - this can be a different repository than the one
used to build the CreateMD5 task class.

② Add a configuration to resolve our codec library version.

③ Configure an alternate, compatible version of Apache Commons Codec.

④ Configure the md5 task to use the configuration as its classpath. Note that the configuration will
not be resolved until the task is executed.

Now, if you run your task, it should work as expected using the configured version of the codec
library:

$ gradle clean md5

> Task :md5
Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 3s
3 actionable tasks: 3 executed

Step 4. Create a Worker Daemon

Sometimes, it is desirable to utilize even greater levels of isolation when executing items of work.
For instance, external libraries may rely on certain system properties to be set, which may conflict
between work items. Or a library might not be compatible with the version of JDK that Gradle is
running with and may need to be run with a different version.

The Worker API can accommodate this using the processIsolation() method that causes the work
to execute in a separate "worker daemon". These worker processes will be session-scoped and can
be reused within the same build session, but they won’t persist across builds. However, if system
resources get low, Gradle will stop unused worker daemons.

To utilize a worker daemon, use the processIsolation() method when creating the WorkQueue. You
may also want to configure custom settings for the new process:

https://commons.apache.org/proper/commons-codec/

buildSrc/src/main/java/CreateMD5.java

import org.gradle.api.Action;
import org.gradle.api.file.ConfigurableFileCollection;
import org.gradle.api.file.DirectoryProperty;
import org.gradle.api.file.RegularFile;
import org.gradle.api.provider.Provider;
import org.gradle.api.tasks.*;
import org.gradle.process.JavaForkOptions;
import org.gradle.workers.*;

import javax.inject.Inject;
import java.io.File;
import java.util.Set;

abstract public class CreateMD5 extends SourceTask {

 @InputFiles
 abstract public ConfigurableFileCollection getCodecClasspath(); ①

 @OutputDirectory
 abstract public DirectoryProperty getDestinationDirectory();

 @Inject
 abstract public WorkerExecutor getWorkerExecutor();

 @TaskAction
 public void createHashes() {
①
 WorkQueue workQueue = getWorkerExecutor().processIsolation(workerSpec -> {
 workerSpec.getClasspath().from(getCodecClasspath());
 workerSpec.forkOptions(options -> {
 options.setMaxHeapSize("64m"); ②
 });
 });

 for (File sourceFile : getSource().getFiles()) {
 Provider<RegularFile> md5File = getDestinationDirectory().file(sourceFile
.getName() + ".md5");
 workQueue.submit(GenerateMD5.class, parameters -> {
 parameters.getSourceFile().set(sourceFile);
 parameters.getMD5File().set(md5File);
 });
 }
 }
}

① Change the isolation mode to PROCESS.

② Set up the JavaForkOptions for the new process.

https://docs.gradle.org/8.12/javadoc/org/gradle/process/JavaForkOptions.html

Now, you should be able to run your task, and it will work as expected but using worker daemons
instead:

$ gradle clean md5

> Task :md5
Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 3s
3 actionable tasks: 3 executed

Note that the execution time may be high. This is because Gradle has to start a new process for each
worker daemon, which is expensive.

However, if you run your task a second time, you will see that it runs much faster. This is because
the worker daemon(s) started during the initial build have persisted and are available for use
immediately during subsequent builds:

$ gradle clean md5

> Task :md5
Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 1s
3 actionable tasks: 3 executed

Isolation modes

Gradle provides three isolation modes that can be configured when creating a WorkQueue and are
specified using one of the following methods on WorkerExecutor:

WorkerExecutor.noIsolation()

This states that the work should be run in a thread with minimal isolation.
For instance, it will share the same classloader that the task is loaded from. This is the fastest
level of isolation.

WorkerExecutor.classLoaderIsolation()

This states that the work should be run in a thread with an isolated classloader.
The classloader will have the classpath from the classloader that the unit of work
implementation class was loaded from as well as any additional classpath entries added through
ClassLoaderWorkerSpec.getClasspath().

https://docs.gradle.org/8.12/javadoc/org/gradle/workers/WorkQueue.html
https://docs.gradle.org/8.12/javadoc/org/gradle/workers/WorkerExecutor.html
https://docs.gradle.org/8.12/javadoc/org/gradle/workers/WorkerExecutor.html#noIsolation--
https://docs.gradle.org/8.12/javadoc/org/gradle/workers/WorkerExecutor.html#classLoaderIsolation-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/workers/ClassLoaderWorkerSpec.html#getClasspath--

WorkerExecutor.processIsolation()

This states that the work should be run with a maximum isolation level by executing the work in
a separate process.
The classloader of the process will use the classpath from the classloader that the unit of work
was loaded from as well as any additional classpath entries added through
ClassLoaderWorkerSpec.getClasspath(). Furthermore, the process will be a worker daemon that
will stay alive and can be reused for future work items with the same requirements. This
process can be configured with different settings than the Gradle JVM using
ProcessWorkerSpec.forkOptions(org.gradle.api.Action).

Worker Daemons

When using processIsolation(), Gradle will start a long-lived worker daemon process that can be
reused for future work items.

build.gradle.kts

// Create a WorkQueue with process isolation
val workQueue = workerExecutor.processIsolation() {
 // Configure the options for the forked process
 forkOptions {
 maxHeapSize = "512m"
 systemProperty("org.gradle.sample.showFileSize", "true")
 }
}

// Create and submit a unit of work for each file
source.forEach { file ->
 workQueue.submit(ReverseFile::class) {
 fileToReverse = file
 destinationDir = outputDir
 }
}

build.gradle

// Create a WorkQueue with process isolation
WorkQueue workQueue = workerExecutor.processIsolation() { ProcessWorkerSpec
spec ->
 // Configure the options for the forked process
 forkOptions { JavaForkOptions options ->
 options.maxHeapSize = "512m"
 options.systemProperty "org.gradle.sample.showFileSize", "true"
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/workers/WorkerExecutor.html#processIsolation-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/workers/ClassLoaderWorkerSpec.html#getClasspath--
https://docs.gradle.org/8.12/javadoc/org/gradle/workers/ProcessWorkerSpec.html#forkOptions-org.gradle.api.Action-

// Create and submit a unit of work for each file
source.each { file ->
 workQueue.submit(ReverseFile.class) { ReverseParameters parameters ->
 parameters.fileToReverse = file
 parameters.destinationDir = outputDir
 }
}

When a unit of work for a worker daemon is submitted, Gradle will first look to see if a compatible,
idle daemon already exists. If so, it will send the unit of work to the idle daemon, marking it as
busy. If not, it will start a new daemon. When evaluating compatibility, Gradle looks at a number of
criteria, all of which can be controlled through
ProcessWorkerSpec.forkOptions(org.gradle.api.Action).

By default, a worker daemon starts with a maximum heap of 512MB. This can be changed by
adjusting the workers' fork options.

executable

A daemon is considered compatible only if it uses the same Java executable.

classpath

A daemon is considered compatible if its classpath contains all the classpath entries requested.
Note that a daemon is considered compatible only if the classpath exactly matches the requested
classpath.

heap settings

A daemon is considered compatible if it has at least the same heap size settings as requested.
In other words, a daemon that has higher heap settings than requested would be considered
compatible.

jvm arguments

A daemon is compatible if it has set all the JVM arguments requested.
Note that a daemon is compatible if it has additional JVM arguments beyond those requested
(except for those treated especially, such as heap settings, assertions, debug, etc.).

system properties

A daemon is considered compatible if it has set all the system properties requested with the
same values.
Note that a daemon is compatible if it has additional system properties beyond those requested.

environment variables

A daemon is considered compatible if it has set all the environment variables requested with the
same values.
Note that a daemon is compatible if it has more environment variables than requested.

bootstrap classpath

A daemon is considered compatible if it contains all the bootstrap classpath entries requested.

https://docs.gradle.org/8.12/javadoc/org/gradle/workers/ProcessWorkerSpec.html#forkOptions-org.gradle.api.Action-

Note that a daemon is compatible if it has more bootstrap classpath entries than requested.

debug

A daemon is considered compatible only if debug is set to the same value as requested (true or
false).

enable assertions

A daemon is considered compatible only if enable assertions are set to the same value as
requested (true or false).

default character encoding

A daemon is considered compatible only if the default character encoding is set to the same
value as requested.

Worker daemons will remain running until the build daemon that started them is stopped or
system memory becomes scarce. When system memory is low, Gradle will stop worker daemons to
minimize memory consumption.

NOTE
A step-by-step description of converting a normal task action to use the worker API
can be found in the section on developing parallel tasks.

Cancellation and timeouts

To support cancellation (e.g., when the user stops the build with CTRL+C) and task timeouts, custom
tasks should react to interrupting their executing thread. The same is true for work items submitted
via the worker API. If a task does not respond to an interrupt within 10s, the daemon will shut
down to free up system resources.

Advanced Tasks

Incremental tasks

In Gradle, implementing a task that skips execution when its inputs and outputs are already UP-TO-
DATE is simple and efficient, thanks to the Incremental Build feature.

However, there are times when only a few input files have changed since the last execution, and it
is best to avoid reprocessing all the unchanged inputs. This situation is common in tasks that
transform input files into output files on a one-to-one basis.

To optimize your build process you can use an incremental task. This approach ensures that only
out-of-date input files are processed, improving build performance.

Implementing an incremental task

For a task to process inputs incrementally, that task must contain an incremental task action.

This is a task action method that has a single InputChanges parameter. That parameter tells Gradle
that the action only wants to process the changed inputs.

incremental_build.pdf#incremental_build
https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html

In addition, the task needs to declare at least one incremental file input property by using either
@Incremental or @SkipWhenEmpty:

build.gradle.kts

public class IncrementalReverseTask : DefaultTask() {

 @get:Incremental
 @get:InputDirectory
 val inputDir: DirectoryProperty = project.objects.directoryProperty()

 @get:OutputDirectory
 val outputDir: DirectoryProperty = project.objects.directoryProperty()

 @get:Input
 val inputProperty: RegularFileProperty = project.objects.fileProperty()
// File input property

 @TaskAction
 fun execute(inputs: InputChanges) { // InputChanges parameter
 val msg = if (inputs.isIncremental) "CHANGED inputs are out of date"
 else "ALL inputs are out of date"
 println(msg)
 }
}

build.gradle

class IncrementalReverseTask extends DefaultTask {

 @Incremental
 @InputDirectory
 def File inputDir

 @OutputDirectory
 def File outputDir

 @Input
 def inputProperty // File input property

 @TaskAction
 void execute(InputChanges inputs) { // InputChanges parameter
 println inputs.incremental ? "CHANGED inputs are out of date"
 : "ALL inputs are out of date"
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/work/Incremental.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html

IMPORTANT

To query incremental changes for an input file property, that property must
always return the same instance. The easiest way to accomplish this is to use
one of the following property types: RegularFileProperty, DirectoryProperty
or ConfigurableFileCollection.

You can learn more about RegularFileProperty and DirectoryProperty in Lazy
Configuration.

The incremental task action can use InputChanges.getFileChanges() to find out what files have
changed for a given file-based input property, be it of type RegularFileProperty, DirectoryProperty
or ConfigurableFileCollection.

The method returns an Iterable of type FileChanges, which in turn can be queried for the
following:

• the affected file

• the change type (ADDED, REMOVED or MODIFIED)

• the normalized path of the changed file

• the file type of the changed file

The following example demonstrates an incremental task that has a directory input. It assumes that
the directory contains a collection of text files and copies them to an output directory, reversing the
text within each file:

build.gradle.kts

abstract class IncrementalReverseTask : DefaultTask() {
 @get:Incremental
 @get:PathSensitive(PathSensitivity.NAME_ONLY)
 @get:InputDirectory
 abstract val inputDir: DirectoryProperty

 @get:OutputDirectory
 abstract val outputDir: DirectoryProperty

 @get:Input
 abstract val inputProperty: Property<String>

 @TaskAction
 fun execute(inputChanges: InputChanges) {
 println(
 if (inputChanges.isIncremental) "Executing incrementally"
 else "Executing non-incrementally"
)

 inputChanges.getFileChanges(inputDir).forEach { change ->
 if (change.fileType == FileType.DIRECTORY) return@forEach

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/8.12/javadoc/org/gradle/work/FileChange.html
https://docs.gradle.org/8.12/javadoc/org/gradle/work/FileChange.html#getFile--
https://docs.gradle.org/8.12/javadoc/org/gradle/work/FileChange.html#getChangeType--
https://docs.gradle.org/8.12/javadoc/org/gradle/work/FileChange.html#getNormalizedPath--
https://docs.gradle.org/8.12/javadoc/org/gradle/work/FileChange.html#getFileType--

 println("${change.changeType}: ${change.normalizedPath}")
 val targetFile =
outputDir.file(change.normalizedPath).get().asFile
 if (change.changeType == ChangeType.REMOVED) {
 targetFile.delete()
 } else {
 targetFile.writeText(change.file.readText().reversed())
 }
 }
 }
}

build.gradle

abstract class IncrementalReverseTask extends DefaultTask {
 @Incremental
 @PathSensitive(PathSensitivity.NAME_ONLY)
 @InputDirectory
 abstract DirectoryProperty getInputDir()

 @OutputDirectory
 abstract DirectoryProperty getOutputDir()

 @Input
 abstract Property<String> getInputProperty()

 @TaskAction
 void execute(InputChanges inputChanges) {
 println(inputChanges.incremental
 ? 'Executing incrementally'
 : 'Executing non-incrementally'
)

 inputChanges.getFileChanges(inputDir).each { change ->
 if (change.fileType == FileType.DIRECTORY) return

 println "${change.changeType}: ${change.normalizedPath}"
 def targetFile = outputDir.file(change.normalizedPath).get()
.asFile
 if (change.changeType == ChangeType.REMOVED) {
 targetFile.delete()
 } else {
 targetFile.text = change.file.text.reverse()
 }
 }
 }
}

NOTE
The type of the inputDir property, its annotations, and the execute() action use
getFileChanges() to process the subset of files that have changed since the last build.
The action deletes a target file if the corresponding input file has been removed.

If, for some reason, the task is executed non-incrementally (by running with --rerun-tasks, for
example), all files are reported as ADDED, irrespective of the previous state. In this case, Gradle
automatically removes the previous outputs, so the incremental task must only process the given
files.

For a simple transformer task like the above example, the task action must generate output files for
any out-of-date inputs and delete output files for any removed inputs.

IMPORTANT A task may only contain a single incremental task action.

Which inputs are considered out of date?

When a task has been previously executed, and the only changes since that execution are to
incremental input file properties, Gradle can intelligently determine which input files need to be
processed, a concept known as incremental execution.

In this scenario, the InputChanges.getFileChanges() method, available in the
org.gradle.work.InputChanges class, provides details for all input files associated with the given
property that have been ADDED, REMOVED or MODIFIED.

However, there are many cases where Gradle cannot determine which input files need to be
processed (i.e., non-incremental execution). Examples include:

• There is no history available from a previous execution.

• You are building with a different version of Gradle. Currently, Gradle does not use task history
from a different version.

• An upToDateWhen criterion added to the task returns false.

• An input property has changed since the previous execution.

• A non-incremental input file property has changed since the previous execution.

• One or more output files have changed since the previous execution.

In these cases, Gradle will report all input files as ADDED, and the getFileChanges() method will
return details for all the files that comprise the given input property.

You can check if the task execution is incremental or not with the InputChanges.isIncremental()
method.

An incremental task in action

Consider an instance of IncrementalReverseTask executed against a set of inputs for the first time.

In this case, all inputs will be considered ADDED, as shown here:

https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-
https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges.html##org.gradle.work.InputChanges:incremental

build.gradle.kts

tasks.register<IncrementalReverseTask>("incrementalReverse") {
 inputDir = file("inputs")
 outputDir = layout.buildDirectory.dir("outputs")
 inputProperty = project.findProperty("taskInputProperty") as String? ?:
"original"
}

build.gradle

tasks.register('incrementalReverse', IncrementalReverseTask) {
 inputDir = file('inputs')
 outputDir = layout.buildDirectory.dir("outputs")
 inputProperty = project.properties['taskInputProperty'] ?: 'original'
}

The build layout:

.
├── build.gradle
└── inputs
 ├── 1.txt
 ├── 2.txt
 └── 3.txt

$ gradle -q incrementalReverse
Executing non-incrementally
ADDED: 1.txt
ADDED: 2.txt
ADDED: 3.txt

Naturally, when the task is executed again with no changes, then the entire task is UP-TO-DATE, and
the task action is not executed:

$ gradle incrementalReverse
> Task :incrementalReverse UP-TO-DATE

BUILD SUCCESSFUL in 0s
1 actionable task: 1 up-to-date

When an input file is modified in some way or a new input file is added, then re-executing the task
results in those files being returned by InputChanges.getFileChanges().

The following example modifies the content of one file and adds another before running the
incremental task:

build.gradle.kts

tasks.register("updateInputs") {
 val inputsDir = layout.projectDirectory.dir("inputs")
 outputs.dir(inputsDir)
 doLast {
 inputsDir.file("1.txt").asFile.writeText("Changed content for
existing file 1.")
 inputsDir.file("4.txt").asFile.writeText("Content for new file 4.")
 }
}

build.gradle

tasks.register('updateInputs') {
 def inputsDir = layout.projectDirectory.dir('inputs')
 outputs.dir(inputsDir)
 doLast {
 inputsDir.file('1.txt').asFile.text = 'Changed content for existing
file 1.'
 inputsDir.file('4.txt').asFile.text = 'Content for new file 4.'
 }
}

$ gradle -q updateInputs incrementalReverse
Executing incrementally
MODIFIED: 1.txt
ADDED: 4.txt

NOTE
The various mutation tasks (updateInputs, removeInput, etc) are only present to
demonstrate the behavior of incremental tasks. They should not be viewed as the
kinds of tasks or task implementations you should have in your own build scripts.

When an existing input file is removed, then re-executing the task results in that file being returned
by InputChanges.getFileChanges() as REMOVED.

The following example removes one of the existing files before executing the incremental task:

https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)

build.gradle.kts

tasks.register<Delete>("removeInput") {
 delete("inputs/3.txt")
}

build.gradle

tasks.register('removeInput', Delete) {
 delete 'inputs/3.txt'
}

$ gradle -q removeInput incrementalReverse
Executing incrementally
REMOVED: 3.txt

Gradle cannot determine which input files are out-of-date when an output file is deleted (or
modified). In this case, details for all the input files for the given property are returned by
InputChanges.getFileChanges().

The following example removes one of the output files from the build directory. However, all the
input files are considered to be ADDED:

build.gradle.kts

tasks.register<Delete>("removeOutput") {
 delete(layout.buildDirectory.file("outputs/1.txt"))
}

build.gradle

tasks.register('removeOutput', Delete) {
 delete layout.buildDirectory.file("outputs/1.txt")
}

$ gradle -q removeOutput incrementalReverse
Executing non-incrementally
ADDED: 1.txt

https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)

ADDED: 2.txt
ADDED: 3.txt

The last scenario we want to cover concerns what happens when a non-file-based input property is
modified. In such cases, Gradle cannot determine how the property impacts the task outputs, so the
task is executed non-incrementally. This means that all input files for the given property are
returned by InputChanges.getFileChanges() and they are all treated as ADDED.

The following example sets the project property taskInputProperty to a new value when running
the incrementalReverse task. That project property is used to initialize the task’s inputProperty
property, as you can see in the first example of this section.

Here is the expected output in this case:

$ gradle -q -PtaskInputProperty=changed incrementalReverse
Executing non-incrementally
ADDED: 1.txt
ADDED: 2.txt
ADDED: 3.txt

Command Line options

Sometimes, a user wants to declare the value of an exposed task property on the command line
instead of the build script. Passing property values on the command line is particularly helpful if
they change more frequently.

The task API supports a mechanism for marking a property to automatically generate a
corresponding command line parameter with a specific name at runtime.

Step 1. Declare a command-line option

To expose a new command line option for a task property, annotate the corresponding setter
method of a property with Option:

@Option(option = "flag", description = "Sets the flag")

An option requires a mandatory identifier. You can provide an optional description.

A task can expose as many command line options as properties available in the class.

Options may be declared in superinterfaces of the task class as well. If multiple interfaces declare
the same property but with different option flags, they will both work to set the property.

In the example below, the custom task UrlVerify verifies whether a URL can be resolved by making
an HTTP call and checking the response code. The URL to be verified is configurable through the

https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/options/Option.html

property url. The setter method for the property is annotated with @Option:

UrlVerify.java

import org.gradle.api.tasks.options.Option;

public class UrlVerify extends DefaultTask {
 private String url;

 @Option(option = "url", description = "Configures the URL to be verified.")
 public void setUrl(String url) {
 this.url = url;
 }

 @Input
 public String getUrl() {
 return url;
 }

 @TaskAction
 public void verify() {
 getLogger().quiet("Verifying URL '{}'", url);

 // verify URL by making a HTTP call
 }
}

All options declared for a task can be rendered as console output by running the help task and the
--task option.

Step 2. Use an option on the command line

There are a few rules for options on the command line:

• The option uses a double-dash as a prefix, e.g., --url. A single dash does not qualify as valid
syntax for a task option.

• The option argument follows directly after the task declaration, e.g., verifyUrl
--url=http://www.google.com/.

• Multiple task options can be declared in any order on the command line following the task
name.

Building upon the earlier example, the build script creates a task instance of type UrlVerify and
provides a value from the command line through the exposed option:

build.gradle.kts

tasks.register<UrlVerify>("verifyUrl")

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/options/Option.html

build.gradle

tasks.register('verifyUrl', UrlVerify)

$ gradle -q verifyUrl --url=http://www.google.com/
Verifying URL 'http://www.google.com/'

Supported data types for options

Gradle limits the data types that can be used for declaring command line options.

The use of the command line differs per type:

boolean, Boolean, Property<Boolean>

Describes an option with the value true or false.
Passing the option on the command line treats the value as true. For example, --foo equates to
true.
The absence of the option uses the default value of the property. For each boolean option, an
opposite option is created automatically. For example, --no-foo is created for the provided
option --foo and --bar is created for --no-bar. Options whose name starts with --no are disabled
options and set the option value to false. An opposite option is only created if no option with the
same name already exists for the task.

Double, Property<Double>

Describes an option with a double value.
Passing the option on the command line also requires a value, e.g., --factor=2.2 or --factor 2.2.

Integer, Property<Integer>

Describes an option with an integer value.
Passing the option on the command line also requires a value, e.g., --network-timeout=5000 or
--network-timeout 5000.

Long, Property<Long>

Describes an option with a long value.
Passing the option on the command line also requires a value, e.g., --threshold=2147483648 or
--threshold 2147483648.

String, Property<String>

Describes an option with an arbitrary String value.
Passing the option on the command line also requires a value, e.g., --container-id=2x94held or
--container-id 2x94held.

enum, Property<enum>

Describes an option as an enumerated type.
Passing the option on the command line also requires a value e.g., --log-level=DEBUG or --log

-level debug.
The value is not case-sensitive.

List<T> where T is Double, Integer, Long, String, enum

Describes an option that can take multiple values of a given type.
The values for the option have to be provided as multiple declarations, e.g., --image-id=123
--image-id=456.
Other notations, such as comma-separated lists or multiple values separated by a space
character, are currently not supported.

ListProperty<T>, SetProperty<T> where T is Double, Integer, Long, String, enum

Describes an option that can take multiple values of a given type.
The values for the option have to be provided as multiple declarations, e.g., --image-id=123
--image-id=456.
Other notations, such as comma-separated lists or multiple values separated by a space
character, are currently not supported.

DirectoryProperty, RegularFileProperty

Describes an option with a file system element.
Passing the option on the command line also requires a value representing a path, e.g., --output
-file=file.txt or --output-dir outputDir.
Relative paths are resolved relative to the project directory of the project that owns this property
instance. See FileSystemLocationProperty.set().

Documenting available values for an option

Theoretically, an option for a property type String or List<String> can accept any arbitrary value.
Accepted values for such an option can be documented programmatically with the help of the
annotation OptionValues:

@OptionValues('file')

This annotation may be assigned to any method that returns a List of one of the supported data
types. You need to specify an option identifier to indicate the relationship between the option and
available values.

NOTE
Passing a value on the command line not supported by the option does not fail the
build or throw an exception. You must implement custom logic for such behavior in
the task action.

The example below demonstrates the use of multiple options for a single task. The task
implementation provides a list of available values for the option output-type:

UrlProcess.java

import org.gradle.api.tasks.options.Option;
import org.gradle.api.tasks.options.OptionValues;

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileSystemLocationProperty.html#set-java.io.File
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/options/OptionValues.html

public abstract class UrlProcess extends DefaultTask {
 private String url;
 private OutputType outputType;

 @Input
 @Option(option = "http", description = "Configures the http protocol to be
allowed.")
 public abstract Property<Boolean> getHttp();

 @Option(option = "url", description = "Configures the URL to send the request to.
")
 public void setUrl(String url) {
 if (!getHttp().getOrElse(true) && url.startsWith("http://")) {
 throw new IllegalArgumentException("HTTP is not allowed");
 } else {
 this.url = url;
 }
 }

 @Input
 public String getUrl() {
 return url;
 }

 @Option(option = "output-type", description = "Configures the output type.")
 public void setOutputType(OutputType outputType) {
 this.outputType = outputType;
 }

 @OptionValues("output-type")
 public List<OutputType> getAvailableOutputTypes() {
 return new ArrayList<OutputType>(Arrays.asList(OutputType.values()));
 }

 @Input
 public OutputType getOutputType() {
 return outputType;
 }

 @TaskAction
 public void process() {
 getLogger().quiet("Writing out the URL response from '{}' to '{}'", url,
outputType);

 // retrieve content from URL and write to output
 }

 private static enum OutputType {
 CONSOLE, FILE
 }

}

Listing command line options

Command line options using the annotations Option and OptionValues are self-documenting.

You will see declared options and their available values reflected in the console output of the help
task. The output renders options alphabetically, except for boolean disable options, which appear
following the enable option:

$ gradle -q help --task processUrl
Detailed task information for processUrl

Path
 :processUrl

Type
 UrlProcess (UrlProcess)

Options
 --http Configures the http protocol to be allowed.

 --no-http Disables option --http.

 --output-type Configures the output type.
 Available values are:
 CONSOLE
 FILE

 --url Configures the URL to send the request to.

 --rerun Causes the task to be re-run even if up-to-date.

Description
 -

Group
 -

Limitations

Support for declaring command line options currently comes with a few limitations.

• Command line options can only be declared for custom tasks via annotation. There’s no
programmatic equivalent for defining options.

• Options cannot be declared globally, e.g., on a project level or as part of a plugin.

• When assigning an option on the command line, the task exposing the option needs to be
spelled out explicitly, e.g., gradle check --tests abc does not work even though the check task

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/options/Option.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/options/OptionValues.html

depends on the test task.

• If you specify a task option name that conflicts with the name of a built-in Gradle option, use the
-- delimiter before calling your task to reference that option. For more information, see
Disambiguate Task Options from Built-in Options.

Verification failures

Normally, exceptions thrown during task execution result in a failure that immediately terminates
a build. The outcome of the task will be FAILED, the result of the build will be FAILED, and no further
tasks will be executed. When running with the --continue flag, Gradle will continue to run other
requested tasks in the build after encountering a task failure. However, any tasks that depend on a
failed task will not be executed.

There is a special type of exception that behaves differently when downstream tasks only rely on
the outputs of a failing task. A task can throw a subtype of VerificationException to indicate that it
has failed in a controlled manner such that its output is still valid for consumers. A task depends on
the outcome of another task when it directly depends on it using dependsOn. When Gradle is run
with --continue, consumer tasks that depend on a producer task’s output (via a relationship
between task inputs and outputs) can still run after the producer fails.

A failed unit test, for instance, will cause a failing outcome for the test task. However, this doesn’t
prevent another task from reading and processing the (valid) test results the task produced.
Verification failures are used in exactly this manner by the Test Report Aggregation Plugin.

Verification failures are also useful for tasks that need to report a failure even after producing
useful output consumable by other tasks.

build.gradle.kts

val process = tasks.register("process") {
 val outputFile = layout.buildDirectory.file("processed.log")
 outputs.files(outputFile) ①

 doLast {
 val logFile = outputFile.get().asFile
 logFile.appendText("Step 1 Complete.") ②
 throw VerificationException("Process failed!") ③
 logFile.appendText("Step 2 Complete.") ④
 }
}

tasks.register("postProcess") {
 inputs.files(process) ⑤

 doLast {
 println("Results: ${inputs.files.singleFile.readText()}") ⑥
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/VerificationException.html
test_report_aggregation_plugin.pdf#test_report_aggregation_plugin

}

build.gradle

tasks.register("process") {
 def outputFile = layout.buildDirectory.file("processed.log")
 outputs.files(outputFile) ①

 doLast {
 def logFile = outputFile.get().asFile
 logFile << "Step 1 Complete." ②
 throw new VerificationException("Process failed!") ③
 logFile << "Step 2 Complete." ④
 }
}

tasks.register("postProcess") {
 inputs.files(tasks.named("process")) ⑤

 doLast {
 println("Results: ${inputs.files.singleFile.text}") ⑥
 }
}

$ gradle postProcess --continue
> Task :process FAILED

> Task :postProcess
Results: Step 1 Complete.
2 actionable tasks: 2 executed

FAILURE: Build failed with an exception.

① Register Output: The process task writes its output to a log file.

② Modify Output: The task writes to its output file as it executes.

③ Task Failure: The task throws a VerificationException and fails at this point.

④ Continue to Modify Output: This line never runs due to the exception stopping the task.

⑤ Consume Output: The postProcess task depends on the output of the process task due to using
that task’s outputs as its own inputs.

⑥ Use Partial Result: With the --continue flag set, Gradle still runs the requested postProcess task
despite the process task’s failure. postProcess can read and display the partial (though still valid)
result.

Using Shared Build Services
Shared build services allow tasks to share state or resources. For example, tasks might share a
cache of pre-computed values or use a web service or database instance.

A build service is an object that holds the state for tasks to use. It provides an alternative
mechanism for hooking into a Gradle build and receiving information about task execution and
operation completion.

Build services are configuration cacheable.

Gradle manages the service lifecycle, creating the service instance only when required and
cleaning it up when no longer needed. Gradle can also coordinate access to the build service,
ensuring that no more than a specified number of tasks use the service concurrently.

Implementing a build service

To implement a build service, create an abstract class that implements BuildService. Then, define
methods you want the tasks to use on this type.

abstract class BaseCountingService implements BuildService<CountingParams>,
AutoCloseable {

}

A build service implementation is treated as a custom Gradle type and can use any of the features
available to custom Gradle types.

A build service can optionally take parameters, which Gradle injects into the service instance when
creating it. To provide parameters, you define an abstract class (or interface) that holds the
parameters. The parameters type must implement (or extend) BuildServiceParameters. The service
implementation can access the parameters using this.getParameters(). The parameters type is also
a custom Gradle type.

When the build service does not require any parameters, you can use BuildServiceParameters.None
as the type of parameter.

interface CountingParams extends BuildServiceParameters {
 Property<Integer> getInitial()
}

A build service implementation can also optionally implement AutoCloseable, in which case Gradle
will call the build service instance’s close() method when it discards the service instance. This
happens sometime between the completion of the last task that uses the build service and the end
of the build.

Here is an example of a service that takes parameters and is closeable:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/services/BuildService.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/services/BuildServiceParameters.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/services/BuildServiceParameters.None.html

WebServer.java

import org.gradle.api.file.DirectoryProperty;
import org.gradle.api.provider.Property;
import org.gradle.api.services.BuildService;
import org.gradle.api.services.BuildServiceParameters;

import java.net.URI;
import java.net.URISyntaxException;

public abstract class WebServer implements BuildService<WebServer.Params>,
AutoCloseable {

 // Some parameters for the web server
 interface Params extends BuildServiceParameters {
 Property<Integer> getPort();

 DirectoryProperty getResources();
 }

 private final URI uri;

 public WebServer() throws URISyntaxException {
 // Use the parameters
 int port = getParameters().getPort().get();
 uri = new URI(String.format("https://localhost:%d/", port));

 // Start the server ...

 System.out.println(String.format("Server is running at %s", uri));
 }

 // A public method for tasks to use
 public URI getUri() {
 return uri;
 }

 @Override
 public void close() {
 // Stop the server ...
 }
}

Note that you should not implement the BuildService.getParameters() method, as Gradle will
provide an implementation of this.

A build service implementation must be thread-safe, as it will potentially be used by multiple tasks
concurrently.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/services/BuildService.html#getParameters--

Registering a build service and connecting it to a task

To create a build service, you register the service instance using the
BuildServiceRegistry.registerIfAbsent() method.

Registering the service does not create the service instance. This happens on demand when a task
first uses the service. The service instance will not be created if no task uses the service during a
build.

Currently, build services are scoped to a build, rather than a project, and these services are
available to be shared by the tasks of all projects. You can access the registry of shared build
services via Project.getGradle().getSharedServices().

Registering a build service to be consumed via @ServiceReference task properties

Here is an example of a plugin that registers the previous service when the task property
consuming the service is annotated with @ServiceReference:

DownloadPlugin.java

import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.gradle.api.provider.Provider;

public class DownloadPlugin implements Plugin<Project> {
 public void apply(Project project) {
 // Register the service
 project.getGradle().getSharedServices().registerIfAbsent("web", WebServer
.class, spec -> {
 // Provide some parameters
 spec.getParameters().getPort().set(5005);
 });

 project.getTasks().register("download", Download.class, task -> {
 task.getOutputFile().set(project.getLayout().getBuildDirectory().file
("result.zip"));
 });
 }
}

As you can see, there is no need to assign the build service provider returned by registerIfAbsent()
to the task, the service is automatically injected into all matching properties that were annotated
with @ServiceReference.

Here is an example of a task that consumes the previous service via a property annotated with
@ServiceReference:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/services/BuildServiceRegistry.html#registerIfAbsent-java.lang.String-java.lang.Class-org.gradle.api.Action-

Download.java

import org.gradle.api.DefaultTask;
import org.gradle.api.file.RegularFileProperty;
import org.gradle.api.provider.Property;
import org.gradle.api.services.ServiceReference;
import org.gradle.api.tasks.OutputFile;
import org.gradle.api.tasks.TaskAction;

import java.net.URI;

public abstract class Download extends DefaultTask {
 // This property provides access to the service instance
 @ServiceReference("web")
 abstract Property<WebServer> getServer();

 @OutputFile
 abstract RegularFileProperty getOutputFile();

 @TaskAction
 public void download() {
 // Use the server to download a file
 WebServer server = getServer().get();
 URI uri = server.getUri().resolve("somefile.zip");
 System.out.println(String.format("Downloading %s", uri));
 }
}

Automatic matching of registered build services with service reference properties is done by type
and (optionally) by name (for properties that declare the name of the service they expect). In case
multiple services would match the requested service type (i.e. multiple services were registered for
the same type, and a service name was not provided in the @ServiceReference annotation), you will
need also to assign the shared build service provider manually to the task property.

Read on to compare that to when the task property consuming the service is instead annotated with
@Internal.

Registering a build service to be consumed via @Internal task properties

DownloadPlugin.java

import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.gradle.api.provider.Provider;

public class DownloadPlugin implements Plugin<Project> {
 public void apply(Project project) {
 // Register the service

 Provider<WebServer> serviceProvider = project.getGradle()
.getSharedServices().registerIfAbsent("web", WebServer.class, spec -> {
 // Provide some parameters
 spec.getParameters().getPort().set(5005);
 });

 project.getTasks().register("download", Download.class, task -> {
 // Connect the service provider to the task
 task.getServer().set(serviceProvider);
 // Declare the association between the task and the service
 task.usesService(serviceProvider);
 task.getOutputFile().set(project.getLayout().getBuildDirectory().file
("result.zip"));
 });
 }
}

In this case, the plugin registers the service and receives a Provider<WebService> back. This provider
can be connected to task properties to pass the service to the task. Note that for a task property
annotated with @Internal, the task property needs to (1) be explicitly assigned with the provider
obtained during registation, and (2) you must tell Gradle the task uses the service via
Task.usesService. None of that is needed when the task property consuming the service is
annotated with @ServiceReference.

Here is an example of a task that consumes the previous service via a property annotated with
@Internal:

Download.java

import org.gradle.api.DefaultTask;
import org.gradle.api.file.RegularFileProperty;
import org.gradle.api.provider.Property;
import org.gradle.api.tasks.Internal;
import org.gradle.api.tasks.OutputFile;
import org.gradle.api.tasks.TaskAction;

import java.net.URI;

public abstract class Download extends DefaultTask {
 // This property provides access to the service instance
 @Internal
 abstract Property<WebServer> getServer();

 @OutputFile
 abstract RegularFileProperty getOutputFile();

 @TaskAction
 public void download() {
 // Use the server to download a file

https://docs.gradle.org/8.12/dsl/org.gradle.api.Task.html#org.gradle.api.Task:usesService(org.gradle.api.provider.Provider)

 WebServer server = getServer().get();
 URI uri = server.getUri().resolve("somefile.zip");
 System.out.println(String.format("Downloading %s", uri));
 }
}

Note that using a service with any annotation other than @ServiceReference or @Internal is currently
not supported. For example, it is currently impossible to mark a service as an input to a task.

Using shared build services from configuration actions

Generally, build services are intended to be used by tasks, and as they usually represent some
potentially expensive state to create, you should avoid using them at configuration time. However,
sometimes, using the service at configuration time can make sense. This is possible; call get() on
the provider.

Using a build service with the Worker API

In addition to using a build service from a task, you can use a build service from a Worker API
action, an artifact transform or another build service. To do this, pass the build service Provider as a
parameter of the consuming action or service, in the same way you pass other parameters to the
action or service.

For example, to pass a MyServiceType service to Worker API action, you might add a property of type
Property<MyServiceType> to the action’s parameters object and then connect the
Provider<MyServiceType> that you receive when registering the service to this property:

Download.java

import org.gradle.api.DefaultTask;
import org.gradle.api.provider.Property;
import org.gradle.api.services.ServiceReference;
import org.gradle.api.tasks.TaskAction;
import org.gradle.workers.WorkAction;
import org.gradle.workers.WorkParameters;
import org.gradle.workers.WorkQueue;
import org.gradle.workers.WorkerExecutor;

import javax.inject.Inject;
import java.net.URI;

public abstract class Download extends DefaultTask {

 public static abstract class DownloadWorkAction implements WorkAction
<DownloadWorkAction.Parameters> {
 interface Parameters extends WorkParameters {
 // This property provides access to the service instance from the work
action

 abstract Property<WebServer> getServer();
 }

 @Override
 public void execute() {
 // Use the server to download a file
 WebServer server = getParameters().getServer().get();
 URI uri = server.getUri().resolve("somefile.zip");
 System.out.println(String.format("Downloading %s", uri));
 }
 }

 @Inject
 abstract public WorkerExecutor getWorkerExecutor();

 // This property provides access to the service instance from the task
 @ServiceReference("web")
 abstract Property<WebServer> getServer();

 @TaskAction
 public void download() {
 WorkQueue workQueue = getWorkerExecutor().noIsolation();
 workQueue.submit(DownloadWorkAction.class, parameter -> {
 parameter.getServer().set(getServer());
 });
 }
}

Currently, it is impossible to use a build service with a worker API action that uses ClassLoader or
process isolation modes.

Accessing the build service concurrently

You can constrain concurrent execution when you register the service, by using the Property object
returned from BuildServiceSpec.getMaxParallelUsages(). When this property has no value, which is
the default, Gradle does not constrain access to the service. When this property has a value > 0,
Gradle will allow no more than the specified number of tasks to use the service concurrently.

IMPORTANT

When the consuming task property is annotated with @Internal, for the
constraint to take effect, the build service must be registered with the
consuming task via Task.usesService. NOTE: at this time, Gradle cannot
discover indirect usage of services (for instance, if an additional service is
used only by a service that the task uses directly). As a workaround, indirect
usage may be declared explicitly to Gradle by either adding a
@ServiceReference property to the task and assigning the service that is only
used indirectly to it (making it a direct reference), or invoking
Task.usesService.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/services/BuildServiceSpec.html#getMaxParallelUsages--
https://docs.gradle.org/8.12/dsl/org.gradle.api.Task.html#org.gradle.api.Task:usesService(org.gradle.api.provider.Provider)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Task.html#org.gradle.api.Task:usesService(org.gradle.api.provider.Provider)

Receiving information about task execution

A build service can be used to receive events as tasks are executed. To do this, create and register a
build service that implements OperationCompletionListener:

TaskEventsService.java

import org.gradle.api.services.BuildService;
import org.gradle.api.services.BuildServiceParameters;
import org.gradle.tooling.events.FinishEvent;
import org.gradle.tooling.events.OperationCompletionListener;
import org.gradle.tooling.events.task.TaskFinishEvent;

public abstract class TaskEventsService implements BuildService
<BuildServiceParameters.None>,
 OperationCompletionListener { ①

 @Override
 public void onFinish(FinishEvent finishEvent) {
 if (finishEvent instanceof TaskFinishEvent) { ②
 // Handle task finish event...
 }
 }
}

① Implement the OperationCompletionListener interface and the BuildService interface.

② Check if the finish event is a TaskFinishEvent.

Then, in the plugin, you can use the methods on the BuildEventsListenerRegistry service to start
receiving events:

TaskEventsPlugin.java

import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.gradle.api.provider.Provider;
import org.gradle.build.event.BuildEventsListenerRegistry;

import javax.inject.Inject;

public abstract class TaskEventsPlugin implements Plugin<Project> {
 @Inject
 public abstract BuildEventsListenerRegistry getEventsListenerRegistry(); ①

 @Override
 public void apply(Project project) {
 Provider<TaskEventsService> serviceProvider =
 project.getGradle().getSharedServices().registerIfAbsent(

https://docs.gradle.org/8.12/javadoc/org/gradle/tooling/events/OperationCompletionListener.html
https://docs.gradle.org/8.12/javadoc/org/gradle/tooling/events/task/TaskFinishEvent.html
https://docs.gradle.org/8.12/javadoc/org/gradle/build/event/BuildEventsListenerRegistry.html

 "taskEvents", TaskEventsService.class, spec -> {}); ②

 getEventsListenerRegistry().onTaskCompletion(serviceProvider); ③
 }
}

① Use service injection to obtain an instance of the BuildEventsListenerRegistry.

② Register the build service as usual.

③ Use the service Provider to subscribe to the build service to build events.

[1] You might be wondering why there is neither an import for the StopExecutionException nor do we access it via its fully qualified
name. The reason is that Gradle adds a set of default imports to your script (see Default imports).

DEVELOPING PLUGINS

Understanding Plugins
Gradle comes with a set of powerful core systems such as dependency management, task execution,
and project configuration. But everything else it can do is supplied by plugins.

Plugins encapsulate logic for specific tasks or integrations, such as compiling code, running tests, or
deploying artifacts. By applying plugins, users can easily add new features to their build process
without having to write complex code from scratch.

This plugin-based approach allows Gradle to be lightweight and modular. It also promotes code
reuse and maintainability, as plugins can be shared across projects or within an organization.

Before reading this chapter, it’s recommended that you first read Learning The Basics and complete
the Tutorial.

Plugins Introduction

Plugins can be sourced from Gradle or the Gradle community. But when users want to organize
their build logic or need specific build capabilities not provided by existing plugins, they can
develop their own.

As such, we distinguish between three different kinds of plugins:

1. Core Plugins - plugins that come from Gradle.

2. Community Plugins - plugins that come from Gradle Plugin Portal or a public repository.

3. Local or Custom Plugins - plugins that you develop yourself.

Core Plugins

The term core plugin refers to a plugin that is part of the Gradle distribution such as the Java
Library Plugin. They are always available.

Community Plugins

The term community plugin refers to a plugin published to the Gradle Plugin Portal (or another
public repository) such as the Spotless Plugin.

Local or Custom Plugins

The term local or custom plugin refers to a plugin you write yourself for your own build.

Custom plugins

There are three types of custom plugins:

part1_gradle_init_project.pdf#part1_gradle_init
https://plugins.gradle.org/
https://plugins.gradle.org/plugin/com.diffplug.gradle.spotless

Type Location: Most likely: Benefit:

1 Script plugins A .gradle(.kts)
script file

A local plugin Plugin is
automatically
compiled and
included in the
classpath of the
build script.

2 Precompiled script
plugins

buildSrc folder or
composite build

A convention
plugin

Plugin is
automatically
compiled, tested,
and available on
the classpath of
the build script.
The plugin is
visible to every
build script used
by the build.

3 Binary plugins Standalone project A shared plugin Plugin JAR is
produced and
published. The
plugin can be used
in multiple builds
and shared with
others.

Script plugins

Script plugins are typically small, local plugins written in script files for tasks specific to a single
build or project. They do not need to be reused across multiple projects. Script plugins are not
recommended but many other forms of plugins evolve from script plugins.

To create a plugin, you need to write a class that implements the Plugin interface.

The following sample creates a GreetingPlugin, which adds a hello task to a project when applied:

build.gradle.kts

class GreetingPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 project.task("hello") {
 doLast {
 println("Hello from the GreetingPlugin")
 }
 }
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Plugin.html

// Apply the plugin
apply<GreetingPlugin>()

build.gradle

class GreetingPlugin implements Plugin<Project> {
 void apply(Project project) {
 project.task('hello') {
 doLast {
 println 'Hello from the GreetingPlugin'
 }
 }
 }
}

// Apply the plugin
apply plugin: GreetingPlugin

$ gradle -q hello
Hello from the GreetingPlugin

The Project object is passed as a parameter in apply(), which the plugin can use to configure the
project however it needs to (such as adding tasks, configuring dependencies, etc.). In this example,
the plugin is written directly in the build file which is not a recommended practice.

When the plugin is written in a separate script file, it can be applied using apply(from =
"file_name.gradle.kts") or apply from: 'file_name.gradle'. In the example below, the plugin is
coded in the other.gradle(.kts) script file. Then, the other.gradle(.kts) is applied to
build.gradle(.kts) using apply from:

other.gradle.kts

class GreetingScriptPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 project.task("hi") {
 doLast {
 println("Hi from the GreetingScriptPlugin")
 }
 }
 }
}

// Apply the plugin
apply<GreetingScriptPlugin>()

other.gradle

class GreetingScriptPlugin implements Plugin<Project> {
 void apply(Project project) {
 project.task('hi') {
 doLast {
 println 'Hi from the GreetingScriptPlugin'
 }
 }
 }
}

// Apply the plugin
apply plugin: GreetingScriptPlugin

build.gradle.kts

apply(from = "other.gradle.kts")

build.gradle

apply from: 'other.gradle'

$ gradle -q hi
Hi from the GreetingScriptPlugin

Script plugins should be avoided.

Precompiled script plugins

Precompiled script plugins are compiled into class files and packaged into a JAR before they are
executed. These plugins use the Groovy DSL or Kotlin DSL instead of pure Java, Kotlin, or Groovy.
They are best used as convention plugins that share build logic across projects or as a way to
neatly organize build logic.

To create a precompiled script plugin, you can:

1. Use Gradle’s Kotlin DSL - The plugin is a .gradle.kts file, and apply kotlin-dsl .

2. Use Gradle’s Groovy DSL - The plugin is a .gradle file, and apply id("groovy-gradle-plugin").

To apply a precompiled script plugin, you need to know its ID. The ID is derived from the plugin
script’s filename and its (optional) package declaration.

For example, the script src/main/*/some-java-library.gradle(.kts) has a plugin ID of some-java-
library (assuming it has no package declaration). Likewise, src/main/*/my/some-java-
library.gradle(.kts) has a plugin ID of my.some-java-library as long as it has a package declaration
of my.

Precompiled script plugin names have two important limitations:

• They cannot start with org.gradle.

• They cannot have the same name as a core plugin.

When the plugin is applied to a project, Gradle creates an instance of the plugin class and calls the
instance’s Plugin.apply() method.

NOTE A new instance of a Plugin is created within each project applying that plugin.

Let’s rewrite the GreetingPlugin script plugin as a precompiled script plugin. Since we are using the
Groovy or Kotlin DSL, the file essentially becomes the plugin. The original script plugin simply
created a hello task which printed a greeting, this is what we will do in the pre-compiled script
plugin:

buildSrc/src/main/kotlin/GreetingPlugin.gradle.kts

tasks.register("hello") {
 doLast {
 println("Hello from the convention GreetingPlugin")
 }
}

buildSrc/src/main/groovy/GreetingPlugin.gradle

tasks.register("hello") {
 doLast {
 println("Hello from the convention GreetingPlugin")
 }
}

The GreetingPlugin can now be applied in other subprojects' builds by using its ID:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Plugin.html#apply-T-

app/build.gradle.kts

plugins {
 application
 id("GreetingPlugin")
}

app/build.gradle

plugins {
 id 'application'
 id('GreetingPlugin')
}

$ gradle -q hello
Hello from the convention GreetingPlugin

Convention plugins

A convention plugin is typically a precompiled script plugin that configures existing core and
community plugins with your own conventions (i.e. default values) such as setting the Java version
by using java.toolchain.languageVersion = JavaLanguageVersion.of(17). Convention plugins are
also used to enforce project standards and help streamline the build process. They can apply and
configure plugins, create new tasks and extensions, set dependencies, and much more.

Let’s take an example build with three subprojects: one for data-model, one for database-logic and
one for app code. The project has the following structure:

.
├── buildSrc
│ ├── src
│ │ └──...
│ └── build.gradle.kts
├── data-model
│ ├── src
│ │ └──...
│ └── build.gradle.kts
├── database-logic
│ ├── src
│ │ └──...
│ └── build.gradle.kts
├── app

│ ├── src
│ │ └──...
│ └── build.gradle.kts
└── settings.gradle.kts

The build file of the database-logic subproject is as follows:

database-logic/build.gradle.kts

plugins {
 id("java-library")
 id("org.jetbrains.kotlin.jvm") version "2.0.21"
}

repositories {
 mavenCentral()
}

java {
 toolchain.languageVersion.set(JavaLanguageVersion.of(11))
}

tasks.test {
 useJUnitPlatform()
}

kotlin {
 jvmToolchain(11)
}

// More build logic

database-logic/build.gradle

plugins {
 id 'java-library'
 id 'org.jetbrains.kotlin.jvm' version '2.0.21'
}

repositories {
 mavenCentral()
}

java {
 toolchain.languageVersion.set(JavaLanguageVersion.of(11))
}

tasks.test {
 useJUnitPlatform()
}

kotlin {
 jvmToolchain {
 languageVersion.set(JavaLanguageVersion.of(11))
 }
}

// More build logic

We apply the java-library plugin and add the org.jetbrains.kotlin.jvm plugin for Kotlin support.
We also configure Kotlin, Java, tests and more.

Our build file is beginning to grow…

The more plugins we apply and the more plugins we configure, the larger it gets. There’s also
repetition in the build files of the app and data-model subprojects, especially when configuring
common extensions like setting the Java version and Kotlin support.

To address this, we use convention plugins. This allows us to avoid repeating configuration in each
build file and keeps our build scripts more concise and maintainable. In convention plugins, we can
encapsulate arbitrary build configuration or custom build logic.

To develop a convention plugin, we recommend using buildSrc – which represents a completely
separate Gradle build. buildSrc has its own settings file to define where dependencies of this build
are located.

We add a Kotlin script called my-java-library.gradle.kts inside the buildSrc/src/main/kotlin
directory. Or conversely, a Groovy script called my-java-library.gradle inside the
buildSrc/src/main/groovy directory. We put all the plugin application and configuration from the
database-logic build file into it:

buildSrc/src/main/kotlin/my-java-library.gradle.kts

plugins {
 id("java-library")
 id("org.jetbrains.kotlin.jvm")
}

repositories {
 mavenCentral()
}

java {
 toolchain.languageVersion.set(JavaLanguageVersion.of(11))

}

tasks.test {
 useJUnitPlatform()
}

kotlin {
 jvmToolchain(11)
}

buildSrc/src/main/groovy/my-java-library.gradle

plugins {
 id 'java-library'
 id 'org.jetbrains.kotlin.jvm'
}

repositories {
 mavenCentral()
}

java {
 toolchain.languageVersion.set(JavaLanguageVersion.of(11))
}

tasks.test {
 useJUnitPlatform()
}

kotlin {
 jvmToolchain {
 languageVersion.set(JavaLanguageVersion.of(11))
 }
}

The name of the file my-java-library is the ID of our brand-new plugin, which we can now use in all
of our subprojects.

TIP
Why is the version of id 'org.jetbrains.kotlin.jvm' missing? See Applying External
Plugins to Pre-Compiled Script Plugins.

The database-logic build file becomes much simpler by removing all the redundant build logic and
applying our convention my-java-library plugin instead:

database-logic/build.gradle.kts

plugins {
 id("my-java-library")
}

database-logic/build.gradle

plugins {
 id('my-java-library')
}

This convention plugin enables us to easily share common configurations across all our build files.
Any modifications can be made in one place, simplifying maintenance.

Binary plugins

Binary plugins in Gradle are plugins that are built as standalone JAR files and applied to a project
using the plugins{} block in the build script.

Let’s move our GreetingPlugin to a standalone project so that we can publish it and share it with
others. The plugin is essentially moved from the buildSrc folder to its own build called greeting-
plugin.

NOTE
You can publish the plugin from buildSrc, but this is not recommended practice.
Plugins that are ready for publication should be in their own build.

greeting-plugin is simply a Java project that produces a JAR containing the plugin classes.

The easiest way to package and publish a plugin to a repository is to use the Gradle Plugin
Development Plugin. This plugin provides the necessary tasks and configurations (including the
plugin metadata) to compile your script into a plugin that can be applied in other builds.

Here is a simple build script for the greeting-plugin project using the Gradle Plugin Development
Plugin:

build.gradle.kts

plugins {
 `java-gradle-plugin`
}

gradlePlugin {

java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin

 plugins {
 create("simplePlugin") {
 id = "org.example.greeting"
 implementationClass = "org.example.GreetingPlugin"
 }
 }
}

build.gradle

plugins {
 id 'java-gradle-plugin'
}

gradlePlugin {
 plugins {
 simplePlugin {
 id = 'org.example.greeting'
 implementationClass = 'org.example.GreetingPlugin'
 }
 }
}

For more on publishing plugins, see Publishing Plugins.

Project vs Settings vs Init plugins

In the example used through this section, the plugin accepts the Project type as a type parameter.
Alternatively, the plugin can accept a parameter of type Settings to be applied in a settings script, or
a parameter of type Gradle to be applied in an initialization script.

The difference between these types of plugins lies in the scope of their application:

Project Plugin

A project plugin is a plugin that is applied to a specific project in a build. It can customize the
build logic, add tasks, and configure the project-specific settings.

Settings Plugin

A settings plugin is a plugin that is applied in the settings.gradle or settings.gradle.kts file. It
can configure settings that apply to the entire build, such as defining which projects are
included in the build, configuring build script repositories, and applying common configurations
to all projects.

Init Plugin

An init plugin is a plugin that is applied in the init.gradle or init.gradle.kts file. It can

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.invocation.Gradle.html

configure settings that apply globally to all Gradle builds on a machine, such as configuring the
Gradle version, setting up default repositories, or applying common plugins to all builds.

Understanding Implementation Options for Plugins
The choice between script, precompiled script, or binary plugins depends on your specific
requirements and preferences.

Script Plugins are simple and easy to write. They are written in Kotlin DSL or Groovy DSL. They
are suitable for small, one-off tasks or for quick experimentation. However, they can become hard
to maintain as the build script grows in size and complexity.

Precompiled Script Plugins are Kotlin or Groovy DSL scripts compiled into Java class files
packaged in a library. They offer better performance and maintainability compared to script
plugins, and they can be reused across different projects. You can also write them in Groovy DSL
but that is not recommended.

Binary Plugins are full-fledged plugins written in Java, Groovy, or Kotlin, compiled into JAR files,
and published to a repository. They offer the best performance, maintainability, and reusability.
They are suitable for complex build logic that needs to be shared across projects, builds, and teams.
You can also write them in Scala or Groovy but that is not recommended.

Here is a breakdown of all options for implementing Gradle plugins:

Using: Type: The Plugin is: Recommended?

1 Kotlin DSL Script plugin in a .gradle.kts
file as an abstract
class that
implements the
apply(Project
project) method
of the
Plugin<Project>
interface.

No[1]

2 Groovy DSL Script plugin in a .gradle file as
an abstract class
that implements
the apply(Project
project) method
of the
Plugin<Project>
interface.

No[1]

3 Kotlin DSL Pre-compiled
script plugin

a .gradle.kts file. Yes

4 Groovy DSL Pre-compiled
script plugin

a .gradle file. Ok[2]

Using: Type: The Plugin is: Recommended?

5 Java Binary plugin an abstract class
that implements
the apply(Project
project) method
of the
Plugin<Project>
interface in Java.

Yes

6 Kotlin / Kotlin DSL Binary plugin an abstract class
that implements
the apply(Project
project) method
of the
Plugin<Project>
interface in Kotlin
and/or Kotlin DSL.

Yes

7 Groovy / Groovy
DSL

Binary plugin an abstract class
that implements
the apply(Project
project) method
of the
Plugin<Project>
interface in
Groovy and/or
Groovy DSL.

Ok[2]

8 Scala Binary plugin an abstract class
that implements
the apply(Project
project) method
of the
Plugin<Project>
interface in Scala.

No[2]

If you suspect issues with your plugin code, try creating a Build Scan to identify bottlenecks. The
Gradle profiler can help automate Build Scan generation and gather more low-level information.

Implementing Pre-compiled Script Plugins
A precompiled script plugin is typically a Kotlin script that has been compiled and distributed as
Java class files packaged in a library. These scripts are intended to be consumed as binary Gradle
plugins and are recommended for use as convention plugins.

A convention plugin is a plugin that normally configures existing core and community plugins
with your own conventions (i.e. default values) such as setting the Java version by using
java.toolchain.languageVersion = JavaLanguageVersion.of(17). Convention plugins are also used to
enforce project standards and help streamline the build process. They can apply and configure

https://scans.gradle.com/
https://github.com/gradle/gradle-profiler

plugins, create new tasks and extensions, set dependencies, and much more.

Setting the plugin ID

The plugin ID for a precompiled script is derived from its file name and optional package
declaration.

For example, a script named code-quality.gradle(.kts) located in src/main/groovy (or
src/main/kotlin) without a package declaration would be exposed as the code-quality plugin:

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

app/build.gradle.kts

plugins {
 id("code-quality")
}

buildSrc/build.gradle

plugins {
 id 'groovy-gradle-plugin'
}

app/build.gradle

plugins {
 id 'code-quality'
}

On the other hand, a script named code-quality.gradle.kts located in src/main/kotlin/my with the
package declaration my would be exposed as the my.code-quality plugin:

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

app/build.gradle.kts

plugins {
 id("my.code-quality")
}

IMPORTANT Groovy pre-compiled script plugins cannot have packages.

Making a plugin configurable using extensions

Extension objects are commonly used in plugins to expose configuration options and additional
functionality to build scripts.

When you apply a plugin that defines an extension, you can access the extension object and
configure its properties or call its methods to customize the behavior of the plugin or tasks
provided by the plugin.

A Project has an associated ExtensionContainer object that contains all the settings and properties
for the plugins that have been applied to the project. You can provide configuration for your plugin
by adding an extension object to this container.

Let’s update our greetings example:

buildSrc/src/main/kotlin/greetings.gradle.kts

// Create extension object
interface GreetingPluginExtension {
 val message: Property<String>
}

// Add the 'greeting' extension object to project
val extension =
project.extensions.create<GreetingPluginExtension>("greeting")

buildSrc/src/main/groovy/greetings.gradle

// Create extension object
interface GreetingPluginExtension {
 Property<String> getMessage()
}

// Add the 'greeting' extension object to project
def extension = project.extensions.create("greeting",
GreetingPluginExtension)

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/ExtensionContainer.html

You can set the value of the message property directly with extension.message.set("Hi from
Gradle,").

However, the GreetingPluginExtension object becomes available as a project property with the same
name as the extension object. You can now access message like so:

buildSrc/src/main/kotlin/greetings.gradle.kts

// Where the<GreetingPluginExtension>() is equivalent to
project.extensions.getByType(GreetingPluginExtension::class.java)
the<GreetingPluginExtension>().message.set("Hi from Gradle")

buildSrc/src/main/groovy/greetings.gradle

extensions.findByType(GreetingPluginExtension).message.set("Hi from Gradle")

If you apply the greetings plugin, you can set the convention in your build script:

app/build.gradle.kts

plugins {
 application
 id("greetings")
}

greeting {
 message = "Hello from Gradle"
}

app/build.gradle

plugins {
 id 'application'
 id('greetings')
}

configure(greeting) {
 message = "Hello from Gradle"
}

Adding default configuration as conventions

In plugins, you can define default values, also known as conventions, using the project object.

Convention properties are properties that are initialized with default values but can be overridden:

buildSrc/src/main/kotlin/greetings.gradle.kts

// Create extension object
interface GreetingPluginExtension {
 val message: Property<String>
}

// Add the 'greeting' extension object to project
val extension =
project.extensions.create<GreetingPluginExtension>("greeting")

// Set a default value for 'message'
extension.message.convention("Hello from Gradle")

buildSrc/src/main/groovy/greetings.gradle

// Create extension object
interface GreetingPluginExtension {
 Property<String> getMessage()
}

// Add the 'greeting' extension object to project
def extension = project.extensions.create("greeting",
GreetingPluginExtension)

// Set a default value for 'message'
extension.message.convention("Hello from Gradle")

extension.message.convention(…) sets a convention for the message property of the extension. This
convention specifies that the value of message should default to "Hello from Gradle".

If the message property is not explicitly set, its value will be automatically set to "Hello from Gradle".

Mapping extension properties to task properties

Using an extension and mapping it to a custom task’s input/output properties is common in plugins.

In this example, the message property of the GreetingPluginExtension is mapped to the message
property of the GreetingTask as an input:

buildSrc/src/main/kotlin/greetings.gradle.kts

// Create extension object
interface GreetingPluginExtension {
 val message: Property<String>
}

// Add the 'greeting' extension object to project
val extension =
project.extensions.create<GreetingPluginExtension>("greeting")

// Set a default value for 'message'
extension.message.convention("Hello from Gradle")

// Create a greeting task
abstract class GreetingTask : DefaultTask() {
 @Input
 val message = project.objects.property<String>()

 @TaskAction
 fun greet() {
 println("Message: ${message.get()}")
 }
}

// Register the task and set the convention
tasks.register<GreetingTask>("hello") {
 message.convention(extension.message)
}

buildSrc/src/main/groovy/greetings.gradle

// Create extension object
interface GreetingPluginExtension {
 Property<String> getMessage()
}

// Add the 'greeting' extension object to project
def extension = project.extensions.create("greeting",
GreetingPluginExtension)

// Set a default value for 'message'
extension.message.convention("Hello from Gradle")

// Create a greeting task
abstract class GreetingTask extends DefaultTask {
 @Input

 abstract Property<String> getMessage()

 @TaskAction
 void greet() {
 println("Message: ${message.get()}")
 }
}

// Register the task and set the convention
tasks.register("hello", GreetingTask) {
 message.convention(extension.message)
}

$ gradle -q hello
Message: Hello from Gradle

This means that changes to the extension’s message property will trigger the task to be considered
out-of-date, ensuring that the task is re-executed with the new message.

You can find out more about types that you can use in task implementations and extensions in Lazy
Configuration.

Applying external plugins

In order to apply an external plugin in a precompiled script plugin, it has to be added to the plugin
project’s implementation classpath in the plugin’s build file:

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

repositories {
 mavenCentral()
}

dependencies {
 implementation("com.bmuschko:gradle-docker-plugin:6.4.0")
}

buildSrc/build.gradle

plugins {
 id 'groovy-gradle-plugin'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'com.bmuschko:gradle-docker-plugin:6.4.0'
}

It can then be applied in the precompiled script plugin:

buildSrc/src/main/kotlin/my-plugin.gradle.kts

plugins {
 id("com.bmuschko.docker-remote-api")
}

buildSrc/src/main/groovy/my-plugin.gradle

plugins {
 id 'com.bmuschko.docker-remote-api'
}

The plugin version in this case is defined in the dependency declaration.

Implementing Binary Plugins
Binary plugins refer to plugins that are compiled and distributed as JAR files. These plugins are
usually written in Java or Kotlin and provide custom functionality or tasks to a Gradle build.

Using the Plugin Development plugin

The Gradle Plugin Development plugin can be used to assist in developing Gradle plugins.

This plugin will automatically apply the Java Plugin, add the gradleApi() dependency to the api
configuration, generate the required plugin descriptors in the resulting JAR file, and configure the

java_gradle_plugin.pdf#java_gradle_plugin
java_plugin.pdf#java_plugin

Plugin Marker Artifact to be used when publishing.

To apply and configure the plugin, add the following code to your build file:

build.gradle.kts

plugins {
 `java-gradle-plugin`
}

gradlePlugin {
 plugins {
 create("simplePlugin") {
 id = "org.example.greeting"
 implementationClass = "org.example.GreetingPlugin"
 }
 }
}

build.gradle

plugins {
 id 'java-gradle-plugin'
}

gradlePlugin {
 plugins {
 simplePlugin {
 id = 'org.example.greeting'
 implementationClass = 'org.example.GreetingPlugin'
 }
 }
}

Writing and using custom task types is recommended when developing plugins as it automatically
benefits from incremental builds. As an added benefit of applying the plugin to your project, the
task validatePlugins automatically checks for an existing input/output annotation for every public
property defined in a custom task type implementation.

Creating a plugin ID

Plugin IDs are meant to be globally unique, similar to Java package names (i.e., a reverse domain
name). This format helps prevent naming collisions and allows grouping plugins with similar
ownership.

incremental_build.pdf#incremental_build

An explicit plugin identifier simplifies applying the plugin to a project. Your plugin ID should
combine components that reflect the namespace (a reasonable pointer to you or your organization)
and the name of the plugin it provides. For example, if your Github account is named foo and your
plugin is named bar, a suitable plugin ID might be com.github.foo.bar. Similarly, if the plugin was
developed at the baz organization, the plugin ID might be org.baz.bar.

Plugin IDs should adhere to the following guidelines:

• May contain any alphanumeric character, '.', and '-'.

• Must contain at least one '.' character separating the namespace from the plugin’s name.

• Conventionally use a lowercase reverse domain name convention for the namespace.

• Conventionally use only lowercase characters in the name.

• org.gradle, com.gradle, and com.gradleware namespaces may not be used.

• Cannot start or end with a '.' character.

• Cannot contain consecutive '.' characters (i.e., '..').

A namespace that identifies ownership and a name is sufficient for a plugin ID.

When bundling multiple plugins in a single JAR artifact, adhering to the same naming conventions
is recommended. This practice helps logically group related plugins.

There is no limit to the number of plugins that can be defined and registered (by different
identifiers) within a single project.

The identifiers for plugins written as a class should be defined in the project’s build script
containing the plugin classes. For this, the java-gradle-plugin needs to be applied:

buildSrc/build.gradle.kts

plugins {
 id("java-gradle-plugin")
}

gradlePlugin {
 plugins {
 create("androidApplicationPlugin") {
 id = "com.android.application"
 implementationClass = "com.android.AndroidApplicationPlugin"
 }
 create("androidLibraryPlugin") {
 id = "com.android.library"
 implementationClass = "com.android.AndroidLibraryPlugin"
 }
 }
}

buildSrc/build.gradle

plugins {
 id 'java-gradle-plugin'
}

gradlePlugin {
 plugins {
 androidApplicationPlugin {
 id = 'com.android.application'
 implementationClass = 'com.android.AndroidApplicationPlugin'
 }
 androidLibraryPlugin {
 id = 'com.android.library'
 implementationClass = 'com.android.AndroidLibraryPlugin'
 }
 }
}

Working with files

When developing plugins, it’s a good idea to be flexible when accepting input configuration for file
locations.

It is recommended to use Gradle’s managed properties and project.layout to select file or directory
locations. This will enable lazy configuration so that the actual location will only be resolved when
the file is needed and can be reconfigured at any time during build configuration.

This Gradle build file defines a task GreetingToFileTask that writes a greeting to a file. It also
registers two tasks: greet, which creates the file with the greeting, and sayGreeting, which prints the
file’s contents. The greetingFile property is used to specify the file path for the greeting:

build.gradle.kts

abstract class GreetingToFileTask : DefaultTask() {

 @get:OutputFile
 abstract val destination: RegularFileProperty

 @TaskAction
 fun greet() {
 val file = destination.get().asFile
 file.parentFile.mkdirs()
 file.writeText("Hello!")
 }
}

val greetingFile = objects.fileProperty()

tasks.register<GreetingToFileTask>("greet") {
 destination = greetingFile
}

tasks.register("sayGreeting") {
 dependsOn("greet")
 val greetingFile = greetingFile
 doLast {
 val file = greetingFile.get().asFile
 println("${file.readText()} (file: ${file.name})")
 }
}

greetingFile = layout.buildDirectory.file("hello.txt")

build.gradle

abstract class GreetingToFileTask extends DefaultTask {

 @OutputFile
 abstract RegularFileProperty getDestination()

 @TaskAction
 def greet() {
 def file = getDestination().get().asFile
 file.parentFile.mkdirs()
 file.write 'Hello!'
 }
}

def greetingFile = objects.fileProperty()

tasks.register('greet', GreetingToFileTask) {
 destination = greetingFile
}

tasks.register('sayGreeting') {
 dependsOn greet
 doLast {
 def file = greetingFile.get().asFile
 println "${file.text} (file: ${file.name})"
 }
}

greetingFile = layout.buildDirectory.file('hello.txt')

$ gradle -q sayGreeting
Hello! (file: hello.txt)

In this example, we configure the greet task destination property as a closure/provider, which is
evaluated with the Project.file(java.lang.Object) method to turn the return value of the
closure/provider into a File object at the last minute. Note that we specify the greetingFile
property value after the task configuration. This lazy evaluation is a key benefit of accepting any
value when setting a file property and then resolving that value when reading the property.

You can learn more about working with files lazily in Working with Files.

Making a plugin configurable using extensions

Most plugins offer configuration options for build scripts and other plugins to customize how the
plugin works. Plugins do this using extension objects.

A Project has an associated ExtensionContainer object that contains all the settings and properties
for the plugins that have been applied to the project. You can provide configuration for your plugin
by adding an extension object to this container.

An extension object is simply an object with Java Bean properties representing the configuration.

Let’s add a greeting extension object to the project, which allows you to configure the greeting:

build.gradle.kts

interface GreetingPluginExtension {
 val message: Property<String>
}

class GreetingPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 // Add the 'greeting' extension object
 val extension =
project.extensions.create<GreetingPluginExtension>("greeting")
 // Add a task that uses configuration from the extension object
 project.task("hello") {
 doLast {
 println(extension.message.get())
 }
 }
 }
}

apply<GreetingPlugin>()

// Configure the extension

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/ExtensionContainer.html

the<GreetingPluginExtension>().message = "Hi from Gradle"

build.gradle

interface GreetingPluginExtension {
 Property<String> getMessage()
}

class GreetingPlugin implements Plugin<Project> {
 void apply(Project project) {
 // Add the 'greeting' extension object
 def extension = project.extensions.create('greeting',
GreetingPluginExtension)
 // Add a task that uses configuration from the extension object
 project.task('hello') {
 doLast {
 println extension.message.get()
 }
 }
 }
}

apply plugin: GreetingPlugin

// Configure the extension
greeting.message = 'Hi from Gradle'

$ gradle -q hello
Hi from Gradle

In this example, GreetingPluginExtension is an object with a property called message. The extension
object is added to the project with the name greeting. This object becomes available as a project
property with the same name as the extension object. the<GreetingPluginExtension>() is equivalent
to project.extensions.getByType(GreetingPluginExtension::class.java).

Often, you have several related properties you need to specify on a single plugin. Gradle adds a
configuration block for each extension object, so you can group settings:

build.gradle.kts

interface GreetingPluginExtension {
 val message: Property<String>
 val greeter: Property<String>
}

class GreetingPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 val extension =
project.extensions.create<GreetingPluginExtension>("greeting")
 project.task("hello") {
 doLast {
 println("${extension.message.get()} from
${extension.greeter.get()}")
 }
 }
 }
}

apply<GreetingPlugin>()

// Configure the extension using a DSL block
configure<GreetingPluginExtension> {
 message = "Hi"
 greeter = "Gradle"
}

build.gradle

interface GreetingPluginExtension {
 Property<String> getMessage()
 Property<String> getGreeter()
}

class GreetingPlugin implements Plugin<Project> {
 void apply(Project project) {
 def extension = project.extensions.create('greeting',
GreetingPluginExtension)
 project.task('hello') {
 doLast {
 println "${extension.message.get()} from ${extension.greeter
.get()}"
 }
 }
 }
}

apply plugin: GreetingPlugin

// Configure the extension using a DSL block
greeting {
 message = 'Hi'
 greeter = 'Gradle'

}

$ gradle -q hello
Hi from Gradle

In this example, several settings can be grouped within the configure<GreetingPluginExtension>
block. The configure function is used to configure an extension object. It provides a convenient way
to set properties or apply configurations to these objects. The type used in the build script’s
configure function (GreetingPluginExtension) must match the extension type. Then, when the block
is executed, the receiver of the block is the extension.

In this example, several settings can be grouped within the greeting closure. The name of the
closure block in the build script (greeting) must match the extension object name. Then, when the
closure is executed, the fields on the extension object will be mapped to the variables within the
closure based on the standard Groovy closure delegate feature.

Declaring a DSL configuration container

Using an extension object extends the Gradle DSL to add a project property and DSL block for the
plugin. Because an extension object is a regular object, you can provide your own DSL nested inside
the plugin block by adding properties and methods to the extension object.

Let’s consider the following build script for illustration purposes.

build.gradle.kts

plugins {
 id("org.myorg.server-env")
}

environments {
 create("dev") {
 url = "http://localhost:8080"
 }

 create("staging") {
 url = "http://staging.enterprise.com"
 }

 create("production") {
 url = "http://prod.enterprise.com"
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#configure-java.lang.Object-groovy.lang.Closure-

build.gradle

plugins {
 id 'org.myorg.server-env'
}

environments {
 dev {
 url = 'http://localhost:8080'
 }

 staging {
 url = 'http://staging.enterprise.com'
 }

 production {
 url = 'http://prod.enterprise.com'
 }
}

The DSL exposed by the plugin exposes a container for defining a set of environments. Each
environment the user configures has an arbitrary but declarative name and is represented with its
own DSL configuration block. The example above instantiates a development, staging, and
production environment, including its respective URL.

Each environment must have a data representation in code to capture the values. The name of an
environment is immutable and can be passed in as a constructor parameter. Currently, the only
other parameter the data object stores is a URL.

The following ServerEnvironment object fulfills those requirements:

ServerEnvironment.java

abstract public class ServerEnvironment {
 private final String name;

 @javax.inject.Inject
 public ServerEnvironment(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 abstract public Property<String> getUrl();
}

Gradle exposes the factory method ObjectFactory.domainObjectContainer(Class,
NamedDomainObjectFactory) to create a container of data objects. The parameter the method takes
is the class representing the data. The created instance of type NamedDomainObjectContainer can
be exposed to the end user by adding it to the extension container with a specific name.

It’s common for a plugin to post-process the captured values within the plugin implementation, e.g.,
to configure tasks:

ServerEnvironmentPlugin.java

public class ServerEnvironmentPlugin implements Plugin<Project> {
 @Override
 public void apply(final Project project) {
 ObjectFactory objects = project.getObjects();

 NamedDomainObjectContainer<ServerEnvironment> serverEnvironmentContainer =
 objects.domainObjectContainer(ServerEnvironment.class, name -> objects
.newInstance(ServerEnvironment.class, name));
 project.getExtensions().add("environments", serverEnvironmentContainer);

 serverEnvironmentContainer.all(serverEnvironment -> {
 String env = serverEnvironment.getName();
 String capitalizedServerEnv = env.substring(0, 1).toUpperCase() + env
.substring(1);
 String taskName = "deployTo" + capitalizedServerEnv;
 project.getTasks().register(taskName, Deploy.class, task -> task.getUrl()
.set(serverEnvironment.getUrl()));
 });
 }
}

In the example above, a deployment task is created dynamically for every user-configured
environment.

You can find out more about implementing project extensions in Developing Custom Gradle Types.

Modeling DSL-like APIs

DSLs exposed by plugins should be readable and easy to understand.

For example, let’s consider the following extension provided by a plugin. In its current form, it
offers a "flat" list of properties for configuring the creation of a website:

build-flat.gradle.kts

plugins {
 id("org.myorg.site")
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#domainObjectContainer-java.lang.Class-org.gradle.api.NamedDomainObjectFactory-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#domainObjectContainer-java.lang.Class-org.gradle.api.NamedDomainObjectFactory-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/NamedDomainObjectContainer.html

site {
 outputDir = layout.buildDirectory.file("mysite")
 websiteUrl = "https://gradle.org"
 vcsUrl = "https://github.com/gradle/gradle-site-plugin"
}

build-flat.gradle

plugins {
 id 'org.myorg.site'
}

site {
 outputDir = layout.buildDirectory.file("mysite")
 websiteUrl = 'https://gradle.org'
 vcsUrl = 'https://github.com/gradle/gradle-site-plugin'
}

As the number of exposed properties grows, you should introduce a nested, more expressive
structure.

The following code snippet adds a new configuration block named siteInfo as part of the extension.
This provides a stronger indication of what those properties mean:

build.gradle.kts

plugins {
 id("org.myorg.site")
}

site {
 outputDir = layout.buildDirectory.file("mysite")

 siteInfo {
 websiteUrl = "https://gradle.org"
 vcsUrl = "https://github.com/gradle/gradle-site-plugin"
 }
}

build.gradle

plugins {
 id 'org.myorg.site'

}

site {
 outputDir = layout.buildDirectory.file("mysite")

 siteInfo {
 websiteUrl = 'https://gradle.org'
 vcsUrl = 'https://github.com/gradle/gradle-site-plugin'
 }
}

Implementing the backing objects for such an extension is simple. First, introduce a new data
object for managing the properties websiteUrl and vcsUrl:

SiteInfo.java

abstract public class SiteInfo {

 abstract public Property<String> getWebsiteUrl();

 abstract public Property<String> getVcsUrl();
}

In the extension, create an instance of the siteInfo class and a method to delegate the captured
values to the data instance.

To configure underlying data objects, define a parameter of type Action.

The following example demonstrates the use of Action in an extension definition:

SiteExtension.java

abstract public class SiteExtension {

 abstract public RegularFileProperty getOutputDir();

 @Nested
 abstract public SiteInfo getSiteInfo();

 public void siteInfo(Action<? super SiteInfo> action) {
 action.execute(getSiteInfo());
 }
}

Mapping extension properties to task properties

Plugins commonly use an extension to capture user input from the build script and map it to a

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Action.html

custom task’s input/output properties. The build script author interacts with the extension’s DSL,
while the plugin implementation handles the underlying logic:

app/build.gradle.kts

// Extension class to capture user input
class MyExtension {
 @Input
 var inputParameter: String? = null
}

// Custom task that uses the input from the extension
class MyCustomTask : org.gradle.api.DefaultTask() {
 @Input
 var inputParameter: String? = null

 @TaskAction
 fun executeTask() {
 println("Input parameter: $inputParameter")
 }
}

// Plugin class that configures the extension and task
class MyPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 // Create and configure the extension
 val extension = project.extensions.create("myExtension",
MyExtension::class.java)
 // Create and configure the custom task
 project.tasks.register("myTask", MyCustomTask::class.java) {
 group = "custom"
 inputParameter = extension.inputParameter
 }
 }
}

app/build.gradle

// Extension class to capture user input
class MyExtension {
 @Input
 String inputParameter = null
}

// Custom task that uses the input from the extension
class MyCustomTask extends DefaultTask {
 @Input

 String inputParameter = null

 @TaskAction
 def executeTask() {
 println("Input parameter: $inputParameter")
 }
}

// Plugin class that configures the extension and task
class MyPlugin implements Plugin<Project> {
 void apply(Project project) {
 // Create and configure the extension
 def extension = project.extensions.create("myExtension", MyExtension)
 // Create and configure the custom task
 project.tasks.register("myTask", MyCustomTask) {
 group = "custom"
 inputParameter = extension.inputParameter
 }
 }
}

In this example, the MyExtension class defines an inputParameter property that can be set in the build
script. The MyPlugin class configures this extension and uses its inputParameter value to configure
the MyCustomTask task. The MyCustomTask task then uses this input parameter in its logic.

You can learn more about types you can use in task implementations and extensions in Lazy
Configuration.

Adding default configuration with conventions

Plugins should provide sensible defaults and standards in a specific context, reducing the number
of decisions users need to make. Using the project object, you can define default values. These are
known as conventions.

Conventions are properties that are initialized with default values and can be overridden by the
user in their build script. For example:

build.gradle.kts

interface GreetingPluginExtension {
 val message: Property<String>
}

class GreetingPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 // Add the 'greeting' extension object
 val extension =

project.extensions.create<GreetingPluginExtension>("greeting")
 extension.message.convention("Hello from GreetingPlugin")
 // Add a task that uses configuration from the extension object
 project.task("hello") {
 doLast {
 println(extension.message.get())
 }
 }
 }
}

apply<GreetingPlugin>()

build.gradle

interface GreetingPluginExtension {
 Property<String> getMessage()
}

class GreetingPlugin implements Plugin<Project> {
 void apply(Project project) {
 // Add the 'greeting' extension object
 def extension = project.extensions.create('greeting',
GreetingPluginExtension)
 extension.message.convention('Hello from GreetingPlugin')
 // Add a task that uses configuration from the extension object
 project.task('hello') {
 doLast {
 println extension.message.get()
 }
 }
 }
}

apply plugin: GreetingPlugin

$ gradle -q hello
Hello from GreetingPlugin

In this example, GreetingPluginExtension is a class that represents the convention. The message
property is the convention property with a default value of 'Hello from GreetingPlugin'.

Users can override this value in their build script:

build.gradle.kts

GreetingPluginExtension {
 message = "Custom message"
}

build.gradle

GreetingPluginExtension {
 message = 'Custom message'
}

$ gradle -q hello
Custom message

Separating capabilities from conventions

Separating capabilities from conventions in plugins allows users to choose which tasks and
conventions to apply.

For example, the Java Base plugin provides un-opinionated (i.e., generic) functionality like
SourceSets, while the Java plugin adds tasks and conventions familiar to Java developers like
classes, jar or javadoc.

When designing your own plugins, consider developing two plugins — one for capabilities and
another for conventions — to offer flexibility to users.

In the example below, MyPlugin contains conventions, and MyBasePlugin defines capabilities. Then,
MyPlugin applies MyBasePlugin, this is called plugin composition. To apply a plugin from another one:

MyBasePlugin.java

import org.gradle.api.Plugin;
import org.gradle.api.Project;

public class MyBasePlugin implements Plugin<Project> {
 public void apply(Project project) {
 // define capabilities
 }
}

MyPlugin.java

import org.gradle.api.Plugin;
import org.gradle.api.Project;

public class MyPlugin implements Plugin<Project> {
 public void apply(Project project) {
 project.getPluginManager().apply(MyBasePlugin.class);

 // define conventions
 }
}

Reacting to plugins

A common pattern in Gradle plugin implementations is configuring the runtime behavior of
existing plugins and tasks in a build.

For example, a plugin could assume that it is applied to a Java-based project and automatically
reconfigure the standard source directory:

InhouseStrongOpinionConventionJavaPlugin.java

public class InhouseStrongOpinionConventionJavaPlugin implements Plugin<Project> {
 public void apply(Project project) {
 // Careful! Eagerly appyling plugins has downsides, and is not always
recommended.
 project.getPluginManager().apply(JavaPlugin.class);
 SourceSetContainer sourceSets = project.getExtensions().getByType
(SourceSetContainer.class);
 SourceSet main = sourceSets.getByName(SourceSet.MAIN_SOURCE_SET_NAME);
 main.getJava().setSrcDirs(Arrays.asList("src"));
 }
}

The drawback to this approach is that it automatically forces the project to apply the Java plugin,
imposing a strong opinion on it (i.e., reducing flexibility and generality). In practice, the project
applying the plugin might not even deal with Java code.

Instead of automatically applying the Java plugin, the plugin could react to the fact that the
consuming project applies the Java plugin. Only if that is the case, then a certain configuration is
applied:

InhouseConventionJavaPlugin.java

public class InhouseConventionJavaPlugin implements Plugin<Project> {
 public void apply(Project project) {
 project.getPluginManager().withPlugin("java", javaPlugin -> {
 SourceSetContainer sourceSets = project.getExtensions().getByType
(SourceSetContainer.class);

 SourceSet main = sourceSets.getByName(SourceSet.MAIN_SOURCE_SET_NAME);
 main.getJava().setSrcDirs(Arrays.asList("src"));
 });
 }
}

Reacting to plugins is preferred over applying plugins if there is no good reason to assume that the
consuming project has the expected setup.

The same concept applies to task types:

InhouseConventionWarPlugin.java

public class InhouseConventionWarPlugin implements Plugin<Project> {
 public void apply(Project project) {
 project.getTasks().withType(War.class).configureEach(war ->
 war.setWebXml(project.file("src/someWeb.xml")));
 }
}

Reacting to build features

Plugins can access the status of build features in the build. The Build Features API allows checking
whether the user requested a particular Gradle feature and if it is active in the current build. An
example of a build feature is the configuration cache.

There are two main use cases:

• Using the status of build features in reports or statistics.

• Incrementally adopting experimental Gradle features by disabling incompatible plugin
functionality.

Below is an example of a plugin that utilizes both of the cases.

Reacting to build features

public abstract class MyPlugin implements Plugin<Project> {

 @Inject
 protected abstract BuildFeatures getBuildFeatures(); ①

 @Override
 public void apply(Project p) {
 BuildFeatures buildFeatures = getBuildFeatures();

 Boolean configCacheRequested = buildFeatures.getConfigurationCache()
.getRequested() ②
 .getOrNull(); // could be null if user did not opt in nor opt out
 String configCacheUsage = describeFeatureUsage(configCacheRequested);

https://docs.gradle.org/8.12/javadoc/org/gradle/api/configuration/BuildFeatures.html

 MyReport myReport = new MyReport();
 myReport.setConfigurationCacheUsage(configCacheUsage);

 boolean isolatedProjectsActive = buildFeatures.getIsolatedProjects().
getActive() ③
 .get(); // the active state is always defined
 if (!isolatedProjectsActive) {
 myOptionalPluginLogicIncompatibleWithIsolatedProjects();
 }
 }

 private String describeFeatureUsage(Boolean requested) {
 return requested == null ? "no preference" : requested ? "opt-in" : "opt-out";
 }

 private void myOptionalPluginLogicIncompatibleWithIsolatedProjects() {
 }
}

① The BuildFeatures service can be injected into plugins, tasks, and other managed types.

② Accessing the requested status of a feature for reporting.

③ Using the active status of a feature to disable incompatible functionality.

Build feature properties

A BuildFeature status properties are represented with Provider<Boolean> types.

The BuildFeature.getRequested() status of a build feature determines if the user requested to enable
or disable the feature.

When the requested provider value is:

• true — the user opted in for using the feature

• false — the user opted out from using the feature

• undefined — the user neither opted in nor opted out from using the feature

The BuildFeature.getActive() status of a build feature is always defined. It represents the effective
state of the feature in the build.

When the active provider value is:

• true — the feature may affect the build behavior in a way specific to the feature

• false — the feature will not affect the build behavior

Note that the active status does not depend on the requested status. Even if the user requests a
feature, it may still not be active due to other build options being used in the build. Gradle can also
activate a feature by default, even if the user did not specify a preference.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/configuration/BuildFeature.html#getRequested--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/configuration/BuildFeature.html#getActive--

Using a custom dependencies block

NOTE Custom dependencies blocks are based on incubating APIs.

A plugin can provide dependency declarations in custom blocks that allow users to declare
dependencies in a type-safe and context-aware way.

For instance, instead of users needing to know and use the underlying Configuration name to add
dependencies, a custom dependencies block lets the plugin pick a meaningful name that can be used
consistently.

Adding a custom dependencies block

To add a custom dependencies block, you need to create a new type that will represent the set of
dependency scopes available to users. That new type needs to be accessible from a part of your
plugin (from a domain object or extension). Finally, the dependency scopes need to be wired back
to underlying Configuration objects that will be used during dependency resolution.

See JvmComponentDependencies and JvmTestSuite for an example of how this is used in a Gradle
core plugin.

1. Create an interface that extends Dependencies

NOTE
You can also extend GradleDependencies to get access to Gradle-provided
dependencies like gradleApi().

ExampleDependencies.java

/**
 * Custom dependencies block for the example plugin.
 */
public interface ExampleDependencies extends Dependencies {

2. Add accessors for dependency scopes

For each dependency scope your plugin wants to support, add a getter method that returns a
DependencyCollector.

ExampleDependencies.java

 /**
 * Dependency scope called "implementation"
 */
 DependencyCollector getImplementation();

https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.jvm.JvmComponentDependencies.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.jvm.JvmTestSuite.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.GradleDependencies.html

3. Add accessors for custom dependencies block

To make the custom dependencies block configurable, the plugin needs to add a getDependencies
method that returns the new type from above and a configurable block method named
dependencies.

By convention, the accessors for your custom dependencies block should be called
getDependencies()/dependencies(Action). This method could be named something else, but users
would need to know that a different block can behave like a dependencies block.

ExampleExtension.java

 /**
 * Custom dependencies for this extension.
 */
 @Nested
 ExampleDependencies getDependencies();

 /**
 * Configurable block
 */
 default void dependencies(Action<? super ExampleDependencies> action) {
 action.execute(getDependencies());
 }

4. Wire dependency scope to Configuration

Finally, the plugin needs to wire the custom dependencies block to some underlying Configuration
objects. If this is not done, none of the dependencies declared in the custom block will be available
to dependency resolution.

ExamplePlugin.java

 project.getConfigurations().dependencyScope("exampleImplementation", conf
-> {
 conf.fromDependencyCollector(example.getDependencies()
.getImplementation());
 });

NOTE
In this example, the name users will use to add dependencies is "implementation",
but the underlying Configuration is named exampleImplementation.

build.gradle.kts

example {
 dependencies {

 implementation("junit:junit:4.13")
 }
}

build.gradle

example {
 dependencies {
 implementation("junit:junit:4.13")
 }
}

Differences between the custom dependencies and the top-level dependencies blocks

Each dependency scope returns a DependencyCollector that provides strongly-typed methods to add
and configure dependencies.

There is also a DependencyFactory with factory methods to create new dependencies from different
notations. Dependencies can be created lazily using these factory methods, as shown below.

A custom dependencies block differs from the top-level dependencies block in the following ways:

• Dependencies must be declared using a String, an instance of Dependency, a FileCollection, a
Provider of Dependency, or a ProviderConvertible of MinimalExternalModuleDependency.

• Outside of Gradle build scripts, you must explicitly call a getter for the DependencyCollector and
add.

◦ dependencies.add("implementation", x) becomes getImplementation().add(x)

• You cannot declare dependencies with the Map notation from Kotlin and Java. Use multi-
argument methods instead in Kotlin and Java.

◦ Kotlin: compileOnly(mapOf("group" to "foo", "name" to "bar")) becomes
compileOnly(module(group = "foo", name = "bar"))

◦ Java: compileOnly(Map.of("group", "foo", "name", "bar")) becomes
getCompileOnly().add(module("foo", "bar", null))

• You cannot add a dependency with an instance of Project. You must turn it into a
ProjectDependency first.

• You cannot add version catalog bundles directly. Instead, use the bundle method on each
configuration.

◦ Kotlin and Groovy: implementation(libs.bundles.testing) becomes
implementation.bundle(libs.bundles.testing)

• You cannot use providers for non-Dependency types directly. Instead, map them to a Dependency
using the DependencyFactory.

◦ Kotlin and Groovy: implementation(myStringProvider) becomes
implementation(myStringProvider.map { dependencyFactory.create(it) })

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyCollector.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/dsl/DependencyFactory.html

◦ Java: implementation(myStringProvider) becomes
getImplementation().add(myStringProvider.map(getDependencyFactory()::create)

• Unlike the top-level dependencies block, constraints are not in a separate block.

◦ Instead, constraints are added by decorating a dependency with constraint(…) like
implementation(constraint("org:foo:1.0")).

Keep in mind that the dependencies block may not provide access to the same methods as the top-
level dependencies block.

NOTE Plugins should prefer adding dependencies via their own dependencies block.

Providing default dependencies

The implementation of a plugin sometimes requires the use of an external dependency.

You might want to automatically download an artifact using Gradle’s dependency management
mechanism and later use it in the action of a task type declared in the plugin. Ideally, the plugin
implementation does not need to ask the user for the coordinates of that dependency - it can simply
predefine a sensible default version.

Let’s look at an example of a plugin that downloads files containing data for further processing. The
plugin implementation declares a custom configuration that allows for assigning those external
dependencies with dependency coordinates:

DataProcessingPlugin.java

public class DataProcessingPlugin implements Plugin<Project> {
 public void apply(Project project) {
 Configuration dataFiles = project.getConfigurations().create("dataFiles", c ->
{
 c.setVisible(false);
 c.setCanBeConsumed(false);
 c.setCanBeResolved(true);
 c.setDescription("The data artifacts to be processed for this plugin.");
 c.defaultDependencies(d -> d.add(project.getDependencies().create(
"org.myorg:data:1.4.6")));
 });

 project.getTasks().withType(DataProcessing.class).configureEach(
 dataProcessing -> dataProcessing.getDataFiles().from(dataFiles));
 }
}

DataProcessing.java

abstract public class DataProcessing extends DefaultTask {

 @InputFiles
 abstract public ConfigurableFileCollection getDataFiles();

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

 @TaskAction
 public void process() {
 System.out.println(getDataFiles().getFiles());
 }
}

This approach is convenient for the end user as there is no need to actively declare a dependency.
The plugin already provides all the details about this implementation.

But what if the user wants to redefine the default dependency?

No problem. The plugin also exposes the custom configuration that can be used to assign a different
dependency. Effectively, the default dependency is overwritten:

build.gradle.kts

plugins {
 id("org.myorg.data-processing")
}

dependencies {
 dataFiles("org.myorg:more-data:2.6")
}

build.gradle

plugins {
 id 'org.myorg.data-processing'
}

dependencies {
 dataFiles 'org.myorg:more-data:2.6'
}

You will find that this pattern works well for tasks that require an external dependency when the
task’s action is executed. You can go further and abstract the version to be used for the external
dependency by exposing an extension property (e.g. toolVersion in the JaCoCo plugin).

Minimizing the use of external libraries

Using external libraries in your Gradle projects can bring great convenience, but be aware that they
can introduce complex dependency graphs. Gradle’s buildEnvironment task can help you visualize
these dependencies, including those of your plugins. Keep in mind that plugins share the same

https://docs.gradle.org/8.12/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

classloader, so conflicts may arise with different versions of the same library.

To demonstrate let’s assume the following build script:

build.gradle.kts

plugins {
 id("org.asciidoctor.jvm.convert") version "4.0.2"
}

build.gradle

plugins {
 id 'org.asciidoctor.jvm.convert' version '4.0.2'
}

The output of the task clearly indicates the classpath of the classpath configuration:

$ gradle buildEnvironment

> Task :buildEnvironment

--
Root project 'external-libraries'
--

classpath
\--- org.asciidoctor.jvm.convert:org.asciidoctor.jvm.convert.gradle.plugin:4.0.2
 \--- org.asciidoctor:asciidoctor-gradle-jvm:4.0.2
 +--- org.ysb33r.gradle:grolifant-rawhide:3.0.0
 | \--- org.tukaani:xz:1.6
 +--- org.ysb33r.gradle:grolifant-herd:3.0.0
 | +--- org.tukaani:xz:1.6
 | +--- org.ysb33r.gradle:grolifant40:3.0.0
 | | +--- org.tukaani:xz:1.6
 | | +--- org.apache.commons:commons-collections4:4.4
 | | +--- org.ysb33r.gradle:grolifant-core:3.0.0
 | | | +--- org.tukaani:xz:1.6
 | | | +--- org.apache.commons:commons-collections4:4.4
 | | | \--- org.ysb33r.gradle:grolifant-rawhide:3.0.0 (*)
 | | \--- org.ysb33r.gradle:grolifant-rawhide:3.0.0 (*)
 | +--- org.ysb33r.gradle:grolifant50:3.0.0
 | | +--- org.tukaani:xz:1.6
 | | +--- org.ysb33r.gradle:grolifant40:3.0.0 (*)
 | | +--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)

 | | \--- org.ysb33r.gradle:grolifant40-legacy-api:3.0.0
 | | +--- org.tukaani:xz:1.6
 | | +--- org.apache.commons:commons-collections4:4.4
 | | +--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)
 | | \--- org.ysb33r.gradle:grolifant40:3.0.0 (*)
 | +--- org.ysb33r.gradle:grolifant60:3.0.0
 | | +--- org.tukaani:xz:1.6
 | | +--- org.ysb33r.gradle:grolifant40:3.0.0 (*)
 | | +--- org.ysb33r.gradle:grolifant50:3.0.0 (*)
 | | +--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)
 | | \--- org.ysb33r.gradle:grolifant-rawhide:3.0.0 (*)
 | +--- org.ysb33r.gradle:grolifant70:3.0.0
 | | +--- org.tukaani:xz:1.6
 | | +--- org.ysb33r.gradle:grolifant40:3.0.0 (*)
 | | +--- org.ysb33r.gradle:grolifant50:3.0.0 (*)
 | | +--- org.ysb33r.gradle:grolifant60:3.0.0 (*)
 | | \--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)
 | +--- org.ysb33r.gradle:grolifant80:3.0.0
 | | +--- org.tukaani:xz:1.6
 | | +--- org.ysb33r.gradle:grolifant40:3.0.0 (*)
 | | +--- org.ysb33r.gradle:grolifant50:3.0.0 (*)
 | | +--- org.ysb33r.gradle:grolifant60:3.0.0 (*)
 | | +--- org.ysb33r.gradle:grolifant70:3.0.0 (*)
 | | \--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)
 | +--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)
 | \--- org.ysb33r.gradle:grolifant-rawhide:3.0.0 (*)
 +--- org.asciidoctor:asciidoctor-gradle-base:4.0.2
 | \--- org.ysb33r.gradle:grolifant-herd:3.0.0 (*)
 \--- org.asciidoctor:asciidoctorj-api:2.5.7

(*) - Indicates repeated occurrences of a transitive dependency subtree. Gradle
expands transitive dependency subtrees only once per project; repeat occurrences only
display the root of the subtree, followed by this annotation.

A web-based, searchable dependency report is available by adding the --scan option.

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

A Gradle plugin does not run in its own, isolated classloader, so you must consider whether you
truly need a library or if a simpler solution suffices.

For logic that is executed as part of task execution, use the Worker API that allows you to isolate
libraries.

Providing multiple variants of a plugin

Variants of a plugin refer to different flavors or configurations of the plugin that are tailored to
specific needs or use cases. These variants can include different implementations, extensions, or
configurations of the base plugin.

The most convenient way to configure additional plugin variants is to use feature variants, a
concept available in all Gradle projects that apply one of the Java plugins:

dependencies {
 implementation 'com.google.guava:guava:30.1-jre' // Regular dependency
 featureVariant 'com.google.guava:guava-gwt:30.1-jre' // Feature variant
dependency
}

In the following example, each plugin variant is developed in isolation. A separate source set is
compiled and packaged in a separate jar for each variant.

The following sample demonstrates how to add a variant that is compatible with Gradle 7.0+ while
the "main" variant is compatible with older versions:

build.gradle.kts

val gradle7 = sourceSets.create("gradle7")

java {
 registerFeature(gradle7.name) {
 usingSourceSet(gradle7)
 capability(project.group.toString(), project.name,
project.version.toString()) ①
 }
}

configurations.configureEach {
 if (isCanBeConsumed && name.startsWith(gradle7.name)) {
 attributes {

attribute(GradlePluginApiVersion.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE, ②
 objects.named("7.0"))
 }
 }
}

tasks.named<Copy>(gradle7.processResourcesTaskName) { ③
 val copyPluginDescriptors = rootSpec.addChild()
 copyPluginDescriptors.into("META-INF/gradle-plugins")
 copyPluginDescriptors.from(tasks.pluginDescriptors)
}

dependencies {
 "gradle7CompileOnly"(gradleApi()) ④
}

build.gradle

def gradle7 = sourceSets.create('gradle7')

java {
 registerFeature(gradle7.name) {
 usingSourceSet(gradle7)
 capability(project.group.toString(), project.name, project.version
.toString()) ①
 }
}

configurations.configureEach {
 if (canBeConsumed && name.startsWith(gradle7.name)) {
 attributes {
 attribute(GradlePluginApiVersion
.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE, ②
 objects.named(GradlePluginApiVersion, '7.0'))
 }
 }
}

tasks.named(gradle7.processResourcesTaskName) { ③
 def copyPluginDescriptors = rootSpec.addChild()
 copyPluginDescriptors.into('META-INF/gradle-plugins')
 copyPluginDescriptors.from(tasks.pluginDescriptors)
}

dependencies {
 gradle7CompileOnly(gradleApi()) ④
}

NOTE
Only Gradle versions 7 or higher can be explicitly targeted by a variant, as support
for this was only added in Gradle 7.

First, we declare a separate source set and a feature variant for our Gradle 7 plugin variant. Then,
we do some specific wiring to turn the feature into a proper Gradle plugin variant:

① Assign the implicit capability that corresponds to the components GAV to the variant.

② Assign the Gradle API version attribute to all consumable configurations of our Gradle7 variant.
Gradle uses this information to determine which variant to select during plugin resolution.

③ Configure the processGradle7Resources task to ensure the plugin descriptor file is added to the
Gradle7 variant Jar.

④ Add a dependency to the gradleApi() for our new variant so that the API is visible during
compilation time.

Note that there is currently no convenient way to access the API of other Gradle versions as the one
you are building the plugin with. Ideally, every variant should be able to declare a dependency on
the API of the minimal Gradle version it supports. This will be improved in the future.

The above snippet assumes that all variants of your plugin have the plugin class at the same
location. That is, if your plugin class is org.example.GreetingPlugin, you need to create a second
variant of that class in src/gradle7/java/org/example.

Using version-specific variants of multi-variant plugins

Given a dependency on a multi-variant plugin, Gradle will automatically choose its variant that best
matches the current Gradle version when it resolves any of:

• plugins specified in the plugins {} block;

• buildscript classpath dependencies;

• dependencies in the root project of the build source (buildSrc) that appear on the compile or
runtime classpath;

• dependencies in a project that applies the Java Gradle Plugin Development plugin or the Kotlin
DSL plugin, appearing on the compile or runtime classpath.

The best matching variant is the variant that targets the highest Gradle API version and does not
exceed the current build’s Gradle version.

In all other cases, a plugin variant that does not specify the supported Gradle API version is
preferred if such a variant is present.

In projects that use plugins as dependencies, requesting the variants of plugin dependencies that
support a different Gradle version is possible. This allows a multi-variant plugin that depends on
other plugins to access their APIs, which are exclusively provided in their version-specific variants.

This snippet makes the plugin variant gradle7 defined above consume the matching variants of its
dependencies on other multi-variant plugins:

build.gradle.kts

configurations.configureEach {
 if (isCanBeResolved && name.startsWith(gradle7.name)) {
 attributes {

attribute(GradlePluginApiVersion.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE,
 objects.named("7.0"))
 }
 }
}

java_gradle_plugin.pdf#java_gradle_plugin

build.gradle

configurations.configureEach {
 if (canBeResolved && name.startsWith(gradle7.name)) {
 attributes {
 attribute(GradlePluginApiVersion
.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE,
 objects.named(GradlePluginApiVersion, '7.0'))
 }
 }
}

Testing Gradle plugins
Testing plays a crucial role in the development process by ensuring reliable and high-quality
software. This principle applies to build code, including Gradle plugins.

The sample project

This section revolves around a sample project called the "URL verifier plugin". This plugin creates a
task named verifyUrl that checks whether a given URL can be resolved via HTTP GET. The end user
can provide the URL via an extension named verification.

The following build script assumes that the plugin JAR file has been published to a binary
repository. The script demonstrates how to apply the plugin to the project and configure its exposed
extension:

build.gradle.kts

plugins {
 id("org.myorg.url-verifier") ①
}

verification {
 url = "https://www.google.com/" ②
}

build.gradle

plugins {
 id 'org.myorg.url-verifier' ①
}

verification {
 url = 'https://www.google.com/' ②
}

① Applies the plugin to the project

② Configures the URL to be verified through the exposed extension

Executing the verifyUrl task renders a success message if the HTTP GET call to the configured URL
returns with a 200 response code:

$ gradle verifyUrl

> Task :verifyUrl
Successfully resolved URL 'https://www.google.com/'

BUILD SUCCESSFUL in 0s
5 actionable tasks: 5 executed

Before diving into the code, let’s first revisit the different types of tests and the tooling that supports
implementing them.

The importance of testing

Testing is a crucial part of the software development life cycle, ensuring that software functions
correctly and meets quality standards before release. Automated testing allows developers to
refactor and improve code with confidence.

The testing pyramid

Manual Testing

While manual testing is straightforward, it is error-prone and requires human effort. For Gradle
plugins, manual testing involves using the plugin in a build script.

Automated Testing

Automated testing includes unit, integration, and functional testing.

The testing pyramid
introduced by Mike Cohen in
his book Succeeding with
Agile: Software Development
Using Scrum describes three
types of automated tests:

1. Unit Testing: Verifies the smallest units of code, typically methods, in isolation. It uses Stubs or
Mocks to isolate code from external dependencies.

2. Integration Testing: Validates that multiple units or components work together.

3. Functional Testing: Tests the system from the end user’s perspective, ensuring correct
functionality. End-to-end tests for Gradle plugins simulate a build, apply the plugin, and execute
specific tasks to verify functionality.

Tooling support

Testing Gradle plugins, both manually and automatically, is simplified with the appropriate tools.
The table below provides a summary of each testing approach. You can choose any test framework
you’re comfortable with.

For detailed explanations and code examples, refer to the specific sections below:

Test type Tooling support

Manual tests Gradle composite builds

Unit tests Any JVM-based test framework

Integration tests Any JVM-based test framework

Functional tests Any JVM-based test framework and Gradle TestKit

Setting up manual tests

The composite builds feature of Gradle makes it easy to test a plugin manually. The standalone
plugin project and the consuming project can be combined into a single unit, making it
straightforward to try out or debug changes without re-publishing the binary file:

https://www.mountaingoatsoftware.com/books/succeeding-with-agile-software-development-using-scrum
https://www.mountaingoatsoftware.com/books/succeeding-with-agile-software-development-using-scrum
https://www.mountaingoatsoftware.com/books/succeeding-with-agile-software-development-using-scrum

.
├── include-plugin-build ①
│ ├── build.gradle
│ └── settings.gradle
└── url-verifier-plugin ②
 ├── build.gradle
 ├── settings.gradle
 └── src

① Consuming project that includes the plugin project

② The plugin project

There are two ways to include a plugin project in a consuming project:

1. By using the command line option --include-build.

2. By using the method includeBuild in settings.gradle.

The following code snippet demonstrates the use of the settings file:

settings.gradle.kts

pluginManagement {
 includeBuild("../url-verifier-plugin")
}

settings.gradle

pluginManagement {
 includeBuild '../url-verifier-plugin'
}

The command line output of the verifyUrl task from the project include-plugin-build looks exactly
the same as shown in the introduction, except that it now executes as part of a composite build.

Manual testing has its place in the development process, but it is not a replacement for automated
testing.

Setting up automated tests

Setting up a suite of tests early on is crucial to the success of your plugin. Automated tests become
an invaluable safety net when upgrading the plugin to a new Gradle version or
enhancing/refactoring the code.

Organizing test source code

We recommend implementing a good distribution of unit, integration, and functional tests to cover
the most important use cases. Separating the source code for each test type automatically results in
a project that is more maintainable and manageable.

By default, the Java project creates a convention for organizing unit tests in the directory
src/test/java. Additionally, if you apply the Groovy plugin, source code under the directory
src/test/groovy is considered for compilation (with the same standard for Kotlin under the
directory src/test/kotlin). Consequently, source code directories for other test types should follow
a similar pattern:

.
└── src
 ├── functionalTest
 │ └── groovy ①
 ├── integrationTest
 │ └── groovy ②
 ├── main
 │ ├── java ③
 └── test
 └── groovy ④

① Source directory containing functional tests

② Source directory containing integration tests

③ Source directory containing production source code

④ Source directory containing unit tests

NOTE
The directories src/integrationTest/groovy and src/functionalTest/groovy are not
based on an existing standard convention for Gradle projects. You are free to choose
any project layout that works best for you.

You can configure the source directories for compilation and test execution.

The Test Suite plugin provides a DSL and API to model multiple groups of automated tests into test
suites in JVM-based projects. You can also rely on third-party plugins for convenience, such as the
Nebula Facet plugin or the TestSets plugin.

Modeling test types

NOTE
A new configuration DSL for modeling the below integrationTest suite is available
via the incubating JVM Test Suite plugin.

In Gradle, source code directories are represented using the concept of source sets. A source set is
configured to point to one or more directories containing source code. When you define a source
set, Gradle automatically sets up compilation tasks for the specified directories.

A pre-configured source set can be created with one line of build script code. The source set

jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
https://github.com/nebula-plugins/nebula-project-plugin#nebula-facet-plugin
https://github.com/unbroken-dome/gradle-testsets-plugin
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
java_plugin.pdf#source_sets

automatically registers configurations to define dependencies for the sources of the source set:

// Define a source set named 'test' for test sources
sourceSets {
 test {
 java {
 srcDirs = ['src/test/java']
 }
 }
}
// Specify a test implementation dependency on JUnit
dependencies {
 testImplementation 'junit:junit:4.12'
}

We use that to define an integrationTestImplementation dependency to the project itself, which
represents the "main" variant of our project (i.e., the compiled plugin code):

build.gradle.kts

val integrationTest by sourceSets.creating

dependencies {
 "integrationTestImplementation"(project)
}

build.gradle

def integrationTest = sourceSets.create("integrationTest")

dependencies {
 integrationTestImplementation(project)
}

Source sets are responsible for compiling source code, but they do not deal with executing the
bytecode. For test execution, a corresponding task of type Test needs to be established. The
following setup shows the execution of integration tests, referencing the classes and runtime
classpath of the integration test source set:

build.gradle.kts

val integrationTestTask = tasks.register<Test>("integrationTest") {

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/Test.html

 description = "Runs the integration tests."
 group = "verification"
 testClassesDirs = integrationTest.output.classesDirs
 classpath = integrationTest.runtimeClasspath
 mustRunAfter(tasks.test)
}
tasks.check {
 dependsOn(integrationTestTask)
}

build.gradle

def integrationTestTask = tasks.register("integrationTest", Test) {
 description = 'Runs the integration tests.'
 group = "verification"
 testClassesDirs = integrationTest.output.classesDirs
 classpath = integrationTest.runtimeClasspath
 mustRunAfter(tasks.named('test'))
}
tasks.named('check') {
 dependsOn(integrationTestTask)
}

Configuring a test framework

Gradle does not dictate the use of a specific test framework. Popular choices include JUnit, TestNG
and Spock. Once you choose an option, you have to add its dependency to the compile classpath for
your tests.

The following code snippet shows how to use Spock for implementing tests:

build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 testImplementation(platform("org.spockframework:spock-bom:2.2-groovy-
3.0"))
 testImplementation("org.spockframework:spock-core")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")

 "integrationTestImplementation"(platform("org.spockframework:spock-
bom:2.2-groovy-3.0"))

https://junit.org/
https://testng.org/
http://spockframework.org/

 "integrationTestImplementation"("org.spockframework:spock-core")
 "integrationTestRuntimeOnly"("org.junit.platform:junit-platform-
launcher")

 "functionalTestImplementation"(platform("org.spockframework:spock-
bom:2.2-groovy-3.0"))
 "functionalTestImplementation"("org.spockframework:spock-core")
 "functionalTestRuntimeOnly"("org.junit.platform:junit-platform-launcher")
}

tasks.withType<Test>().configureEach {
 // Using JUnitPlatform for running tests
 useJUnitPlatform()
}

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 testImplementation platform("org.spockframework:spock-bom:2.2-groovy-3.0
")
 testImplementation 'org.spockframework:spock-core'
 testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

 integrationTestImplementation platform("org.spockframework:spock-bom:2.2-
groovy-3.0")
 integrationTestImplementation 'org.spockframework:spock-core'
 integrationTestRuntimeOnly 'org.junit.platform:junit-platform-launcher'

 functionalTestImplementation platform("org.spockframework:spock-bom:2.2-
groovy-3.0")
 functionalTestImplementation 'org.spockframework:spock-core'
 functionalTestRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

tasks.withType(Test).configureEach {
 // Using JUnitPlatform for running tests
 useJUnitPlatform()
}

NOTE
Spock is a Groovy-based BDD test framework that even includes APIs for creating
Stubs and Mocks. The Gradle team prefers Spock over other options for its
expressiveness and conciseness.

Implementing automated tests

This section discusses representative implementation examples for unit, integration, and functional
tests. All test classes are based on the use of Spock, though it should be relatively easy to adapt the
code to a different test framework.

Implementing unit tests

The URL verifier plugin emits HTTP GET calls to check if a URL can be resolved successfully. The
method DefaultHttpCaller.get(String) is responsible for calling a given URL and returns an
instance of type HttpResponse. HttpResponse is a POJO containing information about the HTTP
response code and message:

HttpResponse.java

package org.myorg.http;

public class HttpResponse {
 private int code;
 private String message;

 public HttpResponse(int code, String message) {
 this.code = code;
 this.message = message;
 }

 public int getCode() {
 return code;
 }

 public String getMessage() {
 return message;
 }

 @Override
 public String toString() {
 return "HTTP " + code + ", Reason: " + message;
 }
}

The class HttpResponse represents a good candidate for a unit test. It does not reach out to any other
classes nor does it use the Gradle API.

HttpResponseTest.groovy

package org.myorg.http

import spock.lang.Specification

class HttpResponseTest extends Specification {

 private static final int OK_HTTP_CODE = 200
 private static final String OK_HTTP_MESSAGE = 'OK'

 def "can access information"() {
 when:
 def httpResponse = new HttpResponse(OK_HTTP_CODE, OK_HTTP_MESSAGE)

 then:
 httpResponse.code == OK_HTTP_CODE
 httpResponse.message == OK_HTTP_MESSAGE
 }

 def "can get String representation"() {
 when:
 def httpResponse = new HttpResponse(OK_HTTP_CODE, OK_HTTP_MESSAGE)

 then:
 httpResponse.toString() == "HTTP $OK_HTTP_CODE, Reason: $OK_HTTP_MESSAGE"
 }
}

IMPORTANT

When writing unit tests, it’s important to test boundary conditions and
various forms of invalid input. Try to extract as much logic as possible from
classes that use the Gradle API to make it testable as unit tests. It will result
in maintainable code and faster test execution.

You can use the ProjectBuilder class to create Project instances to use when you test your plugin
implementation.

src/test/java/org/example/GreetingPluginTest.java

public class GreetingPluginTest {
 @Test
 public void greeterPluginAddsGreetingTaskToProject() {
 Project project = ProjectBuilder.builder().build();
 project.getPluginManager().apply("org.example.greeting");

 assertTrue(project.getTasks().getByName("hello") instanceof GreetingTask);
 }
}

Implementing integration tests

Let’s look at a class that reaches out to another system, the piece of code that emits the HTTP calls.
At the time of executing a test for the class DefaultHttpCaller, the runtime environment needs to be
able to reach out to the internet:

https://docs.gradle.org/8.12/javadoc/org/gradle/testfixtures/ProjectBuilder.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html

DefaultHttpCaller.java

package org.myorg.http;

import java.io.IOException;
import java.net.HttpURLConnection;
import java.net.URI;
import java.net.URISyntaxException;

public class DefaultHttpCaller implements HttpCaller {
 @Override
 public HttpResponse get(String url) {
 try {
 HttpURLConnection connection = (HttpURLConnection) new URI(url).toURL()
.openConnection();
 connection.setConnectTimeout(5000);
 connection.setRequestMethod("GET");
 connection.connect();

 int code = connection.getResponseCode();
 String message = connection.getResponseMessage();
 return new HttpResponse(code, message);
 } catch (IOException e) {
 throw new HttpCallException(String.format("Failed to call URL '%s' via
HTTP GET", url), e);
 } catch (URISyntaxException e) {
 throw new RuntimeException(e);
 }
 }
}

Implementing an integration test for DefaultHttpCaller doesn’t look much different from the unit
test shown in the previous section:

DefaultHttpCallerIntegrationTest.groovy

package org.myorg.http

import spock.lang.Specification
import spock.lang.Subject

class DefaultHttpCallerIntegrationTest extends Specification {
 @Subject HttpCaller httpCaller = new DefaultHttpCaller()

 def "can make successful HTTP GET call"() {
 when:
 def httpResponse = httpCaller.get('https://www.google.com/')

 then:
 httpResponse.code == 200

 httpResponse.message == 'OK'
 }

 def "throws exception when calling unknown host via HTTP GET"() {
 when:
 httpCaller.get('https://www.wedonotknowyou123.com/')

 then:
 def t = thrown(HttpCallException)
 t.message == "Failed to call URL 'https://www.wedonotknowyou123.com/' via HTTP
GET"
 t.cause instanceof UnknownHostException
 }
}

Implementing functional tests

Functional tests verify the correctness of the plugin end-to-end. In practice, this means applying,
configuring, and executing the functionality of the plugin implementation. The UrlVerifierPlugin
class exposes an extension and a task instance that uses the URL value configured by the end user:

UrlVerifierPlugin.java

package org.myorg;

import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.myorg.tasks.UrlVerify;

public class UrlVerifierPlugin implements Plugin<Project> {
 @Override
 public void apply(Project project) {
 UrlVerifierExtension extension = project.getExtensions().create("verification
", UrlVerifierExtension.class);
 UrlVerify verifyUrlTask = project.getTasks().create("verifyUrl", UrlVerify
.class);
 verifyUrlTask.getUrl().set(extension.getUrl());
 }
}

Every Gradle plugin project should apply the plugin development plugin to reduce boilerplate code.
By applying the plugin development plugin, the test source set is preconfigured for the use with
TestKit. If we want to use a custom source set for functional tests and leave the default test source
set for only unit tests, we can configure the plugin development plugin to look for TestKit tests
elsewhere.

java_gradle_plugin.pdf#java_gradle_plugin

build.gradle.kts

gradlePlugin {
 testSourceSets(functionalTest)
}

build.gradle

gradlePlugin {
 testSourceSets(sourceSets.functionalTest)
}

Functional tests for Gradle plugins use an instance of GradleRunner to execute the build under test.
GradleRunner is an API provided by TestKit, which internally uses the Tooling API to execute the
build.

The following example applies the plugin to the build script under test, configures the extension
and executes the build with the task verifyUrl. Please see the TestKit documentation to get more
familiar with the functionality of TestKit.

UrlVerifierPluginFunctionalTest.groovy

package org.myorg

import org.gradle.testkit.runner.GradleRunner
import spock.lang.Specification
import spock.lang.TempDir

import static org.gradle.testkit.runner.TaskOutcome.SUCCESS

class UrlVerifierPluginFunctionalTest extends Specification {
 @TempDir File testProjectDir
 File buildFile

 def setup() {
 buildFile = new File(testProjectDir, 'build.gradle')
 buildFile << """
 plugins {
 id 'org.myorg.url-verifier'
 }
 """
 }

 def "can successfully configure URL through extension and verify it"() {
 buildFile << """

 verification {
 url = 'https://www.google.com/'
 }
 """

 when:
 def result = GradleRunner.create()
 .withProjectDir(testProjectDir)
 .withArguments('verifyUrl')
 .withPluginClasspath()
 .build()

 then:
 result.output.contains("Successfully resolved URL 'https://www.google.com/'")
 result.task(":verifyUrl").outcome == SUCCESS
 }
}

IDE integration

TestKit determines the plugin classpath by running a specific Gradle task. You will need to execute
the assemble task to initially generate the plugin classpath or to reflect changes to it even when
running TestKit-based functional tests from the IDE.

Some IDEs provide a convenience option to delegate the "test classpath generation and execution"
to the build. In IntelliJ, you can find this option under Preferences… > Build, Execution, Deployment
> Build Tools > Gradle > Runner > Delegate IDE build/run actions to Gradle.

Publishing Plugins to the Gradle Plugin Portal
Publishing a plugin is the primary way to make it available for others to use. While you can publish
to a private repository to restrict access, publishing to the Gradle Plugin Portal makes your plugin
available to anyone in the world.

https://plugins.gradle.org

This guide shows you how to use the com.gradle.plugin-publish plugin to publish plugins to the
Gradle Plugin Portal using a convenient DSL. This approach streamlines configuration steps and
provides validation checks to ensure your plugin meets the Gradle Plugin Portal’s criteria.

Prerequisites

You’ll need an existing Gradle plugin project for this tutorial. If you don’t have one, use the Greeting
plugin sample.

Attempting to publish this plugin will safely fail with a permission error, so don’t worry about
cluttering up the Gradle Plugin Portal with a trivial example plugin.

Account setup

Before publishing your plugin, you must create an account on the Gradle Plugin Portal. Follow the
instructions on the registration page to create an account and obtain an API key from your profile
page’s "API Keys" tab.

https://plugins.gradle.org/plugin/com.gradle.plugin-publish
https://plugins.gradle.org
../samples/sample_gradle_plugin.html
../samples/sample_gradle_plugin.html
https://plugins.gradle.org/user/register

Store your API key in your Gradle configuration (gradle.publish.key and gradle.publish.secret) or
use a plugin like Seauc Credentials plugin or Gradle Credentials plugin for secure management.

It is common practice to copy and paste the text into your $HOME/.gradle/gradle.properties file, but
you can also place it in any other valid location. All the plugin requires is that the
gradle.publish.key and gradle.publish.secret are available as project properties when the
appropriate Plugin Portal tasks are executed.

If you are concerned about placing your credentials in gradle.properties, check out the Seauc
Credentials plugin or the Gradle Credentials plugin.

Alternatively, you can provide the API key via GRADLE_PUBLISH_KEY and GRADLE_PUBLISH_SECRET
environment variables. This approach might be useful for CI/CD pipelines.

Adding the Plugin Publishing Plugin

To publish your plugin, add the com.gradle.plugin-publish plugin to your project’s build.gradle or
build.gradle.kts file:

https://plugins.gradle.org/plugin/de.qaware.seu.as.code.credentials
https://plugins.gradle.org/plugin/de.qaware.seu.as.code.credentials
https://plugins.gradle.org/plugin/nu.studer.credentials

build.gradle.kts

plugins {
 id("com.gradle.plugin-publish") version "1.2.1"
}

build.gradle

plugins {
 id 'com.gradle.plugin-publish' version '1.2.1'
}

The latest version of the Plugin Publishing Plugin can be found on the Gradle Plugin Portal.

NOTE

Since version 1.0.0 the Plugin Publish Plugin automatically applies the Java Gradle
Plugin Development Plugin (assists with developing Gradle plugins) and the Maven
Publish Plugin (generates plugin publication metadata). If using older versions of
the Plugin Publish Plugin, these helper plugins must be applied explicitly.

Configuring the Plugin Publishing Plugin

Configure the com.gradle.plugin-publish plugin in your build.gradle or build.gradle.kts file.

build.gradle.kts

group = "io.github.johndoe" ①
version = "1.0" ②

gradlePlugin { ③
 website = "<substitute your project website>" ④
 vcsUrl = "<uri to project source repository>" ⑤

 // ... ⑥
}

build.gradle

group = 'io.github.johndoe' ①
version = '1.0' ②

https://plugins.gradle.org/plugin/com.gradle.plugin-publish
java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin

gradlePlugin { ③
 website = '<substitute your project website>' ④
 vcsUrl = '<uri to project source repository>' ⑤

 // ... ⑥
}

① Make sure your project has a group set which is used to identify the artifacts (jar and metadata)
you publish for your plugins in the repository of the Gradle Plugin Portal and which is
descriptive of the plugin author or the organization the plugins belong too.

② Set the version of your project, which will also be used as the version of your plugins.

③ Use the gradlePlugin block provided by the Java Gradle Plugin Development Plugin to configure
further options for your plugin publication.

④ Set the website for your plugin’s project.

⑤ Provide the source repository URI so that others can find it, if they want to contribute.

⑥ Set specific properties for each plugin you want to publish; see next section.

Define common properties for all plugins, such as group, version, website, and source repository,
using the gradlePlugin{} block:

build.gradle.kts

gradlePlugin { ①
 // ... ②

 plugins { ③
 create("greetingsPlugin") { ④
 id = "<your plugin identifier>" ⑤
 displayName = "<short displayable name for plugin>" ⑥
 description = "<human-readable description of what your plugin is
about>" ⑦
 tags = listOf("tags", "for", "your", "plugins") ⑧
 implementationClass = "<your plugin class>"
 }
 }
}

build.gradle

gradlePlugin { ①
 // ... ②

java_gradle_plugin.pdf#java_gradle_plugin

 plugins { ③
 greetingsPlugin { ④
 id = '<your plugin identifier>' ⑤
 displayName = '<short displayable name for plugin>' ⑥
 description = '<human-readable description of what your plugin is
about>' ⑦
 tags.set(['tags', 'for', 'your', 'plugins']) ⑧
 implementationClass = '<your plugin class>'
 }
 }
}

① Plugin specific configuration also goes into the gradlePlugin block.

② This is where we previously added global properties.

③ Each plugin you publish will have its own block inside plugins.

④ The name of a plugin block must be unique for each plugin you publish; this is a property used
only locally by your build and will not be part of the publication.

⑤ Set the unique id of the plugin, as it will be identified in the publication.

⑥ Set the plugin name in human-readable form.

⑦ Set a description to be displayed on the portal. It provides useful information to people who
want to use your plugin.

⑧ Specifies the categories your plugin covers. It makes the plugin more likely to be discovered by
people needing its functionality.

For example, consider the configuration for the GradleTest plugin, already published to the Gradle
Plugin Portal.

build.gradle.kts

gradlePlugin {
 website = "https://github.com/ysb33r/gradleTest"
 vcsUrl = "https://github.com/ysb33r/gradleTest.git"
 plugins {
 create("gradletestPlugin") {
 id = "org.ysb33r.gradletest"
 displayName = "Plugin for compatibility testing of Gradle
plugins"
 description = "A plugin that helps you test your plugin against a
variety of Gradle versions"
 tags = listOf("testing", "integrationTesting", "compatibility")
 implementationClass =
"org.ysb33r.gradle.gradletest.GradleTestPlugin"
 }
 }

https://plugins.gradle.org/plugin/org.ysb33r.gradletest

}

build.gradle

gradlePlugin {
 website = 'https://github.com/ysb33r/gradleTest'
 vcsUrl = 'https://github.com/ysb33r/gradleTest.git'
 plugins {
 gradletestPlugin {
 id = 'org.ysb33r.gradletest'
 displayName = 'Plugin for compatibility testing of Gradle
plugins'
 description = 'A plugin that helps you test your plugin against a
variety of Gradle versions'
 tags.addAll('testing', 'integrationTesting', 'compatibility')
 implementationClass =
'org.ysb33r.gradle.gradletest.GradleTestPlugin'
 }
 }
}

If you browse the associated page on the Gradle Plugin Portal for the GradleTest plugin, you will see
how the specified metadata is displayed.

Sources & Javadoc

The Plugin Publish Plugin automatically generates and publishes the Javadoc, and sources JARs for
your plugin publication.

Sign artifacts

Starting from version 1.0.0 of Plugin Publish Plugin, the signing of published plugin artifacts has
been made automatic. To enable it, all that’s needed is to apply the signing plugin in your build.

https://plugins.gradle.org/plugin/org.ysb33r.gradletest
signing_plugin.pdf#signing_plugin

Shadow dependencies

Starting from version 1.0.0 of Plugin Publish Plugin, shadowing your plugin’s dependencies (ie,
publishing it as a fat jar) has been made automatic. To enable it, all that’s needed is to apply the
com.gradleup.shadow plugin in your build.

Publishing the plugin

If you publish your plugin internally for use within your organization, you can publish it like any
other code artifact. See the Ivy and Maven chapters on publishing artifacts.

If you are interested in publishing your plugin to be used by the wider Gradle community, you can
publish it to Gradle Plugin Portal. This site provides the ability to search for and gather information
about plugins contributed by the Gradle community. Please refer to the corresponding section on
making your plugin available on this site.

Publish locally

To check how the artifacts of your published plugin look or to use it only locally or internally in
your company, you can publish it to any Maven repository, including a local folder. You only need
to configure repositories for publishing. Then, you can run the publish task to publish your plugin
to all repositories you have defined (but not the Gradle Plugin Portal).

build.gradle.kts

publishing {
 repositories {
 maven {
 name = "localPluginRepository"
 url = uri("../local-plugin-repository")
 }
 }
}

build.gradle

publishing {
 repositories {
 maven {
 name = 'localPluginRepository'
 url = file('../local-plugin-repository')
 }
 }
}

https://github.com/GradleUp/shadow
http://plugins.gradle.org

To use the repository in another build, add it to the repositories of the pluginManagement {} block in
your settings.gradle(.kts) file.

Publish to the Plugin Portal

Publish the plugin by using the publishPlugin task:

$./gradlew publishPlugins

You can validate your plugins before publishing using the --validate-only flag:

$./gradlew publishPlugins --validate-only

If you have not configured your gradle.properties for the Gradle Plugin Portal, you can specify
them on the command-line:

$./gradlew publishPlugins -Pgradle.publish.key=<key> -Pgradle.publish.secret=<secret>

NOTE

You will encounter a permission failure if you attempt to publish the example
Greeting Plugin with the ID used in this section. That’s expected and ensures the
portal won’t be overrun with multiple experimental and duplicate greeting-type
plugins.

After approval, your plugin will be available on the Gradle Plugin Portal for others to discover and
use.

Consume the published plugin

Once you successfully publish a plugin, it won’t immediately appear on the Portal. It also needs to
pass an approval process, which is manual and relatively slow for the initial version of your plugin,
but is fully automatic for subsequent versions. For further details, see here.

Once your plugin is approved, you can find instructions for its use at a URL of the form
https://plugins.gradle.org/plugin/<your-plugin-id>. For example, the Greeting Plugin example is
already on the portal at https://plugins.gradle.org/plugin/org.example.greeting.

Plugins published without Gradle Plugin Portal

If your plugin was published without using the Java Gradle Plugin Development Plugin, the
publication will be lacking Plugin Marker Artifact, which is needed for plugins DSL to locate the
plugin. In this case, the recommended way to resolve the plugin in another project is to add a
resolutionStrategy section to the pluginManagement {} block of the project’s settings file, as shown
below.

https://plugins.gradle.org/docs/publish-plugin-new#approval
https://plugins.gradle.org/plugin/org.example.greeting
java_gradle_plugin.pdf#java_gradle_plugin

settings.gradle.kts

resolutionStrategy {
 eachPlugin {
 if (requested.id.namespace == "org.example") {
 useModule("org.example:custom-plugin:${requested.version}")
 }
 }
}

settings.gradle

resolutionStrategy {
 eachPlugin {
 if (requested.id.namespace == 'org.example') {
 useModule("org.example:custom-plugin:${requested.version}")
 }
 }
}

Reporting problems

Plugins can report problems through Gradle’s problems-reporting APIs. The APIs report rich,
structured information about problems happening during the build. This information can be used
by different user interfaces such as Gradle’s console output, Build Scans, or IDEs to communicate
problems to the user in the most appropriate way.

The following example shows an issue reported from a plugin:

ProblemReportingPlugin.java

public class ProblemReportingPlugin implements Plugin<Project> {

 private final ProblemReporter problemReporter;

 @Inject
 public ProblemReportingPlugin(Problems problems) { ①
 this.problemReporter = problems.getReporter(); ②
 }

 public void apply(Project project) {
 this.problemReporter.reporting(builder -> builder ③
 .id("adhoc-deprecation", "Plugin 'x' is deprecated")

 .details("The plugin 'x' is deprecated since version 2.5")
 .solution("Please use plugin 'y'")
 .severity(Severity.WARNING)
);
 }
}

① The Problem service is injected into the plugin.

② A problem reporter, is created for the plugin. While the namespace is up to the plugin author, it
is recommended that the plugin ID be used.

③ A problem is reported. This problem is recoverable so that the build will continue.

For a full example, see our end-to-end sample.

Problem building

When reporting a problem, a wide variety of information can be provided. The ProblemSpec
describes all the information that can be provided.

Reporting problems

When it comes to reporting problems, we support two different modes:

• Reporting a problem is used for reporting problems that are recoverable, and the build should
continue.

• Throwing a problem is used for reporting problems that are not recoverable, and the build
should fail.

For more details, see the ProblemReporter documentation.

Problem summarization

When reporting issues, Gradle ensures that the reports are concise and free of unnecessary
redundancy. Specifically, it prevents reporting the same problem repeatedly once a certain
threshold is reached.

• During the build, the first few instances of a problem are reported as a Problem, providing all
information available for that problem.

• At the end of the build, subsequent occurrences of the same problem are grouped and
summarized as a ProblemSummary. This summary is delivered as with a
ProblemSummariesEvent, which provides the total count of occurrences.

Build failures

The standard approach for indicating a build failure is to throw an exception. ProblemReporter
provides enhanced support for this by allowing exceptions to be thrown with associated problem
reports.

../samples/sample_problems_api_usage.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/problems/ProblemSpec.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/problems/ProblemReporter.html#reporting-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/problems/ProblemReporter.html#throwing-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/problems/ProblemReporter.html
https://docs.gradle.org/8.12/javadoc/org/gradle/tooling/events/problems/Problem.html
https://docs.gradle.org/8.12/javadocorg/gradle/tooling/events/problems/ProblemSummary.html
https://docs.gradle.org/8.12/javadocorg/gradle/tooling/events/problems/ProblemSummariesEvent.html
https://docs.gradle.org/8.12/javadocorg/gradle/api/problems/ProblemReporter.html#throwing(org.gradle.api.Action)

FailingTask.java

throw getProblems().getReporter().throwing(problemSpec -> {
 problemSpec.id("sample-error", "Sample Error");
 problemSpec.contextualLabel("This happened because ProblemReporter.throwing()
was called");
 problemSpec.details("This is a demonstration of how to add\ndetailed
information to a build failure");
 problemSpec.documentedAt("https://example.com/docs");
 problemSpec.withException(new RuntimeException("Message from runtime
exception"));
 problemSpec.solution("Remove the Problems.throwing() method call from the task
action");
});

This ensures that build failures are clearly linked to the underlying issues and that these problems
are properly communicated to various clients. When a build failure is reported using the Problems
API, all clients (Tooling API, CLI, Build Scans, etc.) will have access to the association.

Command-line interface

The CLI build failure output will include detailed information about the problem. Error messages
and descriptions are sourced directly from the problem report. If the problem report includes a
solution or recommended actions, these will be displayed in place of generic resolutions.

FAILURE: Build failed with an exception.

* What went wrong:
Execution failed for task ':sample-project:myFailingTask'.
> Message from runtime exception
 This happened because ProblemReporter.throwing() was called
 This is a demonstration of how to add
 detailed information to a build failure

* Try:
> Remove the Problems.throwing() method call from the task action
> Run with --scan to get full insights.

BUILD FAILED in 0ms

Tooling API clients

Tooling API clients can access detailed problem reports associated with build failures via the
Failure object on the root build operation. To receive these reports, the clients must register a
progress listener for the OperationType.ROOT operation type. The progress listener callback should
then check if the operation result is of type FailureResult, and then it can access the associated
problems via Failure.getProblems().

In addition, there’s a more convenient way to access the failure details. If clients configure the
project connection with LongRunningOperation.withFailureDetails(), the Tooling API implicitly
subscribes to the ROOT operation type and provides failure details via the
GradleConnectionException.getFailures() method.

Generated HTML report

The output of the problems generated by the Problems API is also provided as a rich HTML report
generated at the end of the build. This report serves as a central location for users to review
problems that occurred during a build.

Plugin authors can use the Problems API to log events specific to their plugins, adding to the Gradle-
generated ones.

The report is not generated if no issues have been reported. Also, if you do not want to generate this
report, you can disable it with the --no-problems-report flag. The console output provides a link to
this report, as shown below:

[Incubating] Problem report is available at: <project-
dir>/build/reports/problems/problems-report.html

BUILD SUCCESSFUL in 1s

The rendered report link directs you to a detailed HTML view of the problems:

[1] Script plugins are hard to maintain. Do not use script plugins apply from:, they are not recommended.

[2] It is recommended to use a statically-typed language like Java or Kotlin for implementing plugins to reduce the likelihood of
binary incompatibilities. If using Groovy, consider using statically compiled Groovy.

OTHER TOPICS

Working With Files
File operations are fundamental to nearly every Gradle build. They involve handling source files,
managing file dependencies, and generating reports. Gradle provides a robust API that simplifies
these operations, enabling developers to perform necessary file tasks easily.

Hardcoded paths and laziness

It is best practice to avoid hardcoded paths in build scripts.

In addition to avoiding hardcoded paths, Gradle encourages laziness in its build scripts. This means
that tasks and operations should be deferred until they are actually needed rather than executed
eagerly.

Many examples in this chapter use hard-coded paths as string literals. This makes them easy to
understand, but it is not good practice. The problem is that paths often change, and the more places
you need to change them, the more likely you will miss one and break the build.

Where possible, you should use tasks, task properties, and project properties — in that order of
preference — to configure file paths.

For example, if you create a task that packages the compiled classes of a Java application, you
should use an implementation similar to this:

build.gradle.kts

val archivesDirPath = layout.buildDirectory.dir("archives")

tasks.register<Zip>("packageClasses") {
 archiveAppendix = "classes"
 destinationDirectory = archivesDirPath

 from(tasks.compileJava)
}

build.gradle

def archivesDirPath = layout.buildDirectory.dir('archives')

tasks.register('packageClasses', Zip) {
 archiveAppendix = "classes"
 destinationDirectory = archivesDirPath

 from compileJava
}

The compileJava task is the source of the files to package, and the project property archivesDirPath
stores the location of the archives, as we are likely to use it elsewhere in the build.

Using a task directly as an argument like this relies on it having defined outputs, so it won’t always
be possible. This example could be further improved by relying on the Java plugin’s convention for
destinationDirectory rather than overriding it, but it does demonstrate the use of project
properties.

Locating files

To perform some action on a file, you need to know where it is, and that’s the information provided
by file paths. Gradle builds on the standard Java File class, which represents the location of a single
file and provides APIs for dealing with collections of paths.

Using ProjectLayout

The ProjectLayout class is used to access various directories and files within a project. It provides
methods to retrieve paths to the project directory, build directory, settings file, and other important
locations within the project’s file structure. This class is particularly useful when you need to work
with files in a build script or plugin in different project paths:

build.gradle.kts

val archivesDirPath = layout.buildDirectory.dir("archives")

build.gradle

def archivesDirPath = layout.buildDirectory.dir('archives')

You can learn more about the ProjectLayout class in Services.

Using Project.file()

Gradle provides the Project.file(java.lang.Object) method for specifying the location of a single file
or directory.

Relative paths are resolved relative to the project directory, while absolute paths remain
unchanged.

incremental_build.pdf#sec:task_inputs_outputs
https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.file.ProjectLayout.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

CAUTION

Never use new File(relative path) unless passed to file() or files() or from()
or other methods defined in terms of file() or files(). Otherwise, this creates a
path relative to the current working directory (CWD). Gradle can make no
guarantees about the location of the CWD, which means builds that rely on it
may break at any time.

Here are some examples of using the file() method with different types of arguments:

build.gradle.kts

// Using a relative path
var configFile = file("src/config.xml")

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(File("src/config.xml"))

// Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get("src", "config.xml"))

// Using an absolute java.nio.file.Path object
configFile = file(Paths.get(System.getProperty("user.home")).resolve("global-
config.xml"))

build.gradle

// Using a relative path
File configFile = file('src/config.xml')

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(new File('src/config.xml'))

// Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get('src', 'config.xml'))

// Using an absolute java.nio.file.Path object
configFile = file(Paths.get(System.getProperty('user.home')).resolve('global-
config.xml'))

As you can see, you can pass strings, File instances and Path instances to the file() method, all of
which result in an absolute File object.

In the case of multi-project builds, the file() method will always turn relative paths into paths
relative to the current project directory, which may be a child project.

Using Project.getRootDir()

Suppose you want to use a path relative to the root project directory. In that case, you need to use
the special Project.getRootDir() property to construct an absolute path, like so:

build.gradle.kts

val configFile = file("$rootDir/shared/config.xml")

build.gradle

File configFile = file("$rootDir/shared/config.xml")

Let’s say you’re working on a multi-project build in the directory: dev/projects/AcmeHealth.
The build script above is at: AcmeHealth/subprojects/AcmePatientRecordLib/build.gradle.
The file path will resolve to the absolute of: dev/projects/AcmeHealth/shared/config.xml.

dev
├── projects
│ ├── AcmeHealth
│ │ ├── subprojects
│ │ │ ├── AcmePatientRecordLib
│ │ │ │ └── build.gradle
│ │ │ └── ...
│ │ ├── shared
│ │ │ └── config.xml
│ │ └── ...
│ └── ...
└── settings.gradle

Note that Project also provides Project.getRootProject() for multi-project builds which, in the
example, would resolve to: dev/projects/AcmeHealth/subprojects/AcmePatientRecordLib.

Using FileCollection

A file collection is simply a set of file paths represented by the FileCollection interface.

The set of paths can be any file path. The file paths don’t have to be related in any way, so they don’t

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootDir
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootProject
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileCollection.html

have to be in the same directory or have a shared parent directory.

The recommended way to specify a collection of files is to use the
ProjectLayout.files(java.lang.Object...) method, which returns a FileCollection instance. This
flexible method allows you to pass multiple strings, File instances, collections of strings, collections
of Files, and more. You can also pass in tasks as arguments if they have defined outputs.

CAUTION
files() properly handles relative paths and File(relative path) instances,
resolving them relative to the project directory.

As with the Project.file(java.lang.Object) method covered in the previous section, all relative paths
are evaluated relative to the current project directory. The following example demonstrates some
of the variety of argument types you can use — strings, File instances, lists, or Paths:

build.gradle.kts

val collection: FileCollection = layout.files(
 "src/file1.txt",
 File("src/file2.txt"),
 listOf("src/file3.csv", "src/file4.csv"),
 Paths.get("src", "file5.txt")
)

build.gradle

FileCollection collection = layout.files('src/file1.txt',
 new File('src/file2.txt'),
 ['src/file3.csv', 'src/file4.csv'],
 Paths.get('src', 'file5.txt'))

File collections have important attributes in Gradle. They can be:

• created lazily

• iterated over

• filtered

• combined

Lazy creation of a file collection is useful when evaluating the files that make up a collection when a
build runs. In the following example, we query the file system to find out what files exist in a
particular directory and then make those into a file collection:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
incremental_build.pdf#sec:task_inputs_outputs
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html

build.gradle.kts

tasks.register("list") {
 val projectDirectory = layout.projectDirectory
 doLast {
 var srcDir: File? = null

 val collection = projectDirectory.files({
 srcDir?.listFiles()
 })

 srcDir = projectDirectory.file("src").asFile
 println("Contents of ${srcDir.name}")
 collection.map { it.relativeTo(projectDirectory.asFile)
}.sorted().forEach { println(it) }

 srcDir = projectDirectory.file("src2").asFile
 println("Contents of ${srcDir.name}")
 collection.map { it.relativeTo(projectDirectory.asFile)
}.sorted().forEach { println(it) }
 }
}

build.gradle

tasks.register('list') {
 Directory projectDirectory = layout.projectDirectory
 doLast {
 File srcDir

 // Create a file collection using a closure
 collection = projectDirectory.files { srcDir.listFiles() }

 srcDir = projectDirectory.file('src').asFile
 println "Contents of $srcDir.name"
 collection.collect { projectDirectory.asFile.relativePath(it) }.sort
().each { println it }

 srcDir = projectDirectory.file('src2').asFile
 println "Contents of $srcDir.name"
 collection.collect { projectDirectory.asFile.relativePath(it) }.sort
().each { println it }
 }
}

$ gradle -q list
Contents of src
src/dir1
src/file1.txt
Contents of src2
src2/dir1
src2/dir2

The key to lazy creation is passing a closure (in Groovy) or a Provider (in Kotlin) to the files()
method. Your closure or provider must return a value of a type accepted by files(), such as
List<File>, String, or FileCollection.

Iterating over a file collection can be done through the each() method (in Groovy) or forEach method
(in Kotlin) on the collection or using the collection in a for loop. In both approaches, the file
collection is treated as a set of File instances, i.e., your iteration variable will be of type File.

The following example demonstrates such iteration. It also demonstrates how you can convert file
collections to other types using the as operator (or supported properties):

build.gradle.kts

// Iterate over the files in the collection
collection.forEach { file: File ->
 println(file.name)
}

// Convert the collection to various types
val set: Set<File> = collection.files
val list: List<File> = collection.toList()
val path: String = collection.asPath
val file: File = collection.singleFile

// Add and subtract collections
val union = collection + projectLayout.files("src/file2.txt")
val difference = collection - projectLayout.files("src/file2.txt")

build.gradle

// Iterate over the files in the collection
collection.each { File file ->
 println file.name
}

// Convert the collection to various types
Set set = collection.files
Set set2 = collection as Set

List list = collection as List
String path = collection.asPath
File file = collection.singleFile

// Add and subtract collections
def union = collection + projectLayout.files('src/file2.txt')
def difference = collection - projectLayout.files('src/file2.txt')

You can also see at the end of the example how to combine file collections using the + and -
operators to merge and subtract them. An important feature of the resulting file collections is that
they are live. In other words, when you combine file collections this way, the result always reflects
what’s currently in the source file collections, even if they change during the build.

For example, imagine collection in the above example gains an extra file or two after union is
created. As long as you use union after those files are added to collection, union will also contain
those additional files. The same goes for the different file collection.

Live collections are also important when it comes to filtering. Suppose you want to use a subset of a
file collection. In that case, you can take advantage of the
FileCollection.filter(org.gradle.api.specs.Spec) method to determine which files to "keep". In the
following example, we create a new collection that consists of only the files that end with .txt in
the source collection:

build.gradle.kts

val textFiles: FileCollection = collection.filter { f: File ->
 f.name.endsWith(".txt")
}

build.gradle

FileCollection textFiles = collection.filter { File f ->
 f.name.endsWith(".txt")
}

$ gradle -q filterTextFiles
src/file1.txt
src/file2.txt
src/file5.txt

If collection changes at any time, either by adding or removing files from itself, then textFiles will

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileCollection.html#filter-org.gradle.api.specs.Spec-

immediately reflect the change because it is also a live collection. Note that the closure you pass to
filter() takes a File as an argument and should return a boolean.

Understanding implicit conversion to file collections

Many objects in Gradle have properties which accept a set of input files. For example, the
JavaCompile task has a source property that defines the source files to compile. You can set the
value of this property using any of the types supported by the files() method, as mentioned in the
API docs. This means you can, for example, set the property to a File, String, collection,
FileCollection or even a closure or Provider.

This is a feature of specific tasks! That means implicit conversion will not happen for just any
task that has a FileCollection or FileTree property. If you want to know whether implicit
conversion happens in a particular situation, you will need to read the relevant documentation,
such as the corresponding task’s API docs. Alternatively, you can remove all doubt by explicitly
using ProjectLayout.files(java.lang.Object...) in your build.

Here are some examples of the different types of arguments that the source property can take:

build.gradle.kts

tasks.register<JavaCompile>("compile") {
 // Use a File object to specify the source directory
 source = fileTree(file("src/main/java"))

 // Use a String path to specify the source directory
 source = fileTree("src/main/java")

 // Use a collection to specify multiple source directories
 source = fileTree(listOf("src/main/java", "../shared/java"))

 // Use a FileCollection (or FileTree in this case) to specify the source
files
 source = fileTree("src/main/java").matching {
include("org/gradle/api/**") }

 // Using a closure to specify the source files.
 setSource({
 // Use the contents of each zip file in the src dir
 file("src").listFiles().filter { it.name.endsWith(".zip") }.map {
zipTree(it) }
 })
}

build.gradle

tasks.register('compile', JavaCompile) {

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-

 // Use a File object to specify the source directory
 source = file('src/main/java')

 // Use a String path to specify the source directory
 source = 'src/main/java'

 // Use a collection to specify multiple source directories
 source = ['src/main/java', '../shared/java']

 // Use a FileCollection (or FileTree in this case) to specify the source
files
 source = fileTree(dir: 'src/main/java').matching { include
'org/gradle/api/**' }

 // Using a closure to specify the source files.
 source = {
 // Use the contents of each zip file in the src dir
 file('src').listFiles().findAll {it.name.endsWith('.zip')}.collect {
zipTree(it) }
 }
}

One other thing to note is that properties like source have corresponding methods in core Gradle
tasks. Those methods follow the convention of appending to collections of values rather than
replacing them. Again, this method accepts any of the types supported by the files() method, as
shown here:

build.gradle.kts

tasks.named<JavaCompile>("compile") {
 // Add some source directories use String paths
 source("src/main/java", "src/main/groovy")

 // Add a source directory using a File object
 source(file("../shared/java"))

 // Add some source directories using a closure
 setSource({ file("src/test/").listFiles() })
}

build.gradle

compile {
 // Add some source directories use String paths

 source 'src/main/java', 'src/main/groovy'

 // Add a source directory using a File object
 source file('../shared/java')

 // Add some source directories using a closure
 source { file('src/test/').listFiles() }
}

As this is a common convention, we recommend that you follow it in your own custom tasks.
Specifically, if you plan to add a method to configure a collection-based property, make sure the
method appends rather than replaces values.

Using FileTree

A file tree is a file collection that retains the directory structure of the files it contains and has the
type FileTree. This means all the paths in a file tree must have a shared parent directory. The
following diagram highlights the distinction between file trees and file collections in the typical
case of copying files:

NOTE

Although FileTree extends FileCollection (an is-a relationship), their behaviors
differ. In other words, you can use a file tree wherever a file collection is required,
but remember that a file collection is a flat list/set of files, while a file tree is a file
and directory hierarchy. To convert a file tree to a flat collection, use the
FileTree.getFiles() property.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html#getFiles--

The simplest way to create a file tree is to pass a file or directory path to the
Project.fileTree(java.lang.Object) method. This will create a tree of all the files and directories in
that base directory (but not the base directory itself). The following example demonstrates how to
use this method and how to filter the files and directories using Ant-style patterns:

build.gradle.kts

// Create a file tree with a base directory
var tree: ConfigurableFileTree = fileTree("src/main")

// Add include and exclude patterns to the tree
tree.include("**/*.java")
tree.exclude("**/Abstract*")

// Create a tree using closure
tree = fileTree("src") {
 include("**/*.java")
}

// Create a tree using a map
tree = fileTree("dir" to "src", "include" to "**/*.java")
tree = fileTree("dir" to "src", "includes" to listOf("**/*.java",
"**/*.xml"))
tree = fileTree("dir" to "src", "include" to "**/*.java", "exclude" to
"**/*test*/**")

build.gradle

// Create a file tree with a base directory
ConfigurableFileTree tree = fileTree(dir: 'src/main')

// Add include and exclude patterns to the tree
tree.include '**/*.java'
tree.exclude '**/Abstract*'

// Create a tree using closure
tree = fileTree('src') {
 include '**/*.java'
}

// Create a tree using a map
tree = fileTree(dir: 'src', include: '**/*.java')
tree = fileTree(dir: 'src', includes: ['**/*.java', '**/*.xml'])
tree = fileTree(dir: 'src', include: '**/*.java', exclude: '**/*test*/**')

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

You can see more examples of supported patterns in the API docs for PatternFilterable.

By default, fileTree() returns a FileTree instance that applies some default exclude patterns for
convenience — the same defaults as Ant. For the complete default exclude list, see the Ant manual.

If those default excludes prove problematic, you can work around the issue by changing the default
excludes in the settings script:

settings.gradle.kts

import org.apache.tools.ant.DirectoryScanner

DirectoryScanner.removeDefaultExclude("**/.git")
DirectoryScanner.removeDefaultExclude("**/.git/**")

settings.gradle

import org.apache.tools.ant.DirectoryScanner

DirectoryScanner.removeDefaultExclude('**/.git')
DirectoryScanner.removeDefaultExclude('**/.git/**')

IMPORTANT
Gradle does not support changing default excludes during the execution
phase.

You can do many of the same things with file trees that you can with file collections:

• iterate over them (depth first)

• filter them (using FileTree.matching(org.gradle.api.Action) and Ant-style patterns)

• merge them

You can also traverse file trees using the FileTree.visit(org.gradle.api.Action) method. All of these
techniques are demonstrated in the following example:

build.gradle.kts

// Iterate over the contents of a tree
tree.forEach{ file: File ->
 println(file)
}

// Filter a tree

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://ant.apache.org/manual/dirtasks.html#defaultexcludes
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html#matching-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html#visit-org.gradle.api.Action-

val filtered: FileTree = tree.matching {
 include("org/gradle/api/**")
}

// Add trees together
val sum: FileTree = tree + fileTree("src/test")

// Visit the elements of the tree
tree.visit {
 println("${this.relativePath} => ${this.file}")
}

build.gradle

// Iterate over the contents of a tree
tree.each {File file ->
 println file
}

// Filter a tree
FileTree filtered = tree.matching {
 include 'org/gradle/api/**'
}

// Add trees together
FileTree sum = tree + fileTree(dir: 'src/test')

// Visit the elements of the tree
tree.visit {element ->
 println "$element.relativePath => $element.file"
}

Copying files

Copying files in Gradle primarily uses CopySpec, a mechanism that makes it easy to manage
resources such as source code, configuration files, and other assets in your project build process.

Understanding CopySpec

CopySpec is a copy specification that allows you to define what files to copy, where to copy them
from, and where to copy them. It provides a flexible and expressive way to specify complex file
copying operations, including filtering files based on patterns, renaming files, and
including/excluding files based on various criteria.

CopySpec instances are used in the Copy task to specify the files and directories to be copied.

CopySpec has two important attributes:

1. It is independent of tasks, allowing you to share copy specs within a build.

2. It is hierarchical, providing fine-grained control within the overall copy specification.

1. Sharing copy specs

Consider a build with several tasks that copy a project’s static website resources or add them to an
archive. One task might copy the resources to a folder for a local HTTP server, and another might
package them into a distribution. You could manually specify the file locations and appropriate
inclusions each time they are needed, but human error is more likely to creep in, resulting in
inconsistencies between tasks.

One solution is the Project.copySpec(org.gradle.api.Action) method. This allows you to create a copy
spec outside a task, which can then be attached to an appropriate task using the
CopySpec.with(org.gradle.api.file.CopySpec…) method. The following example demonstrates how
this is done:

build.gradle.kts

val webAssetsSpec: CopySpec = copySpec {
 from("src/main/webapp")
 include("**/*.html", "**/*.png", "**/*.jpg")
 rename("(.+)-staging(.+)", "$1$2")
}

tasks.register<Copy>("copyAssets") {
 into(layout.buildDirectory.dir("inPlaceApp"))
 with(webAssetsSpec)
}

tasks.register<Zip>("distApp") {
 archiveFileName = "my-app-dist.zip"
 destinationDirectory = layout.buildDirectory.dir("dists")

 from(appClasses)
 with(webAssetsSpec)
}

build.gradle

CopySpec webAssetsSpec = copySpec {
 from 'src/main/webapp'
 include '**/*.html', '**/*.png', '**/*.jpg'
 rename '(.+)-staging(.+)', '$1$2'
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#with-org.gradle.api.file.CopySpec...-

tasks.register('copyAssets', Copy) {
 into layout.buildDirectory.dir("inPlaceApp")
 with webAssetsSpec
}

tasks.register('distApp', Zip) {
 archiveFileName = 'my-app-dist.zip'
 destinationDirectory = layout.buildDirectory.dir('dists')

 from appClasses
 with webAssetsSpec
}

Both the copyAssets and distApp tasks will process the static resources under src/main/webapp, as
specified by webAssetsSpec.

NOTE

The configuration defined by webAssetsSpec will not apply to the app classes
included by the distApp task. That’s because from appClasses is its own child
specification independent of with webAssetsSpec.

This can be confusing, so it’s probably best to treat with() as an extra from()
specification in the task. Hence, it doesn’t make sense to define a standalone copy
spec without at least one from() defined.

Suppose you encounter a scenario in which you want to apply the same copy configuration to
different sets of files. In that case, you can share the configuration block directly without using
copySpec(). Here’s an example that has two independent tasks that happen to want to process
image files only:

build.gradle.kts

val webAssetPatterns = Action<CopySpec> {
 include("**/*.html", "**/*.png", "**/*.jpg")
}

tasks.register<Copy>("copyAppAssets") {
 into(layout.buildDirectory.dir("inPlaceApp"))
 from("src/main/webapp", webAssetPatterns)
}

tasks.register<Zip>("archiveDistAssets") {
 archiveFileName = "distribution-assets.zip"
 destinationDirectory = layout.buildDirectory.dir("dists")

 from("distResources", webAssetPatterns)
}

build.gradle

def webAssetPatterns = {
 include '**/*.html', '**/*.png', '**/*.jpg'
}

tasks.register('copyAppAssets', Copy) {
 into layout.buildDirectory.dir("inPlaceApp")
 from 'src/main/webapp', webAssetPatterns
}

tasks.register('archiveDistAssets', Zip) {
 archiveFileName = 'distribution-assets.zip'
 destinationDirectory = layout.buildDirectory.dir('dists')

 from 'distResources', webAssetPatterns
}

In this case, we assign the copy configuration to its own variable and apply it to whatever from()
specification we want. This doesn’t just work for inclusions but also exclusions, file renaming, and
file content filtering.

2. Using child specifications

If you only use a single copy spec, the file filtering and renaming will apply to all files copied.
Sometimes, this is what you want, but not always. Consider the following example that copies files
into a directory structure that a Java Servlet container can use to deliver a website:

This is not a straightforward copy as the WEB-INF directory and its subdirectories don’t exist within
the project, so they must be created during the copy. In addition, we only want HTML and image
files going directly into the root folder — build/explodedWar — and only JavaScript files going into
the js directory. We need separate filter patterns for those two sets of files.

The solution is to use child specifications, which can be applied to both from() and into()
declarations. The following task definition does the necessary work:

build.gradle.kts

tasks.register<Copy>("nestedSpecs") {
 into(layout.buildDirectory.dir("explodedWar"))
 exclude("**/*staging*")
 from("src/dist") {
 include("**/*.html", "**/*.png", "**/*.jpg")
 }
 from(sourceSets.main.get().output) {
 into("WEB-INF/classes")
 }
 into("WEB-INF/lib") {
 from(configurations.runtimeClasspath)
 }
}

build.gradle

tasks.register('nestedSpecs', Copy) {
 into layout.buildDirectory.dir("explodedWar")
 exclude '**/*staging*'
 from('src/dist') {
 include '**/*.html', '**/*.png', '**/*.jpg'
 }
 from(sourceSets.main.output) {
 into 'WEB-INF/classes'
 }
 into('WEB-INF/lib') {
 from configurations.runtimeClasspath
 }
}

Notice how the src/dist configuration has a nested inclusion specification; it is the child copy spec.
You can, of course, add content filtering and renaming here as required. A child copy spec is still a
copy spec.

The above example also demonstrates how you can copy files into a subdirectory of the destination
either by using a child into() on a from() or a child from() on an into(). Both approaches are
acceptable, but you should create and follow a convention to ensure consistency across your build
files.

NOTE

Don’t get your into() specifications mixed up. For a normal copy, one to the
filesystem rather than an archive, there should always be one "root" into() that
specifies the overall destination directory of the copy. Any other into() should have

a child spec attached, and its path will be relative to the root into().

One final thing to be aware of is that a child copy spec inherits its destination path, include
patterns, exclude patterns, copy actions, name mappings, and filters from its parent. So, be careful
where you place your configuration.

Using the Sync task

The Sync task, which extends the Copy task, copies the source files into the destination directory and
then removes any files from the destination directory which it did not copy. It synchronizes the
contents of a directory with its source.

This can be useful for doing things such as installing your application, creating an exploded copy of
your archives, or maintaining a copy of the project’s dependencies.

Here is an example that maintains a copy of the project’s runtime dependencies in the build/libs
directory:

build.gradle.kts

tasks.register<Sync>("libs") {
 from(configurations["runtime"])
 into(layout.buildDirectory.dir("libs"))
}

build.gradle

tasks.register('libs', Sync) {
 from configurations.runtime
 into layout.buildDirectory.dir('libs')
}

You can also perform the same function in your own tasks with the
Project.sync(org.gradle.api.Action) method.

Using the Copy task

You can copy a file by creating an instance of Gradle’s builtin Copy task and configuring it with the
location of the file and where you want to put it.

This example mimics copying a generated report into a directory that will be packed into an
archive, such as a ZIP or TAR:

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Sync.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Copy.html

build.gradle.kts

tasks.register<Copy>("copyReport") {
 from(layout.buildDirectory.file("reports/my-report.pdf"))
 into(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('copyReport', Copy) {
 from layout.buildDirectory.file("reports/my-report.pdf")
 into layout.buildDirectory.dir("toArchive")
}

The file and directory paths are then used to specify what file to copy using
Copy.from(java.lang.Object…) and which directory to copy it to using Copy.into(java.lang.Object).

Although hard-coded paths make for simple examples, they make the build brittle. Using a reliable,
single source of truth, such as a task or shared project property, is better. In the following modified
example, we use a report task defined elsewhere that has the report’s location stored in its
outputFile property:

build.gradle.kts

tasks.register<Copy>("copyReport2") {
 from(myReportTask.flatMap { it.outputFile })
 into(archiveReportsTask.flatMap { it.dirToArchive })
}

build.gradle

tasks.register('copyReport2', Copy) {
 from myReportTask.outputFile
 into archiveReportsTask.dirToArchive
}

We have also assumed that the reports will be archived by archiveReportsTask, which provides us
with the directory that will be archived and hence where we want to put the copies of the reports.

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:from(java.lang.Object[])
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:into(java.lang.Object)

Copying multiple files

You can extend the previous examples to multiple files very easily by providing multiple arguments
to from():

build.gradle.kts

tasks.register<Copy>("copyReportsForArchiving") {
 from(layout.buildDirectory.file("reports/my-report.pdf"),
layout.projectDirectory.file("src/docs/manual.pdf"))
 into(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('copyReportsForArchiving', Copy) {
 from layout.buildDirectory.file("reports/my-report.pdf"), layout
.projectDirectory.file("src/docs/manual.pdf")
 into layout.buildDirectory.dir("toArchive")
}

Two files are now copied into the archive directory.

You can also use multiple from() statements to do the same thing, as shown in the first example of
the section File copying in depth.

But what if you want to copy all the PDFs in a directory without specifying each one? To do this,
attach inclusion and/or exclusion patterns to the copy specification. Here, we use a string pattern to
include PDFs only:

build.gradle.kts

tasks.register<Copy>("copyPdfReportsForArchiving") {
 from(layout.buildDirectory.dir("reports"))
 include("*.pdf")
 into(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('copyPdfReportsForArchiving', Copy) {
 from layout.buildDirectory.dir("reports")

 include "*.pdf"
 into layout.buildDirectory.dir("toArchive")
}

One thing to note, as demonstrated in the following diagram, is that only the PDFs that reside
directly in the reports directory are copied:

You can include files in subdirectories by using an Ant-style glob pattern (**/*), as done in this
updated example:

build.gradle.kts

tasks.register<Copy>("copyAllPdfReportsForArchiving") {
 from(layout.buildDirectory.dir("reports"))
 include("**/*.pdf")
 into(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('copyAllPdfReportsForArchiving', Copy) {
 from layout.buildDirectory.dir("reports")
 include "**/*.pdf"
 into layout.buildDirectory.dir("toArchive")
}

This task has the following effect:

Remember that a deep filter like this has the side effect of copying the directory structure below
reports and the files. If you want to copy the files without the directory structure, you must use an
explicit fileTree(dir) { includes }.files expression.

Copying directory hierarchies

You may need to copy files as well as the directory structure in which they reside. This is the default
behavior when you specify a directory as the from() argument, as demonstrated by the following
example that copies everything in the reports directory, including all its subdirectories, to the
destination:

build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving") {
 from(layout.buildDirectory.dir("reports"))
 into(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('copyReportsDirForArchiving', Copy) {
 from layout.buildDirectory.dir("reports")
 into layout.buildDirectory.dir("toArchive")
}

The key aspect that users need help with is controlling how much of the directory structure goes to
the destination. In the above example, do you get a toArchive/reports directory, or does everything
in reports go straight into toArchive? The answer is the latter. If a directory is part of the from()
path, then it won’t appear in the destination.

So how do you ensure that reports itself is copied across, but not any other directory in
${layout.buildDirectory}? The answer is to add it as an include pattern:

build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving2") {
 from(layout.buildDirectory) {
 include("reports/**")
 }
 into(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('copyReportsDirForArchiving2', Copy) {
 from(layout.buildDirectory) {
 include "reports/**"
 }
 into layout.buildDirectory.dir("toArchive")
}

You’ll get the same behavior as before except with one extra directory level in the destination, i.e.,
toArchive/reports.

One thing to note is how the include() directive applies only to the from(), whereas the directive in
the previous section applied to the whole task. These different levels of granularity in the copy
specification allow you to handle most requirements that you will come across easily.

Understanding file copying

The basic process of copying files in Gradle is a simple one:

• Define a task of type Copy

• Specify which files (and potentially directories) to copy

• Specify a destination for the copied files

But this apparent simplicity hides a rich API that allows fine-grained control of which files are
copied, where they go, and what happens to them as they are copied — renaming of the files and
token substitution of file content are both possibilities, for example.

Let’s start with the last two items on the list, which involve CopySpec. The CopySpec interface, which
the Copy task implements, offers:

• A CopySpec.from(java.lang.Object…) method to define what to copy

• An CopySpec.into(java.lang.Object) method to define the destination

CopySpec has several additional methods that allow you to control the copying process, but these

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object...-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-

two are the only required ones. into() is straightforward, requiring a directory path as its
argument in any form supported by the Project.file(java.lang.Object) method. The from()
configuration is far more flexible.

Not only does from() accept multiple arguments, it also allows several different types of argument.
For example, some of the most common types are:

• A String — treated as a file path or, if it starts with "file://", a file URI

• A File — used as a file path

• A FileCollection or FileTree — all files in the collection are included in the copy

• A task — the files or directories that form a task’s defined outputs are included

In fact, from() accepts all the same arguments as Project.files(java.lang.Object…) so see that method
for a more detailed list of acceptable types.

Something else to consider is what type of thing a file path refers to:

• A file — the file is copied as is

• A directory — this is effectively treated as a file tree: everything in it, including subdirectories,
is copied. However, the directory itself is not included in the copy.

• A non-existent file — the path is ignored

Here is an example that uses multiple from() specifications, each with a different argument type.
You will probably also notice that into() is configured lazily using a closure (in Groovy) or a
Provider (in Kotlin) — a technique that also works with from():

build.gradle.kts

tasks.register<Copy>("anotherCopyTask") {
 // Copy everything under src/main/webapp
 from("src/main/webapp")
 // Copy a single file
 from("src/staging/index.html")
 // Copy the output of a task
 from(copyTask)
 // Copy the output of a task using Task outputs explicitly.
 from(tasks["copyTaskWithPatterns"].outputs)
 // Copy the contents of a Zip file
 from(zipTree("src/main/assets.zip"))
 // Determine the destination directory later
 into({ getDestDir() })
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
incremental_build.pdf#sec:task_inputs_outputs
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

build.gradle

tasks.register('anotherCopyTask', Copy) {
 // Copy everything under src/main/webapp
 from 'src/main/webapp'
 // Copy a single file
 from 'src/staging/index.html'
 // Copy the output of a task
 from copyTask
 // Copy the output of a task using Task outputs explicitly.
 from copyTaskWithPatterns.outputs
 // Copy the contents of a Zip file
 from zipTree('src/main/assets.zip')
 // Determine the destination directory later
 into { getDestDir() }
}

Note that the lazy configuration of into() is different from a child specification, even though the
syntax is similar. Keep an eye on the number of arguments to distinguish between them.

Copying files in your own tasks

WARNING

Using the Project.copy method at execution time, as described here, is not
compatible with the configuration cache. A possible solution is to implement
the task as a proper class and use FileSystemOperations.copy method instead,
as described in the configuration cache chapter.

Occasionally, you want to copy files or directories as part of a task. For example, a custom archiving
task based on an unsupported archive format might want to copy files to a temporary directory
before they are archived. You still want to take advantage of Gradle’s copy API without introducing
an extra Copy task.

The solution is to use the Project.copy(org.gradle.api.Action) method. Configuring it with a copy
spec works like the Copy task. Here’s a trivial example:

build.gradle.kts

tasks.register("copyMethod") {
 doLast {
 copy {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))
 include("**/*.html")
 include("**/*.jsp")
 }
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileSystemOperations.html#copy-org.gradle.api.Action-
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

}

build.gradle

tasks.register('copyMethod') {
 doLast {
 copy {
 from 'src/main/webapp'
 into layout.buildDirectory.dir('explodedWar')
 include '**/*.html'
 include '**/*.jsp'
 }
 }
}

The above example demonstrates the basic syntax and also highlights two major limitations of
using the copy() method:

1. The copy() method is not incremental. The example’s copyMethod task will always execute
because it has no information about what files make up the task’s inputs. You have to define the
task inputs and outputs manually.

2. Using a task as a copy source, i.e., as an argument to from(), won’t create an automatic task
dependency between your task and that copy source. As such, if you use the copy() method as
part of a task action, you must explicitly declare all inputs and outputs to get the correct
behavior.

The following example shows how to work around these limitations using the dynamic API for task
inputs and outputs:

build.gradle.kts

tasks.register("copyMethodWithExplicitDependencies") {
 // up-to-date check for inputs, plus add copyTask as dependency
 inputs.files(copyTask)
 .withPropertyName("inputs")
 .withPathSensitivity(PathSensitivity.RELATIVE)
 outputs.dir("some-dir") // up-to-date check for outputs
 .withPropertyName("outputDir")
 doLast {
 copy {
 // Copy the output of copyTask
 from(copyTask)
 into("some-dir")
 }

incremental_build.pdf#incremental_build
incremental_build.pdf#sec:task_input_output_runtime_api
incremental_build.pdf#sec:task_input_output_runtime_api

 }
}

build.gradle

tasks.register('copyMethodWithExplicitDependencies') {
 // up-to-date check for inputs, plus add copyTask as dependency
 inputs.files(copyTask)
 .withPropertyName("inputs")
 .withPathSensitivity(PathSensitivity.RELATIVE)
 outputs.dir('some-dir') // up-to-date check for outputs
 .withPropertyName("outputDir")
 doLast {
 copy {
 // Copy the output of copyTask
 from copyTask
 into 'some-dir'
 }
 }
}

These limitations make it preferable to use the Copy task wherever possible because of its built-in
support for incremental building and task dependency inference. That is why the copy() method is
intended for use by custom tasks that need to copy files as part of their function. Custom tasks that
use the copy() method should declare the necessary inputs and outputs relevant to the copy action.

Renaming files

Renaming files in Gradle can be done using the CopySpec API, which provides methods for renaming
files as they are copied.

Using Copy.rename()

If the files used and generated by your builds sometimes don’t have names that suit, you can
rename those files as you copy them. Gradle allows you to do this as part of a copy specification
using the rename() configuration.

The following example removes the "-staging" marker from the names of any files that have it:

build.gradle.kts

tasks.register<Copy>("copyFromStaging") {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))

 rename("(.+)-staging(.+)", "$1$2")
}

build.gradle

tasks.register('copyFromStaging', Copy) {
 from "src/main/webapp"
 into layout.buildDirectory.dir('explodedWar')

 rename '(.+)-staging(.+)', '$1$2'
}

As in the above example, you can use regular expressions for this or closures that use more
complex logic to determine the target filename. For example, the following task truncates
filenames:

build.gradle.kts

tasks.register<Copy>("copyWithTruncate") {
 from(layout.buildDirectory.dir("reports"))
 rename { filename: String ->
 if (filename.length > 10) {
 filename.slice(0..7) + "~" + filename.length
 }
 else filename
 }
 into(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('copyWithTruncate', Copy) {
 from layout.buildDirectory.dir("reports")
 rename { String filename ->
 if (filename.size() > 10) {
 return filename[0..7] + "~" + filename.size()
 }
 else return filename
 }
 into layout.buildDirectory.dir("toArchive")
}

As with filtering, you can also rename a subset of files by configuring it as part of a child
specification on a from().

Using Copyspec.rename{}

The example of how to rename files on copy gives you most of the information you need to perform
this operation. It demonstrates the two options for renaming:

1. Using a regular expression

2. Using a closure

Regular expressions are a flexible approach to renaming, particularly as Gradle supports regex
groups that allow you to remove and replace parts of the source filename. The following example
shows how you can remove the string "-staging" from any filename that contains it using a simple
regular expression:

build.gradle.kts

tasks.register<Copy>("rename") {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))
 // Use a regular expression to map the file name
 rename("(.+)-staging(.+)", "$1$2")
 rename("(.+)-staging(.+)".toRegex().pattern, "$1$2")
 // Use a closure to convert all file names to upper case
 rename { fileName: String ->
 fileName.toUpperCase()
 }
}

build.gradle

tasks.register('rename', Copy) {
 from 'src/main/webapp'
 into layout.buildDirectory.dir('explodedWar')
 // Use a regular expression to map the file name
 rename '(.+)-staging(.+)', '$1$2'
 rename(/(.+)-staging(.+)/, '$1$2')
 // Use a closure to convert all file names to upper case
 rename { String fileName ->
 fileName.toUpperCase()
 }
}

You can use any regular expression supported by the Java Pattern class and the substitution string.
The second argument of rename() works on the same principles as the Matcher.appendReplacement()
method.

Regular expressions in Groovy build scripts

There are two common issues people come across when using regular expressions in this context:

1. If you use a slashy string (those delimited by '/') for the first argument, you must include the
parentheses for rename() as shown in the above example.

2. It’s safest to use single quotes for the second argument, otherwise you need to escape the '$' in
group substitutions, i.e. "\$1\$2".

The first is a minor inconvenience, but slashy strings have the advantage that you don’t have to
escape backslash ('\') characters in the regular expression. The second issue stems from Groovy’s
support for embedded expressions using ${ } syntax in double-quoted and slashy strings.

The closure syntax for rename() is straightforward and can be used for any requirements that
simple regular expressions can’t handle. You’re given a file’s name, and you return a new name for
that file or null if you don’t want to change the name. Be aware that the closure will be executed for
every file copied, so try to avoid expensive operations where possible.

Filtering files

Filtering files in Gradle involves selectively including or excluding files based on certain criteria.

Using CopySpec.include() and CopySpec.exclude()

You can apply filtering in any copy specification through the CopySpec.include(java.lang.String…)
and CopySpec.exclude(java.lang.String…) methods.

These methods are typically used with Ant-style include or exclude patterns, as described in
PatternFilterable.

You can also perform more complex logic by using a closure that takes a FileTreeElement and
returns true if the file should be included or false otherwise. The following example demonstrates
both forms, ensuring that only .html and .jsp files are copied, except for those .html files with the
word "DRAFT" in their content:

build.gradle.kts

tasks.register<Copy>("copyTaskWithPatterns") {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))
 include("**/*.html")
 include("**/*.jsp")
 exclude { details: FileTreeElement ->
 details.file.name.endsWith(".html") &&
 details.file.readText().contains("DRAFT")

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#appendReplacement(java.lang.StringBuffer,%20java.lang.String)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#include-java.lang.String...-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String...-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTreeElement.html

 }
}

build.gradle

tasks.register('copyTaskWithPatterns', Copy) {
 from 'src/main/webapp'
 into layout.buildDirectory.dir('explodedWar')
 include '**/*.html'
 include '**/*.jsp'
 exclude { FileTreeElement details ->
 details.file.name.endsWith('.html') &&
 details.file.text.contains('DRAFT')
 }
}

A question you may ask yourself at this point is what happens when inclusion and exclusion
patterns overlap? Which pattern wins? Here are the basic rules:

• If there are no explicit inclusions or exclusions, everything is included

• If at least one inclusion is specified, only files and directories matching the patterns are
included

• Any exclusion pattern overrides any inclusions, so if a file or directory matches at least one
exclusion pattern, it won’t be included, regardless of the inclusion patterns

Bear these rules in mind when creating combined inclusion and exclusion specifications so that
you end up with the exact behavior you want.

Note that the inclusions and exclusions in the above example will apply to all from() configurations.
If you want to apply filtering to a subset of the copied files, you’ll need to use child specifications.

Filtering file content

Filtering file content in Gradle involves replacing placeholders or tokens in files with dynamic
values.

Using CopySpec.filter()

Transforming the content of files while they are being copied involves basic templating that uses
token substitution, removal of lines of text, or even more complex filtering using a full-blown
template engine.

The following example demonstrates several forms of filtering, including token substitution using
the CopySpec.expand(java.util.Map) method and another using CopySpec.filter(java.lang.Class) with
an Ant filter:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
https://ant.apache.org/manual/Types/filterchain.html

build.gradle.kts

import org.apache.tools.ant.filters.FixCrLfFilter
import org.apache.tools.ant.filters.ReplaceTokens
tasks.register<Copy>("filter") {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))
 // Substitute property tokens in files
 expand("copyright" to "2009", "version" to "2.3.1")
 // Use some of the filters provided by Ant
 filter(FixCrLfFilter::class)
 filter(ReplaceTokens::class, "tokens" to mapOf("copyright" to "2009",
"version" to "2.3.1"))
 // Use a closure to filter each line
 filter { line: String ->
 "[$line]"
 }
 // Use a closure to remove lines
 filter { line: String ->
 if (line.startsWith('-')) null else line
 }
 filteringCharset = "UTF-8"
}

build.gradle

import org.apache.tools.ant.filters.FixCrLfFilter
import org.apache.tools.ant.filters.ReplaceTokens

tasks.register('filter', Copy) {
 from 'src/main/webapp'
 into layout.buildDirectory.dir('explodedWar')
 // Substitute property tokens in files
 expand(copyright: '2009', version: '2.3.1')
 // Use some of the filters provided by Ant
 filter(FixCrLfFilter)
 filter(ReplaceTokens, tokens: [copyright: '2009', version: '2.3.1'])
 // Use a closure to filter each line
 filter { String line ->
 "[$line]"
 }
 // Use a closure to remove lines
 filter { String line ->
 line.startsWith('-') ? null : line
 }
 filteringCharset = 'UTF-8'

}

The filter() method has two variants, which behave differently:

• one takes a FilterReader and is designed to work with Ant filters, such as ReplaceTokens

• one takes a closure or Transformer that defines the transformation for each line of the source
file

Note that both variants assume the source files are text-based. When you use the ReplaceTokens
class with filter(), you create a template engine that replaces tokens of the form @tokenName@ (the
Ant-style token) with values you define.

Using CopySpec.expand()

The expand() method treats the source files as Groovy templates, which evaluates and expands
expressions of the form ${expression}.

You can pass in property names and values that are then expanded in the source files. expand()
allows for more than basic token substitution as the embedded expressions are full-blown Groovy
expressions.

NOTE

Specifying the character set when reading and writing the file is good practice.
Otherwise, the transformations won’t work properly for non-ASCII text. You
configure the character set with the CopySpec.setFilteringCharset(String) property.
If it’s not specified, the JVM default character set is used, which will likely differ
from the one you want.

Setting file permissions

Setting file permissions in Gradle involves specifying the permissions for files or directories created
or modified during the build process.

Using CopySpec.filePermissions{}

For any CopySpec involved in copying files, may it be the Copy task itself, or any child specifications,
you can explicitly set the permissions the destination files will have via the
CopySpec.filePermissions {} configurations block.

Using CopySpec.dirPermissions{}

You can do the same for directories too, independently of files, via the CopySpec.dirPermissions {}
configurations block.

NOTE
Not setting permissions explicitly will preserve the permissions of the original files
or directories.

https://docs.oracle.com/javase/8/docs/api/java/io/FilterReader.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Transformer.html
https://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#setFilteringCharset-java.lang.String-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopyProcessingSpec.html#filePermissions-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopyProcessingSpec.html#dirPermissions-org.gradle.api.Action-

build.gradle.kts

tasks.register<Copy>("permissions") {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))
 filePermissions {
 user {
 read = true
 execute = true
 }
 other.execute = false
 }
 dirPermissions {
 unix("r-xr-x---")
 }
}

build.gradle

tasks.register('permissions', Copy) {
 from 'src/main/webapp'
 into layout.buildDirectory.dir('explodedWar')
 filePermissions {
 user {
 read = true
 execute = true
 }
 other.execute = false
 }
 dirPermissions {
 unix('r-xr-x---')
 }
}

For a detailed description of file permissions, see FilePermissions and UserClassFilePermissions.
For details on the convenience method used in the samples, see
ConfigurableFilePermissions.unix(String).

Using empty configuration blocks for file or directory permissions still sets them explicitly, just to
fixed default values. Everything inside one of these configuration blocks is relative to the default
values. Default permissions differ for files and directories:

• file: read & write for owner, read for group, read for other (0644, rw-r—r--)

• directory: read, write & execute for owner, read & execute for group, read & execute for other

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FilePermissions.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/UserClassFilePermissions.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFilePermissions.html#unix-java.lang.String-

(0755, rwxr-xr-x)

Moving files and directories

Moving files and directories in Gradle is a straightforward process that can be accomplished using
several APIs. When implementing file-moving logic in your build scripts, it’s important to consider
file paths, conflicts, and task dependencies.

Using File.renameTo()

File.renameTo() is a method in Java (and by extension, in Gradle’s Groovy DSL) used to rename or
move a file or directory. When you call renameTo() on a File object, you provide another File object
representing the new name or location. If the operation is successful, renameTo() returns true;
otherwise, it returns false.

It’s important to note that renameTo() has some limitations and platform-specific behavior.

In this example, the moveFile task uses the Copy task type to specify the source and destination
directories. Inside the doLast closure, it uses File.renameTo() to move the file from the source
directory to the destination directory:

task moveFile {
 doLast {
 def sourceFile = file('source.txt')
 def destFile = file('destination/new_name.txt')

 if (sourceFile.renameTo(destFile)) {
 println "File moved successfully."
 }
 }
}

Using the Copy task

In this example, the moveFile task copies the file source.txt to the destination directory and
renames it to new_name.txt in the process. This achieves a similar effect to moving a file.

task moveFile(type: Copy) {
 from 'source.txt'
 into 'destination'
 rename { fileName ->
 'new_name.txt'
 }
}

Deleting files and directories

Deleting files and directories in Gradle involves removing them from the file system.

Using the Delete task

You can easily delete files and directories using the Delete task. You must specify which files and
directories to delete in a way supported by the Project.files(java.lang.Object…) method.

For example, the following task deletes the entire contents of a build’s output directory:

build.gradle.kts

tasks.register<Delete>("myClean") {
 delete(buildDir)
}

build.gradle

tasks.register('myClean', Delete) {
 delete buildDir
}

If you want more control over which files are deleted, you can’t use inclusions and exclusions the
same way you use them for copying files. Instead, you use the built-in filtering mechanisms of
FileCollection and FileTree. The following example does just that to clear out temporary files from
a source directory:

build.gradle.kts

tasks.register<Delete>("cleanTempFiles") {
 delete(fileTree("src").matching {
 include("**/*.tmp")
 })
}

build.gradle

tasks.register('cleanTempFiles', Delete) {
 delete fileTree("src").matching {
 include "**/*.tmp"
 }
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Using Project.delete()

The Project.delete(org.gradle.api.Action) method can delete files and directories.

This method takes one or more arguments representing the files or directories to be deleted.

For example, the following task deletes the entire contents of a build’s output directory:

build.gradle.kts

tasks.register<Delete>("myClean") {
 delete(buildDir)
}

build.gradle

tasks.register('myClean', Delete) {
 delete buildDir
}

If you want more control over which files are deleted, you can’t use inclusions and exclusions the
same way you use them for copying files. Instead, you use the built-in filtering mechanisms of
FileCollection and FileTree. The following example does just that to clear out temporary files from
a source directory:

build.gradle.kts

tasks.register<Delete>("cleanTempFiles") {
 delete(fileTree("src").matching {
 include("**/*.tmp")
 })
}

build.gradle

tasks.register('cleanTempFiles', Delete) {
 delete fileTree("src").matching {
 include "**/*.tmp"
 }
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)

Creating archives

From the perspective of Gradle, packing files into an archive is effectively a copy in which the
destination is the archive file rather than a directory on the file system. Creating archives looks a
lot like copying, with all the same features.

Using the Zip, Tar, or Jar task

The simplest case involves archiving the entire contents of a directory, which this example
demonstrates by creating a ZIP of the toArchive directory:

build.gradle.kts

tasks.register<Zip>("packageDistribution") {
 archiveFileName = "my-distribution.zip"
 destinationDirectory = layout.buildDirectory.dir("dist")

 from(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('packageDistribution', Zip) {
 archiveFileName = "my-distribution.zip"
 destinationDirectory = layout.buildDirectory.dir('dist')

 from layout.buildDirectory.dir("toArchive")
}

Notice how we specify the destination and name of the archive instead of an into(): both are
required. You often won’t see them explicitly set because most projects apply the Base Plugin. It
provides some conventional values for those properties.

The following example demonstrates this; you can learn more about the conventions in the archive
naming section.

Each type of archive has its own task type, the most common ones being Zip, Tar and Jar. They all
share most of the configuration options of Copy, including filtering and renaming.

One of the most common scenarios involves copying files into specified archive subdirectories. For
example, let’s say you want to package all PDFs into a docs directory in the archive’s root. This docs
directory doesn’t exist in the source location, so you must create it as part of the archive. You do
this by adding an into() declaration for just the PDFs:

base_plugin.pdf#base_plugin
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Jar.html

build.gradle.kts

plugins {
 base
}

version = "1.0.0"

tasks.register<Zip>("packageDistribution") {
 from(layout.buildDirectory.dir("toArchive")) {
 exclude("**/*.pdf")
 }

 from(layout.buildDirectory.dir("toArchive")) {
 include("**/*.pdf")
 into("docs")
 }
}

build.gradle

plugins {
 id 'base'
}

version = "1.0.0"

tasks.register('packageDistribution', Zip) {
 from(layout.buildDirectory.dir("toArchive")) {
 exclude "**/*.pdf"
 }

 from(layout.buildDirectory.dir("toArchive")) {
 include "**/*.pdf"
 into "docs"
 }
}

As you can see, you can have multiple from() declarations in a copy specification, each with its own
configuration. See Using child copy specifications for more information on this feature.

Understanding archive creation

Archives are essentially self-contained file systems, and Gradle treats them as such. This is why
working with archives is similar to working with files and directories.

Out of the box, Gradle supports the creation of ZIP and TAR archives and, by extension, Java’s JAR,
WAR, and EAR formats—Java’s archive formats are all ZIPs. Each of these formats has a
corresponding task type to create them: Zip, Tar, Jar, War, and Ear. These all work the same way
and are based on copy specifications, just like the Copy task.

Creating an archive file is essentially a file copy in which the destination is implicit, i.e., the archive
file itself. Here is a basic example that specifies the path and name of the target archive file:

build.gradle.kts

tasks.register<Zip>("packageDistribution") {
 archiveFileName = "my-distribution.zip"
 destinationDirectory = layout.buildDirectory.dir("dist")

 from(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('packageDistribution', Zip) {
 archiveFileName = "my-distribution.zip"
 destinationDirectory = layout.buildDirectory.dir('dist')

 from layout.buildDirectory.dir("toArchive")
}

The full power of copy specifications is available to you when creating archives, which means you
can do content filtering, file renaming, or anything else covered in the previous section. A common
requirement is copying files into subdirectories of the archive that don’t exist in the source folders,
something that can be achieved with into() child specifications.

Gradle allows you to create as many archive tasks as you want, but it’s worth considering that
many convention-based plugins provide their own. For example, the Java plugin adds a jar task for
packaging a project’s compiled classes and resources in a JAR. Many of these plugins provide
sensible conventions for the names of archives and the copy specifications used. We recommend
you use these tasks wherever you can rather than overriding them with your own.

Naming archives

Gradle has several conventions around the naming of archives and where they are created based
on the plugins your project uses. The main convention is provided by the Base Plugin, which
defaults to creating archives in the layout.buildDirectory.dir("distributions") directory and
typically uses archive names of the form [projectName]-[version].[type].

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.War.html
https://docs.gradle.org/8.12/dsl/org.gradle.plugins.ear.Ear.html
base_plugin.pdf#base_plugin

The following example comes from a project named archive-naming, hence the myZip task creates an
archive named archive-naming-1.0.zip:

build.gradle.kts

plugins {
 base
}

version = "1.0"

tasks.register<Zip>("myZip") {
 from("somedir")
 val projectDir = layout.projectDirectory.asFile
 doLast {
 println(archiveFileName.get())
 println(destinationDirectory.get().asFile.relativeTo(projectDir))
 println(archiveFile.get().asFile.relativeTo(projectDir))
 }
}

build.gradle

plugins {
 id 'base'
}

version = 1.0

tasks.register('myZip', Zip) {
 from 'somedir'
 File projectDir = layout.projectDirectory.asFile
 doLast {
 println archiveFileName.get()
 println projectDir.relativePath(destinationDirectory.get().asFile)
 println projectDir.relativePath(archiveFile.get().asFile)
 }
}

$ gradle -q myZip
archive-naming-1.0.zip
build/distributions
build/distributions/archive-naming-1.0.zip

Note that the archive name does not derive from the task’s name that creates it.

If you want to change the name and location of a generated archive file, you can provide values for
the corresponding task’s archiveFileName and destinationDirectory properties. These override any
conventions that would otherwise apply.

Alternatively, you can make use of the default archive name pattern provided by
AbstractArchiveTask.getArchiveFileName(): [archiveBaseName]-[archiveAppendix]-[archiveVersion]-
[archiveClassifier].[archiveExtension]. You can set each of these properties on the task separately.
Note that the Base Plugin uses the convention of the project name for archiveBaseName, project
version for archiveVersion, and the archive type for archiveExtension. It does not provide values for
the other properties.

This example — from the same project as the one above — configures just the archiveBaseName
property, overriding the default value of the project name:

build.gradle.kts

tasks.register<Zip>("myCustomZip") {
 archiveBaseName = "customName"
 from("somedir")

 doLast {
 println(archiveFileName.get())
 }
}

build.gradle

tasks.register('myCustomZip', Zip) {
 archiveBaseName = 'customName'
 from 'somedir'

 doLast {
 println archiveFileName.get()
 }
}

$ gradle -q myCustomZip
customName-1.0.zip

You can also override the default archiveBaseName value for all the archive tasks in your build by
using the project property archivesBaseName, as demonstrated by the following example:

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveFileName

build.gradle.kts

plugins {
 base
}

version = "1.0"

base {
 archivesName = "gradle"
 distsDirectory = layout.buildDirectory.dir("custom-dist")
 libsDirectory = layout.buildDirectory.dir("custom-libs")
}

val myZip by tasks.registering(Zip::class) {
 from("somedir")
}

val myOtherZip by tasks.registering(Zip::class) {
 archiveAppendix = "wrapper"
 archiveClassifier = "src"
 from("somedir")
}

tasks.register("echoNames") {
 val projectNameString = project.name
 val archiveFileName = myZip.flatMap { it.archiveFileName }
 val myOtherArchiveFileName = myOtherZip.flatMap { it.archiveFileName }
 doLast {
 println("Project name: $projectNameString")
 println(archiveFileName.get())
 println(myOtherArchiveFileName.get())
 }
}

build.gradle

plugins {
 id 'base'
}

version = 1.0
base {
 archivesName = "gradle"
 distsDirectory = layout.buildDirectory.dir('custom-dist')
 libsDirectory = layout.buildDirectory.dir('custom-libs')
}

def myZip = tasks.register('myZip', Zip) {
 from 'somedir'
}

def myOtherZip = tasks.register('myOtherZip', Zip) {
 archiveAppendix = 'wrapper'
 archiveClassifier = 'src'
 from 'somedir'
}

tasks.register('echoNames') {
 def projectNameString = project.name
 def archiveFileName = myZip.flatMap { it.archiveFileName }
 def myOtherArchiveFileName = myOtherZip.flatMap { it.archiveFileName }
 doLast {
 println "Project name: $projectNameString"
 println archiveFileName.get()
 println myOtherArchiveFileName.get()
 }
}

$ gradle -q echoNames
Project name: archives-changed-base-name
gradle-1.0.zip
gradle-wrapper-1.0-src.zip

You can find all the possible archive task properties in the API documentation for
AbstractArchiveTask. Still, we have also summarized the main ones here:

archiveFileName — Property<String>, default: archiveBaseName-archiveAppendix-archiveVersion-
archiveClassifier.archiveExtension

The complete file name of the generated archive. If any of the properties in the default value are
empty, their '-' separator is dropped.

archiveFile — Provider<RegularFile>, read-only, default: destinationDirectory/archiveFileName

The absolute file path of the generated archive.

destinationDirectory — DirectoryProperty, default: depends on archive type

The target directory in which to put the generated archive. By default, JARs and WARs go into
layout.buildDirectory.dir("libs"). ZIPs and TARs go into
layout.buildDirectory.dir("distributions").

archiveBaseName — Property<String>, default: project.name

The base name portion of the archive file name, typically a project name or some other
descriptive name for what it contains.

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

archiveAppendix — Property<String>, default: null

The appendix portion of the archive file name that comes immediately after the base name. It is
typically used to distinguish between different forms of content, such as code and docs, or a
minimal distribution versus a full or complete one.

archiveVersion — Property<String>, default: project.version

The version portion of the archive file name, typically in the form of a normal project or product
version.

archiveClassifier — Property<String>, default: null

The classifier portion of the archive file name. Often used to distinguish between archives that
target different platforms.

archiveExtension — Property<String>, default: depends on archive type and compression type

The filename extension for the archive. By default, this is set based on the archive task type and
the compression type (if you’re creating a TAR). Will be one of: zip, jar, war, tar, tgz or tbz2. You
can of course set this to a custom extension if you wish.

Sharing content between multiple archives

As described in the CopySpec section above, you can use the Project.copySpec(org.gradle.api.Action)
method to share content between archives.

Using archives as file trees

An archive is a directory and file hierarchy packed into a single file. In other words, it’s a special
case of a file tree, and that’s exactly how Gradle treats archives.

Instead of using the fileTree() method, which only works on normal file systems, you use the
Project.zipTree(java.lang.Object) and Project.tarTree(java.lang.Object) methods to wrap archive
files of the corresponding type (note that JAR, WAR and EAR files are ZIPs). Both methods return
FileTree instances that you can then use in the same way as normal file trees. For example, you can
extract some or all of the files of an archive by copying its contents to some directory on the file
system. Or you can merge one archive into another.

Here are some simple examples of creating archive-based file trees:

build.gradle.kts

// Create a ZIP file tree using path
val zip: FileTree = zipTree("someFile.zip")

// Create a TAR file tree using path
val tar: FileTree = tarTree("someFile.tar")

// tar tree attempts to guess the compression based on the file extension
// however if you must specify the compression explicitly you can:

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

val someTar: FileTree = tarTree(resources.gzip("someTar.ext"))

build.gradle

// Create a ZIP file tree using path
FileTree zip = zipTree('someFile.zip')

// Create a TAR file tree using path
FileTree tar = tarTree('someFile.tar')

//tar tree attempts to guess the compression based on the file extension
//however if you must specify the compression explicitly you can:
FileTree someTar = tarTree(resources.gzip('someTar.ext'))

You can see a practical example of extracting an archive file in the unpacking archives section
below.

Using AbstractArchiveTask for reproducible builds

Sometimes it’s desirable to recreate archives exactly the same, byte for byte, on different machines.
You want to be sure that building an artifact from source code produces the same result no matter
when and where it is built. This is necessary for projects like reproducible-builds.org.

Reproducing the same byte-for-byte archive poses some challenges since the order of the files in an
archive is influenced by the underlying file system. Each time a ZIP, TAR, JAR, WAR or EAR is built
from source, the order of the files inside the archive may change. Files that only have a different
timestamp also causes differences in archives from build to build.

All AbstractArchiveTask (e.g. Jar, Zip) tasks shipped with Gradle include support for producing
reproducible archives.

For example, to make a Zip task reproducible you need to set Zip.isReproducibleFileOrder() to true
and Zip.isPreserveFileTimestamps() to false. In order to make all archive tasks in your build
reproducible, consider adding the following configuration to your build file:

build.gradle.kts

tasks.withType<AbstractArchiveTask>().configureEach {
 isPreserveFileTimestamps = false
 isReproducibleFileOrder = true
}

https://reproducible-builds.org/
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps

build.gradle

tasks.withType(AbstractArchiveTask).configureEach {
 preserveFileTimestamps = false
 reproducibleFileOrder = true
}

Often you will want to publish an archive, so that it is usable from another project.

Unpacking archives

Archives are effectively self-contained file systems, so unpacking them is a case of copying the files
from that file system onto the local file system — or even into another archive. Gradle enables this
by providing some wrapper functions that make archives available as hierarchical collections of
files (file trees).

Using Project.zipTree and Project.tarTree

The two functions of interest are Project.zipTree(java.lang.Object) and
Project.tarTree(java.lang.Object), which produce a FileTree from a corresponding archive file.

That file tree can then be used in a from() specification, like so:

build.gradle.kts

tasks.register<Copy>("unpackFiles") {
 from(zipTree("src/resources/thirdPartyResources.zip"))
 into(layout.buildDirectory.dir("resources"))
}

build.gradle

tasks.register('unpackFiles', Copy) {
 from zipTree("src/resources/thirdPartyResources.zip")
 into layout.buildDirectory.dir("resources")
}

As with a normal copy, you can control which files are unpacked via filters and even rename files
as they are unpacked.

More advanced processing can be handled by the eachFile() method. For example, you might need
to extract different subtrees of the archive into different paths within the destination directory. The

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.AbstractCopyTask.html#eachFile(org.gradle.api.Action)

following sample uses the method to extract the files within the archive’s libs directory into the
root destination directory, rather than into a libs subdirectory:

build.gradle.kts

tasks.register<Copy>("unpackLibsDirectory") {
 from(zipTree("src/resources/thirdPartyResources.zip")) {
 include("libs/**") ①
 eachFile {
 relativePath = RelativePath(true,
*relativePath.segments.drop(1).toTypedArray()) ②
 }
 includeEmptyDirs = false ③
 }
 into(layout.buildDirectory.dir("resources"))
}

build.gradle

tasks.register('unpackLibsDirectory', Copy) {
 from(zipTree("src/resources/thirdPartyResources.zip")) {
 include "libs/**" ①
 eachFile { fcd ->
 fcd.relativePath = new RelativePath(true, fcd.relativePath
.segments.drop(1)) ②
 }
 includeEmptyDirs = false ③
 }
 into layout.buildDirectory.dir("resources")
}

① Extracts only the subset of files that reside in the libs directory

② Remaps the path of the extracting files into the destination directory by dropping the libs
segment from the file path

③ Ignores the empty directories resulting from the remapping, see Caution note below

CAUTION
You can not change the destination path of empty directories with this
technique. You can learn more in this issue.

If you’re a Java developer wondering why there is no jarTree() method, that’s because zipTree()
works perfectly well for JARs, WARs, and EARs.

https://github.com/gradle/gradle/issues/2940

Creating "uber" or "fat" JARs

In Java, applications and their dependencies were typically packaged as separate JARs within a
single distribution archive. That still happens, but another approach that is now common is placing
the classes and resources of the dependencies directly into the application JAR, creating what is
known as an Uber or fat JAR.

Creating "uber" or "fat" JARs in Gradle involves packaging all dependencies into a single JAR file,
making it easier to distribute and run the application.

Using the Shadow Plugin

Gradle does not have full built-in support for creating uber JARs, but you can use third-party
plugins like the Shadow plugin (com.gradleup.shadow) to achieve this. This plugin packages your
project classes and dependencies into a single JAR file.

Using Project.zipTree() and the Jar task

To copy the contents of other JAR files into the application JAR, use the
Project.zipTree(java.lang.Object) method and the Jar task. This is demonstrated by the uberJar task
in the following example:

build.gradle.kts

plugins {
 java
}

version = "1.0.0"

repositories {
 mavenCentral()
}

dependencies {
 implementation("commons-io:commons-io:2.6")
}

tasks.register<Jar>("uberJar") {
 archiveClassifier = "uber"

 from(sourceSets.main.get().output)

 dependsOn(configurations.runtimeClasspath)
 from({
 configurations.runtimeClasspath.get().filter {
it.name.endsWith("jar") }.map { zipTree(it) }
 })

https://github.com/GradleUp/shadow
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Jar.html

}

build.gradle

plugins {
 id 'java'
}

version = '1.0.0'

repositories {
 mavenCentral()
}

dependencies {
 implementation 'commons-io:commons-io:2.6'
}

tasks.register('uberJar', Jar) {
 archiveClassifier = 'uber'

 from sourceSets.main.output

 dependsOn configurations.runtimeClasspath
 from {
 configurations.runtimeClasspath.findAll { it.name.endsWith('jar') }
.collect { zipTree(it) }
 }
}

In this case, we’re taking the runtime dependencies of the project —
configurations.runtimeClasspath.files — and wrapping each of the JAR files with the zipTree()
method. The result is a collection of ZIP file trees, the contents of which are copied into the uber JAR
alongside the application classes.

Creating directories

Many tasks need to create directories to store the files they generate, which is why Gradle
automatically manages this aspect of tasks when they explicitly define file and directory outputs.
All core Gradle tasks ensure that any output directories they need are created, if necessary, using
this mechanism.

Using File.mkdirs and Files.createDirectories

In cases where you need to create a directory manually, you can use the standard
Files.createDirectories or File.mkdirs methods from within your build scripts or custom task

incremental_build.pdf#incremental_build
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html#createDirectories-java.nio.file.Path-java.nio.file.attribute.FileAttribute...-
https://docs.oracle.com/javase/8/docs/api/java/io/File.html#mkdirs--

implementations.

Here is a simple example that creates a single images directory in the project folder:

build.gradle.kts

tasks.register("ensureDirectory") {
 // Store target directory into a variable to avoid project reference in
the configuration cache
 val directory = file("images")

 doLast {
 Files.createDirectories(directory.toPath())
 }
}

build.gradle

tasks.register('ensureDirectory') {
 // Store target directory into a variable to avoid project reference in
the configuration cache
 def directory = file("images")

 doLast {
 Files.createDirectories(directory.toPath())
 }
}

As described in the Apache Ant manual, the mkdir task will automatically create all necessary
directories in the given path. It will do nothing if the directory already exists.

Using Project.mkdir

You can create directories in Gradle using the mkdir method, which is available in the Project
object. This method takes a File object or a String representing the path of the directory to be
created:

tasks.register('createDirs') {
 doLast {
 mkdir 'src/main/resources'
 mkdir file('build/generated')

 // Create multiple dirs
 mkdir files(['src/main/resources', 'src/test/resources'])

https://ant.apache.org/manual/Tasks/mkdir.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#mkdir-java.lang.Object-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#mkdir-java.lang.Object-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#mkdir-java.lang.Object-

 // Check dir existence
 def dir = file('src/main/resources')
 if (!dir.exists()) {
 mkdir dir
 }
 }
}

Installing executables

When you are building a standalone executable, you may want to install this file on your system, so
it ends up in your path.

Using the Copy task

You can use a Copy task to install the executable into shared directories like /usr/local/bin. The
installation directory probably contains many other executables, some of which may even be
unreadable by Gradle. To support the unreadable files in the Copy task’s destination directory and to
avoid time consuming up-to-date checks, you can use Task.doNotTrackState():

build.gradle.kts

tasks.register<Copy>("installExecutable") {
 from("build/my-binary")
 into("/usr/local/bin")
 doNotTrackState("Installation directory contains unrelated files")
}

build.gradle

tasks.register("installExecutable", Copy) {
 from "build/my-binary"
 into "/usr/local/bin"
 doNotTrackState("Installation directory contains unrelated files")
}

Deploying single files into application servers

Deploying a single file to an application server typically refers to the process of transferring a
packaged application artifact, such as a WAR file, to the application server’s deployment directory.

https://docs.gradle.org/8.12/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)

Using the Copy task

When working with application servers, you can use a Copy task to deploy the application archive
(e.g. a WAR file). Since you are deploying a single file, the destination directory of the Copy is the
whole deployment directory. The deployment directory sometimes does contain unreadable files
like named pipes, so Gradle may have problems doing up-to-date checks. In order to support this
use-case, you can use Task.doNotTrackState():

build.gradle.kts

plugins {
 war
}

tasks.register<Copy>("deployToTomcat") {
 from(tasks.war)
 into(layout.projectDirectory.dir("tomcat/webapps"))
 doNotTrackState("Deployment directory contains unreadable files")
}

build.gradle

plugins {
 id 'war'
}

tasks.register("deployToTomcat", Copy) {
 from war
 into layout.projectDirectory.dir('tomcat/webapps')
 doNotTrackState("Deployment directory contains unreadable files")
}

Initialization Scripts
Initialization scripts are scripts that run before the build script is executed. They allow you to
customize the build environment or configure settings early in the build.

Initialization scripts can be useful for setting up common configurations, such as repositories,
plugins, or custom tasks, across multiple projects.

Using an init script

Initialization scripts, also called init scripts, are similar to other scripts in Gradle. Initialization
scripts run before the build starts.

https://docs.gradle.org/8.12/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)

They are useful for various purposes:

• Setting up enterprise-wide configurations (e.g., custom plugin locations)

• Configuring properties based on the environment (e.g., developer’s machine vs. CI server)

• Providing user-specific information (e.g., authentication credentials)

• Defining machine-specific details (e.g., JDK locations)

• Registering build listeners (e.g., external tools that wish to listen to Gradle events might find this
helpful)

• Registering loggers (e.g., customize how Gradle logs the events that it generates)

One main limitation of init scripts is that they cannot access classes in the buildSrc project.

Invoking an init script

There are several ways to invoke an init script (in order of priority):

1. Specify a file on the command line with the option -I or --init-script followed by the path to
the script.

The command line option can appear more than once, each time adding another init script. The
build will fail if any files specified on the command line do not exist.

2. Put a file called init.gradle(.kts) in the $GRADLE_USER_HOME/ directory.

3. Put a file called yourfilename.init.gradle(.kts) in the $GRADLE_USER_HOME/init.d/ directory.

4. Put a file called yourfilename.init.gradle(.kts) in the $GRADLE_HOME/init.d/ directory. Entries
will be evaluated in alphabetic order.

This lets you package a custom Gradle distribution containing custom build logic and plugins.
You can combine this with the Gradle wrapper to make custom logic available to all builds in
your enterprise.

If more than one init script is found, they will all be executed in the order specified above.

Scripts in a given directory are executed in alphabetical order. For example, a tool can specify an
init script on the command line and another in the home directory to define the environment. Both
scripts will run when Gradle is executed.

Writing an init script

Like a Gradle build script, an init script is a Groovy or Kotlin script. Each init script has a Gradle
instance associated with it. Any property reference and method call in the init script will be
delegated to this Gradle instance.

Each init script implements the Script interface.

NOTE
When writing init scripts, pay attention to the scope of the reference you are trying
to access. For example, properties loaded from gradle.properties are available on

https://docs.gradle.org/8.12/dsl/org.gradle.api.invocation.Gradle.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Script.html

Settings or Project instances but not on the Gradle one.

Configuring projects from an init script

You can use an init script to configure the projects in the build. This works similarly to configuring
projects in a multi-project build.

The following sample shows how to perform extra configuration from an init script before the
projects are evaluated:

build.gradle

repositories {
 mavenCentral()
}

tasks.register('showRepos') {
 def repositoryNames = repositories.collect { it.name }
 doLast {
 println "All repos:"
 println repositoryNames
 }
}

init.gradle

allprojects {
 repositories {
 mavenLocal()
 }
}

build.gradle.kts

repositories {
 mavenCentral()
}

tasks.register("showRepos") {
 val repositoryNames = repositories.map { it.name }
 doLast {
 println("All repos:")
 println(repositoryNames)
 }
}

init.gradle.kts

allprojects {
 repositories {
 mavenLocal()
 }
}

This sample uses this feature to configure an additional repository to be used only for specific
environments.

> gradle --init-script init.gradle.kts -q showRepos
All repos:
[MavenLocal, MavenRepo]

> gradle --init-script init.gradle -q showRepos
All repos:
[MavenLocal, MavenRepo]

Adding external dependencies

Init scripts can also declare dependencies with the initscript() method, passing in a closure that
declares the init script classpath.

Declaring external dependencies for an init script:

init.gradle.kts

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.apache.commons:commons-math:2.0")
 }
}

init.gradle

initscript {
 repositories {
 mavenCentral()

 }
 dependencies {
 classpath 'org.apache.commons:commons-math:2.0'
 }
}

The closure passed to the initscript() method configures a ScriptHandler instance. You declare the
init script classpath by adding dependencies to the classpath configuration.

This is the same way you declare, for example, the Java compilation classpath. You can use any of
the dependency types described in Declaring Dependencies, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would
any other classes on the classpath. The following example adds to the previous example and uses
classes from the init script classpath.

An init script with external dependencies:

init.gradle.kts

import org.apache.commons.math.fraction.Fraction

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.apache.commons:commons-math:2.0")
 }
}

println(Fraction.ONE_FIFTH.multiply(2))

build.gradle.kts

tasks.register("doNothing")

init.gradle

import org.apache.commons.math.fraction.Fraction

initscript {
 repositories {
 mavenCentral()
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

 dependencies {
 classpath 'org.apache.commons:commons-math:2.0'
 }
}

println Fraction.ONE_FIFTH.multiply(2)

build.gradle

tasks.register('doNothing')

> gradle --init-script init.gradle.kts -q doNothing
2 / 5

> gradle --init-script init.gradle -q doNothing
2 / 5

Applying plugins

Plugins can be applied to init scripts like a Gradle build script or a Gradle settings file.

Using plugins in init scripts:

init.gradle.kts

apply<EnterpriseRepositoryPlugin>()

class EnterpriseRepositoryPlugin : Plugin<Gradle> {
 companion object {
 const val ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"
 }

 override fun apply(gradle: Gradle) {
 // ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
 gradle.allprojects {
 repositories {

 // Remove all repositories not pointing to the enterprise
repository url
 all {
 if (this !is MavenArtifactRepository || url.toString() !=
ENTERPRISE_REPOSITORY_URL) {
 project.logger.lifecycle("Repository ${(this as?

MavenArtifactRepository)?.url ?: name} removed. Only
$ENTERPRISE_REPOSITORY_URL is allowed")
 remove(this)
 }
 }

 // add the enterprise repository
 add(maven {
 name = "STANDARD_ENTERPRISE_REPO"
 url = uri(ENTERPRISE_REPOSITORY_URL)
 })
 }
 }
 }
}

build.gradle.kts

repositories{
 mavenCentral()
}

data class RepositoryData(val name: String, val url: URI)

tasks.register("showRepositories") {
 val repositoryData = repositories.withType<MavenArtifactRepository>().map
{ RepositoryData(it.name, it.url) }
 doLast {
 repositoryData.forEach {
 println("repository: ${it.name} ('${it.url}')")
 }
 }
}

init.gradle

apply plugin: EnterpriseRepositoryPlugin

class EnterpriseRepositoryPlugin implements Plugin<Gradle> {

 private static String ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"

 void apply(Gradle gradle) {
 // ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
 gradle.allprojects { project ->
 project.repositories {

 // Remove all repositories not pointing to the enterprise
repository url
 all { ArtifactRepository repo ->
 if (!(repo instanceof MavenArtifactRepository) ||
 repo.url.toString() != ENTERPRISE_REPOSITORY_URL) {
 project.logger.lifecycle "Repository ${repo.url}
removed. Only $ENTERPRISE_REPOSITORY_URL is allowed"
 remove repo
 }
 }

 // add the enterprise repository
 maven {
 name = "STANDARD_ENTERPRISE_REPO"
 url = ENTERPRISE_REPOSITORY_URL
 }
 }
 }
 }
}

build.gradle

repositories{
 mavenCentral()
}

@Immutable
class RepositoryData {
 String name
 URI url
}

tasks.register('showRepositories') {
 def repositoryData = repositories.collect { new RepositoryData(it.name,
it.url) }
 doLast {
 repositoryData.each {
 println "repository: ${it.name} ('${it.url}')"
 }
 }
}

> gradle --init-script init.gradle.kts -q showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo')

> gradle --init-script init.gradle -q showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo')

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin
instance’s Plugin.apply(T) method.

The gradle object is passed as a parameter, which can be used to configure all aspects of a build. Of
course, the applied plugin can be resolved as an external dependency as described in External
dependencies for the init script

Dataflow Actions

NOTE The dataflow actions support is an incubating feature and is subject to change.

A preferred way of executing work in a Gradle build is using a task. However, some kinds of work
do not fit tasks well, such as custom handling of the build failure.

What if you want to play a cheerful sound when the build succeeds and a sad one when it fails?
This work piece has to process the task execution result, so it cannot be a task itself.

The Dataflow Actions API provides a way to schedule this type of work. A dataflow action is a
parameterized isolated piece of work that becomes eligible for execution as soon as all input
parameters become available.

Implementing a dataflow action

The first step is to implement the action itself. You must create a class implementing the FlowAction
interface:

import org.gradle.api.flow.FlowAction
import org.gradle.api.flow.FlowParameters

abstract class ReportConsumption : FlowAction<ReportConsumption.Params> {

 interface Params : FlowParameters {

 }

 override fun execute(parameters: Params) {

 }
}

The execute method must be implemented because this is where the work happens. An action
implementation is treated as a custom Gradle type and can use any of the features available to

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Plugin.html#apply-T-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/flow/FlowAction.html

custom Gradle types. In particular, some Gradle services can be injected into the implementation.

A dataflow action may accept parameters. To provide parameters, you define an abstract class (or
interface) to hold the parameters:

• The parameters type must implement (or extend) FlowParameters.

• The parameters type is also a custom Gradle type.

• The action implementation gets the parameters as an argument of the execute method.

When the action requires no parameters, you can use FlowParameters.None as the type of
parameter.

Here is an example of a dataflow action that takes a shared build service and a file path as
parameters:

SoundPlay.java

package org.gradle.sample.sound;

import org.gradle.api.flow.FlowAction;
import org.gradle.api.flow.FlowParameters;
import org.gradle.api.provider.Property;
import org.gradle.api.services.ServiceReference;
import org.gradle.api.tasks.Input;

import java.io.File;

public abstract class SoundPlay implements FlowAction<SoundPlay.Parameters> {
 interface Parameters extends FlowParameters {
 @ServiceReference ①
 Property<SoundService> getSoundService();

 @Input ②
 Property<File> getMediaFile();
 }

 @Override
 public void execute(Parameters parameters) {
 parameters.getSoundService().get().playSoundFile(parameters.getMediaFile(
).get());
 }
}

① Parameters in the parameter type must be annotated. If a parameter is annotated with
@ServiceReference, then a suitable shared build service implementation is automatically
assigned to the parameter when the action is created, according to the usual rules.

② All other parameters must be annotated with @Input.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/flow/FlowParameters.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/flow/FlowParameters.None.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/services/ServiceReference.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/Input.html

Using lifecycle event providers

Besides the usual value providers, Gradle provides dedicated providers for build lifecycle events,
like build completion. These providers are intended for dataflow actions and provide additional
ordering guarantees when used as inputs. The ordering also applies if you derive a provider from
the event provider by, for example, calling map or flatMap. You can obtain these providers from the
FlowProviders class.

flowProviders.buildWorkResult.map {
 [
 buildInvocationId: scopeIdsService.buildInvocationId,
 workspaceId: scopeIdsService.workspaceId,
 userId: scopeIdsService.userId
]
}

WARNING
If you’re not using a lifecycle event provider as an input to the dataflow action,
then the exact timing when the action is executed is not defined and may
change in the next version of Gradle.

Supplying the action for execution

You should not create FlowAction objects manually. Instead, you request to execute them in the
appropriate scope of FlowScope. In doing so, you can configure the parameters for the task:

SoundFeedbackPlugin.java

package org.gradle.sample.sound;

import org.gradle.api.Plugin;
import org.gradle.api.flow.FlowProviders;
import org.gradle.api.flow.FlowScope;
import org.gradle.api.initialization.Settings;

import javax.inject.Inject;
import java.io.File;

public abstract class SoundFeedbackPlugin implements Plugin<Settings> {
 @Inject
 protected abstract FlowScope getFlowScope(); ①

 @Inject
 protected abstract FlowProviders getFlowProviders(); ①

 @Override
 public void apply(Settings settings) {
 final File soundsDir = new File(settings.getSettingsDir(), "sounds");
 getFlowScope().always(②

https://docs.gradle.org/8.12/javadoc/org/gradle/api/flow/FlowProviders.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/flow/FlowScope.html

 SoundPlay.class, ③
 spec -> ④
 spec.getParameters().getMediaFile().set(
 getFlowProviders().getBuildWorkResult().map(result -> ⑤
 new File(
 soundsDir,
 result.getFailure().isPresent() ? "sad-trombone.mp3" :
"tada.mp3"
)
)
)
);
 }
}

① Use service injection to obtain FlowScope and FlowProviders instances. They are available for
project and settings plugins.

② Use an appropriate scope to run your actions. As the name suggests, actions in the always scope
are executed every time the build runs.

③ Specify the class that implements the action.

④ Use the spec argument to configure the action parameters.

⑤ A lifecycle event provider can be mapped into something else while preserving the action order.

As a result, when you run the build, and it completes successfully, the action will play the "tada"
sound. If the build fails at configuration or execution time, you’ll hear "sad-trombone"
sound — assuming that build configuration proceeds far enough for the action to be registered.

Testing Build Logic with TestKit
The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. At this time, it is focused on functional testing. That is, testing build logic by exercising it
as part of a programmatically executed build. Over time, the TestKit will likely expand to facilitate
other kinds of tests.

Using TestKit

To use the TestKit, include the following in your plugin’s build:

Example 1. Declaring the TestKit dependency

build.gradle.kts

dependencies {
 testImplementation(gradleTestKit())
}

#ex-declaring-the-testkit-dependency

build.gradle

dependencies {
 testImplementation gradleTestKit()
}

The gradleTestKit() encompasses the classes of the TestKit, as well as the Gradle Tooling API client.
It does not include a version of JUnit, TestNG, or any other test execution framework. Such a
dependency must be explicitly declared.

Example 2. Declaring the JUnit dependency

build.gradle.kts

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
}

tasks.named<Test>("test") {
 useJUnitPlatform()
}

build.gradle

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
}

tasks.named('test', Test) {
 useJUnitPlatform()
}

Functional testing with the Gradle runner

The GradleRunner facilitates programmatically executing Gradle builds, and inspecting the result.

A contrived build can be created (e.g. programmatically, or from a template) that exercises the
“logic under test”. The build can then be executed, potentially in a variety of ways (e.g. different
combinations of tasks and arguments). The correctness of the logic can then be verified by asserting
the following, potentially in combination:

https://junit.org
https://testng.org
#ex-declaring-the-junit-dependency
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html

• The build’s output;

• The build’s logging (i.e. console output);

• The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the
GradleRunner.build() or GradleRunner.buildAndFail() methods depending on the anticipated
outcome.

The following demonstrates the usage of the Gradle runner in a Java JUnit test:

Example: Using GradleRunner with Java and JUnit

BuildLogicFunctionalTest.java

import org.gradle.testkit.runner.BuildResult;
import org.gradle.testkit.runner.GradleRunner;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.io.TempDir;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;

import static org.gradle.testkit.runner.TaskOutcome.SUCCESS;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;

public class BuildLogicFunctionalTest {

 @TempDir File testProjectDir;
 private File settingsFile;
 private File buildFile;

 @BeforeEach
 public void setup() {
 settingsFile = new File(testProjectDir, "settings.gradle");
 buildFile = new File(testProjectDir, "build.gradle");
 }

 @Test
 public void testHelloWorldTask() throws IOException {
 writeFile(settingsFile, "rootProject.name = 'hello-world'");
 String buildFileContent = "task helloWorld {" +
 " doLast {" +
 " println 'Hello world!'" +
 " }" +
 "}";
 writeFile(buildFile, buildFileContent);

https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail--

 BuildResult result = GradleRunner.create()
 .withProjectDir(testProjectDir)
 .withArguments("helloWorld")
 .build();

 assertTrue(result.getOutput().contains("Hello world!"));
 assertEquals(SUCCESS, result.task(":helloWorld").getOutcome());
 }

 private void writeFile(File destination, String content) throws IOException {
 BufferedWriter output = null;
 try {
 output = new BufferedWriter(new FileWriter(destination));
 output.write(content);
 } finally {
 if (output != null) {
 output.close();
 }
 }
 }
}

Any test execution framework can be used.

As Gradle build scripts can also be written in the Groovy programming language, it is often a
productive choice to write Gradle functional tests in Groovy. Furthermore, it is recommended to
use the (Groovy based) Spock test execution framework as it offers many compelling features over
the use of JUnit.

The following demonstrates the usage of the Gradle runner in a Groovy Spock test:

Example: Using GradleRunner with Groovy and Spock

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner
import static org.gradle.testkit.runner.TaskOutcome.*
import spock.lang.TempDir
import spock.lang.Specification

class BuildLogicFunctionalTest extends Specification {
 @TempDir File testProjectDir
 File settingsFile
 File buildFile

 def setup() {
 settingsFile = new File(testProjectDir, 'settings.gradle')
 buildFile = new File(testProjectDir, 'build.gradle')
 }

https://code.google.com/p/spock/

 def "hello world task prints hello world"() {
 given:
 settingsFile << "rootProject.name = 'hello-world'"
 buildFile << """
 task helloWorld {
 doLast {
 println 'Hello world!'
 }
 }
 """

 when:
 def result = GradleRunner.create()
 .withProjectDir(testProjectDir)
 .withArguments('helloWorld')
 .build()

 then:
 result.output.contains('Hello world!')
 result.task(":helloWorld").outcome == SUCCESS
 }
}

It is a common practice to implement any custom build logic (like plugins and task types) that is
more complex in nature as external classes in a standalone project. The main driver behind this
approach is bundle the compiled code into a JAR file, publish it to a binary repository and reuse it
across various projects.

Getting the plugin-under-test into the test build

The GradleRunner uses the Tooling API to execute builds. An implication of this is that the builds
are executed in a separate process (i.e. not the same process executing the tests). Therefore, the test
build does not share the same classpath or classloaders as the test process and the code under test
is not implicitly available to the test build.

NOTE

GradleRunner supports the same range of Gradle versions as the Tooling API. The
supported versions are defined in the compatibility matrix.

Builds with older Gradle versions may still work but there are no guarantees.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test
into the test build.

Automatic injection with the Java Gradle Plugin Development plugin

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle
plugins. Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit.
When applied to a project, the plugin automatically adds the gradleTestKit() dependency to the
testApi configuration. Furthermore, it automatically generates the classpath for the code under test

java_gradle_plugin.pdf#java_gradle_plugin

and injects it via GradleRunner.withPluginClasspath() for any GradleRunner instance created by the
user. It’s important to note that the mechanism currently only works if the plugin under test is
applied using the plugins DSL. If the target Gradle version is prior to 2.8, automatic plugin classpath
injection is not performed.

The plugin uses the following conventions for applying the TestKit dependency and injecting the
classpath:

• Source set containing code under test: sourceSets.main

• Source set used for injecting the plugin classpath: sourceSets.test

Any of these conventions can be reconfigured with the help of the class
GradlePluginDevelopmentExtension.

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath
by using the standard conventions applied by the Java Gradle Plugin Development plugin.

Example 3. Using the Java Gradle Development plugin for generating the plugin metadata

build.gradle.kts

plugins {
 groovy
 `java-gradle-plugin`
}

dependencies {
 testImplementation("org.spockframework:spock-core:2.2-groovy-3.0") {
 exclude(group = "org.codehaus.groovy")
 }
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
}

build.gradle

plugins {
 id 'groovy'
 id 'java-gradle-plugin'
}

dependencies {
 testImplementation('org.spockframework:spock-core:2.2-groovy-3.0') {
 exclude group: 'org.codehaus.groovy'
 }
 testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html
#ex-using-the-java-gradle-development-plugin-for-generating-the-plugin-metadata

Example: Automatically injecting the code under test classes into test builds

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

def "hello world task prints hello world"() {
 given:
 settingsFile << "rootProject.name = 'hello-world'"
 buildFile << """
 plugins {
 id 'org.gradle.sample.helloworld'
 }
 """

 when:
 def result = GradleRunner.create()
 .withProjectDir(testProjectDir)
 .withArguments('helloWorld')
 .withPluginClasspath()
 .build()

 then:
 result.output.contains('Hello world!')
 result.task(":helloWorld").outcome == SUCCESS
}

The following build script demonstrates how to reconfigure the conventions provided by the Java
Gradle Plugin Development plugin for a project that uses a custom Test source set.

NOTE
A new configuration DSL for modeling the below functionalTest suite is available
via the incubating JVM Test Suite plugin.

Example 4. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin

build.gradle.kts

plugins {
 groovy
 `java-gradle-plugin`
}

val functionalTest = sourceSets.create("functionalTest")
val functionalTestTask = tasks.register<Test>("functionalTest") {
 group = "verification"
 testClassesDirs = functionalTest.output.classesDirs
 classpath = functionalTest.runtimeClasspath
 useJUnitPlatform()
}

tasks.check {

jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
#ex-reconfiguring-the-classpath-generation-conventions-of-the-java-gradle-development-plugin

 dependsOn(functionalTestTask)
}

gradlePlugin {
 testSourceSets(functionalTest)
}

dependencies {
 "functionalTestImplementation"("org.spockframework:spock-core:2.2-groovy-
3.0") {
 exclude(group = "org.codehaus.groovy")
 }
 "functionalTestRuntimeOnly"("org.junit.platform:junit-platform-launcher")
}

build.gradle

plugins {
 id 'groovy'
 id 'java-gradle-plugin'
}

def functionalTest = sourceSets.create('functionalTest')
def functionalTestTask = tasks.register('functionalTest', Test) {
 group = 'verification'
 testClassesDirs = sourceSets.functionalTest.output.classesDirs
 classpath = sourceSets.functionalTest.runtimeClasspath
 useJUnitPlatform()
}

tasks.named("check") {
 dependsOn functionalTestTask
}

gradlePlugin {
 testSourceSets sourceSets.functionalTest
}

dependencies {
 functionalTestImplementation('org.spockframework:spock-core:2.2-groovy-
3.0') {
 exclude group: 'org.codehaus.groovy'
 }
 functionalTestRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working
directory" in a directory inside the JVM’s temp directory (i.e. the location specified by the
java.io.tmpdir system property, typically /tmp). Any configuration in the default Gradle User Home
(e.g. ~/.gradle/gradle.properties) is not used for test execution. The TestKit does not expose a
mechanism for fine grained control of all aspects of the environment (e.g., JDK). Future versions of
the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

The dedicated working directory is not deleted by the runner after the build. The TestKit provides
two ways to specify a location that is regularly cleaned, such as the project’s build folder:

• The org.gradle.testkit.dir system property;

• The GradleRunner.withTestKitDir(file testKitDir) method.

Setting the Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not
depend on all of Gradle’s implementation.

By default, the runner will attempt to find a Gradle distribution based on where the GradleRunner
class was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as
is the case when using the gradleTestKit() dependency declaration.

When using the runner as part of tests being executed by Gradle (e.g. executing the test task of a
plugin project), the same distribution used to execute the tests will be used by the runner. When
using the runner as part of tests being executed by an IDE, the same distribution of Gradle that was
used when importing the project will be used. This means that the plugin will effectively be tested
with the same version of Gradle that it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the
following GradleRunner methods:

• GradleRunner.withGradleVersion(java.lang.String)

• GradleRunner.withGradleInstallation(java.io.File)

• GradleRunner.withGradleDistribution(java.net.URI)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a
cross-version compatibility test written as Groovy Spock test:

Example: Specifying a Gradle version for test execution

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner
import static org.gradle.testkit.runner.TaskOutcome.*
import spock.lang.TempDir

https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion-java.lang.String-
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation-java.io.File-
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution-java.net.URI-

import spock.lang.Specification

class BuildLogicFunctionalTest extends Specification {
 @TempDir File testProjectDir
 File settingsFile
 File buildFile

 def setup() {
 settingsFile = new File(testProjectDir, 'settings.gradle')
 buildFile = new File(testProjectDir, 'build.gradle')
 }

 def "can execute hello world task with Gradle version #gradleVersion"() {
 given:
 buildFile << """
 task helloWorld {
 doLast {
 logger.quiet 'Hello world!'
 }
 }
 """
 settingsFile << ""

 when:
 def result = GradleRunner.create()
 .withGradleVersion(gradleVersion)
 .withProjectDir(testProjectDir)
 .withArguments('helloWorld')
 .build()

 then:
 result.output.contains('Hello world!')
 result.task(":helloWorld").outcome == SUCCESS

 where:
 gradleVersion << ['5.0', '6.0.1']
 }
}

Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some
runner features are not supported on earlier versions. In such cases, the runner will throw an
exception when attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.

Table 4. Gradle version compatibility

Feature Minimum
Version

Description

Inspecting executed tasks 2.5 Inspecting the executed tasks, using
BuildResult.getTasks() and similar methods.

Plugin classpath injection 2.8 Injecting the code under test
viaGradleRunner.withPluginClasspath(java.lang.Iterab
le).

Inspecting build output in
debug mode

2.9 Inspecting the build’s text output when run in debug
mode, using BuildResult.getOutput().

Automatic plugin classpath
injection

2.13 Injecting the code under test automatically via
GradleRunner.withPluginClasspath() by applying the
Java Gradle Plugin Development plugin.

Setting environment
variables to be used by the
build.

3.5 The Gradle Tooling API only supports setting
environment variables in later versions.

Debugging build logic

The runner uses the Tooling API to execute builds. An implication of this is that the builds are
executed in a separate process (i.e. not the same process executing the tests). Therefore, executing
your tests in debug mode does not allow you to debug your build logic as you may expect. Any
breakpoints set in your IDE will be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

• Setting “org.gradle.testkit.debug” system property to true for the JVM using the GradleRunner
(i.e. not the build being executed with the runner);

• Calling the GradleRunner.withDebug(boolean) method.

The system property approach can be used when it is desirable to enable debugging support
without making an adhoc change to the runner configuration. Most IDEs offer the capability to set
JVM system properties for test execution, and such a feature can be used to set this system property.

Testing with the Build Cache

To enable the Build Cache in your tests, you can pass the --build-cache argument to GradleRunner
or use one of the other methods described in Enable the build cache. You can then check for the
task outcome TaskOutcome.FROM_CACHE when your plugin’s custom task is cached. This outcome
is only valid for Gradle 3.5 and newer.

Example: Testing cacheable tasks

BuildLogicFunctionalTest.groovy

def "cacheableTask is loaded from cache"() {
 given:
 buildFile << """

https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks--
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug-boolean-
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html
https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/TaskOutcome.html#FROM_CACHE

 plugins {
 id 'org.gradle.sample.helloworld'
 }
 """

 when:
 def result = runner()
 .withArguments('--build-cache', 'cacheableTask')
 .build()

 then:
 result.task(":cacheableTask").outcome == SUCCESS

 when:
 new File(testProjectDir, 'build').deleteDir()
 result = runner()
 .withArguments('--build-cache', 'cacheableTask')
 .build()

 then:
 result.task(":cacheableTask").outcome == FROM_CACHE
}

Note that TestKit re-uses a Gradle User Home between tests (see
GradleRunner.withTestKitDir(java.io.File)) which contains the default location for the local build
cache. For testing with the build cache, the build cache directory should be cleaned between tests.
The easiest way to accomplish this is to configure the local build cache to use a temporary directory.

Example: Clean build cache between tests

BuildLogicFunctionalTest.groovy

@TempDir File testProjectDir
File buildFile
File localBuildCacheDirectory

def setup() {
 localBuildCacheDirectory = new File(testProjectDir, 'local-cache')
 buildFile = new File(testProjectDir,'settings.gradle') << """
 buildCache {
 local {
 directory = '${localBuildCacheDirectory.toURI()}'
 }
 }
 """
 buildFile = new File(testProjectDir,'build.gradle')
}

https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-

Using Ant from Gradle
Gradle provides integration with Ant.

Gradle integrates with Ant, allowing you to use individual Ant tasks or entire Ant builds in your
Gradle builds. Using Ant tasks in a Gradle build script is often easier and more powerful than using
Ant’s XML format. Gradle can also be used as a powerful Ant task scripting tool.

Ant can be divided into two layers:

1. Layer 1: The Ant language. It provides the syntax for the build.xml file, the handling of the
targets, special constructs like macrodefs, and more. In other words, this layer includes
everything except the Ant tasks and types. Gradle understands this language and lets you
import your Ant build.xml directly into a Gradle project. You can then use the targets of your
Ant build as if they were Gradle tasks.

2. Layer 2: The Ant tasks and types, like javac, copy or jar. For this layer, Gradle provides
integration using Groovy and the AntBuilder.

Since build scripts are Kotlin or Groovy scripts, you can execute an Ant build as an external
process. Your build script may contain statements like: "ant clean compile".execute().[1]

Gradle’s Ant integration allows you to migrate your build from Ant to Gradle smoothly:

1. Begin by importing your existing Ant build.

2. Then, transition your dependency declarations from the Ant script to your build file.

3. Finally, move your tasks to your build file or replace them with Gradle’s plugins.

This migration process can be performed incrementally, and you can maintain a functional Gradle
build throughout the transition.

WARNING
Ant integration is not fully compatible with the configuration cache. Using
Task.ant to run Ant task in the task action may work, but importing the Ant
build is not supported.

The Ant integration is provided by the AntBuilder API.

Using Ant tasks and types

Gradle provides a property called ant in your build script. This is a reference to an AntBuilder
instance.

AntBuilder is used to access Ant tasks, types, and properties from your build script.

You execute an Ant task by calling a method on the AntBuilder instance. You use the task name as
the method name:

build.gradle

ant.mkdir(dir: "$STAGE")

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#getAnt--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/AntBuilder.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/AntBuilder.html

ant.copy(todir: "$STAGE/bin") {
 ant.fileset(dir: 'bin', includes: "**")
}
ant.gzip(destfile:"build/file-${VERSION}.tar.gz", src: "build/file-${VERSION}.tar")

For example, you execute the Ant echo task using the ant.echo() method.

The attributes of the Ant task are passed as Map parameters to the method. Below is an example of
the echo task:

build.gradle.kts

tasks.register("hello") {
 doLast {
 val greeting = "hello from Ant"
 ant.withGroovyBuilder {
 "echo"("message" to greeting)
 }
 }
}

build.gradle

tasks.register('hello') {
 doLast {
 String greeting = 'hello from Ant'
 ant.echo(message: greeting)
 }
}

$ gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

TIP
You can mix Groovy/Kotlin code and the Ant task markup. This can be extremely
powerful.

You pass nested text to an Ant task as a parameter of the task method call. In this example, we pass
the message for the echo task as nested text:

build.gradle.kts

tasks.register("hello") {
 doLast {
 ant.withGroovyBuilder {
 "echo"("message" to "hello from Ant")
 }
 }
}

build.gradle

tasks.register('hello') {
 doLast {
 ant.echo('hello from Ant')
 }
}

$ gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same
way as tasks by calling a method with the same name as the element we want to define:

build.gradle.kts

tasks.register("zip") {
 doLast {
 ant.withGroovyBuilder {
 "zip"("destfile" to "archive.zip") {
 "fileset"("dir" to "src") {
 "include"("name" to "**.xml")
 "exclude"("name" to "**.java")
 }
 }
 }
 }

}

build.gradle

tasks.register('zip') {
 doLast {
 ant.zip(destfile: 'archive.zip') {
 fileset(dir: 'src') {
 include(name: '**.xml')
 exclude(name: '**.java')
 }
 }
 }
}

You can access Ant types the same way you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can use directly in your build script. In
the following example, we create an Ant path object, then iterate over the contents of it:

build.gradle.kts

import org.apache.tools.ant.types.Path

tasks.register("list") {
 doLast {
 val path = ant.withGroovyBuilder {
 "path" {
 "fileset"("dir" to "libs", "includes" to "*.jar")
 }
 } as Path
 path.list().forEach {
 println(it)
 }
 }
}

build.gradle

tasks.register('list') {
 doLast {
 def path = ant.path {
 fileset(dir: 'libs', includes: '*.jar')
 }

 path.list().each {
 println it
 }
 }
}

Using custom Ant tasks

To make custom tasks available in your build, use the taskdef (usually easier) or typedef Ant task,
just as you would in a build.xml file. You can then refer to the custom Ant task as you would a built-
in Ant task:

build.gradle.kts

tasks.register("check") {
 val checkstyleConfig = file("checkstyle.xml")
 doLast {
 ant.withGroovyBuilder {
 "taskdef"("resource" to
"com/puppycrawl/tools/checkstyle/ant/checkstyle-ant-task.properties") {
 "classpath" {
 "fileset"("dir" to "libs", "includes" to "*.jar")
 }
 }
 "checkstyle"("config" to checkstyleConfig) {
 "fileset"("dir" to "src")
 }
 }
 }
}

build.gradle

tasks.register('check') {
 def checkstyleConfig = file('checkstyle.xml')
 doLast {
 ant.taskdef(resource:
'com/puppycrawl/tools/checkstyle/ant/checkstyle-ant-task.properties') {
 classpath {
 fileset(dir: 'libs', includes: '*.jar')
 }
 }
 ant.checkstyle(config: checkstyleConfig) {
 fileset(dir: 'src')
 }

 }
}

You can use Gradle’s dependency management to assemble the classpath for the custom tasks. To
do this, you need to define a custom configuration for the classpath and add some dependencies to
it. This is described in more detail in Declaring Dependencies:

build.gradle.kts

val pmd = configurations.create("pmd")

dependencies {
 pmd(group = "pmd", name = "pmd", version = "4.2.5")
}

build.gradle

configurations {
 pmd
}

dependencies {
 pmd group: 'pmd', name: 'pmd', version: '4.2.5'
}

To use the classpath configuration, use the asPath property of the custom configuration:

build.gradle.kts

tasks.register("check") {
 doLast {
 ant.withGroovyBuilder {
 "taskdef"("name" to "pmd",
 "classname" to "net.sourceforge.pmd.ant.PMDTask",
 "classpath" to pmd.asPath)
 "pmd"("shortFilenames" to true,
 "failonruleviolation" to true,
 "rulesetfiles" to file("pmd-rules.xml").toURI().toString())
{
 "formatter"("type" to "text", "toConsole" to "true")
 "fileset"("dir" to "src")

declaring_dependencies.html

 }
 }
 }
}

build.gradle

tasks.register('check') {
 doLast {
 ant.taskdef(name: 'pmd',
 classname: 'net.sourceforge.pmd.ant.PMDTask',
 classpath: configurations.pmd.asPath)
 ant.pmd(shortFilenames: 'true',
 failonruleviolation: 'true',
 rulesetfiles: file('pmd-rules.xml').toURI().toString()) {
 formatter(type: 'text', toConsole: 'true')
 fileset(dir: 'src')
 }
 }
}

Importing an Ant build

You can use the ant.importBuild() method to import an Ant build into your Gradle project.

When you import an Ant build, each Ant target is treated as a Gradle task. This means you can
manipulate and execute the Ant targets in the same way as Gradle tasks:

build.gradle.kts

ant.importBuild("build.xml")

build.gradle

ant.importBuild 'build.xml'

build.xml

<project>

 <target name="hello">
 <echo>Hello, from Ant</echo>
 </target>
</project>

$ gradle hello

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

You can add a task that depends on an Ant target:

build.gradle.kts

ant.importBuild("build.xml")

tasks.register("intro") {
 dependsOn("hello")
 doLast {
 println("Hello, from Gradle")
 }
}

build.gradle

ant.importBuild 'build.xml'

tasks.register('intro') {
 dependsOn("hello")
 doLast {
 println 'Hello, from Gradle'
 }
}

$ gradle intro

> Task :hello
[ant:echo] Hello, from Ant

> Task :intro
Hello, from Gradle

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Or, you can add behavior to an Ant target:

build.gradle.kts

ant.importBuild("build.xml")

tasks.named("hello") {
 doLast {
 println("Hello, from Gradle")
 }
}

build.gradle

ant.importBuild 'build.xml'

hello {
 doLast {
 println 'Hello, from Gradle'
 }
}

$ gradle hello

> Task :hello
[ant:echo] Hello, from Ant
Hello, from Gradle

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

build.gradle.kts

ant.importBuild("build.xml")

tasks.register("intro") {
 doLast {
 println("Hello, from Gradle")
 }
}

build.gradle

ant.importBuild 'build.xml'

tasks.register('intro') {
 doLast {
 println 'Hello, from Gradle'
 }
}

build.xml

<project>
 <target name="hello" depends="intro">
 <echo>Hello, from Ant</echo>
 </target>
</project>

$ gradle hello

> Task :intro
Hello, from Gradle

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Sometimes, it may be necessary to “rename” the task generated for an Ant target to avoid a naming

collision with existing Gradle tasks. To do this, use the AntBuilder.importBuild(java.lang.Object,
org.gradle.api.Transformer) method:

build.gradle.kts

ant.importBuild("build.xml") { antTargetName ->
 "a-" + antTargetName
}

build.gradle

ant.importBuild('build.xml') { antTargetName ->
 'a-' + antTargetName
}

build.xml

<project>
 <target name="hello">
 <echo>Hello, from Ant</echo>
 </target>
</project>

$ gradle a-hello

> Task :a-hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

NOTE

While the second argument to this method should be a Transformer, when
programming in Groovy you can use a closure instead of an anonymous inner class
(or similar) due to Groovy’s support for automatically coercing closures to single-
abstract-method types.

Using Ant properties and references

There are several ways to set an Ant property so that the property can be used by Ant tasks.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

You can set the property directly on the AntBuilder instance. The Ant properties are also available
as a Map, which you can change.

You can also use the Ant property task:

build.gradle.kts

ant.setProperty("buildDir", buildDir)
ant.properties.set("buildDir", buildDir)
ant.properties["buildDir"] = buildDir
ant.withGroovyBuilder {
 "property"("name" to "buildDir", "location" to "buildDir")
}

build.gradle

ant.buildDir = buildDir
ant.properties.buildDir = buildDir
ant.properties['buildDir'] = buildDir
ant.property(name: 'buildDir', location: buildDir)

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the AntBuilder instance. The Ant properties are
also available as a Map:

build.xml

<property name="antProp" value="a property defined in an Ant build"/>

build.gradle.kts

println(ant.getProperty("antProp"))
println(ant.properties.get("antProp"))
println(ant.properties["antProp"])

build.gradle

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

build.gradle.kts

ant.withGroovyBuilder { "path"("id" to "classpath", "location" to "libs") }
ant.references.set("classpath", ant.withGroovyBuilder { "path"("location" to
"libs") })
ant.references["classpath"] = ant.withGroovyBuilder { "path"("location" to
"libs") }

build.gradle

ant.path(id: 'classpath', location: 'libs')
ant.references.classpath = ant.path(location: 'libs')
ant.references['classpath'] = ant.path(location: 'libs')

build.xml

<path refid="classpath"/>

There are several ways to get an Ant reference:

build.xml

<path id="antPath" location="libs"/>

build.gradle.kts

println(ant.references.get("antPath"))
println(ant.references["antPath"])

build.gradle

println ant.references.antPath
println ant.references['antPath']

Using Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in
the Gradle output. By default, these are mapped as follows:

Ant Message Priority Gradle Log Level

VERBOSE DEBUG

DEBUG DEBUG

INFO INFO

WARN WARN

ERROR ERROR

Fine-tuning Ant logging

The default mapping of Ant message priority to the Gradle log level can sometimes be problematic.
For example, no message priority maps directly to the LIFECYCLE log level, which is the default for
Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those messages
from Gradle, a build would have to be run with the log level set to INFO, potentially logging much
more output than is desired.

Conversely, if an Ant task logs messages at too high of a level, suppressing those messages would
require the build to be run at a higher log level, such as QUIET. However, this could result in other
desirable outputs being suppressed.

To help with this, Gradle allows the user to fine-tune the Ant logging and control the mapping of
message priority to the Gradle log level. This is done by setting the priority that should map to the
default Gradle LIFECYCLE log level using the AntBuilder.setLifecycleLogLevel(java.lang.String)
method. When this value is set, any Ant message logged at the configured priority or above will be
logged at least at LIFECYCLE. Any Ant message logged below this priority will be logged at INFO at
most.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel-java.lang.String-

For example, the following changes the mapping such that Ant INFO priority messages are exposed
at the LIFECYCLE log level:

build.gradle.kts

ant.lifecycleLogLevel = AntBuilder.AntMessagePriority.INFO

tasks.register("hello") {
 doLast {
 ant.withGroovyBuilder {
 "echo"("level" to "info", "message" to "hello from info
priority!")
 }
 }
}

build.gradle

ant.lifecycleLogLevel = "INFO"

tasks.register('hello') {
 doLast {
 ant.echo(level: "info", message: "hello from info priority!")
 }
}

$ gradle hello

> Task :hello
[ant:echo] hello from info priority!

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

On the other hand, if the lifecycleLogLevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the INFO level
and suppressed by default.

[1] In Groovy you can execute Strings.

OPTIMIZING BUILD PERFORMANCE

Configuring the Build Environment
Configuring the build environment is a powerful way to customize the build process. There are
many mechanisms available. By leveraging these mechanisms, you can make your Gradle builds
more flexible and adaptable to different environments and requirements.

Available mechanisms

Gradle provides multiple mechanisms for configuring the behavior of Gradle itself and specific
projects:

Mechanism Information Example

Command line interface Flags that configure build
behavior and Gradle features

--rerun

Project properties Properties specific to your
Gradle project

TestFilter::isFailOnNoMatching
Tests=false

System properties Properties that are passed to
the Gradle runtime (JVM)

http.proxyHost=somehost.org

Gradle properties Properties that configure
Gradle settings and the Java
process that executes your
build

org.gradle.logging.level=quiet

Environment variables Properties that configure build
behavior based on the
environment

JAVA_HOME

Priority for configurations

When configuring Gradle behavior, you can use these methods, but you must consider their
priority.

The following table lists these methods in order of highest to lowest precedence (the first one wins):

Priority Method Location Notes

1 Command-line > Command line Flags have precedence
over properties and
environment variables

2 System properties > Project Root Dir Stored in a
gradle.properties file

3 Gradle properties > GRADLE_USER_HOME
> Project Root Dir
> GRADLE_HOME

Stored in a
gradle.properties file

Priority Method Location Notes

4 Environment variables > Environment Sourced by the
environment that
executes Gradle

Here are all possible configurations of specifying the JDK installation directory in order of priority:

1. Command Line

$./gradlew exampleTask -Dorg.gradle.java.home=/path/to/your/java/home --scan

2. Gradle Properties File

gradle.properties

org.gradle.java.home=/path/to/your/java/home

3. Environment Variable

$ export JAVA_HOME=/path/to/your/java/home

The gradle.properties file

Gradle properties, system properties, and project properties can be found in the gradle.properties
file:

gradle.properties

Gradle properties
org.gradle.parallel=true
org.gradle.caching=true
org.gradle.jvmargs=-Duser.language=en -Duser.country=US -Dfile.encoding=UTF-8

System properties
systemProp.pts.enabled=true
systemProp.log4j2.disableJmx=true
systemProp.file.encoding = UTF-8

Project properties
kotlin.code.style=official
android.nonTransitiveRClass=false
spring-boot.version = 2.2.1.RELEASE

You can place the gradle.properties file in the root directory of your project, the Gradle user home
directory (GRADLE_USER_HOME), or the directory where Gradle is optionally installed (GRADLE_HOME).

When resolving properties, Gradle first looks in the project-level gradle.properties file, then in the
user-level gradle.properties file located in GRADLE_USER_HOME, and finally in the gradle.properties
file located in GRADLE_HOME, with project-level properties taking precedence over user-level and
installation-level properties.

Project properties

Project properties are specific to your Gradle project, they can be used to customize your build.
Project properties can be accessed in your build files and get passed in from an external source
when your build is executed. Project properties can be retrieved lazily using
providers.gradleProperty().

Setting a project property

You have four options to add project properties, listed in order of priority:

1. Command Line: You can add project properties directly to your Project object via the -P
command line option.

$./gradlew build -PmyProperty='Hi, world'

2. System Property: Gradle creates specially-named system properties for project properties
which you can set using the -D command line flag or gradle.properties file. For the project
property myProperty, the system property created is called org.gradle.project.myProperty.

$./gradlew build -Dorg.gradle.project.myProperty='Hi, world'

gradle.properties

org.gradle.project.myProperty='Hi, world'

3. Gradle Properties File: You can also set project properties in gradle.properties files.

gradle.properties

myProperty='Hi, world'

4. Environment Variables: You can set project properties with environment variables. If the
environment variable name looks like ORG_GRADLE_PROJECT_myProperty='Hi, world', then Gradle
will set a myProperty property on your project object, with the value of Hi, world.

$ export ORG_GRADLE_PROJECT_myProperty='Hi, world'

This is typically the preferred method for supplying project properties, especially secrets, to
unattended builds like those running on CI servers.

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html

It is possible to change the behavior of a task based on project properties specified at invocation
time. Suppose you’d like to ensure release builds are only triggered by CI. A simple way to handle
this is through an isCI project property:

build.gradle.kts

tasks.register("performRelease") {
 val isCI = providers.gradleProperty("isCI")
 doLast {
 if (isCI.isPresent) {
 println("Performing release actions")
 } else {
 throw InvalidUserDataException("Cannot perform release outside of
CI")
 }
 }
}

build.gradle

tasks.register('performRelease') {
 def isCI = providers.gradleProperty("isCI")
 doLast {
 if (isCI.present) {
 println("Performing release actions")
 } else {
 throw new InvalidUserDataException("Cannot perform release
outside of CI")
 }
 }
}

$./gradlew performRelease -PisCI=true --quiet
Performing release actions

Note that running ./gradlew performRelease yields the same results as long as your
gradle.properties file includes isCI=true:

gradle.properties

isCI=true

$./gradlew performRelease --quiet
Performing release actions

Command-line flags

The command line interface and the available flags are described in its own section.

System properties

System properties are variables set at the JVM level and accessible to the Gradle build process.
System properties can be retrieved lazily using providers.systemProperty().

Setting a system property

You have two options to add system properties listed in order of priority:

1. Command Line: Using the -D command-line option, you can pass a system property to the JVM,
which runs Gradle. The -D option of the gradle command has the same effect as the -D option of
the java command.

$./gradlew build -Dgradle.wrapperUser=myuser

2. Gradle Properties File: You can also set system properties in gradle.properties files with the
prefix systemProp.

gradle.properties

systemProp.gradle.wrapperUser=myuser

System properties reference

For a quick reference, the following are common system properties:

gradle.wrapperUser=(myuser)

Specify username to download Gradle distributions from servers using HTTP Basic
Authentication.

gradle.wrapperPassword=(mypassword)

Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradle.user.home=(path to directory)

Specify the GRADLE_USER_HOME directory.

https.protocols

Specify the supported TLS versions in a comma-separated format. e.g., TLSv1.2,TLSv1.3.

Additional Java system properties are listed here.

https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

In a multi-project build, systemProp properties set in any project except the root will be ignored.
Only the root project’s gradle.properties file will be checked for properties that begin with
systemProp.

Gradle properties

Gradle properties configure Gradle itself and usually have the name org.gradle.*. Gradle
properties should not be used in build logic, their values should not be read/retrieved.

Setting a Gradle property

You have two options to add Gradle properties listed in order of priority:

1. Command Line: Using the -D command-line option, you can pass a Gradle property:

$./gradlew build -Dorg.gradle.caching.debug=false

2. Gradle Properties File: Place these settings into a gradle.properties file and commit it to your
version control system.

gradle.properties

org.gradle.caching.debug=false

The final configuration considered by Gradle is a combination of all Gradle properties set on the
command line and your gradle.properties files. If an option is configured in multiple locations, the
first one found in any of these locations wins:

Priority Method Location Details

1 Command line
interface

. In the command line
using -D.

2 gradle.properties file GRADLE_USER_HOME Stored in a
gradle.properties file
in the GRADLE_USER_HOME.

3 gradle.properties file Project Root Dir Stored in a
gradle.properties file
in a project directory,
then its parent project’s
directory up to the
project’s root directory.

4 gradle.properties file GRADLE_HOME Stored in a
gradle.properties file
in the GRADLE_HOME, the
optional Gradle
installation directory.

NOTE
The location of the GRADLE_USER_HOME may have been changed beforehand via the
-Dgradle.user.home system property passed on the command line.

Gradle properties reference

For reference, the following properties are common Gradle properties:

org.gradle.caching=(true,false)

When set to true, Gradle will reuse task outputs from any previous build when possible,
resulting in much faster builds.

Default is false; the build cache is not enabled.

org.gradle.caching.debug=(true,false)

When set to true, individual input property hashes and the build cache key for each task are
logged on the console.

Default is false.

org.gradle.configuration-cache=(true,false)

Enables configuration caching. Gradle will try to reuse the build configuration from previous
builds.

Default is false.

org.gradle.configureondemand=(true,false)

Enables incubating configuration-on-demand, where Gradle will attempt to configure only
necessary projects.

Default is false.

org.gradle.console=(auto,plain,rich,verbose)

Customize console output coloring or verbosity.

Default depends on how Gradle is invoked.

org.gradle.continue=(true,false)

If enabled, continue task execution after a task failure, else stop task execution after a task
failure.

Default is false.

org.gradle.daemon=(true,false)

When set to true the Gradle Daemon is used to run the build.

Default is true.

org.gradle.daemon.idletimeout=(# of idle millis)

Gradle Daemon will terminate itself after a specified number of idle milliseconds.

Default is 10800000 (3 hours).

org.gradle.debug=(true,false)

When set to true, Gradle will run the build with remote debugging enabled, listening on port
5005. Note that this is equivalent to adding
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 to the JVM command line
and will suspend the virtual machine until a debugger is attached.

Default is false.

org.gradle.java.home=(path to JDK home)

Specifies the Java home for the Gradle build process. The value can be set to either a jdk or jre
location; however, using a JDK is safer depending on what your build does. This does not affect
the version of Java used to launch the Gradle client VM.

You can also control the JVM used to run Gradle itself using the Daemon JVM criteria.

Default is derived from your environment (JAVA_HOME or the path to java) if the setting is
unspecified.

org.gradle.jvmargs=(JVM arguments)

Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for
configuring JVM memory settings for build performance. This does not affect the JVM settings
for the Gradle client VM.

Default is -Xmx512m "-XX:MaxMetaspaceSize=384m".

org.gradle.logging.level=(quiet,warn,lifecycle,info,debug)

When set to quiet, warn, info, or debug, Gradle will use this log level. The values are not case-
sensitive.

Default is lifecycle level.

org.gradle.parallel=(true,false)

When configured, Gradle will fork up to org.gradle.workers.max JVMs to execute projects in
parallel.

Default is false.

org.gradle.priority=(low,normal)

Specifies the scheduling priority for the Gradle daemon and all processes launched by it.

Default is normal.

org.gradle.projectcachedir=(directory)

Specify the project-specific cache directory. Defaults to .gradle in the root project directory."

Default is .gradle.

org.gradle.problems.report=(true|false)

Enable (true) or disable (false) the generation of build/reports/problems-report.html. true is the
default. The report is generated with problems provided to the Problems API.

org.gradle.unsafe.isolated-projects=(true,false)

Enables project isolation, which enables configuration caching.

Default is false.

org.gradle.vfs.verbose=(true,false)

Configures verbose logging when watching the file system.

Default is false.

org.gradle.vfs.watch=(true,false)

Toggles watching the file system. When enabled, Gradle reuses information it collects about the
file system between builds.

Default is true on operating systems where Gradle supports this feature.

org.gradle.warning.mode=(all,fail,summary,none)

When set to all, summary, or none, Gradle will use different warning type display.

Default is summary.

org.gradle.workers.max=(max # of worker processes)

When configured, Gradle will use a maximum of the given number of workers.

Default is the number of CPU processors.

Environment variables

Gradle provides a number of environment variables, which are listed below. Environment
variables can be retrieved lazily using providers.environmentVariable().

Setting environment variables

Let’s take an example that sets the $JAVA_HOME environment variable:

$ set JAVA_HOME=C:\Path\To\Your\Java\Home // Windows
$ export JAVA_HOME=/path/to/your/java/home // Mac/Linux

You can access environment variables as properties in the build script using the System.getenv()
method:

task printEnvVariables {
 doLast {
 println "JAVA_HOME: ${System.getenv('JAVA_HOME')}"

 }
}

Environment variables reference

The following environment variables are available for the gradle command:

GRADLE_HOME

Installation directory for Gradle.

Can be used to specify a local Gradle version instead of using the wrapper.

You can add GRADLE_HOME/bin to your PATH for specific applications and use cases (such as testing
an early release for Gradle).

JAVA_OPTS

Used to pass JVM options and custom settings to the JVM.

export JAVA_OPTS="-Xmx18928m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8
-Djava.awt.headless=true -Dkotlin.daemon.jvm.options=-Xmx6309m"

GRADLE_OPTS

Specifies JVM arguments to use when starting the Gradle client VM.

The client VM only handles command line input/output, so one would rarely need to change its
VM options.

The actual build is run by the Gradle daemon, which is not affected by this environment
variable.

GRADLE_USER_HOME

Specifies the GRADLE_USER_HOME directory for Gradle to store its global configuration properties,
initialization scripts, caches, log files and more.

Defaults to USER_HOME/.gradle if not set.

JAVA_HOME

Specifies the JDK installation directory to use for the client VM.

This VM is also used for the daemon unless a different one is specified in a Gradle properties file
with org.gradle.java.home or using the Daemon JVM criteria.

GRADLE_LIBS_REPO_OVERRIDE

Overrides for the default Gradle library repository.

Can be used to specify a default Gradle repository URL in
org.gradle.plugins.ide.internal.resolver.

Useful override to specify an internally hosted repository if your company uses a firewall/proxy.

Gradle-managed Directories
Gradle uses two main directories to perform and manage its work: the Gradle User Home directory
and the Project Root directory.

Gradle User Home directory

By default, the Gradle User Home (~/.gradle or C:\Users\<USERNAME>\.gradle) stores global
configuration properties, initialization scripts, caches, and log files.

It can be set with the environment variable GRADLE_USER_HOME.

TIP Not to be confused with the GRADLE_HOME, the optional installation directory for Gradle.

It is roughly structured as follows:

├── caches ①
│ ├── 4.8 ②
│ ├── 4.9 ②
│ ├── ⋮
│ ├── jars-3 ③
│ └── modules-2 ③
├── daemon ④
│ ├── ⋮
│ ├── 4.8
│ └── 4.9
├── init.d ⑤
│ └── my-setup.gradle
├── jdks ⑥
│ ├── ⋮
│ └── jdk-14.0.2+12
├── wrapper

│ └── dists ⑦
│ ├── ⋮
│ ├── gradle-4.8-bin
│ ├── gradle-4.9-all
│ └── gradle-4.9-bin
└── gradle.properties ⑧

① Global cache directory (for everything that is not project-specific).

② Version-specific caches (e.g., to support incremental builds).

③ Shared caches (e.g., for artifacts of dependencies).

④ Registry and logs of the Gradle Daemon.

⑤ Global initialization scripts.

⑥ JDKs downloaded by the toolchain support.

⑦ Distributions downloaded by the Gradle Wrapper.

⑧ Global Gradle configuration properties.

Cleanup of caches and distributions

Gradle automatically cleans its user home directory.

By default, the cleanup runs in the background when the Gradle daemon is stopped or shut down.

If using --no-daemon, it runs in the foreground after the build session.

The following cleanup strategies are applied periodically (by default, once every 24 hours):

• Version-specific caches in all caches/<GRADLE_VERSION>/ directories are checked for whether they
are still in use.

If not, directories for release versions are deleted after 30 days of inactivity, and snapshot
versions after 7 days.

• Shared caches in caches/ (e.g., jars-*) are checked for whether they are still in use.

If no Gradle version still uses them, they are deleted.

• Files in shared caches used by the current Gradle version in caches/ (e.g., jars-3 or modules-2)
are checked for when they were last accessed.

Depending on whether the file can be recreated locally or downloaded from a remote
repository, it will be deleted after 7 or 30 days, respectively.

• Gradle distributions in wrapper/dists/ are checked for whether they are still in use, i.e., whether
there’s a corresponding version-specific cache directory.

Unused distributions are deleted.

Configuring cleanup of caches and distributions

The retention periods of the various caches can be configured.

Caches are classified into five categories:

1. Released wrapper distributions: Distributions and related version-specific caches
corresponding to released versions (e.g., 4.6.2 or 8.0).

Default retention for unused versions is 30 days.

2. Snapshot wrapper distributions: Distributions and related version-specific caches
corresponding to snapshot versions (e.g. 7.6-20221130141522+0000).

Default retention for unused versions is 7 days.

3. Downloaded resources: Shared caches downloaded from a remote repository (e.g., cached
dependencies).

Default retention for unused resources is 30 days.

4. Created resources: Shared caches that Gradle creates during a build (e.g., artifact transforms).

Default retention for unused resources is 7 days.

5. Build cache: The local build cache (e.g., build-cache-1).

Default retention for unused build cache entries is 7 days.

The retention period for each category can be configured independently via an init script in the
Gradle User Home:

gradleUserHome/init.d/cache-settings.gradle.kts

beforeSettings {
 caches {
 releasedWrappers.setRemoveUnusedEntriesAfterDays(45)
 snapshotWrappers.setRemoveUnusedEntriesAfterDays(10)
 downloadedResources.setRemoveUnusedEntriesAfterDays(45)
 createdResources.setRemoveUnusedEntriesAfterDays(10)
 buildCache.setRemoveUnusedEntriesAfterDays(5)
 }
}

gradleUserHome/init.d/cache-settings.gradle

beforeSettings { settings ->
 settings.caches {
 releasedWrappers.removeUnusedEntriesAfterDays = 45

 snapshotWrappers.removeUnusedEntriesAfterDays = 10
 downloadedResources.removeUnusedEntriesAfterDays = 45
 createdResources.removeUnusedEntriesAfterDays = 10
 buildCache.removeUnusedEntriesAfterDays = 5
 }
}

The frequency at which cache cleanup is invoked is also configurable.

There are three possible settings:

1. DEFAULT: Cleanup is performed periodically in the background (currently once every 24
hours).

2. DISABLED: Never cleanup Gradle User Home.

This is useful in cases where Gradle User Home is ephemeral or delaying cleanup is desirable
until an explicit point.

3. ALWAYS: Cleanup is performed at the end of each build session.

This is useful in cases where it’s desirable to ensure that cleanup has occurred before
proceeding.

However, this performs cache cleanup during the build (rather than in the background), which
can be expensive, so this option should only be used when necessary.

To disable cache cleanup:

gradleUserHome/init.d/cache-settings.gradle.kts

beforeSettings {
 caches {
 cleanup = Cleanup.DISABLED
 }
}

gradleUserHome/init.d/cache-settings.gradle

beforeSettings { settings ->
 settings.caches {
 cleanup = Cleanup.DISABLED
 }
}

NOTE

Cache cleanup settings can only be configured via init scripts and should be placed
under the init.d directory in Gradle User Home. This effectively couples the
configuration of cache cleanup to the Gradle User Home those settings apply to and
limits the possibility of different conflicting settings from different projects being
applied to the same directory.

Multiple versions of Gradle sharing a Gradle User Home

It is common to share a single Gradle User Home between multiple versions of Gradle.

As stated above, caches in Gradle User Home are version-specific. Different versions of Gradle will
perform maintenance on only the version-specific caches associated with each version.

On the other hand, some caches are shared between versions (e.g., the dependency artifact cache or
the artifact transform cache).

Beginning with Gradle version 8.0, the cache cleanup settings can be configured to custom
retention periods. However, older versions have fixed retention periods (7 or 30 days, depending
on the cache). These shared caches could be accessed by versions of Gradle with different settings
to retain cache artifacts.

This means that:

• If the retention period is not customized, all versions that perform cleanup will have the same
retention periods. There will be no effect due to sharing a Gradle User Home with multiple
versions.

• If the retention period is customized for Gradle versions greater than or equal to version 8.0 to
use retention periods shorter than the previously fixed periods, there will also be no effect.

The versions of Gradle aware of these settings will cleanup artifacts earlier than the previously
fixed retention periods, and older versions will effectively not participate in the cleanup of
shared caches.

• If the retention period is customized for Gradle versions greater than or equal to version 8.0 to
use retention periods longer than the previously fixed periods, the older versions of Gradle may
clean the shared caches earlier than what is configured.

In this case, if it is desirable to maintain these shared cache entries for newer versions for
longer retention periods, they will not be able to share a Gradle User Home with older versions.
They will need to use a separate directory.

Another consideration when sharing the Gradle User Home with versions of Gradle before version
8.0 is that the DSL elements to configure the cache retention settings are unavailable in earlier
versions, so this must be accounted for in any init script shared between versions. This can easily
be handled by conditionally applying a version-compliant script.

NOTE
The version-compliant script should reside somewhere other than the init.d
directory (such as a sub-directory), so it is not automatically applied.

To configure cache cleanup in a version-safe manner:

gradleUserHome/init.d/cache-settings.gradle.kts

if (GradleVersion.current() >= GradleVersion.version("8.0")) {
 apply(from = "gradle8/cache-settings.gradle.kts")
}

gradleUserHome/init.d/cache-settings.gradle

if (GradleVersion.current() >= GradleVersion.version('8.0')) {
 apply from: "gradle8/cache-settings.gradle"
}

Version-compliant cache configuration script:

gradleUserHome/init.d/gradle8/cache-settings.gradle.kts

beforeSettings {
 caches {
 releasedWrappers { setRemoveUnusedEntriesAfterDays(45) }
 snapshotWrappers { setRemoveUnusedEntriesAfterDays(10) }
 downloadedResources { setRemoveUnusedEntriesAfterDays(45) }
 createdResources { setRemoveUnusedEntriesAfterDays(10) }
 buildCache { setRemoveUnusedEntriesAfterDays(5) }
 }
}

gradleUserHome/init.d/gradle8/cache-settings.gradle

beforeSettings { settings ->
 settings.caches {
 releasedWrappers.removeUnusedEntriesAfterDays = 45
 snapshotWrappers.removeUnusedEntriesAfterDays = 10
 downloadedResources.removeUnusedEntriesAfterDays = 45
 createdResources.removeUnusedEntriesAfterDays = 10
 buildCache.removeUnusedEntriesAfterDays = 5
 }
}

Cache marking

Beginning with Gradle version 8.1, Gradle supports marking caches with a CACHEDIR.TAG file.

It follows the format described in the Cache Directory Tagging Specification. The purpose of this file
is to allow tools to identify the directories that do not need to be searched or backed up.

By default, the directories caches, wrapper/dists, daemon, and jdks in the Gradle User Home are
marked with this file.

Configuring cache marking

The cache marking feature can be configured via an init script in the Gradle User Home:

gradleUserHome/init.d/cache-settings.gradle.kts

beforeSettings {
 caches {
 // Disable cache marking for all caches
 markingStrategy = MarkingStrategy.NONE
 }
}

gradleUserHome/init.d/cache-settings.gradle

beforeSettings { settings ->
 settings.caches {
 // Disable cache marking for all caches
 markingStrategy = MarkingStrategy.NONE
 }
}

NOTE

Cache marking settings can only be configured via init scripts and should be placed
under the init.d directory in Gradle User Home. This effectively couples the
configuration of cache marking to the Gradle User Home to which those settings
apply and limits the possibility of different conflicting settings from different
projects being applied to the same directory.

Project Root directory

The project root directory contains all source files from your project.

It also contains files and directories Gradle generates, such as .gradle and build.

While the former are usually checked into source control, the latter are transient files Gradle uses

https://bford.info/cachedir/

to support features like incremental builds.

The anatomy of a typical project root directory looks as follows:

├── .gradle ①
│ ├── 4.8 ②
│ ├── 4.9 ②
│ └── ⋮
├── build ③
├── gradle
│ └── wrapper ④
├── gradle.properties ⑤
├── gradlew ⑥
├── gradlew.bat ⑥
├── settings.gradle.kts ⑦
├── subproject-one ⑧
| └── build.gradle.kts ⑨
├── subproject-two ⑧
| └── build.gradle.kts ⑨
└── ⋮

① Project-specific cache directory generated by Gradle.

② Version-specific caches (e.g., to support incremental builds).

③ The build directory of this project into which Gradle generates all build artifacts.

④ Contains the JAR file and configuration of the Gradle Wrapper.

⑤ Project-specific Gradle configuration properties.

⑥ Scripts for executing builds using the Gradle Wrapper.

⑦ The project’s settings file where the list of subprojects is defined.

⑧ Usually, a project is organized into one or multiple subprojects.

⑨ Each subproject has its own Gradle build script.

Project cache cleanup

From version 4.10 onwards, Gradle automatically cleans the project-specific cache directory.

After building the project, version-specific cache directories in .gradle/8.12/ are checked
periodically (at most, every 24 hours) to determine whether they are still in use. They are deleted if
they haven’t been used for 7 days.

Next Step: Learn about the Gradle Build Lifecycle >>

Logging
The log serves as the primary 'UI' of a build tool. If it becomes overly verbose, important warnings
and issues can be obscured. However, it is essential to have relevant information to determine if
something has gone wrong.

Gradle defines six log levels, detailed in Log levels. In addition to the standard log levels, Gradle
introduces two specific levels: QUIET and LIFECYCLE. LIFECYCLE is the default level used to report
build progress.

Understanding Log levels

There are 6 log levels in Gradle:

ERROR Error messages

QUIET Important information messages

WARNING Warning messages

LIFECYCLE Progress information messages

INFO Information messages

DEBUG Debug messages

NOTE
The console’s rich components (build status and work-in-progress area) are
displayed regardless of the log level used.

Choosing a log level

You can choose different log levels from the command line switches shown in Log level command-
line options.

You can also configure the log level using gradle.properties.

In Stacktrace command-line options you can find the command line switches which affect
stacktrace logging.

Log level command-line options:

Option Outputs Log Levels

-q or --quiet QUIET and higher

-w or --warn WARN and higher

no logging options LIFECYCLE and higher

-i or --info INFO and higher

-d or --debug DEBUG and higher (that is, all log messages)

CAUTION The DEBUG log level can expose sensitive security information to the console.

Stacktrace command-line options

-s or --stacktrace

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full

stacktraces are extremely verbose due to the underlying dynamic invocation mechanisms. Yet
they usually do not contain relevant information about what has gone wrong in your code. This
option renders stacktraces for deprecation warnings.

-S or --full-stacktrace

The full stacktraces are printed out. This option renders stacktraces for deprecation warnings.

<No stacktrace options>

No stacktraces are printed to the console in case of a build error (e.g., a compile error). Only in
case of internal exceptions will stacktraces be printed. If the DEBUG log level is chosen, truncated
stacktraces are always printed.

Logging Sensitive Information

Running Gradle with the DEBUG log level can potentially expose sensitive information to the console
and build log.

This information might include:

• Environment variables

• Private repository credentials

• Build cache and Develocity credentials

• Plugin Portal publishing credentials

It’s important to avoid using the DEBUG log level when running on public Continuous Integration (CI)
services. Build logs on these services are accessible to the public and can expose sensitive
information. Even on private CI services, logging sensitive credentials may pose a risk depending
on your organization’s threat model. It’s advisable to discuss this with your organization’s security
team.

Some CI providers attempt to redact sensitive credentials from logs, but this process is not foolproof
and typically only redacts exact matches of pre-configured secrets.

If you suspect that a Gradle Plugin may inadvertently expose sensitive information, please contact
our security team for assistance with disclosure.

Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle
redirects anything written to standard output to its logging system at the QUIET log level:

build.gradle.kts

println("A message which is logged at QUIET level")

mailto:security@gradle.com

build.gradle

println 'A message which is logged at QUIET level'

Gradle also provides a logger property to a build script, which is an instance of Logger. This
interface extends the SLF4J Logger interface and adds a few Gradle-specific methods. Below is an
example of how this is used in the build script:

build.gradle.kts

logger.quiet("An info log message which is always logged.")
logger.error("An error log message.")
logger.warn("A warning log message.")
logger.lifecycle("A lifecycle info log message.")
logger.info("An info log message.")
logger.debug("A debug log message.")
logger.trace("A trace log message.") // Gradle never logs TRACE level logs

build.gradle

logger.quiet('An info log message which is always logged.')
logger.error('An error log message.')
logger.warn('A warning log message.')
logger.lifecycle('A lifecycle info log message.')
logger.info('An info log message.')
logger.debug('A debug log message.')
logger.trace('A trace log message.') // Gradle never logs TRACE level logs

Use the link typical SLF4J pattern to replace a placeholder with an actual value in the log message.

build.gradle.kts

logger.info("A {} log message", "info")

build.gradle

logger.info('A {} log message', 'info')

https://docs.gradle.org/8.12/javadoc/org/gradle/api/logging/Logger.html
https://www.slf4j.org/manual.html#typical_usage

You can also hook into Gradle’s logging system from within other classes used in the build (classes
from the buildSrc directory, for example) with an SLF4J logger. You can use this logger the same
way as you use the provided logger in the build script.

build.gradle.kts

import org.slf4j.LoggerFactory

val slf4jLogger = LoggerFactory.getLogger("some-logger")
slf4jLogger.info("An info log message logged using SLF4j")

build.gradle

import org.slf4j.LoggerFactory

def slf4jLogger = LoggerFactory.getLogger('some-logger')
slf4jLogger.info('An info log message logged using SLF4j')

Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their
logging output into the Gradle logging system.

There is a 1:1 mapping from the Ant/Ivy log levels to the Gradle log levels, except the Ant/Ivy TRACE
log level, which is mapped to the Gradle DEBUG log level. This means the default Gradle log level will
not show any Ant/Ivy output unless it is an error or a warning.

Many tools out there still use the standard output for logging. By default, Gradle redirects standard
output to the QUIET log level and standard error to the ERROR level. This behavior is configurable.

The project object provides a LoggingManager, which allows you to change the log levels that
standard out or error are redirected to when your build script is evaluated.

build.gradle.kts

logging.captureStandardOutput(LogLevel.INFO)
println("A message which is logged at INFO level")

build.gradle

logging.captureStandardOutput LogLevel.INFO

https://docs.gradle.org/8.12/javadoc/org/gradle/api/logging/LoggingManager.html

println 'A message which is logged at INFO level'

To change the log level for standard out or error during task execution, use a LoggingManager.

build.gradle.kts

tasks.register("logInfo") {
 logging.captureStandardOutput(LogLevel.INFO)
 doFirst {
 println("A task message which is logged at INFO level")
 }
}

build.gradle

tasks.register('logInfo') {
 logging.captureStandardOutput LogLevel.INFO
 doFirst {
 println 'A task message which is logged at INFO level'
 }
}

Gradle also integrates with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages your build classes write using these logging toolkits will be redirected to
Gradle’s logging system.

Changing what Gradle logs

WARNING

This feature is deprecated and will be removed in the next major version
without a replacement.

The configuration cache limits the ability to customize Gradle’s logging UI. The
custom logger can only implement supported listener interfaces. These
interfaces do not receive events when the configuration cache entry is reused
because the configuration phase is skipped.

You can replace much of Gradle’s logging UI with your own. You could do this if you want to
customize the UI somehow - to log more or less information or to change the formatting. Simply
replace the logging using the Gradle.useLogger(java.lang.Object) method. This is accessible from a
build script, an init script, or via the embedding API. Note that this completely disables Gradle’s
default output. Below is an example init script that changes how task execution and build
completion are logged:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/logging/LoggingManager.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://logging.apache.org/log4j/2.x/
https://docs.gradle.org/8.12/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

customLogger.init.gradle.kts

useLogger(CustomEventLogger())

@Suppress("deprecation")
class CustomEventLogger() : BuildAdapter(), TaskExecutionListener {

 override fun beforeExecute(task: Task) {
 println("[${task.name}]")
 }

 override fun afterExecute(task: Task, state: TaskState) {
 println()
 }

 override fun buildFinished(result: BuildResult) {
 println("build completed")
 if (result.failure != null) {
 (result.failure as Throwable).printStackTrace()
 }
 }
}

customLogger.init.gradle

useLogger(new CustomEventLogger())

@SuppressWarnings("deprecation")
class CustomEventLogger extends BuildAdapter implements TaskExecutionListener
{

 void beforeExecute(Task task) {
 println "[$task.name]"
 }

 void afterExecute(Task task, TaskState state) {
 println()
 }

 void buildFinished(BuildResult result) {
 println 'build completed'
 if (result.failure != null) {
 result.failure.printStackTrace()
 }
 }
}

$ gradle -I customLogger.init.gradle.kts build

> Task :compile
[compile]
compiling source

> Task :testCompile
[testCompile]
compiling test source

> Task :test
[test]
running unit tests

> Task :build
[build]

build completed
3 actionable tasks: 3 executed

$ gradle -I customLogger.init.gradle build

> Task :compile
[compile]
compiling source

> Task :testCompile
[testCompile]
compiling test source

> Task :test
[test]
running unit tests

> Task :build
[build]

build completed
3 actionable tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger,
only the logging for the interfaces it implements is replaced. Logging for the other interfaces is left
untouched. You can find out more about the listener interfaces in Build lifecycle events.

• BuildListener[1]

• ProjectEvaluationListener

• TaskExecutionGraphListener

https://docs.gradle.org/8.12/javadoc/org/gradle/BuildListener.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/ProjectEvaluationListener.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html

• TaskExecutionListener[1]

• TaskActionListener[1]

Configuring Gradle

Configuring JVM memory

The org.gradle.jvmargs Gradle property controls the VM running the build. It defaults to -Xmx512m
"-XX:MaxMetaspaceSize=384m"

You can adjust JVM options for Gradle in the following ways.

Option 1: Changing JVM settings for the build VM:

org.gradle.jvmargs=-Xmx2g -XX:MaxMetaspaceSize=512m
-XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8

The JAVA_OPTS environment variable controls the command line client, which is only used to display
console output. It defaults to -Xmx64m

Option 2: Changing JVM settings for the client VM:

JAVA_OPTS="-Xmx64m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8"

NOTE

There is one case where the client VM can also serve as the build VM:

If you deactivate the Gradle Daemon and the client VM has the same settings as
required for the build VM, the client VM will run the build directly.

Otherwise, the client VM will fork a new VM to run the actual build in order to
honor the different settings.

Certain tasks, like the test task, also fork additional JVM processes. You can configure these through
the tasks themselves. They use -Xmx512m by default.

Example 1: Set compile options for Java compilation tasks:

build.gradle.kts

plugins {
 java
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/execution/TaskExecutionListener.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/execution/TaskActionListener.html

tasks.withType<JavaCompile>().configureEach {
 options.compilerArgs = listOf("-Xdoclint:none", "-Xlint:none", "-nowarn")
}

build.gradle

plugins {
 id 'java'
}

tasks.withType(JavaCompile).configureEach {
 options.compilerArgs += ['-Xdoclint:none', '-Xlint:none', '-nowarn']
}

See other examples in the Test API documentation and test execution in the Java plugin reference.

Build scans will tell you information about the JVM that executed the build when you use the --scan
option:

Configuring a task using project properties

It is possible to change the behavior of a task based on project properties specified at invocation
time.

Suppose you would like to ensure release builds are only triggered by CI. A simple way to do this is
using the isCI project property.

Example 1: Prevent releasing outside of CI:

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html
https://scans.gradle.com
https://scans.gradle.com/s/sample/cpp-parallel/infrastructure

build.gradle.kts

tasks.register("performRelease") {
 val isCI = providers.gradleProperty("isCI")
 doLast {
 if (isCI.isPresent) {
 println("Performing release actions")
 } else {
 throw InvalidUserDataException("Cannot perform release outside of
CI")
 }
 }
}

build.gradle

tasks.register('performRelease') {
 def isCI = providers.gradleProperty("isCI")
 doLast {
 if (isCI.present) {
 println("Performing release actions")
 } else {
 throw new InvalidUserDataException("Cannot perform release
outside of CI")
 }
 }
}

$ gradle performRelease -PisCI=true --quiet
Performing release actions

Improve the Performance of Gradle Builds
Build performance is critical to productivity. The longer builds take to complete, the more likely
they’ll disrupt your development flow. Builds run many times a day, so even small waiting periods
add up. The same is true for Continuous Integration (CI) builds: the less time they take, the faster
you can react to new issues and the more often you can experiment.

All this means that it’s worth investing some time and effort into making your build as fast as
possible. This section offers several ways to make a build faster. Additionally, you’ll find details
about what leads to build performance degradation, and how you can avoid it.

TIP
Want faster Gradle Builds? Register here for our Build Cache training session to learn
how Develocity can speed up builds by up to 90%.

Inspect your build

Before you make any changes, inspect your build with a build scan or profile report. A proper build
inspection helps you understand:

• how long it takes to build your project

• which parts of your build are slow

Inspecting provides a comparison point to better understand the impact of the changes
recommended on this page.

To best make use of this page:

1. Inspect your build.

2. Make a change.

3. Inspect your build again.

If the change improved build times, make it permanent. If you don’t see an improvement, remove
the change and try another.

Update versions

Gradle

The Gradle team continuously improves the performance of Gradle builds. If you’re using an old
version of Gradle, you’re missing out on the benefits of that work. Keeping up with Gradle version
upgrades is low risk because the Gradle team ensures backwards compatibility between minor
versions of Gradle. Staying up-to-date also makes transitioning to the next major version easier,
since you’ll get early deprecation warnings.

Java

Gradle runs on the Java Virtual Machine (JVM). Java performance improvements often benefit
Gradle. For the best Gradle performance, use the latest version of Java.

Plugins

Plugin writers continuously improve the performance of their plugins. If you’re using an old
version of a plugin, you’re missing out on the benefits of that work. The Android, Java, and Kotlin
plugins in particular can significantly impact build performance. Update to the latest version of
these plugins for performance improvements.

Enable parallel execution

Most projects consist of more than one subproject. Usually, some of those subprojects are

https://gradle.org/training/#build-cache-deep-dive

independent of one another; that is, they do not share state. Yet by default, Gradle only runs one
task at a time. To execute tasks belonging to different subprojects in parallel, use the parallel flag:

$ gradle <task> --parallel

To execute project tasks in parallel by default, add the following setting to the gradle.properties file
in the project root or your Gradle home:

gradle.properties

org.gradle.parallel=true

Parallel builds can significantly improve build times; how much depends on your project structure
and how many dependencies you have between subprojects. A build whose execution time is
dominated by a single subproject won’t benefit much at all. Neither will a project with lots of inter-
subproject dependencies. But most multi-subproject builds see a reduction in build times.

Visualize parallelism with build scans

Build scans give you a visual timeline of task execution. In the following example build, you can see
long-running tasks at the beginning and end of the build:

Figure 1. Bottleneck in parallel execution

Tweaking the build configuration to run the two slow tasks early on and in parallel reduces the
overall build time from 8 seconds to 5 seconds:

Figure 2. Optimized parallel execution

Re-enable the Gradle Daemon

The Gradle Daemon reduces build times by:

• caching project information across builds

• running in the background so every Gradle build doesn’t have to wait for JVM startup

• benefiting from continuous runtime optimization in the JVM

• watching the file system to calculate exactly what needs to be rebuilt before you run a build

Gradle enables the Daemon by default, but some builds override this preference. If your build
disables the Daemon, you could see a significant performance improvement from enabling the
daemon.

You can enable the Daemon at build time with the daemon flag:

$ gradle <task> --daemon

To enable the Daemon by default in older Gradle versions, add the following setting to the
gradle.properties file in the project root or your Gradle home:

gradle.properties

org.gradle.daemon=true

On developer machines, you should see a significant performance improvement. On CI machines,
long-lived agents benefit from the Daemon. But short-lived machines don’t benefit much. Daemons
automatically shut down on memory pressure in Gradle 3.0 and above, so it’s always safe to leave
the Daemon enabled.

Enable the configuration cache

IMPORTANT

This feature has the following limitations:

• The configuration cache does not support all core Gradle plugins and
features. Full support is a work in progress.

• Your build and the plugins you depend on might require changes to
fulfill the requirements.

• IDE imports and syncs do not use the configuration cache.

You can cache the result of the configuration phase by enabling the configuration cache. When
build configuration inputs remain the same across builds, the configuration cache allows Gradle to
skip the configuration phase entirely.

Build configuration inputs include:

• Init scripts

• Settings scripts

• Build scripts

• System properties used during the configuration phase

• Gradle properties used during the configuration phase

• Environment variables used during the configuration phase

• Configuration files accessed using value suppliers such as providers

• buildSrc inputs, including build configuration inputs and source files

By default, Gradle does not use the configuration cache. To enable the configuration cache at build
time, use the configuration-cache flag:

$ gradle <task> --configuration-cache

To enable the configuration cache by default, add the following setting to the gradle.properties file
in the project root or your Gradle home:

gradle.properties

org.gradle.configuration-cache=true

For more information about the configuration cache, check out the configuration cache
documentation.

Additional configuration cache benefits

The configuration cache enables additional benefits as well. When enabled, Gradle:

• Executes all tasks in parallel, even those in the same subproject.

• Caches dependency resolution results.

Enable incremental build for custom tasks

Incremental build is a Gradle optimization that skips running tasks that have previously executed
with the same inputs. If a task’s inputs and its outputs have not changed since the last execution,
Gradle skips that task.

Most built-in tasks provided by Gradle work with incremental build. To make a custom task
compatible with incremental build, specify the inputs and outputs:

build.gradle.kts

tasks.register("processTemplatesAdHoc") {
 inputs.property("engine", TemplateEngineType.FREEMARKER)
 inputs.files(fileTree("src/templates"))
 .withPropertyName("sourceFiles")
 .withPathSensitivity(PathSensitivity.RELATIVE)
 inputs.property("templateData.name", "docs")
 inputs.property("templateData.variables", mapOf("year" to "2013"))
 outputs.dir(layout.buildDirectory.dir("genOutput2"))
 .withPropertyName("outputDir")

 doLast {
 // Process the templates here
 }
}

build.gradle

tasks.register('processTemplatesAdHoc') {
 inputs.property('engine', TemplateEngineType.FREEMARKER)
 inputs.files(fileTree('src/templates'))
 .withPropertyName('sourceFiles')
 .withPathSensitivity(PathSensitivity.RELATIVE)
 inputs.property('templateData.name', 'docs')
 inputs.property('templateData.variables', [year: '2013'])
 outputs.dir(layout.buildDirectory.dir('genOutput2'))
 .withPropertyName('outputDir')

 doLast {
 // Process the templates here
 }
}

For more information about incremental builds, check out the incremental build documentation.

Visualize incremental builds with build scan timelines

Look at the build scan timeline view to identify tasks that could benefit from incremental builds.
This can also help you understand why tasks execute when you expect Gradle to skip them.

incremental_build.pdf#incremental_build

Figure 3. The timeline view can help with incremental build inspection

As you can see in the build scan above, the task was not up-to-date because one of its inputs
("timestamp") changed, forcing the task to re-run.

Sort tasks by duration to find the slowest tasks in your project.

Enable the build cache

The build cache is a Gradle optimization that stores task outputs for specific input. When you later
run that same task with the same input, Gradle retrieves the output from the build cache instead of
running the task again. By default, Gradle does not use the build cache. To enable the build cache at
build time, use the build-cache flag:

$ gradle <task> --build-cache

To enable the build cache by default, add the following setting to the gradle.properties file in the
project root or your Gradle home:

gradle.properties

org.gradle.caching=true

You can use a local build cache to speed up repeated builds on a single machine. You can also use a
shared build cache to speed up repeated builds across multiple machines. Develocity provides one.
Shared build caches can decrease build times for both CI and developer builds.

For more information about the build cache, check out the build cache documentation.

Visualize the build cache with build scans

Build scans can help you investigate build cache effectiveness. In the performance screen, the
"Build cache" tab shows you statistics about:

https://gradle.com/build-cache/

• how many tasks interacted with a cache

• which cache was used

• transfer and pack/unpack rates for these cache entries

Figure 4. Inspecting the performance of the build cache for a build

The "Task execution" tab shows details about task cacheability. Click on a category to see a timeline
screen that highlights tasks of that category.

Figure 5. A task oriented view of performance

Figure 6. Timeline screen with 'not cacheable' tasks only

Sort by task duration on the timeline screen to highlight tasks with great time saving potential. The
build scan above shows that :task1 and :task3 could be improved and made cacheable and shows
why Gradle didn’t cache them.

Create builds for specific developer workflows

The fastest task is one that doesn’t execute. If you can find ways to skip tasks you don’t need to run,
you’ll end up with a faster build overall.

If your build includes multiple subprojects, create tasks to build those subprojects independently.
This helps you get the most out of caching, since a change to one subproject won’t force a rebuild
for unrelated subprojects. And this helps reduce build times for teams that work on unrelated
subprojects: there’s no need for front-end developers to build the back-end subprojects every time
they change the front-end. Documentation writers don’t need to build front-end or back-end code
even if the documentation lives in the same project as that code.

Instead, create tasks that match the needs of developers. You’ll still have a single task graph for the
whole project. Each group of users suggests a restricted view of the task graph: turn that view into a
Gradle workflow that excludes unnecessary tasks.

Gradle provides several features to create these workflows:

• Assign tasks to appropriate groups

• Create aggregate tasks: tasks with no action that only depend on other tasks, such as assemble

• Defer configuration via gradle.taskGraph.whenReady() and others, so you can perform
verification only when it’s necessary

Increase the heap size

By default, Gradle reserves 512MB of heap space for your build. This is plenty for most projects.
However, some very large builds might need more memory to hold Gradle’s model and caches. If
this is the case for you, you can specify a larger memory requirement. Specify the following
property in the gradle.properties file in your project root or your Gradle home:

gradle.properties

org.gradle.jvmargs=-Xmx2048M

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group

To learn more, check out the JVM memory configuration documentation.

Optimize Configuration

As described in the build lifecycle chapter, a Gradle build goes through 3 phases: initialization,
configuration, and execution. Configuration code always executes regardless of the tasks that run.
As a result, any expensive work performed during configuration slows down every invocation.
Even simple commands like gradle help and gradle tasks.

The next few subsections introduce techniques that can reduce time spent in the configuration
phase.

NOTE

You can also enable the configuration cache to reduce the impact of a slow
configuration phase. But even machines that use the cache still occasionally execute
your configuration phase. As a result, you should make the configuration phase as
fast as possible with these techniques.

Avoid expensive or blocking work

You should avoid time-intensive work in the configuration phase. But sometimes it can sneak into
your build in non-obvious places. It’s usually clear when you’re encrypting data or calling remote
services during configuration if that code is in a build file. But logic like this is more often found in
plugins and occasionally custom task classes. Any expensive work in a plugin’s apply() method or a
tasks’s constructor is a red flag.

Only apply plugins where they’re needed

Every plugin and script that you apply to a project adds to the overall configuration time. Some
plugins have a greater impact than others. That doesn’t mean you should avoid using plugins, but
you should take care to only apply them where they’re needed. For example, it’s easy to apply
plugins to all subprojects via allprojects {} or subprojects {} even if not every project needs them.

In the above build scan example, you can see that the root build script applies the script-a.gradle
script to 3 subprojects inside the build:

Figure 7. Showing the application of script-a.gradle to the build

This script takes 1 second to run. Since it applies to 3 subprojects, this script cumulatively delays the
configuration phase by 3 seconds. In this situation, there are several ways to reduce the delay:

• If only one subproject uses the script, you could remove the script application from the other
subprojects. This reduces the configuration delay by two seconds in each Gradle invocation.

• If multiple subprojects, but not all, use the script, you could refactor the script and all
surrounding logic into a custom plugin located in buildSrc. Apply the custom plugin to only the
relevant subprojects, reducing configuration delay and avoiding code duplication.

Statically compile tasks and plugins

Plugin and task authors often write Groovy for its concise syntax, API extensions to the JDK, and
functional methods using closures. But Groovy syntax comes with the cost of dynamic
interpretation. As a result, method calls in Groovy take more time and use more CPU than method
calls in Java or Kotlin.

You can reduce this cost with static Groovy compilation: add the @CompileStatic annotation to your
Groovy classes when you don’t explicitly require dynamic features. If you need dynamic Groovy in
a method, add the @CompileDynamic annotation to that method.

Alternatively, you can write plugins and tasks in a statically compiled language such as Java or
Kotlin.

Warning: Gradle’s Groovy DSL relies heavily on Groovy’s dynamic features. To use static
compilation in your plugins, switch to Java-like syntax.

The following example defines a task that copies files without dynamic features:

src/main/groovy/MyPlugin.groovy

project.tasks.register('copyFiles', Copy) { Task t ->

 t.into(project.layout.buildDirectory.dir('output'))
 t.from(project.configurations.getByName('compile'))
}

This example uses the register() and getByName() methods available on all Gradle “domain object
containers”. Domain object containers include tasks, configurations, dependencies, extensions, and
more. Some collections, such as TaskContainer, have dedicated types with extra methods like create,
which accepts a task type.

When you use static compilation, an IDE can:

• quickly show errors related to unrecognised types, properties, and methods

• auto-complete method names

Optimize Dependency resolution

Dependency resolution simplifies integrating third-party libraries and other dependencies into
your projects. Gradle contacts remote servers to discover and download dependencies. You can
optimize the way you reference dependencies to cut down on these remote server calls.

Avoid unnecessary and unused dependencies

Managing third-party libraries and their transitive dependencies adds a significant cost to project
maintenance and build times.

Watch out for unused dependencies: when a third-party library stops being used by isn’t removed
from the dependency list. This happens frequently during refactors. You can use the Gradle Lint
plugin to identify unused dependencies.

If you only use a small number of methods or classes in a third-party library, consider:

• implementing the required code yourself in your project

• copying the required code from the library (with attribution!) if it is open source

Optimize repository order

When Gradle resolves dependencies, it searches through each repository in the declared order. To
reduce the time spent searching for dependencies, declare the repository hosting the largest
number of your dependencies first. This minimizes the number of network requests required to
resolve all dependencies.

Minimize repository count

Limit the number of declared repositories to the minimum possible for your build to work.

If you’re using a custom repository server, create a virtual repository that aggregates several
repositories together. Then, add only that repository to your build file.

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.TaskContainer.html#org.gradle.api.tasks.TaskContainer:create(java.lang.String,%20java.lang.Class)
https://github.com/nebula-plugins/gradle-lint-plugin
https://github.com/nebula-plugins/gradle-lint-plugin

Minimize dynamic and snapshot versions

Dynamic versions (e.g. “2.+”), and changing versions (snapshots) force Gradle to contact remote
repositories to find new releases. By default, Gradle only checks once every 24 hours. But you can
change this programmatically with the following settings:

• cacheDynamicVersionsFor

• cacheChangingModulesFor

If a build file or initialization script lowers these values, Gradle queries repositories more often.
When you don’t need the absolute latest release of a dependency every time you build, consider
removing the custom values for these settings.

Find dynamic and changing versions with build scans

You can find all dependencies with dynamic versions via build scans:

Figure 8. Find dependencies with dynamic versions

You may be able to use fixed versions like "1.2" and "3.0.3.GA" that allow Gradle to cache versions. If
you must use dynamic and changing versions, tune the cache settings to best meet your needs.

Avoid dependency resolution during configuration

Dependency resolution is an expensive process, both in terms of I/O and computation. Gradle
reduces the required network traffic through caching. But there is still a cost. Gradle runs the
configuration phase on every build. If you trigger dependency resolution during the configuration
phase, every build pays that cost.

Switch to declarative syntax

If you evaluate a configuration file, your project pays the cost of dependency resolution during
configuration. Normally tasks evaluate these files, since you don’t need the files until you’re ready
to do something with them in a task action. Imagine you’re doing some debugging and want to
display the files that make up a configuration. To implement this, you might inject a print
statement:

build.gradle.kts

tasks.register<Copy>("copyFiles") {
 println(">> Compilation deps:
${configurations.compileClasspath.get().files.map { it.name }}")
 into(layout.buildDirectory.dir("output"))
 from(configurations.compileClasspath)
}

build.gradle

tasks.register('copyFiles', Copy) {
 println ">> Compilation deps: ${configurations.compileClasspath.files
.name}"
 into(layout.buildDirectory.dir('output'))
 from(configurations.compileClasspath)
}

The files property forces Gradle to resolve the dependencies. In this example, that happens during
the configuration phase. Because the configuration phase runs on every build, all builds now pay
the performance cost of dependency resolution. You can avoid this cost with a doFirst() action:

build.gradle.kts

tasks.register<Copy>("copyFiles") {
 into(layout.buildDirectory.dir("output"))
 // Store the configuration into a variable because referencing the
project from the task action
 // is not compatible with the configuration cache.
 val compileClasspath: FileCollection =
configurations.compileClasspath.get()
 from(compileClasspath)
 doFirst {
 println(">> Compilation deps: ${compileClasspath.files.map { it.name
}}")
 }
}

build.gradle

tasks.register('copyFiles', Copy) {

 into(layout.buildDirectory.dir('output'))
 // Store the configuration into a variable because referencing the
project from the task action
 // is not compatible with the configuration cache.
 FileCollection compileClasspath = configurations.compileClasspath
 from(compileClasspath)
 doFirst {
 println ">> Compilation deps: ${compileClasspath.files.name}"
 }
}

Note that the from() declaration doesn’t resolve the dependencies because you’re using the
dependency configuration itself as an argument, not the files. The Copy task resolves the
configuration itself during task execution.

Visualize dependency resolution with build scans

The "Dependency resolution" tab on the performance page of a build scan shows dependency
resolution time during the configuration and execution phases:

Figure 9. Dependency resolution at configuration time

Build scans provide another means of identifying this issue. Your build should spend 0 seconds
resolving dependencies during "project configuration". This example shows the build resolves
dependencies too early in the lifecycle. You can also find a "Settings and suggestions" tab on the
"Performance" page. This shows dependencies resolved during the configuration phase.

Remove or improve custom dependency resolution logic

Gradle allows users to model dependency resolution in the way that best suits them. Simple
customizations, such as forcing specific versions of a dependency or substituting one dependency
for another, don’t have a big impact on dependency resolution times. More complex
customizations, such as custom logic that downloads and parses POMs, can slow down dependency
resolution signficantly.

Use build scans or profile reports to check that custom dependency resolution logic doesn’t
adversely affect dependency resolution times. This could be custom logic you have written yourself,
or it could be part of a plugin.

Remove slow or unexpected dependency downloads

Slow dependency downloads can impact your overall build performance. Several things could
cause this, including a slow internet connection or an overloaded repository server. On the
"Performance" page of a build scan, you’ll find a "Network Activity" tab. This tab lists information
including:

• the time spent downloading dependencies

• the transfer rate of dependency downloads

• a list of downloads sorted by download time

In the following example, two slow dependency downloads took 20 and 40 seconds and slowed
down the overall performance of a build:

Figure 10. Identify slow dependency downloads

Check the download list for unexpected dependency downloads. For example, you might see a
download caused by a dependency using a dynamic version.

Eliminate these slow or unexpected downloads by switching to a different repository or
dependency.

Optimize Java projects

The following sections apply only to projects that use the java plugin or another JVM language.

Optimize tests

Projects often spend much of their build time testing. These could be a mixture of unit and
integration tests. Integration tests usually take longer. Build scans can help you identify the slowest
tests. You can then focus on speeding up those tests.

Figure 11. Tests screen, with tests by project, sorted by duration

The above build scan shows an interactive test report for all projects in which tests ran.

Gradle has several ways to speed up tests:

• Execute tests in parallel

• Fork tests into multiple processes

• Disable reports

Let’s look at each of these in turn.

Execute tests in parallel

Gradle can run multiple test cases in parallel. To enable this feature, override the value of
maxParallelForks on the relevant Test task. For the best performance, use some number less than or
equal to the number of available CPU cores:

build.gradle.kts

tasks.withType<Test>().configureEach {
 maxParallelForks = (Runtime.getRuntime().availableProcessors() /
2).coerceAtLeast(1)
}

build.gradle

tasks.withType(Test).configureEach {
 maxParallelForks = Runtime.runtime.availableProcessors().intdiv(2) ?: 1
}

Tests in parallel must be independent. They should not share resources such as files or databases. If
your tests do share resources, they could interfere with each other in random and unpredictable

ways.

Fork tests into multiple processes

By default, Gradle runs all tests in a single forked VM. If there are a lot of tests, or some tests that
consume lots of memory, your tests may take longer than you expect to run. You can increase the
heap size, but garbage collection may slow down your tests.

Alternatively, you can fork a new test VM after a certain number of tests have run with the
forkEvery setting:

build.gradle.kts

tasks.withType<Test>().configureEach {
 forkEvery = 100
}

build.gradle

tasks.withType(Test).configureEach {
 forkEvery = 100
}

WARNING
Forking a VM is an expensive operation. Setting too small a value here slows
down testing.

Disable reports

Gradle automatically creates test reports regardless of whether you want to look at them. That
report generation slows down the overall build. You may not need reports if:

• you only care if the tests succeeded (rather than why)

• you use build scans, which provide more information than a local report

To disable test reports, set reports.html.required and reports.junitXml.required to false in the Test
task:

build.gradle.kts

tasks.withType<Test>().configureEach {
 reports.html.required = false
 reports.junitXml.required = false

}

build.gradle

tasks.withType(Test).configureEach {
 reports.html.required = false
 reports.junitXml.required = false
}

Conditionally enable reports

You might want to conditionally enable reports so you don’t have to edit the build file to see them.
To enable the reports based on a project property, check for the presence of a property before
disabling reports:

build.gradle.kts

tasks.withType<Test>().configureEach {
 if (!project.hasProperty("createReports")) {
 reports.html.required = false
 reports.junitXml.required = false
 }
}

build.gradle

tasks.withType(Test).configureEach {
 if (!project.hasProperty("createReports")) {
 reports.html.required = false
 reports.junitXml.required = false
 }
}

Then, pass the property with -PcreateReports on the command line to generate the reports.

$ gradle <task> -PcreateReports

Or configure the property in the gradle.properties file in the project root or your Gradle home:

gradle.properties

createReports=true

Optimize the compiler

The Java compiler is fast. But if you’re compiling hundreds of Java classes, even a short compilation
time adds up. Gradle offers a several optimizations for Java compilation:

• Run the compiler as a separate process

• Switch internal-only dependencies to implementation visibility

Run the compiler as a separate process

You can run the compiler as a separate process with the following configuration for any JavaCompile
task:

build.gradle.kts

<task>.options.isFork = true

build.gradle

<task>.options.fork = true

To apply the configuration to all Java compilation tasks, you can configureEach java compilation
task:

build.gradle.kts

tasks.withType<JavaCompile>().configureEach {
 options.isFork = true
}

build.gradle

tasks.withType(JavaCompile).configureEach {
 options.fork = true
}

Gradle reuses this process within the duration the build, so the forking overhead is minimal. By
forking memory-intensive compilation into a separate process, we minimize garbage collection in
the main Gradle process. Less garbage collection means that Gradle’s infrastructure can run faster,
especially when you also use parallel builds.

Forking compilation rarely impacts the performance of small projects. But you should consider it if
a single task compiles more than a thousand source files together.

Switch internal-only dependencies to implementation visibility

NOTE
Only libraries can define api dependencies. Use the java-library plugin to define
API dependencies in your libraries. Projects that use the java plugin cannot declare
api dependencies.

Before Gradle 3.4, projects declared dependencies using the compile configuration. This exposed all
of those dependencies to downstream projects. In Gradle 3.4 and above, you can separate
downstream-facing api dependencies from internal-only implementation details. Implementation
dependencies don’t leak into the compile classpath of downstream projects. When implementation
details change, Gradle only recompiles api dependencies.

build.gradle.kts

dependencies {
 api(project("my-utils"))
 implementation("com.google.guava:guava:21.0")
}

build.gradle

dependencies {
 api project('my-utils')
 implementation 'com.google.guava:guava:21.0'
}

This can significantly reduce the "ripple" of recompilations caused by a single change in large
multi-project builds.

Improve the performance of older Gradle releases

Some projects cannot easily upgrade to a current Gradle version. While you should always upgrade
Gradle to a recent version when possible, we recognize that it isn’t always feasible for certain niche
situations. In those select cases, check out these recommendations to optimize older versions of
Gradle.

Enable the Daemon

Gradle 3.0 and above enable the Daemon by default. If you are using an older version, you should

update to the latest version of Gradle. If you cannot update your Gradle version, you can enable the
Daemon manually.

Use incremental compilation

Gradle can analyze dependencies down to the individual class level to recompile only the classes
affected by a change. Gradle 4.10 and above enable incremental compilation by default. To enable
incremental compilation by default in older Gradle versions, add the following setting to your
build.gradle file:

build.gradle.kts

tasks.withType<JavaCompile>().configureEach {
 options.isIncremental = true
}

build.gradle

tasks.withType(JavaCompile).configureEach {
 options.incremental = true
}

Use compile avoidance

Often, updates only change internal implementation details of your code, like the body of a method.
These updates are known as ABI-compatible changes: they have no impact on the binary interface
of your project. In Gradle 3.4 and above, ABI-compatible changes no longer trigger recompiles of
downstream projects. This especially improves build times in large multi-project builds with deep
dependency chains.

Upgrade to a Gradle version above 3.4 to benefit from compile avoidance.

NOTE
If you use annotation processors, you need to explicitly declare them in order for
compilation avoidance to work. To learn more, check out the compile avoidance
documentation.

Optimize Android projects

Everything on this page applies to Android builds, since Android builds use Gradle. Yet Android
introduces unique opportunities for optimization. For more information, check out the Android
team performance guide. You can also watch the accompanying talk from Google IO 2017.

Configuration cache

java_plugin.pdf#sec:java_compile_avoidance
java_plugin.pdf#sec:java_compile_avoidance
https://developer.android.com/studio/build/optimize-your-build.html
https://developer.android.com/studio/build/optimize-your-build.html
https://www.youtube.com/watch?v=7ll-rkLCtyk

Introduction

The configuration cache is a feature that significantly improves build performance by caching the
result of the configuration phase and reusing this for subsequent builds. Using the configuration
cache, Gradle can skip the configuration phase entirely when nothing that affects the build
configuration, such as build scripts, has changed. Gradle also applies performance improvements to
task execution as well.

The configuration cache is conceptually similar to the build cache, but caches different information.
The build cache takes care of caching the outputs and intermediate files of the build, such as task
outputs or artifact transform outputs. The configuration cache takes care of caching the build
configuration for a particular set of tasks. In other words, the configuration cache saves the output
of the configuration phase, and the build cache saves the outputs of the execution phase.

IMPORTANT

This feature is currently not enabled by default. This feature has the
following limitations:

• The configuration cache does not support all core Gradle plugins and
features. Full support is a work in progress.

• Your build and the plugins you depend on might require changes to fulfil
the requirements.

• IDE imports and syncs do not yet use the configuration cache.

How does it work?

When the configuration cache is enabled and you run Gradle for a particular set of tasks, for
example by running gradlew check, Gradle checks whether a configuration cache entry is available
for the requested set of tasks. If available, Gradle uses this entry instead of running the
configuration phase. The cache entry contains information about the set of tasks to run, along with
their configuration and dependency information.

The first time you run a particular set of tasks, there will be no entry in the configuration cache for
these tasks and so Gradle will run the configuration phase as normal:

1. Run init scripts.

2. Run the settings script for the build, applying any requested settings plugins.

3. Configure and build the buildSrc project, if present.

4. Run the build scripts for the build, applying any requested project plugins.

5. Calculate the task graph for the requested tasks, running any deferred configuration actions.

Following the configuration phase, Gradle writes a snapshot of the task graph to a new
configuration cache entry, for later Gradle invocations. Gradle then loads the task graph from the
configuration cache, so that it can apply optimizations to the tasks, and then runs the execution
phase as normal. Configuration time will still be spent the first time you run a particular set of
tasks. However, you should see build performance improvement immediately because tasks will
run in parallel.

When you subsequently run Gradle with this same set of tasks, for example by running gradlew
check again, Gradle will load the tasks and their configuration directly from the configuration cache
and skip the configuration phase entirely. Before using a configuration cache entry, Gradle checks
that none of the "build configuration inputs", such as build scripts, for the entry have changed. If a
build configuration input has changed, Gradle will not use the entry and will run the configuration
phase again as above, saving the result for later reuse.

Build configuration inputs include:

• Init scripts

• Settings scripts

• Build scripts

• System properties used during the configuration phase

• Gradle properties used during the configuration phase

• Environment variables used during the configuration phase

• Configuration files accessed using value suppliers such as providers

• buildSrc and plugin included build inputs, including build configuration inputs and source files.

Gradle uses its own optimized serialization mechanism and format to store the configuration cache
entries. It automatically serializes the state of arbitrary object graphs. If your tasks hold references
to objects with simple state or of supported types you don’t have anything to do to support the
serialization.

As a fallback and to provide some aid in migrating existing tasks, some semantics of Java
Serialization are supported. But it is not recommended relying on it, mostly for performance
reasons.

Performance improvements

Apart from skipping the configuration phase, the configuration cache provides some additional
performance improvements:

• All tasks run in parallel by default, subject to dependency constraints.

• Dependency resolution is cached.

• Configuration state and dependency resolution state is discarded from heap after writing the
task graph. This reduces the peak heap usage required for a given set of tasks.

Configuration caching in action

[running help] | configuration-cache/running-help.gif

Using the configuration cache

It is recommended to get started with the simplest task invocation possible. Running help with the
configuration cache enabled is a good first step:

❯ gradle --configuration-cache help
Calculating task graph as no cached configuration is available for tasks: help
...
BUILD SUCCESSFUL in 4s
1 actionable task: 1 executed
Configuration cache entry stored.

Running this for the first time, the configuration phase executes, calculating the task graph.

Then, run the same command again. This reuses the cached configuration:

❯ gradle --configuration-cache help
Reusing configuration cache.
...
BUILD SUCCESSFUL in 500ms
1 actionable task: 1 executed
Configuration cache entry reused.

If it succeeds on your build, congratulations, you can now try with more useful tasks. You should
target your development loop. A good example is running tests after making incremental changes.

If any problem is found caching or reusing the configuration, an HTML report is generated to help
you diagnose and fix the issues. The report also shows detected build configuration inputs like
system properties, environment variables and value suppliers read during the configuration phase.
See the Troubleshooting section below for more information.

Keep reading to learn how to tweak the configuration cache, manually invalidate the state if
something goes wrong and use the configuration cache from an IDE.

Enabling the configuration cache

By default, Gradle does not use the configuration cache. To enable the cache at build time, use the
configuration-cache flag:

❯ gradle --configuration-cache

You can also enable the cache persistently in a gradle.properties file using the
org.gradle.configuration-cache property:

org.gradle.configuration-cache=true

If enabled in a gradle.properties file, you can override that setting and disable the cache at build
time with the no-configuration-cache flag:

❯ gradle --no-configuration-cache

Ignoring problems

By default, Gradle will fail the build if any configuration cache problems are encountered. When
gradually improving your plugin or build logic to support the configuration cache it can be useful
to temporarily turn problems into warnings, with no guarantee that the build will work.

This can be done from the command line:

❯ gradle --configuration-cache-problems=warn

or in a gradle.properties file:

org.gradle.configuration-cache.problems=warn

Allowing a maximum number of problems

When configuration cache problems are turned into warnings, Gradle will fail the build if 512
problems are found by default.

This can be adjusted by specifying an allowed maximum number of problems on the command
line:

❯ gradle -Dorg.gradle.configuration-cache.max-problems=5

or in a gradle.properties file:

org.gradle.configuration-cache.max-problems=5

Enabling parallel configuration caching

Configuration cache storing and loading are done sequentially by default. Parallel storing and
loading provide better performance, however not all builds are compatible with it.

To enable parallel configuration caching on the command line:

❯ gradle -Dorg.gradle.configuration-cache.parallel=true

or in a gradle.properties file:

org.gradle.configuration-cache.parallel=true

The parallel configuration caching feature is incubating, as not all builds are guaranteed to work
correctly. Common symptoms are ConcurrentModificationException exceptions during the
configuration phase. The feature should work well for decoupled multi-project builds.

Invalidating the cache

The configuration cache is automatically invalidated when inputs to the configuration phase
change. However, certain inputs are not tracked yet, so you may have to manually invalidate the
configuration cache when untracked inputs to the configuration phase change. This can happen if
you ignored problems. See the Requirements and Not yet implemented sections below for more
information.

The configuration cache state is stored on disk in a directory named .gradle/configuration-cache in
the root directory of the Gradle build in use. If you need to invalidate the cache, simply delete that
directory:

❯ rm -rf .gradle/configuration-cache

Configuration cache entries are checked periodically (at most every 24 hours) for whether they are
still in use. They are deleted if they haven’t been used for 7 days.

Stable configuration cache

Working towards the stabilization of configuration caching we implemented some strictness behind
a feature flag when it was considered too disruptive for early adopters.

You can enable that feature flag as follows:

settings.gradle.kts

enableFeaturePreview("STABLE_CONFIGURATION_CACHE")

settings.gradle

enableFeaturePreview "STABLE_CONFIGURATION_CACHE"

The STABLE_CONFIGURATION_CACHE feature flag enables the following:

Undeclared shared build service usage

When enabled, tasks using a shared build service without declaring the requirement via the
Task.usesService method will emit a deprecation warning.

In addition, when the configuration cache is not enabled but the feature flag is present,
deprecations for the following configuration cache requirements are also enabled:

• Registering build listeners

• Using task extensions and conventions at execution time

It is recommended to enable it as soon as possible in order to be ready for when we remove the flag
and make the linked features the default.

IDE support

If you enable and configure the configuration cache from your gradle.properties file, then the
configuration cache will be enabled when your IDE delegates to Gradle. There’s nothing more to do.

gradle.properties is usually checked in to source control. If you don’t want to enable the
configuration cache for your whole team yet you can also enable the configuration cache from your
IDE only as explained below.

Note that syncing a build from an IDE doesn’t benefit from the configuration cache, only running
tasks does.

IntelliJ based IDEs

In IntelliJ IDEA or Android Studio this can be done in two ways, either globally or per run
configuration.

To enable it for the whole build, go to Run > Edit configurations…. This will open the IntelliJ IDEA
or Android Studio dialog to configure Run/Debug configurations. Select Templates > Gradle and add
the necessary system properties to the VM options field.

For example to enable the configuration cache, turning problems into warnings, add the following:

-Dorg.gradle.configuration-cache=true -Dorg.gradle.configuration-cache.problems=warn

You can also choose to only enable it for a given run configuration. In this case, leave the Templates
> Gradle configuration untouched and edit each run configuration as you see fit.

Combining these two ways you can enable globally and disable for certain run configurations, or
the opposite.

TIP
You can use the gradle-idea-ext-plugin to configure IntelliJ run configurations from
your build. This is a good way to enable the configuration cache only for the IDE.

Eclipse IDEs

In Eclipse IDEs you can enable and configure the configuration cache through Buildship in two
ways, either globally or per run configuration.

To enable it globally, go to Preferences > Gradle. You can use the properties described above as
system properties. For example to enable the configuration cache, turning problems into warnings,
add the following JVM arguments:

• -Dorg.gradle.configuration-cache=true

• -Dorg.gradle.configuration-cache.problems=warn

https://github.com/JetBrains/gradle-idea-ext-plugin

To enable it for a given run configuration, go to Run configurations…, find the one you want to
change, go to Project Settings, tick the Override project settings checkbox and add the same
system properties as a JVM argument.

Combining these two ways you can enable globally and disable for certain run configurations, or
the opposite.

Supported plugins

The configuration cache is brand new and introduces new requirements for plugin
implementations. As a result, both core Gradle plugins, and community plugins need to be adjusted.
This section provides information about the current support in core Gradle plugins and community
plugins.

Core Gradle plugins

Not all core Gradle plugins support configuration caching yet.

JVM languages and
frameworks

Native languages Packaging and distribution

✓ Java

✓ Java Library

✓ Java Platform

✓ Groovy

✓ Scala

✓ ANTLR

✓ C++ Application

✓ C++ Library

✓ C++ Unit Test

✓ Swift Application

✓ Swift Library

✓ XCTest

✓ Application

✓ WAR

✓ EAR

⚠ Maven Publish

⚠ Ivy Publish

✓ Distribution

✓ Java Library
Distribution

 Code analysis IDE project files generation Utility

https://github.com/gradle/gradle/issues/13457
java_plugin.pdf#java_plugin
https://github.com/gradle/gradle/issues/13458
https://github.com/gradle/gradle/issues/13459
https://github.com/gradle/gradle/issues/13460
https://github.com/gradle/gradle/issues/13461
https://github.com/gradle/gradle/issues/13462
antlr_plugin.pdf#antlr_plugin
https://github.com/gradle/gradle/issues/30806
cpp_application_plugin.pdf#cpp_application_plugin
https://github.com/gradle/gradle/issues/30806
cpp_library_plugin.pdf#cpp_library_plugin
https://github.com/gradle/gradle/issues/13514
cpp_unit_test_plugin.pdf#cpp_unit_test_plugin
https://github.com/gradle/gradle/issues/13515
swift_application_plugin.pdf#swift_application_plugin
https://github.com/gradle/gradle/issues/13487
swift_library_plugin.pdf#swift_library_plugin
https://github.com/gradle/gradle/issues/13488
xctest_plugin.pdf#xctest_plugin
https://github.com/gradle/gradle/issues/13463
https://github.com/gradle/gradle/issues/13466
war_plugin.pdf#war_plugin
https://github.com/gradle/gradle/issues/13467
ear_plugin.pdf#ear_plugin
https://github.com/gradle/gradle/issues/24329
https://github.com/gradle/gradle/issues/24328
https://github.com/gradle/gradle/issues/13464
distribution_plugin.pdf#distribution_plugin
https://github.com/gradle/gradle/issues/13465
java_library_distribution_plugin.pdf#java_library_distribution_plugin
java_library_distribution_plugin.pdf#java_library_distribution_plugin

✓ Checkstyle

✓ CodeNarc

✓ JaCoCo

✓ JaCoCo Report
Aggregation

✓ PMD

✓ Test Report
Aggregation

✖ Eclipse

✖ IntelliJ IDEA

✓ Visual Studio

✓ Xcode

✓ Base

✓ Build Init

✓ Signing

✓ Java Plugin
Development

✓ Groovy DSL Plugin
Development

✓ Kotlin DSL Plugin
Development

✓ Project Report Plugin

✓ Supported plugin

⚠ Partially supported plugin

✖ Unsupported plugin

Community plugins

Please refer to issue gradle/gradle#13490 to learn about the status of community plugins.

Troubleshooting

The following sections will go through some general guidelines on dealing with problems with the
configuration cache. This applies to both your build logic and to your Gradle plugins.

Upon failure to serialize the state required to run the tasks, an HTML report of detected problems is
generated. The Gradle failure output includes a clickable link to the report. This report is useful and
allows you to drill down into problems, understand what is causing them.

Let’s look at a simple example build script that contains a couple problems:

build.gradle.kts

tasks.register("someTask") {
 val destination = System.getProperty("someDestination") ①
 inputs.dir("source")
 outputs.dir(destination)
 doLast {
 project.copy { ②
 from("source")
 into(destination)
 }
 }

https://github.com/gradle/gradle/issues/13475
checkstyle_plugin.pdf#checkstyle_plugin
https://github.com/gradle/gradle/issues/13478
codenarc_plugin.pdf#codenarc_plugin
https://github.com/gradle/gradle/issues/13477
jacoco_plugin.pdf#jacoco_plugin
jacoco_report_aggregation_plugin.pdf#jacoco_report_aggregation_plugin
jacoco_report_aggregation_plugin.pdf#jacoco_report_aggregation_plugin
https://github.com/gradle/gradle/issues/13476
pmd_plugin.pdf#pmd_plugin
test_report_aggregation_plugin.pdf#test_report_aggregation_plugin
test_report_aggregation_plugin.pdf#test_report_aggregation_plugin
https://github.com/gradle/gradle/issues/13479
eclipse_plugin.pdf#eclipse_plugin
https://github.com/gradle/gradle/issues/13480
idea_plugin.pdf#idea_plugin
https://github.com/gradle/gradle/issues/13482
visual_studio_plugin.pdf#visual_studio_plugin
https://github.com/gradle/gradle/issues/13483
xcode_plugin.pdf#xcode_plugin
https://github.com/gradle/gradle/issues/13455
base_plugin.pdf#base_plugin
https://github.com/gradle/gradle/issues/13456
build_init_plugin.pdf#build_init_plugin
https://github.com/gradle/gradle/issues/13470
signing_plugin.pdf#signing_plugin
https://github.com/gradle/gradle/issues/24537
java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin
https://github.com/gradle/gradle/issues/23029
https://github.com/gradle/gradle/issues/13472
https://github.com/gradle/gradle/issues/13473
project_report_plugin.pdf#project_report_plugin
https://github.com/gradle/gradle/issues/13490

}

build.gradle

tasks.register('someTask') {
 def destination = System.getProperty('someDestination') ①
 inputs.dir('source')
 outputs.dir(destination)
 doLast {
 project.copy { ②
 from 'source'
 into destination
 }
 }
}

① A system property read at configuration time

② Using the Project object at execution time

Running that task fails and print the following in the console:

❯ gradle --configuration-cache someTask -DsomeDestination=dest
...
* What went wrong:
Configuration cache problems found in this build.

1 problem was found storing the configuration cache.
- Build file 'build.gradle': line 6: invocation of 'Task.project' at execution time is
unsupported.
 See
https://docs.gradle.org/0.0.0/userguide/configuration_cache.html#config_cache:requirem
ents:use_project_during_execution

See the complete report at
file:///home/user/gradle/samples/build/reports/configuration-
cache/<hash>/configuration-cache-report.html
> Invocation of 'Task.project' by task ':someTask' at execution time is unsupported.

* Try:
> Run with --stacktrace option to get the stack trace.
> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.
> Get more help at https://help.gradle.org.

BUILD FAILED in 0s
1 actionable task: 1 executed

Configuration cache entry discarded with 1 problem.

The configuration cache entry was discarded because of the found problem failing the build.

Details can be found in the linked HTML report:

The report displays the set of problems twice. First grouped by problem message, then grouped by
task. The former allows you to quickly see what classes of problems your build is facing. The latter
allows you to quickly see which tasks are problematic. In both cases you can expand the tree in
order to discover where the culprit is in the object graph.

The report also includes a list of detected build configuration inputs, such as environment
variables, system properties and value suppliers that were read at configuration phase:

TIP

Problems displayed in the report have links to the corresponding requirement where
you can find guidance on how to fix the problem or to the corresponding not yet
implemented feature.

When changing your build or plugin to fix the problems you should consider testing
your build logic with TestKit.

At this stage, you can decide to either turn the problems into warnings and continue exploring how
your build reacts to the configuration cache, or fix the problems at hand.

Let’s ignore the reported problem, and run the same build again twice to see what happens when

reusing the cached problematic configuration:

❯ gradle --configuration-cache --configuration-cache-problems=warn someTask
-DsomeDestination=dest
Calculating task graph as no cached configuration is available for tasks: someTask
> Task :someTask

1 problem was found storing the configuration cache.
- Build file 'build.gradle': line 6: invocation of 'Task.project' at execution time is
unsupported.
 See
https://docs.gradle.org/0.0.0/userguide/configuration_cache.html#config_cache:requirem
ents:use_project_during_execution

See the complete report at
file:///home/user/gradle/samples/build/reports/configuration-
cache/<hash>/configuration-cache-report.html

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed
Configuration cache entry stored with 1 problem.
❯ gradle --configuration-cache --configuration-cache-problems=warn someTask
-DsomeDestination=dest
Reusing configuration cache.
> Task :someTask

1 problem was found reusing the configuration cache.
- Build file 'build.gradle': line 6: invocation of 'Task.project' at execution time is
unsupported.
 See
https://docs.gradle.org/0.0.0/userguide/configuration_cache.html#config_cache:requirem
ents:use_project_during_execution

See the complete report at
file:///home/user/gradle/samples/build/reports/configuration-
cache/<hash>/configuration-cache-report.html

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed
Configuration cache entry reused with 1 problem.

The two builds succeed reporting the observed problem, storing then reusing the configuration
cache.

With the help of the links present in the console problem summary and in the HTML report we can
fix our problems. Here’s a fixed version of the build script:

build.gradle.kts

abstract class MyCopyTask : DefaultTask() { ①

 @get:InputDirectory abstract val source: DirectoryProperty ②

 @get:OutputDirectory abstract val destination: DirectoryProperty ②

 @get:Inject abstract val fs: FileSystemOperations ③

 @TaskAction
 fun action() {
 fs.copy { ③
 from(source)
 into(destination)
 }
 }
}

tasks.register<MyCopyTask>("someTask") {
 val projectDir = layout.projectDirectory
 source = projectDir.dir("source")
 destination = projectDir.dir(System.getProperty("someDestination"))
}

build.gradle

abstract class MyCopyTask extends DefaultTask { ①

 @InputDirectory abstract DirectoryProperty getSource() ②

 @OutputDirectory abstract DirectoryProperty getDestination() ②

 @Inject abstract FileSystemOperations getFs() ③

 @TaskAction
 void action() {
 fs.copy { ③
 from source
 into destination
 }
 }
}

tasks.register('someTask', MyCopyTask) {
 def projectDir = layout.projectDirectory
 source = projectDir.dir('source')

 destination = projectDir.dir(System.getProperty('someDestination'))
}

① We turned our ad-hoc task into a proper task class,

② with inputs and outputs declaration,

③ and injected with the FileSystemOperations service, a supported replacement for project.copy
{}.

Running the task twice now succeeds without reporting any problem and reuses the configuration
cache on the second run:

❯ gradle --configuration-cache someTask -DsomeDestination=dest
Calculating task graph as no cached configuration is available for tasks: someTask
> Task :someTask

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed
Configuration cache entry stored.
❯ gradle --configuration-cache someTask -DsomeDestination=dest
Reusing configuration cache.
> Task :someTask

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed
Configuration cache entry reused.

But, what if we change the value of the system property?

❯ gradle --configuration-cache someTask -DsomeDestination=another
Calculating task graph as configuration cache cannot be reused because system property
'someDestination' has changed.
> Task :someTask

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed
Configuration cache entry stored.

The previous configuration cache entry could not be reused, and the task graph had to be
calculated and stored again. This is because we read the system property at configuration time,
hence requiring Gradle to run the configuration phase again when the value of that property
changes. Fixing that is as simple as obtaining the provider of the system property and wiring it to
the task input, without reading it at configuration time.

build.gradle.kts

tasks.register<MyCopyTask>("someTask") {
 val projectDir = layout.projectDirectory
 source = projectDir.dir("source")
 destination = projectDir.dir(providers.systemProperty("someDestination"))
①
}

build.gradle

tasks.register('someTask', MyCopyTask) {
 def projectDir = layout.projectDirectory
 source = projectDir.dir('source')
 destination = projectDir.dir(providers.systemProperty('someDestination'))
①
}

① We wired the system property provider directly, without reading it at configuration time.

With this simple change in place we can run the task any number of times, change the system
property value, and reuse the configuration cache:

❯ gradle --configuration-cache someTask -DsomeDestination=dest
Calculating task graph as no cached configuration is available for tasks: someTask
> Task :someTask

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed
Configuration cache entry stored.
❯ gradle --configuration-cache someTask -DsomeDestination=another
Reusing configuration cache.
> Task :someTask

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed
Configuration cache entry reused.

We’re now done with fixing the problems with this simple task.

Keep reading to learn how to adopt the configuration cache for your build or your plugins.

Declare a task incompatible with the configuration cache

It is possible to declare that a particular task is not compatible with the configuration cache via the
Task.notCompatibleWithConfigurationCache() method.

Configuration cache problems found in tasks marked incompatible will no longer cause the build to
fail.

And, when an incompatible task is scheduled to run, Gradle discards the configuration state at the
end of the build. You can use this to help with migration, by temporarily opting out certain tasks
that are difficult to change to work with the configuration cache.

Check the method documentation for more details.

Adoption steps

An important prerequisite is to keep your Gradle and plugins versions up to date. The following
explores the recommended steps for a successful adoption. It applies both to builds and plugins.
While going through these steps, keep in mind the HTML report and the solutions explained in the
requirements chapter below.

Start with :help

Always start by trying your build or plugin with the simplest task :help. This will exercise the
minimal configuration phase of your build or plugin.

Progressively target useful tasks

Don’t go with running build right away. You can also use --dry-run to discover more
configuration time problems first.

When working on a build, progressively target your development feedback loop. For example,
running tests after making some changes to the source code.

When working on a plugin, progressively target the contributed or configured tasks.

Explore by turning problems into warnings

Don’t stop at the first build failure; turn problems into warnings to discover how your build and
plugins behave. If a build fails, use the HTML report to reason about the reported problems
related to the failure. Continue running more useful tasks.

This will give you a good overview of the nature of the problems your build and plugins are
facing. Remember that when turning problems into warnings you might need to manually
invalidate the cache in case of troubles.

Step back and fix problems iteratively

When you feel you know enough about what needs to be fixed, take a step back and start
iteratively fixing the most important problems. Use the HTML report and this documentation to
help you in this journey.

Start with problems reported when storing the configuration cache. Once fixed, you can rely on
a valid cached configuration phase and move on to fixing problems reported when loading the

https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#notCompatibleWithConfigurationCache-java.lang.String-

configuration cache if any.

Report encountered issues

If you face a problem with a Gradle feature or with a Gradle core plugin that is not covered by
this documentation, please report an issue on gradle/gradle.

If you face a problem with a community Gradle plugin, see if it is already listed at
gradle/gradle#13490 and consider reporting the issue to the plugin’s issue tracker.

A good way to report such issues is by providing information such as:

• a link to this very documentation,

• the plugin version you tried,

• the custom configuration of the plugin if any, or ideally a reproducer build,

• a description of what fails, for example problems with a given task

• a copy of the build failure,

• the self-contained configuration-cache-report.html file.

Test, test, test

Consider adding tests for your build logic. See the below section on testing your build logic for
the configuration cache. This will help you while iterating on the required changes and prevent
future regressions.

Roll it out to your team

Once you have your developer workflow working, for example running tests from the IDE, you
can consider enabling it for your team. A faster turnaround when changing code and running
tests could be worth it. You’ll probably want to do this as an opt-in first.

If needed, turn problems into warnings and set the maximum number of allowed problems in
your build gradle.properties file. Keep the configuration cache disabled by default. Let your
team know they can opt-in by, for example, enabling the configuration cache on their IDE run
configurations for the supported workflow.

Later on, when more workflows are working, you can flip this around. Enable the configuration
cache by default, configure CI to disable it, and if required communicate the unsupported
workflow(s) for which the configuration cache needs to be disabled.

Reacting to the configuration cache in the build

Build logic or plugin implementations can detect if the configuration cache is enabled for a given
build, and react to it accordingly. The active status of the configuration cache is provided in the
corresponding build feature. You can access it by injecting the BuildFeatures service into your code.

You can use this information to configure features of your plugin differently or to disable an
optional feature that is not yet compatible. Another example involves providing additional
guidance for your users, should they need to adjust their setup or be informed of temporary
limitations.

https://github.com/gradle/gradle/issues/new/choose
https://github.com/gradle/gradle/issues/13490
https://docs.gradle.org/8.12/javadoc/org/gradle/api/configuration/BuildFeature.html#getActive--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/configuration/BuildFeatures.html#getConfigurationCache--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/configuration/BuildFeatures.html

Adopting changes in the configuration cache behavior

Gradle releases bring enhancements to the configuration cache, making it detect more cases of
configuration logic interacting with the environment. Those changes improve the correctness of the
cache by eliminating potential false cache hits. On the other hand, they impose stricter rules that
plugins and build logic need to follow to be cached as often as possible.

Some of those configuration inputs may be considered "benign" if their results do not affect the
configured tasks. Having new configuration misses because of them may be undesirable for the
build users, and the suggested strategy for eliminating them is:

• Identify the configuration inputs causing the invalidation of the configuration cache with the
help of the configuration cache report.

◦ Fix undeclared configuration inputs accessed by the build logic of the project.

◦ Report issues caused by third-party plugins to the plugin maintainers, and update the
plugins once they get fixed.

• For some kinds of configuration inputs, it is possible to use the opt-out options that make Gradle
fall back to the earlier behavior, omitting the inputs from detection. This temporary
workaround is aimed to mitigate performance issues coming from out-of-date plugins.

It is possible to temporarily opt out of configuration input detection in the following cases:

• Since Gradle 8.1, using many APIs related to the file system is correctly tracked as configuration
inputs, including the file system checks, such as File.exists() or File.isFile().

For the input tracking to ignore these file system checks on the specific paths, the Gradle
property org.gradle.configuration-cache.inputs.unsafe.ignore.file-system-checks, with the list
of the paths, relative to the root project directory and separated by ;, can be used. To ignore
multiple paths, use * to match arbitrary strings within one segment, or ** across segments.
Paths starting with ~/ are based on the user home directory. For example:

gradle.properties

org.gradle.configuration-cache.inputs.unsafe.ignore.file-system-checks=\
 ~/.third-party-plugin/*.lock;\
 ../../externalOutputDirectory/**;\
 build/analytics.json

• Before Gradle 8.4, some undeclared configuration inputs that were never used in the
configuration logic could still be read when the task graph was serialized by the configuration
cache. However, their changes would not invalidate the configuration cache afterward. Starting
with Gradle 8.4, such undeclared configuration inputs are correctly tracked.

To temporarily revert to the earlier behavior, set the Gradle property org.gradle.configuration-
cache.inputs.unsafe.ignore.in-serialization to true.

Ignore configuration inputs sparingly, and only if they do not affect the tasks produced by the
configuration logic. The support for these options will be removed in future releases.

Testing your build logic

The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. For general guidance on how to use TestKit, see the dedicated chapter.

To enable configuration caching in your tests, you can pass the --configuration-cache argument to
GradleRunner or use one of the other methods described in Enabling the configuration cache.

You need to run your tasks twice. Once to prime the configuration cache. Once to reuse the
configuration cache.

Example 5. Testing the configuration cache

src/test/kotlin/org/example/BuildLogicFunctionalTest.kt

@Test
fun `my task can be loaded from the configuration cache`() {

 buildFile.writeText("""
 plugins {
 id 'org.example.my-plugin'
 }
 """)

 runner()
 .withArguments("--configuration-cache", "myTask") ①
 .build()

 val result = runner()
 .withArguments("--configuration-cache", "myTask") ②
 .build()

 require(result.output.contains("Reusing configuration cache.")) ③
 // ... more assertions on your task behavior
}

src/test/groovy/org/example/BuildLogicFunctionalTest.groovy

def "my task can be loaded from the configuration cache"() {
 given:
 buildFile << """
 plugins {
 id 'org.example.my-plugin'
 }
 """

 when:
 runner()

https://docs.gradle.org/8.12/javadoc/org/gradle/testkit/runner/GradleRunner.html
#ex-testing-the-configuration-cache

 .withArguments('--configuration-cache', 'myTask') ①
 .build()

 and:
 def result = runner()
 .withArguments('--configuration-cache', 'myTask') ②
 .build()

 then:
 result.output.contains('Reusing configuration cache.') ③
 // ... more assertions on your task behavior
}

① First run primes the configuration cache.

② Second run reuses the configuration cache.

③ Assert that the configuration cache gets reused.

If problems with the configuration cache are found then Gradle will fail the build reporting the
problems, and the test will fail.

TIP

A good testing strategy for a Gradle plugin is to run its whole test suite with the
configuration cache enabled. This requires testing the plugin with a supported Gradle
version.

If the plugin already supports a range of Gradle versions it might already have tests
for multiple Gradle versions. In that case we recommend enabling the configuration
cache starting with the Gradle version that supports it.

If this can’t be done right away, using tests that run all tasks contributed by the plugin
several times, for e.g. asserting the UP_TO_DATE and FROM_CACHE behavior, is also a good
strategy.

Requirements

In order to capture the state of the task graph to the configuration cache and reload it again in a
later build, Gradle applies certain requirements to tasks and other build logic. Each of these
requirements is treated as a configuration cache "problem" and fails the build if violations are
present.

For the most part these requirements are actually surfacing some undeclared inputs. In other
words, using the configuration cache is an opt-in to more strictness, correctness and reliability for
all builds.

The following sections describe each of the requirements and how to change your build to fix the
problems.

Certain types must not be referenced by tasks

There are a number of types that task instances must not reference from their fields. The same
applies to task actions as closures such as doFirst {} or doLast {}.

These types fall into some categories as follows:

• Live JVM state types

• Gradle model types

• Dependency management types

In all cases the reason these types are disallowed is that their state cannot easily be stored or
recreated by the configuration cache.

Live JVM state types (e.g. ClassLoader, Thread, OutputStream, Socket etc…) are simply disallowed.
These types almost never represent a task input or output. The only exceptions are the standard
streams: System.in, System.out, and System.err. These streams can be used, for example, as
parameters to Exec and JavaExec tasks.

Gradle model types (e.g. Gradle, Settings, Project, SourceSet, Configuration etc…) are usually used to
carry some task input that should be explicitly and precisely declared instead.

For example, if you reference a Project in order to get the project.version at execution time, you
should instead directly declare the project version as an input to your task using a Property<String>.
Another example would be to reference a SourceSet to later get the source files, the compilation
classpath or the outputs of the source set. You should instead declare these as a FileCollection
input and reference just that.

The same requirement applies to dependency management types with some nuances.

Some types, such as Configuration or SourceDirectorySet, don’t make good task input parameters, as
they hold a lot of irrelevant state, and it is better to model these inputs as something more precise.
We don’t intend to make these types serializable at all. For example, if you reference a
Configuration to later get the resolved files, you should instead declare a FileCollection as an input
to your task. In the same vein, if you reference a SourceDirectorySet you should instead declare a
FileTree as an input to your task.

Referencing dependency resolution results is also disallowed (e.g. ArtifactResolutionQuery,
ResolvedArtifact, ArtifactResult etc…). For example, if you reference some ResolvedComponentResult
instances, you should instead declare a Provider<ResolvedComponentResult> as an input to your task.
Such a provider can be obtained by invoking ResolutionResult.getRootComponent(). In the same
vein, if you reference some ResolvedArtifactResult instances, you should instead use
ArtifactCollection.getResolvedArtifacts() that returns a Provider<Set<ResolvedArtifactResult>>
that can be mapped as an input to your task. The rule of thumb is that tasks must not reference
resolved results, but lazy specifications instead, in order to do the dependency resolution at
execution time.

Some types, such as Publication or Dependency are not serializable, but could be. We may, if
necessary, allow these to be used as task inputs directly.

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Exec.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.JavaExec.html

Here’s an example of a problematic task type referencing a SourceSet:

build.gradle.kts

abstract class SomeTask : DefaultTask() {

 @get:Input lateinit var sourceSet: SourceSet ①

 @TaskAction
 fun action() {
 val classpathFiles = sourceSet.compileClasspath.files
 // ...
 }
}

build.gradle

abstract class SomeTask extends DefaultTask {

 @Input SourceSet sourceSet ①

 @TaskAction
 void action() {
 def classpathFiles = sourceSet.compileClasspath.files
 // ...
 }
}

① this will be reported as a problem because referencing SourceSet is not allowed

The following is how it should be done instead:

build.gradle.kts

abstract class SomeTask : DefaultTask() {

 @get:InputFiles @get:Classpath
 abstract val classpath: ConfigurableFileCollection ①

 @TaskAction
 fun action() {
 val classpathFiles = classpath.files
 // ...
 }

}

build.gradle

abstract class SomeTask extends DefaultTask {

 @InputFiles @Classpath
 abstract ConfigurableFileCollection getClasspath() ①

 @TaskAction
 void action() {
 def classpathFiles = classpath.files
 // ...
 }
}

① no more problems reported, we now reference the supported type FileCollection

In the same vein, if you encounter the same problem with an ad-hoc task declared in a script as
follows:

build.gradle.kts

tasks.register("someTask") {
 doLast {
 val classpathFiles = sourceSets.main.get().compileClasspath.files ①
 }
}

build.gradle

tasks.register('someTask') {
 doLast {
 def classpathFiles = sourceSets.main.compileClasspath.files ①
 }
}

① this will be reported as a problem because the doLast {} closure is capturing a reference to the
SourceSet

You still need to fulfil the same requirement, that is not referencing a disallowed type. Here’s how

the task declaration above can be fixed:

build.gradle.kts

tasks.register("someTask") {
 val classpath = sourceSets.main.get().compileClasspath ①
 doLast {
 val classpathFiles = classpath.files
 }
}

build.gradle

tasks.register('someTask') {
 def classpath = sourceSets.main.compileClasspath ①
 doLast {
 def classpathFiles = classpath.files
 }
}

① no more problems reported, the doLast {} closure now only captures classpath which is of the
supported FileCollection type

Note that sometimes the disallowed type is indirectly referenced. For example, you could have a
task reference some type from a plugin that is allowed. That type could reference another allowed
type that in turn references a disallowed type. The hierarchical view of the object graph provided
in the HTML reports for problems should help you pinpoint the offender.

Using the Project object

A task must not use any Project objects at execution time. This includes calling Task.getProject()
while the task is running.

Some cases can be fixed in the same way as for disallowed types.

Often, similar things are available on both Project and Task. For example if you need a Logger in
your task actions you should use Task.logger instead of Project.logger.

Otherwise, you can use injected services instead of the methods of Project.

Here’s an example of a problematic task type using the Project object at execution time:

build.gradle.kts

abstract class SomeTask : DefaultTask() {
 @TaskAction
 fun action() {
 project.copy { ①
 from("source")
 into("destination")
 }
 }
}

build.gradle

abstract class SomeTask extends DefaultTask {
 @TaskAction
 void action() {
 project.copy { ①
 from 'source'
 into 'destination'
 }
 }
}

① this will be reported as a problem because the task action is using the Project object at execution
time

The following is how it should be done instead:

build.gradle.kts

abstract class SomeTask : DefaultTask() {

 @get:Inject abstract val fs: FileSystemOperations ①

 @TaskAction
 fun action() {
 fs.copy {
 from("source")
 into("destination")
 }
 }
}

build.gradle

abstract class SomeTask extends DefaultTask {

 @Inject abstract FileSystemOperations getFs() ①

 @TaskAction
 void action() {
 fs.copy {
 from 'source'
 into 'destination'
 }
 }
}

① no more problem reported, the injected FileSystemOperations service is supported as a
replacement for project.copy {}

In the same vein, if you encounter the same problem with an ad-hoc task declared in a script as
follows:

build.gradle.kts

tasks.register("someTask") {
 doLast {
 project.copy { ①
 from("source")
 into("destination")
 }
 }
}

build.gradle

tasks.register('someTask') {
 doLast {
 project.copy { ①
 from 'source'
 into 'destination'
 }
 }
}

① this will be reported as a problem because the task action is using the Project object at execution
time

Here’s how the task declaration above can be fixed:

build.gradle.kts

interface Injected {
 @get:Inject val fs: FileSystemOperations ①
}
tasks.register("someTask") {
 val injected = project.objects.newInstance<Injected>() ②
 doLast {
 injected.fs.copy { ③
 from("source")
 into("destination")
 }
 }
}

build.gradle

interface Injected {
 @Inject FileSystemOperations getFs() ①
}
tasks.register('someTask') {
 def injected = project.objects.newInstance(Injected) ②
 doLast {
 injected.fs.copy { ③
 from 'source'
 into 'destination'
 }
 }
}

① services can’t be injected directly in scripts, we need an extra type to convey the injection point

② create an instance of the extra type using project.object outside the task action

③ no more problem reported, the task action references injected that provides the
FileSystemOperations service, supported as a replacement for project.copy {}

As you can see above, fixing ad-hoc tasks declared in scripts requires quite a bit of ceremony. It is a
good time to think about extracting your task declaration as a proper task class as shown
previously.

The following table shows what APIs or injected service should be used as a replacement for each
of the Project methods.

Instead of: Use:

project.rootDir A task input or output property or a script
variable to capture the result of using
project.rootDir to calculate the actual
parameter.

project.projectDir A task input or output property or a script
variable to capture the result of using
project.projectDir to calculate the actual
parameter.

project.buildDir A task input or output property or a script
variable to capture the result of using
project.buildDir to calculate the actual
parameter.

project.name A task input or output property or a script
variable to capture the result of using
project.name to calculate the actual parameter.

project.description A task input or output property or a script
variable to capture the result of using
project.description to calculate the actual
parameter.

project.group A task input or output property or a script
variable to capture the result of using
project.group to calculate the actual parameter.

project.version A task input or output property or a script
variable to capture the result of using
project.version to calculate the actual
parameter.

project.properties, project.property(name),
project.hasProperty(name),
project.getProperty(name) or
project.findProperty(name)

Value providers for Gradle properties.

project.logger Task.logger

project.provider {} ProviderFactory.provider {}

project.file(path) A task input or output property or a script
variable to capture the result of using
project.file(file) to calculate the actual
parameter.

https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:gradleProperty(java.lang.String)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#getLogger--
https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:provider(java.util.concurrent.Callable)

Instead of: Use:

project.uri(path) A task input or output property or a script
variable to capture the result of using
project.uri(path) to calculate the actual
parameter. Otherwise, File.toURI() or some
other JVM API can be used.

project.relativePath(path) ProjectLayout.projectDirectory.file(path)

project.files(paths) ObjectFactory.fileCollection().from(paths)

project.fileTree(paths) ObjectFactory.fileTree().from(dir)

project.zipTree(path) ArchiveOperations.zipTree(path)

project.tarTree(path) ArchiveOperations.tarTree(path)

project.resources A task input or output property or a script
variable to capture the result of using
project.resource to calculate the actual
parameter.

project.copySpec {} FileSystemOperations.copySpec {}

project.copy {} FileSystemOperations.copy {}

project.sync {} FileSystemOperations.sync {}

project.delete {} FileSystemOperations.delete {}

project.mkdir(path) The Kotlin, Groovy or Java API available to your
build logic.

project.exec {} ExecOperations.exec {}

project.javaexec {} ExecOperations.javaexec {}

project.ant {} Task.ant

project.createAntBuilder() Task.ant

Accessing a task instance from another instance

Tasks should not directly access the state of another task instance. Instead, tasks should be
connected using inputs and outputs relationships.

Note that this requirement makes it unsupported to write tasks that configure other tasks at
execution time.

Sharing mutable objects

When storing a task to the configuration cache, all objects directly or indirectly referenced through
the task’s fields are serialized. In most cases, deserialization preserves reference equality: if two
fields a and b reference the same instance at configuration time, then upon deserialization they will
reference the same instance again, so a == b (or a === b in Groovy and Kotlin syntax) still holds.
However, for performance reasons, some classes, in particular java.lang.String, java.io.File, and
many implementations of java.util.Collection interface, are serialized without preserving the

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/Directory.html#file-java.lang.String-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#fileCollection--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFileCollection.html#from-java.lang.Object…​-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html#fileTree--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ConfigurableFileTree.html#from-java.lang.Object-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ArchiveOperations.html#zipTree-java.lang.Object-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ArchiveOperations.html#tarTree-java.lang.Object-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileSystemOperations.html#copySpec--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileSystemOperations.html#copy-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileSystemOperations.html#sync-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileSystemOperations.html#delete-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/process/ExecOperations.html#exec-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/process/ExecOperations.html#javaexec-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#getAnt--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Task.html#getAnt--

reference equality. Upon deserialization, fields that referred to the object of such a class can refer to
different but equal objects.

Let’s look at a task that stores a user-defined object and an ArrayList in task fields.

build.gradle.kts

class StateObject {
 // ...
}

abstract class StatefulTask : DefaultTask() {
 @get:Internal
 var stateObject: StateObject? = null

 @get:Internal
 var strings: List<String>? = null
}

tasks.register<StatefulTask>("checkEquality") {
 val objectValue = StateObject()
 val stringsValue = arrayListOf("a", "b")

 stateObject = objectValue
 strings = stringsValue

 doLast { ①
 println("POJO reference equality: ${stateObject === objectValue}") ②
 println("Collection reference equality: ${strings === stringsValue}")
③
 println("Collection equality: ${strings == stringsValue}") ④
 }
}

build.gradle

class StateObject {
 // ...
}

abstract class StatefulTask extends DefaultTask {
 @Internal
 StateObject stateObject

 @Internal
 List<String> strings

}

tasks.register("checkEquality", StatefulTask) {
 def objectValue = new StateObject()
 def stringsValue = ["a", "b"] as ArrayList<String>

 stateObject = objectValue
 strings = stringsValue

 doLast { ①
 println("POJO reference equality: ${stateObject === objectValue}") ②
 println("Collection reference equality: ${strings === stringsValue}")
③
 println("Collection equality: ${strings == stringsValue}") ④
 }
}

① doLast action captures the references from the enclosing scope. These captured references are
also serialized to the configuration cache.

② Compare the reference to an object of user-defined class stored in the task field and the
reference captured in the doLast action.

③ Compare the reference to ArrayList instance stored in the task field and the reference captured
in the doLast action.

④ Check the equality of stored and captured lists.

Running the build without the configuration cache shows that reference equality is preserved in
both cases.

❯ gradle --no-configuration-cache checkEquality
> Task :checkEquality
POJO reference equality: true
Collection reference equality: true
Collection equality: true

However, with the configuration cache enabled, only the user-defined object references are the
same. List references are different, though the referenced lists are equal.

❯ gradle --configuration-cache checkEquality
> Task :checkEquality
POJO reference equality: true
Collection reference equality: false
Collection equality: true

In general, it isn’t recommended to share mutable objects between configuration and execution

phases. If you need to do this, you should always wrap the state in a class you define. There is no
guarantee that the reference equality is preserved for standard Java, Groovy, and Kotlin types, or
for Gradle-defined types.

Note that no reference equality is preserved between tasks: each task is its own "realm", so it is not
possible to share objects between tasks. Instead, you can use a build service to wrap the shared
state.

Accessing task extensions or conventions

Tasks should not access conventions and extensions, including extra properties, at execution time.
Instead, any value that’s relevant for the execution of the task should be modeled as a task
property.

Using build listeners

Plugins and build scripts must not register any build listeners. That is listeners registered at
configuration time that get notified at execution time. For example a BuildListener or a
TaskExecutionListener.

These should be replaced by build services, registered to receive information about task execution
if needed. Use dataflow actions to handle the build result instead of buildFinished listeners.

Running external processes

Plugin and build scripts should avoid running external processes at configuration time. In general,
it is preferred to run external processes in tasks with properly declared inputs and outputs to avoid
unnecessary work when the task is up-to-date. However, if needed, you should only use the
configuration-cache-compatible APIs described below, instead of Java and Groovy standard APIs, or
Gradle-provided methods Project.exec, Project.javaexec, ExecOperations.exec, and
ExecOperations.javaexec. The flexibility of these methods prevents Gradle from determining how
the calls impact the build configuration, making it difficult to ensure that the configuration cache
entry can be safely reused.

For simpler cases, when grabbing the output of the process is enough, providers.exec() and
providers.javaexec() can be used:

build.gradle.kts

val gitVersion = providers.exec {
 commandLine("git", "--version")
}.standardOutput.asText.get()

build.gradle

def gitVersion = providers.exec {
 commandLine("git", "--version")

https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:exec(org.gradle.api.Action)
https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:javaexec(org.gradle.api.Action)

}.standardOutput.asText.get()

For more complex cases a custom ValueSource implementation with injected ExecOperations can be
used. This ExecOperations instance can be used at configuration time without restrictions.

build.gradle.kts

abstract class GitVersionValueSource : ValueSource<String,
ValueSourceParameters.None> {
 @get:Inject
 abstract val execOperations: ExecOperations

 override fun obtain(): String {
 val output = ByteArrayOutputStream()
 execOperations.exec {
 commandLine("git", "--version")
 standardOutput = output
 }
 return String(output.toByteArray(), Charset.defaultCharset())
 }
}

build.gradle

abstract class GitVersionValueSource implements ValueSource<String,
ValueSourceParameters.None> {
 @Inject
 abstract ExecOperations getExecOperations()

 String obtain() {
 ByteArrayOutputStream output = new ByteArrayOutputStream()
 execOperations.exec {
 it.commandLine "git", "--version"
 it.standardOutput = output
 }
 return new String(output.toByteArray(), Charset.defaultCharset())
 }
}

You can also use standard Java/Kotlin/Groovy process APIs like java.lang.ProcessBuilder in the
ValueSource.

The ValueSource implementation can then be used to create a provider with providers.of:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/ValueSource.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:of(java.lang.Class,%20org.gradle.api.Action)

build.gradle.kts

val gitVersionProvider = providers.of(GitVersionValueSource::class) {}
val gitVersion = gitVersionProvider.get()

build.gradle

def gitVersionProvider = providers.of(GitVersionValueSource.class) {}
def gitVersion = gitVersionProvider.get()

In both approaches, if the value of the provider is used at configuration time then it will become a
build configuration input. The external process will be executed for every build to determine if the
configuration cache is up-to-date, so it is recommended to only call fast-running processes at
configuration time. If the value changes then the cache is invalidated and the process will be run
again during this build as part of the configuration phase.

Reading system properties and environment variables

Plugins and build scripts may read system properties and environment variables directly at
configuration time with standard Java, Groovy, or Kotlin APIs or with the value supplier APIs. Doing
so makes such variable or property a build configuration input, so changing the value invalidates
the configuration cache. The configuration cache report includes a list of these build configuration
inputs to help track them.

In general, you should avoid reading the value of system properties and environment variables at
configuration time, to avoid cache misses when value changes. Instead, you can connect the
Provider returned by providers.systemProperty() or providers.environmentVariable() to task
properties.

Some access patterns that potentially enumerate all environment variables or system properties
(for example, calling System.getenv().forEach() or using the iterator of its keySet()) are
discouraged. In this case, Gradle cannot find out what properties are actual build configuration
inputs, so every available property becomes one. Even adding a new property will invalidate the
cache if this pattern is used.

Using a custom predicate to filter environment variables is an example of this discouraged pattern:

build.gradle.kts

val jdkLocations = System.getenv().filterKeys {
 it.startsWith("JDK_")
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:systemProperty(java.lang.String)
https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:environmentVariable(java.lang.String)

build.gradle

def jdkLocations = System.getenv().findAll {
 key, _ -> key.startsWith("JDK_")
}

The logic in the predicate is opaque to the configuration cache, so all environment variables are
considered inputs. One way to reduce the number of inputs is to always use methods that query a
concrete variable name, such as getenv(String), or getenv().get():

build.gradle.kts

val jdkVariables = listOf("JDK_8", "JDK_11", "JDK_17")
val jdkLocations = jdkVariables.filter { v ->
 System.getenv(v) != null
}.associate { v ->
 v to System.getenv(v)
}

build.gradle

def jdkVariables = ["JDK_8", "JDK_11", "JDK_17"]
def jdkLocations = jdkVariables.findAll { v ->
 System.getenv(v) != null
}.collectEntries { v ->
 [v, System.getenv(v)]
}

The fixed code above, however, is not exactly equivalent to the original as only an explicit list of
variables is supported. Prefix-based filtering is a common scenario, so there are provider-based
APIs to access system properties and environment variables:

build.gradle.kts

val jdkLocationsProvider = providers.environmentVariablesPrefixedBy("JDK_")

https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:systemPropertiesPrefixedBy(java.lang.String)
https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:environmentVariablesPrefixedBy(java.lang.String)

build.gradle

def jdkLocationsProvider = providers.environmentVariablesPrefixedBy("JDK_")

Note that the configuration cache would be invalidated not only when the value of the variable
changes or the variable is removed but also when another variable with the matching prefix is
added to the environment.

For more complex use cases a custom ValueSource implementation can be used. System properties
and environment variables referenced in the code of the ValueSource do not become build
configuration inputs, so any processing can be applied. Instead, the value of the ValueSource is
recomputed each time the build runs and only if the value changes the configuration cache is
invalidated. For example, a ValueSource can be used to get all environment variables with names
containing the substring JDK:

build.gradle.kts

abstract class EnvVarsWithSubstringValueSource : ValueSource<Map<String,
String>, EnvVarsWithSubstringValueSource.Parameters> {
 interface Parameters : ValueSourceParameters {
 val substring: Property<String>
 }

 override fun obtain(): Map<String, String> {
 return System.getenv().filterKeys { key ->
 key.contains(parameters.substring.get())
 }
 }
}
val jdkLocationsProvider =
providers.of(EnvVarsWithSubstringValueSource::class) {
 parameters {
 substring = "JDK"
 }
}

build.gradle

abstract class EnvVarsWithSubstringValueSource implements ValueSource<Map
<String, String>, Parameters> {
 interface Parameters extends ValueSourceParameters {
 Property<String> getSubstring()
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/provider/ValueSource.html

 Map<String, String> obtain() {
 return System.getenv().findAll { key, _ ->
 key.contains(parameters.substring.get())
 }
 }
}
def jdkLocationsProvider = providers.of(EnvVarsWithSubstringValueSource.
class) {
 parameters {
 substring = "JDK"
 }
}

Undeclared reading of files

Plugins and build scripts should not read files directly using the Java, Groovy or Kotlin APIs at
configuration time. Instead, declare files as potential build configuration inputs using the value
supplier APIs.

This problem is caused by build logic similar to this:

build.gradle.kts

val config = file("some.conf").readText()

build.gradle

def config = file('some.conf').text

To fix this problem, read files using providers.fileContents() instead:

build.gradle.kts

val config =
providers.fileContents(layout.projectDirectory.file("some.conf"))
 .asText

https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:fileContents(org.gradle.api.file.RegularFile)

build.gradle

def config = providers.fileContents(layout.projectDirectory.file('some.conf'
))
 .asText

In general, you should avoid reading files at configuration time, to avoid invalidating configuration
cache entries when the file content changes. Instead, you can connect the Provider returned by
providers.fileContents() to task properties.

Bytecode modifications and Java agent

To detect the configuration inputs, Gradle modifies the bytecode of classes on the build script
classpath, like plugins and their dependencies. Gradle uses a Java agent to modify the bytecode.
Integrity self-checks of some libraries may fail because of the changed bytecode or the agent’s
presence.

To work around this, you can use the Worker API with classloader or process isolation to
encapsulate the library code. The bytecode of the worker’s classpath is not modified, so the self-
checks should pass. When process isolation is used, the worker action is executed in a separate
worker process that doesn’t have the Gradle Java agent installed.

In simple cases, when the libraries also provide command-line entry points (public static void
main() method), you can also use the JavaExec task to isolate the library.

Handling of credentials and secrets

The configuration cache has currently no option to prevent storing secrets that are used as inputs,
and so they might end up in the serialized configuration cache entry which, by default, is stored
under .gradle/configuration-cache in your project directory.

To mitigate the risk of accidental exposure, Gradle encrypts the configuration cache. Gradle
transparently generates a machine-specific secret key as required, caches it under the
GRADLE_USER_HOME directory and uses it to encrypt the data in the project specific caches.

To enhance security further, make sure to:

• secure access to configuration cache entries;

• leverage GRADLE_USER_HOME/gradle.properties for storing secrets. The content of that file is not
part of the configuration cache, only its fingerprint. If you store secrets in that file, care must be
taken to protect access to the file content.

See gradle/gradle#22618.

Providing an encryption key via GRADLE_ENCRYPTION_KEY environment variable

By default, Gradle automatically generates and manages the encryption key as a Java keystore

https://docs.gradle.org/8.12/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:fileContents(org.gradle.api.file.RegularFile)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/JavaExec.html
https://github.com/gradle/gradle/issues/22618

stored under the GRADLE_USER_HOME directory.

For environments where this is undesirable (for instance, when the GRADLE_USER_HOME directory is
shared across machines), you may provide Gradle with the exact encryption key to use when
reading or writing the cached configuration data via the GRADLE_ENCRYPTION_KEY environment
variable.

IMPORTANT
You must ensure that the same encryption key is consistently provided
across multiple Gradle runs, or else Gradle will not be able to reuse existing
cached configurations.

Generating an encryption key that is compatible with GRADLE_ENCRYPTION_KEY

For Gradle to encrypt the configuration cache using a user-specified encryption key, you must run
Gradle while having the GRADLE_ENCRYPTION_KEY environment variable set with a valid AES key,
encoded as a Base64 string.

One way of generating a Base64-encoded AES-compatible key is by using a command like this:

❯ openssl rand -base64 16

This command should work on Linux, Mac OS, or on Windows, if using a tool like Cygwin.

You can then use the Base64-encoded key produced by that command and set it as the value of the
GRADLE_ENCRYPTION_KEY environment variable.

Not yet implemented

Support for using configuration caching with certain Gradle features is not yet implemented.
Support for these features will be added in later Gradle releases.

Sharing the configuration cache

The configuration cache is currently stored locally only. It can be reused by hot or cold local Gradle
daemons. But it can’t be shared between developers or CI machines.

See gradle/gradle#13510.

Source dependencies

Support for source dependencies is not yet implemented. With the configuration cache enabled, no
problem will be reported and the build will fail.

See gradle/gradle#13506.

Using a Java agent with builds run using TestKit

When running builds using TestKit, the configuration cache can interfere with Java agents, such as
the Jacoco agent, that are applied to these builds.

https://github.com/gradle/gradle/issues/13510
https://blog.gradle.org/introducing-source-dependencies
https://github.com/gradle/gradle/issues/13506

See gradle/gradle#25979.

Fine-grained tracking of Gradle properties as build configuration inputs

Currently, all external sources of Gradle properties (gradle.properties in project directories and in
the GRADLE_USER_HOME, environment variables and system properties that set properties, and
properties specified with command-line flags) are considered build configuration inputs regardless
of what properties are actually used at configuration time. These sources, however, are not
included in the configuration cache report.

See gradle/gradle#20969.

Java Object Serialization

Gradle allows objects that support the Java Object Serialization protocol to be stored in the
configuration cache.

The implementation is currently limited to serializable classes that either implement the
java.io.Externalizable interface, or implement the java.io.Serializable interface and define one
of the following combination of methods:

• a writeObject method combined with a readObject method to control exactly which information
to store;

• a writeObject method with no corresponding readObject; writeObject must eventually call
ObjectOutputStream.defaultWriteObject;

• a readObject method with no corresponding writeObject; readObject must eventually call
ObjectInputStream.defaultReadObject;

• a writeReplace method to allow the class to nominate a replacement to be written;

• a readResolve method to allow the class to nominate a replacement for the object just read;

The following Java Object Serialization features are not supported:

• the serialPersistentFields member to explicitly declare which fields are serializable; the
member, if present, is ignored; the configuration cache considers all but transient fields
serializable;

• the following methods of ObjectOutputStream are not supported and will throw
UnsupportedOperationException:

◦ reset(), writeFields(), putFields(), writeChars(String), writeBytes(String) and
writeUnshared(Any?).

• the following methods of ObjectInputStream are not supported and will throw
UnsupportedOperationException:

◦ readLine(), readFully(ByteArray), readFully(ByteArray, Int, Int), readUnshared(),
readFields(), transferTo(OutputStream) and readAllBytes().

• validations registered via ObjectInputStream.registerValidation are simply ignored;

• the readObjectNoData method, if present, is never invoked;

https://github.com/gradle/gradle/issues/25979
https://github.com/gradle/gradle/issues/20969
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html

See gradle/gradle#13588.

Accessing top-level methods and variables of a build script at execution time

A common approach to reuse logic and data in a build script is to extract repeating bits into top-
level methods and variables. However, calling such methods at execution time is not currently
supported if the configuration cache is enabled.

For builds scripts written in Groovy, the task fails because the method cannot be found. The
following snippet uses a top-level method in the listFiles task:

build.gradle

def dir = file('data')

def listFiles(File dir) {
 dir.listFiles({ file -> file.isFile() } as FileFilter).name.sort()
}

tasks.register('listFiles') {
 doLast {
 println listFiles(dir)
 }
}

Running the task with the configuration cache enabled produces the following error:

Execution failed for task ':listFiles'.
> Could not find method listFiles() for arguments [/home/user/gradle/samples/data] on
task ':listFiles' of type org.gradle.api.DefaultTask.

To prevent the task from failing, convert the referenced top-level method to a static method within
a class:

build.gradle

def dir = file('data')

class Files {
 static def listFiles(File dir) {
 dir.listFiles({ file -> file.isFile() } as FileFilter).name.sort()
 }
}

https://github.com/gradle/gradle/issues/13588

tasks.register('listFilesFixed') {
 doLast {
 println Files.listFiles(dir)
 }
}

Build scripts written in Kotlin cannot store tasks that reference top-level methods or variables at
execution time in the configuration cache at all. This limitation exists because the captured script
object references cannot be serialized. The first run of the Kotlin version of the listFiles task fails
with the configuration cache problem.

build.gradle.kts

val dir = file("data")

fun listFiles(dir: File): List<String> =
 dir.listFiles { file: File -> file.isFile }.map { it.name }.sorted()

tasks.register("listFiles") {
 doLast {
 println(listFiles(dir))
 }
}

To make the Kotlin version of this task compatible with the configuration cache, make the following
changes:

build.gradle.kts

object Files { ①
 fun listFiles(dir: File): List<String> =
 dir.listFiles { file: File -> file.isFile }.map { it.name }.sorted()
}

tasks.register("listFilesFixed") {
 val dir = file("data") ②
 doLast {
 println(Files.listFiles(dir))
 }
}

① Define the method inside an object.

② Define the variable in a smaller scope.

See gradle/gradle#22879.

Using build services to invalidate the configuration cache

Currently, it is impossible to use a BuildServiceProvider or provider derived from it with map or
flatMap as a parameter for the ValueSource, if the value of the ValueSource is accessed at
configuration time. The same applies when such a ValueSource is obtained in a task that executes as
part of the configuration phase, for example tasks of the buildSrc build or included builds
contributing plugins. Note that using a @ServiceReference or storing BuildServiceProvider in an
@Internal-annotated property of a task is safe. Generally speaking, this limitation makes it
impossible to use a BuildService to invalidate the configuration cache.

See gradle/gradle#24085.

Continuous Builds
Continuous Build allows you to automatically re-execute the requested tasks when file inputs
change. You can execute the build in this mode using the -t or --continuous command-line option.

For example, you can continuously run the test task and all dependent tasks by running:

$ gradle test --continuous

Gradle will behave as if you ran gradle test after a change to sources or tests that contribute to the
requested tasks. This means unrelated changes (such as changes to build scripts) will not trigger a
rebuild. To incorporate build logic changes, the continuous build must be restarted manually.

Continuous build uses file system watching to detect changes to the inputs. If file system watching
does not work on your system, then continuous build won’t work either. In particular, continuous
build does not work when using --no-daemon.

When Gradle detects a change to the inputs, it will not trigger the build immediately. Instead, it will
wait until no additional changes are detected for a certain period of time - the quiet period. You can
configure the quiet period in milliseconds by the Gradle property
org.gradle.continuous.quietperiod.

Terminating Continuous Build

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be
exited by pressing CTRL-D (On Microsoft Windows, it is required to also press ENTER or RETURN after
CTRL-D).

If Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build
process must be terminated (e.g. using the kill command or similar).

https://github.com/gradle/gradle/issues/22879
https://github.com/gradle/gradle/issues/24085

If the build is being executed via the Tooling API, the build can be cancelled using the Tooling API’s
cancellation mechanism.

Limitations

Under some circumstances, continuous build may not detect changes to inputs.

Creating input directories

Sometimes, creating an input directory that was previously missing does not trigger a build, due to
the way file system watching works. For example, creating the src/main/java directory may not
trigger a build. Similarly, if the input is a filtered file tree and no files are matching the filter, the
creation of matching files may not trigger a build.

Inputs of untracked tasks

Changes to the inputs of untracked tasks or tasks that have no outputs may not trigger a build.

Changes to files outside of project directories

Gradle only watches for changes to files inside the project directory. Changes to files outside the
project directory will go undetected and not trigger a build.

Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs
while executing, Gradle will detect the change and trigger a new build. If every time the task
executes, the inputs are modified again, the build will be triggered again. This isn’t unique to
continuous build. A task that modifies its own inputs will never be considered up-to-date when run
"normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files
reported changed by Gradle. After identifying the file(s) that are changed during each build, you
should look for a task that has that file as an input. In some cases, it may be obvious (e.g., a Java file
is compiled with compileJava). In other cases, you can use --info logging to find the task that is out-
of-date due to the identified files.

Changes to symbolic links

In general, Gradle will not detect changes to symbolic links or to files referenced via symbolic links.

Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means
that changes to task configuration, or any other change to the build model, are effectively ignored.

Inspecting Gradle Builds
<div class="badge-wrapper">
 <a class="badge" href="https://dpeuniversity.gradle.com/app/courses/b5069222-cfd0-

incremental_build.pdf#sec:disable-state-tracking

4393-b645-7a2c713853d5/" target="_blank">
 LEARN
 How to Use Build Scans >

</div>

Gradle provides multiple ways to inspect your build:

• Profile with build scans

• Local profile reports

• Low level profiling

What is a build scan?

Build scans are a persistent, shareable record of what happened when running a build. Build scans
provide insights into your build that you can use to identify and fix performance bottlenecks.

In Gradle 4.3 and above, you can create a build scan using the --scan command line option:

$ gradle build --scan

For older Gradle versions, the Build Scan Plugin User Manual explains how to enable build scans.

At the end of your build, Gradle displays a URL where you can find your build scan:

BUILD SUCCESSFUL in 2s
4 actionable tasks: 4 executed

Publishing build scan...
https://gradle.com/s/e6ircx2wjbf7e

This section explains how to profile your build with build scans.

Profile with build scans

The performance page can help use build scans to profile a build. To get there, click "Performance"
in the left hand navigation menu or follow the "Explore performance" link on the build scan home
page:

https://scans.gradle.com/
https://docs.gradle.com/build-scan-plugin/#getting_set_up

Figure 12. Performance page link on build scan home page

The performance page shows how long it took to complete different stages of a build. This page
shows how long it took to:

• start up

• configure the build’s projects

• resolve dependencies

• execute tasks

You also get details about environmental properties, such as whether a daemon was used or not.

Figure 13. Build scan performance page

In the above build scan, configuration takes over 13 seconds. Click on the "Configuration" tab to
break this stage into component parts, exposing the cause of the slowness.

Figure 14. Build scan configuration breakdown

Here you can see the scripts and plugins applied to the project in descending order of how long
they took to apply. The slowest plugin and script applications are good candidates for optimization.
For example, the script script-b.gradle was applied once but took 3 seconds. Expand that row to
see where the build applied this script.

Figure 15. Showing the application of script-b.gradle to the build

You can see that subproject :app1 applied the script once, from inside of that subproject’s
build.gradle file.

Profile report

If you prefer not to use build scans, you can generate an HTML report in the build/reports/profile
directory of your root project. To generate this report, use the --profile command-line option:

$ gradle --profile <tasks>

Each profile report has a timestamp in its name to avoid overwriting existing ones.

The report displays a breakdown of the time taken to run the build. However, this breakdown is not
as detailed as a build scan. The following profile report shows the different categories available:

Figure 16. An example profile report

Low level profiling

Sometimes your build can be slow even though your build scripts do everything right. This often
comes down to inefficiencies in plugins and custom tasks or constrained resources. Use the Gradle
Profiler to find these kinds of bottlenecks. With the Gradle Profiler, you can define scenarios like
"Running 'assemble' after making an ABI-breaking change" and run your build several times to
collect profiling data. Use the Profiler to produce build scans. Or combine it with method profilers
like JProfiler and YourKit. These profilers can help you find inefficient algorithms in custom
plugins. If you find that something in Gradle itself slows down your build, don’t hesitate to send a
profiler snapshot to performance@gradle.com.

Performance categories

Both build scans and local profile reports break down build execution into the same categories. The
following sections explain those categories.

https://github.com/gradle/gradle-profiler
https://github.com/gradle/gradle-profiler
mailto:performance@gradle.com

Startup

This reflects Gradle’s initialization time, which consists mostly of:

• JVM initialization and class loading

• Downloading the Gradle distribution if you’re using the wrapper

• Starting the daemon if a suitable one isn’t already running

• Executing Gradle initialization scripts

Even when a build execution has a long startup time, subsequent runs usually see a dramatic drop
off in startup time. Persistently slow build startup times are usually the result of problems in your
init scripts. Double check that the work you’re doing there is necessary and performant.

Settings and buildSrc

After startup, Gradle initializes your project. Usually, Gradle only processes your settings file. If you
have custom build logic in a buildSrc directory, Gradle also processes that logic. After building
buildSrc once, Gradle considers it up to date. The up-to-date checks take significantly less time than
logic processing. If your buildSrc phase takes too much time, consider breaking it out into a
separate project. You can then add that project’s JAR artifact as a dependency.

The settings file rarely contains code with significant I/O or computation. If you find that Gradle
takes a long time to process it, use more traditional profiling methods, like the the Gradle Profiler,
to determine the cause.

Loading projects

It normally doesn’t take a significant amount of time to load projects, nor do you have any control
over it. The time spent here is basically a function of the number of projects you have in your build.

Isolated Projects
Isolated Projects is a pre-alpha Gradle feature that extends the configuration cache to further
improve performance, particularly the performance of Android Studio and IDEA sync.

When Isolated Projects is enabled, the configuration model of Gradle projects are "isolated" from
each other. This means that build logic, such as build scripts or plugins, applied to a project cannot
directly access the mutable state of another project. This allows configuration and tooling model
creation for each project to safely run in parallel, with the result cached and invalidated
independently for each project.

Status as of Gradle 8.9

When Isolated Projects is enabled, Gradle applies two levels of caching during IDE sync:

1. Gradle starts by applying coarse-grained caching.

To do this, Gradle caches the result of the entire sync operation and reuses it when nothing that
affects the IDE model has changed. When the cache entry can be reused, Gradle short-circuits

https://github.com/gradle/gradle-profiler

the entire sync operation and returns the cached result to the IDE.

2. Generally, the settings and build scripts affect the IDE model, but the project’s source code does
not. So, when these scripts change, the cache entry cannot be reused. When this happens,
Gradle falls back to fine-grained caching.

To do this, Gradle caches the result of creating the tooling models for each project and reuses
these models when nothing that affects them has changed. When a project’s cached models can
be reused, Gradle short-circuits all work on that project, including the configuration phase and
other work such as dependency resolution.

This means that Gradle will only configure and create tooling models for projects whose
configuration has changed. This work is done in parallel for each project.

Current limitations

Isolated Projects is a pre-alpha feature, and as such, the current implementation has a number of
limitations. These will be addressed in future Gradle releases:

• Gradle, IntelliJ IDEA, Android Studio, and Kotlin plugins are not yet 100% compatible with
Isolated Projects, so you should expect to see some violations reported. The teams are actively
working on fixing these incompatibilities.

• Parallel configuration and fine-grained caching are not applied to task execution. They are only
applied to IDE sync.

• Changes to included builds invalidate all cached results, even when the change would not affect
the cached results.

• The implementation does not exploit the isolation to limit peak memory consumption.
Currently, peak memory consumption is a function of how many projects must be configured.

• All caching, including the configuration cache, is done on the local machine. Remote caching is
not supported yet.

How do I use it?

You will need Gradle 8.5 or later to use Isolated Projects, preferably a recent nightly. You should also
use the most recent version of IDEA or Android Studio.

The feature is off by default. You can enable it by setting the org.gradle.unsafe.isolated-projects
system property to true. For example:

$ gradle build -Dorg.gradle.unsafe.isolated-projects=true

When enabled, Gradle will fail the build whenever build logic attempts to cross project boundaries
and access the model of another project. Gradle collects all of these access problems in the
configuration cache report, as it does other problems.

The configuration cache command-line options can be used to control how Gradle handles these
problems. For example:

• --configuration-cache-problems=warn can be used to treat access problems as warnings instead
of errors.

• -Dorg.gradle.configuration-cache.max-problems=x can be used to increase the maximum
number of problems included in the report.

You can also use -Dorg.gradle.internal.invalidate-coupled-projects=false to force parallel
configuration when there are access problems.

Note that these options disable the validation that makes execution parallel- and caching-safe when
Isolated Projects is enabled, so you may see some unexpected behavior when using them.

Build logic constraints

Isolated Projects prevents build logic from accessing the state of another project. This includes:

• Using most methods on the Project type. A small number of methods that return immutable
information about the project are allowed:

◦ getName()

◦ getPath()

◦ getBuildTreePath()

◦ getProjectDir()

◦ getRootDir()

◦ getChildProjects()

◦ getSubprojects()

◦ getAllProjects()

◦ project() overloads

◦ subprojects() overloads

◦ allprojects() overloads

Note that Isolated Projects is a pre-alpha feature. These constraints are not final and can change at
any time.

ChangeLog

Gradle 8.9

Lift restriction on string-based task dependency notation

Depending on a task from another project in string-notated form is a common idiom:

foo.dependsOn(":a:bar")

Starting with this release, this is no longer considered a violation of Isolated Projects boundaries.

gradle init generates Isolated Projects compatible projects

The Build Init Plugin supports creating multi-module projects.

Starting with this release, gradle init generates projects compatible with Isolated Projects
restrictions.

IsolatedProject provides a project identifier in composite builds

The IsolatedProject type was introduced in Gradle 8.8 to explicitly mark the project state that is safe
to access across projects.

Gradle 8.9 adds a buildTreePath member, which serves as a unique project identifier in composite
build setups.

Gradle 8.8

New Gradle lifecycle callbacks

This release introduces a new GradleLifecycle API, accessible via gradle.lifecycle, which plugin
authors and build engineers can use to register actions to be executed at certain points in the build
lifecycle.

Actions registered as GradleLifecycle callbacks (currently, beforeProject and afterProject) are
isolated, running in an isolated context that is private to every project. This will allow Gradle to
perform additional performance optimizations and will be required in the future to take advantage
of parallelism during the build configuration phase.

While the existing callbacks continue to work, we encourage everyone to adopt the new API and
provide us with early feedback.

The example below shows how this new API could be used in a settings script or settings plugins to
apply configuration to all projects, while avoiding cross-project configuration:

settings.gradle.kts

include("sub1")
include("sub2")

gradle.lifecycle.beforeProject {
 apply(plugin = "base")
 repositories {
 mavenCentral()
 }
}

Isolated project views

There is now support for obtaining an isolated view of a project as an IsolatedProject via
Project.getIsolated().

build_init_plugin.pdf#build_init_plugin
https://docs.gradle.org/8.12/javadoc/org/gradle/api/project/IsolatedProject.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/project/IsolatedProject.html#getBuildTreePath()
https://docs.gradle.org/8.12/javadoc/org/gradle/api/invocation/GradleLifecycle.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/IsolatedAction.html)
https://docs.gradle.org/8.12/javadocorg/gradle/api/project/IsolatedProject.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#getIsolated--

The view exposes only those properties that are safe to access across project boundaries when
running the build configuration phase in parallel (to be supported in a future release).

The example below shows how the API could be used from a Project configuration callback to
query the root project directory in a parallel-safe way:

gradle.lifecycle.beforeProject {
 val rootDir = project.isolated.rootProject.projectDirectory
 println("The root project directory is $rootDir")
}

File System Watching
Gradle maintains a Virtual File System (VFS) to calculate what needs to be rebuilt on repeat builds
of a project. By watching the file system, Gradle keeps the VFS current between builds.

Enable

Gradle enables file system watching by default for supported operating systems since Gradle 7.

Run the build with the '--watch-fs' flag to force file system watching for a build.

To force file system watching for all builds (unless disabled with --no-watch-fs), add the following
value to gradle.properties:

gradle.properties

org.gradle.vfs.watch=true

Disable

To disable file system watching:

• use the --no-watch-fs flag

• set org.gradle.vfs.watch=false in gradle.properties

Supported Operating Systems

Gradle uses native operating system features to watch the file system. Gradle supports file system
watching on the following operating systems:

• Windows 10, version 1709 and later

• Linux, tested on the following distributions:

◦ Ubuntu 16.04

◦ CentOS Stream 9

◦ Red Hat Enterprise Linux (RHEL) 8

◦ Amazon Linux 2

◦ Alpine Linux 3.20

• macOS 12 (Monterey) or later on Intel and ARM architectures

Supported File Systems

File system watching supports the following file system types:

• APFS

• btrfs

• ext3

• ext4

• XFS

• HFS+

• NTFS

Gradle also supports VirtualBox’s shared folders.

Network file systems like Samba and NFS are not supported. Microsoft Dev Drives (ReFS) are also
not supported.

Unsupported File Systems

When enabled by default, file system watching acts conservatively when it encounters content on
unsupported file systems. This can happen if you mount a project directory or subdirectory from a
network drive. Gradle doesn’t retain information about unsupported file systems between builds
when enabled by default. If you explicitly enable file system watching, Gradle retains information
about unsupported file systems between builds.

Symlinks

Files and directories in your project that are accessed via symlinks do not benefit from file system-
watching optimizations.

Logging

To view information about Virtual File System (VFS) changes at the beginning and end of a build,
enable verbose VFS logging.

Set the org.gradle.vfs.verbose Daemon option to true to enable verbose logging.

You can do this on the command line with the following command:

$ gradle <task> -Dorg.gradle.vfs.verbose=true

Or configure the property in the gradle.properties file in the project root or your Gradle User
Home:

gradle.properties

org.gradle.vfs.verbose=true

This produces the following output at the start and end of the build:

$ gradle assemble --watch-fs -Dorg.gradle.vfs.verbose=true

Received 3 file system events since last build while watching 1 locations
Virtual file system retained information about 2 files, 2 directories and 0 missing
files since last build
> Task :compileJava NO-SOURCE
> Task :processResources NO-SOURCE
> Task :classes UP-TO-DATE
> Task :jar UP-TO-DATE
> Task :assemble UP-TO-DATE

BUILD SUCCESSFUL in 58ms
1 actionable task: 1 up-to-date
Received 5 file system events during the current build while watching 1 locations
Virtual file system retains information about 3 files, 2 directories and 2 missing
files until next build

On Windows and macOS, Gradle might report changes received since the last build, even if you
haven’t changed anything. These are harmless notifications about changes to Gradle’s caches and
can be safely ignored.

Troubleshooting

Gradle does not detect some changes

Please let us know on the Gradle community Slack. If a build declares its inputs and outputs
correctly, this should not happen. So it’s either a bug we must fix or your build lacks declaration
for some inputs or outputs.

VFS state dropped due to lost state

Did you receive a message that reads Dropped VFS state due to lost state during a build?
Please let us know on the Gradle community Slack. This means that your build cannot benefit
from file system watching for one of the following reasons:

• the Daemon received an unknown file system event

• too many changes happened, and the watching API couldn’t handle it

https://gradle-community.slack.com/app_redirect?channel=file-system-watching
https://gradle-community.slack.com/app_redirect?channel=file-system-watching

Too many open files on macOS

If you receive the java.io.IOException: Too many open files error on macOS, raise your open
files limit. See this post for more details.

Adjust inotify watches limit on Linux

File system watching uses inotify on Linux. Depending on the size of your build, it may be
necessary to increase inotify limits. If you are using an IDE, then you probably already had to
increase the limits in the past.

File system watching uses one inotify watch per watched directory. You can see the current limit of
inotify watches per user by running:

cat /proc/sys/fs/inotify/max_user_watches

To increase the limit to e.g. 512K watches run the following:

echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf

sudo sysctl -p --system

Each used inotify watch takes up to 1KB of memory. Assuming inotify uses all the 512K watches
then file system watching could use up to 500MB. In a memory-constrained environment, you may
want to disable file system watching.

Inspect inotify instances limit on Linux

File system watching initializes one inotify instance per daemon. You can see the current limit of
inotify instances per user by running:

cat /proc/sys/fs/inotify/max_user_instances

The default per-user instances limit should be high enough, so we don’t recommend increasing that
value manually.

[1] Not compatible with the configuration cache.

https://superuser.com/a/443168/8117
http://en.wikipedia.org/wiki/Inotify

THE BUILD CACHE

Build Cache
<div class="badge-wrapper">
 <a class="badge" href="https://dpeuniversity.gradle.com/app/courses/ec69d0b8-9171-
4969-ac3e-82dea16f87b0/" target="_blank">
 LEARN
 Incremental Builds and Build Caching with
Gradle >

</div>

Overview

The Gradle build cache is a cache mechanism that aims to save time by reusing outputs produced by
other builds. The build cache works by storing (locally or remotely) build outputs and allowing
builds to fetch these outputs from the cache when it is determined that inputs have not changed,
avoiding the expensive work of regenerating them.

A first feature using the build cache is task output caching. Essentially, task output caching
leverages the same intelligence as up-to-date checks that Gradle uses to avoid work when a
previous local build has already produced a set of task outputs. But instead of being limited to the
previous build in the same workspace, task output caching allows Gradle to reuse task outputs from
any earlier build in any location on the local machine. When using a shared build cache for task
output caching this even works across developer machines and build agents.

Apart from tasks, artifact transforms can also leverage the build cache and re-use their outputs
similarly to task output caching.

TIP

For a hands-on approach to learning how to use the build cache, start with reading
through the use cases for the build cache and the follow up sections. It covers the
different scenarios that caching can improve and has detailed discussions of the
different caveats you need to be aware of when enabling caching for a build.

Enable the Build Cache

By default, the build cache is not enabled. You can enable the build cache in a couple of ways:

Run with --build-cache on the command-line

Gradle will use the build cache for this build only.

Put org.gradle.caching=true in your gradle.properties

Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled
with --no-build-cache.

When the build cache is enabled, it will store build outputs in the Gradle User Home. For
configuring this directory or different kinds of build caches see Configure the Build Cache.

incremental_build.pdf#incremental_build

Task Output Caching

Beyond incremental builds described in up-to-date checks, Gradle can save time by reusing outputs
from previous executions of a task by matching inputs to the task. Task outputs can be reused
between builds on one computer or even between builds running on different computers via a
build cache.

We have focused on the use case where users have an organization-wide remote build cache that is
populated regularly by continuous integration builds. Developers and other continuous integration
agents should load cache entries from the remote build cache. We expect that developers will not
be allowed to populate the remote build cache, and all continuous integration builds populate the
build cache after running the clean task.

For your build to play well with task output caching it must work well with the incremental build
feature. For example, when running your build twice in a row all tasks with outputs should be UP-
TO-DATE. You cannot expect faster builds or correct builds when enabling task output caching when
this prerequisite is not met.

Task output caching is automatically enabled when you enable the build cache, see Enable the
Build Cache.

What does it look like

Let us start with a project using the Java plugin which has a few Java source files. We run the build
the first time.

> gradle --build-cache compileJava
:compileJava
:processResources
:classes
:jar
:assemble

BUILD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the
same as without the build cache. Let’s clean and run the build again.

> gradle clean
:clean

BUILD SUCCESSFUL

> gradle --build-cache assemble
:compileJava FROM-CACHE
:processResources
:classes

incremental_build.pdf#incremental_build
incremental_build.pdf#incremental_build

:jar
:assemble

BUILD SUCCESSFUL

Now we see that, instead of executing the :compileJava task, the outputs of the task have been
loaded from the build cache. The other tasks have not been loaded from the build cache since they
are not cacheable. This is due to :classes and :assemble being lifecycle tasks and :processResources
and :jar being Copy-like tasks which are not cacheable since it is generally faster to execute them.

Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a build cache key that
uniquely defines the task’s outputs based on its inputs. That build cache key is used to request
previous outputs from a build cache or store new outputs in the build cache. If the previous build
outputs have been already stored in the cache by someone else, e.g. your continuous integration
server or other developers, you can avoid executing most tasks locally.

The following inputs contribute to the build cache key for a task in the same way that they do for
up-to-date checks:

• The task type and its classpath

• The names of the output properties

• The names and values of properties annotated as described in the section called "Custom task
types"

• The names and values of properties added by the DSL via TaskInputs

• The classpath of the Gradle distribution, buildSrc and plugins

• The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the @CacheableTask annotation. Note that
@CacheableTask is not inherited by subclasses. Custom task types are not cacheable by default.

Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:

• Java toolchain: JavaCompile, Javadoc

• Groovy toolchain: GroovyCompile, Groovydoc

• Scala toolchain: ScalaCompile, org.gradle.language.scala.tasks.PlatformScalaCompile
(removed), ScalaDoc

• Native toolchain: CppCompile, CCompile, SwiftCompile

• Testing: Test

• Code quality tasks: Checkstyle, CodeNarc, Pmd

• JaCoCo: JacocoReport

incremental_build.pdf#sec:how_does_it_work
incremental_build.pdf#sec:task_input_output_annotations
incremental_build.pdf#sec:task_input_output_annotations
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskInputs.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/CacheableTask.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/CacheableTask.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
https://docs.gradle.org/8.12/javadoc/org/gradle/language/cpp/tasks/CppCompile.html
https://docs.gradle.org/8.12/javadoc/org/gradle/language/c/tasks/CCompile.html
https://docs.gradle.org/8.12/javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.quality.Checkstyle.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.quality.CodeNarc.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.quality.Pmd.html
https://docs.gradle.org/8.12/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html

• Other tasks: AntlrTask, ValidatePlugins, WriteProperties

All other built-in tasks are currently not cacheable.

Some tasks, like Copy or Jar, usually do not make sense to make cacheable because Gradle is only
copying files from one location to another. It also doesn’t make sense to make tasks cacheable that
do not produce outputs or have no task actions.

Third party plugins

There are third party plugins that work well with the build cache. The most prominent examples
are the Android plugin 3.1+ and the Kotlin plugin 1.2.21+. For other third party plugins, check their
documentation to find out whether they support the build cache.

Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that
the results from one build can be safely re-used somewhere else.

Missing task inputs can cause incorrect cache hits, where different results are treated as identical
because the same cache key is used by both executions. Missing task outputs can cause build
failures if Gradle does not completely capture all outputs for a given task. Wrongly declared task
inputs can lead to cache misses especially when containing volatile data or absolute paths. (See the
section called "Task inputs and outputs" on what should be declared as inputs and outputs.)

NOTE
The task path is not an input to the build cache key. This means that tasks with
different task paths can re-use each other’s outputs as long as Gradle determines
that executing them yields the same result.

In order to ensure that the inputs and outputs are properly declared use integration tests (for
example using TestKit) to check that a task produces the same outputs for identical inputs and
captures all output files for the task. We suggest adding tests to ensure that the task inputs are
relocatable, i.e. that the task can be loaded from the cache into a different build directory (see
@PathSensitive).

In order to handle volatile inputs for your tasks consider configuring input normalization.

Marking tasks as non-cacheable by default

There are certain tasks that don’t benefit from using the build cache. One example is a task that
only moves data around the file system, like a Copy task. You can signify that a task is not to be
cached by adding the @DisableCachingByDefault annotation to it. You can also give a human-
readable reason for not caching the task by default. The annotation can be used on its own, or
together with @CacheableTask.

NOTE
This annotation is only for documenting the reason behind not caching the task by
default. Build logic can override this decision via the runtime API (see below).

https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
https://docs.gradle.org/8.12/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.WriteProperties.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Jar.html
https://developer.android.com/studio/releases/gradle-plugin.html
https://blog.gradle.org/kotlin-build-cache-use
incremental_build.pdf#sec:task_inputs_outputs
incremental_build.pdf#sec:task_inputs_outputs
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/PathSensitive.html
incremental_build.pdf#sec:configure_input_normalization

Enable caching of non-cacheable tasks

As we have seen, built-in tasks, or tasks provided by plugins, are cacheable if their class is
annotated with the Cacheable annotation. But what if you want to make cacheable a task whose
class is not cacheable? Let’s take a concrete example: your build script uses a generic NpmTask task to
create a JavaScript bundle by delegating to NPM (and running npm run bundle). This process is
similar to a complex compilation task, but NpmTask is too generic to be cacheable by default: it just
takes arguments and runs npm with those arguments.

The inputs and outputs of this task are simple to figure out. The inputs are the directory containing
the JavaScript files, and the NPM configuration files. The output is the bundle file generated by this
task.

Using annotations

We create a subclass of the NpmTask and use annotations to declare the inputs and outputs.

When possible, it is better to use delegation instead of creating a subclass. That is the case for the
built in JavaExec, Exec, Copy and Sync tasks, which have a method on Project to do the actual work.

If you’re a modern JavaScript developer, you know that bundling can be quite long, and is worth
caching. To achieve that, we need to tell Gradle that it’s allowed to cache the output of that task,
using the @CacheableTask annotation.

This is sufficient to make the task cacheable on your own machine. However, input files are
identified by default by their absolute path. So if the cache needs to be shared between several
developers or machines using different paths, that won’t work as expected. So we also need to set
the path sensitivity. In this case, the relative path of the input files can be used to identify them.

Note that it is possible to override property annotations from the base class by overriding the getter
of the base class and annotating that method.

Example 6. Custom cacheable BundleTask

build.gradle.kts

@CacheableTask ①
abstract class BundleTask : NpmTask() {

 @get:Internal ②
 override val args
 get() = super.args

 @get:InputDirectory
 @get:SkipWhenEmpty
 @get:PathSensitive(PathSensitivity.RELATIVE) ③
 abstract val scripts: DirectoryProperty

 @get:InputFiles

incremental_build.pdf#sec:task_input_output_annotations
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/CacheableTask.html
#ex-custom-cacheable-bundletask

 @get:PathSensitive(PathSensitivity.RELATIVE) ④
 abstract val configFiles: ConfigurableFileCollection

 @get:OutputFile
 abstract val bundle: RegularFileProperty

 init {
 args.addAll("run", "bundle")
 bundle = projectLayout.buildDirectory.file("bundle.js")
 scripts = projectLayout.projectDirectory.dir("scripts")
 configFiles.from(projectLayout.projectDirectory.file("package.json"))
 configFiles.from(projectLayout.projectDirectory.file("package-
lock.json"))
 }
}

tasks.register<BundleTask>("bundle")

build.gradle

@CacheableTask ①
abstract class BundleTask extends NpmTask {

 @Override @Internal ②
 ListProperty<String> getArgs() {
 super.getArgs()
 }

 @InputDirectory
 @SkipWhenEmpty
 @PathSensitive(PathSensitivity.RELATIVE) ③
 abstract DirectoryProperty getScripts()

 @InputFiles
 @PathSensitive(PathSensitivity.RELATIVE) ④
 abstract ConfigurableFileCollection getConfigFiles()

 @OutputFile
 abstract RegularFileProperty getBundle()

 BundleTask() {
 args.addAll("run", "bundle")
 bundle = projectLayout.buildDirectory.file("bundle.js")
 scripts = projectLayout.projectDirectory.dir("scripts")
 configFiles.from(projectLayout.projectDirectory.file("package.json"))
 configFiles.from(projectLayout.projectDirectory.file("package-
lock.json"))
 }
}

tasks.register('bundle', BundleTask)

• (1) Add @CacheableTask to enable caching for the task.

• (2) Override the getter of a property of the base class to change the input annotation to
@Internal.

• (3) (4) Declare the path sensitivity.

Using the runtime API

If for some reason you cannot create a new custom task class, it is also possible to make a task
cacheable using the runtime API to declare the inputs and outputs.

For enabling caching for the task you need to use the TaskOutputs.cacheIf() method.

The declarations via the runtime API have the same effect as the annotations described above. Note
that you cannot override file inputs and outputs via the runtime API. Input properties can be
overridden by specifying the same property name.

Example 7. Make the bundle task cacheable

build.gradle.kts

tasks.register<NpmTask>("bundle") {
 args = listOf("run", "bundle")

 outputs.cacheIf { true }

 inputs.dir(file("scripts"))
 .withPropertyName("scripts")
 .withPathSensitivity(PathSensitivity.RELATIVE)

 inputs.files("package.json", "package-lock.json")
 .withPropertyName("configFiles")
 .withPathSensitivity(PathSensitivity.RELATIVE)

 outputs.file(layout.buildDirectory.file("bundle.js"))
 .withPropertyName("bundle")
}

build.gradle

tasks.register('bundle', NpmTask) {
 args = ['run', 'bundle']

incremental_build.pdf#sec:task_input_output_runtime_api
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskOutputs.html#cacheIf-org.gradle.api.specs.Spec-
#ex-make-the-bundle-task-cacheable

 outputs.cacheIf { true }

 inputs.dir(file("scripts"))
 .withPropertyName("scripts")
 .withPathSensitivity(PathSensitivity.RELATIVE)

 inputs.files("package.json", "package-lock.json")
 .withPropertyName("configFiles")
 .withPathSensitivity(PathSensitivity.RELATIVE)

 outputs.file(layout.buildDirectory.file("bundle.js"))
 .withPropertyName("bundle")
}

Configure the Build Cache

You can configure the build cache by using the Settings.buildCache(org.gradle.api.Action) block in
settings.gradle.

Gradle supports a local and a remote build cache that can be configured separately. When both
build caches are enabled, Gradle tries to load build outputs from the local build cache first, and
then tries the remote build cache if no build outputs are found. If outputs are found in the remote
cache, they are also stored in the local cache, so next time they will be found locally. Gradle stores
("pushes") build outputs in any build cache that is enabled and has BuildCache.isPush() set to true.

By default, the local build cache has push enabled, and the remote build cache has push disabled.

The local build cache is pre-configured to be a DirectoryBuildCache and enabled by default. The
remote build cache can be configured by specifying the type of build cache to connect to
(BuildCacheConfiguration.remote(java.lang.Class)).

Built-in local build cache

The built-in local build cache, DirectoryBuildCache, uses a directory to store build cache artifacts.
By default, this directory resides in the Gradle User Home, but its location is configurable.

For more details on the configuration options refer to the DSL documentation of
DirectoryBuildCache. Here is an example of the configuration.

Example 8. Configure the local cache

settings.gradle.kts

buildCache {
 local {
 directory = File(rootDir, "build-cache")
 }

https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/caching/configuration/BuildCache.html#isPush--
https://docs.gradle.org/8.12/dsl/org.gradle.caching.local.DirectoryBuildCache.html
https://docs.gradle.org/8.12/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
https://docs.gradle.org/8.12/dsl/org.gradle.caching.local.DirectoryBuildCache.html
https://docs.gradle.org/8.12/dsl/org.gradle.caching.local.DirectoryBuildCache.html
#ex-configure-the-local-cache

}

settings.gradle

buildCache {
 local {
 directory = new File(rootDir, 'build-cache')
 }
}

Gradle will periodically clean-up the local cache directory by removing entries that have not been
used recently to conserve disk space. How often Gradle will perform this clean-up and how long
entries will be retained is configurable via an init-script as demonstrated in this section.

Remote HTTP build cache

HttpBuildCache provides the ability read to and write from a remote cache via HTTP.

With the following configuration, the local build cache will be used for storing build outputs while
the local and the remote build cache will be used for retrieving build outputs.

Example 9. Load from HttpBuildCache

settings.gradle.kts

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 }
}

settings.gradle

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 }
}

When attempting to load an entry, a GET request is made to https://example.com:8123/cache/«cache-
key». The response must have a 2xx status and the cache entry as the body, or a 404 Not Found status

https://docs.gradle.org/8.12/dsl/org.gradle.caching.http.HttpBuildCache.html
#ex-load-from-httpbuildcache

if the entry does not exist.

When attempting to store an entry, a PUT request is made to https://example.com:8123/cache/«cache-
key». Any 2xx response status is interpreted as success. A 413 Payload Too Large response may be
returned to indicate that the payload is larger than the server will accept, which will not be treated
as an error.

Specifying access credentials

HTTP Basic Authentication is supported, with credentials being sent preemptively.

Example 10. Specifying access credentials

settings.gradle.kts

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 credentials {
 username = "build-cache-user"
 password = "some-complicated-password"
 }
 }
}

settings.gradle

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 credentials {
 username = 'build-cache-user'
 password = 'some-complicated-password'
 }
 }
}

Redirects

3xx redirecting responses will be followed automatically.

Servers must take care when redirecting PUT requests as only 307 and 308 redirect responses will be
followed with a PUT request. All other redirect responses will be followed with a GET request, as per
RFC 7231, without the entry payload as the body.

https://en.wikipedia.org/wiki/Basic_access_authentication
#ex-specifying-access-credentials
https://datatracker.ietf.org/doc/html/rfc7231#page-54

Network error handling

Requests that fail during request transmission, after having established a TCP connection, will be
retried automatically.

This prevents temporary problems, such as connection drops, read or write timeouts, and low level
network failures such as a connection resets, causing cache operations to fail and disabling the
remote cache for the remainder of the build.

Requests will be retried up to 3 times. If the problem persists, the cache operation will fail and the
remote cache will be disabled for the remainder of the build.

Using SSL

By default, use of HTTPS requires the server to present a certificate that is trusted by the build’s
Java runtime. If your server’s certificate is not trusted, you can:

1. Update the trust store of your Java runtime to allow it to be trusted

2. Change the build environment to use an alternative trust store for the build runtime

3. Disable the requirement for a trusted certificate

The trust requirement can be disabled by setting HttpBuildCache.isAllowUntrustedServer() to true.
Enabling this option is a security risk, as it allows any cache server to impersonate the intended
server. It should only be used as a temporary measure or in very tightly controlled network
environments.

Example 11. Allow untrusted cache server

settings.gradle.kts

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 isAllowUntrustedServer = true
 }
}

settings.gradle

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 allowUntrustedServer = true
 }
}

https://docs.gradle.org/8.12/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer
#ex-allow-untrusted-cache-server

HTTP expect-continue

Use of HTTP Expect-Continue can be enabled. This causes upload requests to happen in two parts:
first a check whether a body would be accepted, then transmission of the body if the server
indicates it will accept it.

This is useful when uploading to cache servers that routinely redirect or reject upload requests, as
it avoids uploading the cache entry just to have it rejected (e.g. the cache entry is larger than the
cache will allow) or redirected. This additional check incurs extra latency when the server accepts
the request, but reduces latency when the request is rejected or redirected.

Not all HTTP servers and proxies reliably implement Expect-Continue. Be sure to check that your
cache server does support it before enabling.

To enable, set HttpBuildCache.isUseExpectContinue() to true.

Example 12. Use Expect-Continue

settings.gradle.kts

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 isUseExpectContinue = true
 }
}

settings.gradle

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 useExpectContinue = true
 }
}

Configuration use cases

The recommended use case for the remote build cache is that your continuous integration server
populates it from clean builds while developers only load from it. The configuration would then
look as follows.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.2.3
https://docs.gradle.org/8.12/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:useExpectContinue
#ex-use-expect-continue

Example 13. Recommended setup for CI push use case

settings.gradle.kts

val isCiServer = System.getenv().containsKey("CI")

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 isPush = isCiServer
 }
}

settings.gradle

boolean isCiServer = System.getenv().containsKey("CI")

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 push = isCiServer
 }
}

It is also possible to configure the build cache from an init script, which can be used from the
command line, added to your Gradle User Home or be a part of your custom Gradle distribution.

Example 14. Init script to configure the build cache

init.gradle.kts

gradle.settingsEvaluated {
 buildCache {
 // vvv Your custom configuration goes here
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 }
 // ^^^ Your custom configuration goes here
 }
}

#ex-recommended-setup-for-ci-push-use-case
#ex-init-script-to-configure-the-build-cache

init.gradle

gradle.settingsEvaluated { settings ->
 settings.buildCache {
 // vvv Your custom configuration goes here
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 }
 // ^^^ Your custom configuration goes here
 }
}

Build cache, composite builds and buildSrc

Gradle’s composite build feature allows including other complete Gradle builds into another. Such
included builds will inherit the build cache configuration from the top level build, regardless of
whether the included builds define build cache configuration themselves or not.

The build cache configuration present for any included build is effectively ignored, in favour of the
top level build’s configuration. This also applies to any buildSrc projects of any included builds.

The buildSrc directory is treated as an included build, and as such it inherits the build cache
configuration from the top-level build.

NOTE
This configuration precedence does not apply to plugin builds included through
pluginManagement as these are loaded before the cache configuration itself.

How to set up an HTTP build cache backend

Gradle provides a Docker image for a build cache node, which can connect with Develocity for
centralized management. The cache node can also be used without a Develocity installation with
restricted functionality.

Implement your own Build Cache

Using a different build cache backend to store build outputs (which is not covered by the built-in
support for connecting to an HTTP backend) requires implementing your own logic for connecting
to your custom build cache backend. To this end, custom build cache types can be registered via
BuildCacheConfiguration.registerBuildCacheService(java.lang.Class, java.lang.Class).

Develocity includes a high-performance, easy to install and operate, shared build cache backend.

Use cases for the build cache
This section covers the different use cases for Gradle’s build cache, from local-only development to
caching task outputs across large teams.

https://hub.docker.com/r/gradle/build-cache-node/
https://docs.gradle.org/8.12/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class-java.lang.Class-
https://gradle.com/gradle-enterprise-solutions/build-cache/

Speed up developer builds with the local cache

Even when used by a single developer only, the build cache can be very useful. Gradle’s incremental
build feature helps to avoid work that is already done, but once you re-execute a task, any previous
results are forgotten. When you are switching branches back and forth, the local results get rebuilt
over and over again, even if you are building something that has already been built before. The
build cache remembers the earlier build results, and greatly reduces the need to rebuild things
when they have already been built locally. This can also extend to rebuilding different commits, like
when running git bisect.

The local cache can also be useful when working with a project that has multiple variants, as in the
case of Android projects. Each variant has a number of tasks associated with it, and some of those
task variant dimensions, despite having different names, can end up producing the same output.
With the local cache enabled, reuse between task variants will happen automatically when
applicable.

Share results between CI builds

The build cache can do more than go back-and-forth in time: it can also bridge physical distance
between computers, allowing results generated on one machine to be re-used by another. A typical
first step when introducing the build cache within a team is to enable it for builds running as part
of continuous integration only. Using a shared HTTP build cache backend (such as the one provided
by Develocity) can significantly reduce the work CI agents need to do. This translates into faster
feedback for developers, and less money spent on the CI resources. Faster builds also mean fewer
commits being part of each build, which makes debugging issues more efficient.

Beginning with the build cache on CI is a good first step as the environment on CI agents is usually
more stable and predictable than developer machines. This helps to identify any possible issues
with the build that may affect cacheability.

If you are subject to audit requirements regarding the artifacts you ship to your customers you may
need to disable the build cache for certain builds. Develocity may help you with fulfilling these
requirements while still using the build cache for all your builds. It allows you to easily find out
which build produced an artifact coming from the build cache via build scans.

https://gradle.com/build-cache/
https://gradle.com/build-cache/

Accelerate developer builds by reusing CI results

When multiple developers work on the same project, they don’t just need to build their own
changes: whenever they pull from version control, they end up having to build each other’s
changes as well. Whenever a developer is working on something independent of the pulled
changes, they can safely reuse outputs already generated on CI. Say, you’re working on module "A",
and you pull in some changes to module "B" (which does not depend on your module). If those
changes were already built in CI, you can download the task outputs for module "B" from the cache
instead of generating them locally. A typical use case for this is when developers start their day, pull
all changes from version control and then run their first build.

The changes don’t need to be completely independent, either; we’ll take a look at the strategies to
reuse results when dependencies are involved in the section about the different forms of
normalization.

Combine remote results with local caching

You can utilize both a local and a remote cache for a compound effect. While loading results from a
CI-filled remote cache helps to avoid work needed because of changes by other developers, the local
cache can speed up switching branches and doing git bisect. On CI machines the local cache can
act as a mirror of the remote cache, significantly reducing network usage.

Share results between developers

Allowing developers to upload their results to a shared cache is possible, but not recommended.
Developers can make changes to task inputs or outputs while the task is executing. They can do this
unintentionally and without noticing, for example by making changes in their IDEs while a build is
running. Currently, Gradle has no good way to defend against these changes, and will simply cache
whatever is in the output directory once the task is finished. This again can lead to corrupted

results being uploaded to the shared cache. This recommendation might change when Gradle has
added the necessary safeguards against unintentional modification of task inputs and outputs.

WARNING

If you want to share task output from incremental builds, i.e. non-clean builds,
you have to make sure that all cacheable tasks are properly configured and
implemented to deal with stale output. There are for example annotation
processors that do not clean up stale files in the corresponding
classes/resources directories. The cache is a great forcing function to fix these
problems, which will also make your incremental builds much more reliable.
At the same time, until you have confidence that the incremental build
behavior is flawless, only use clean builds to upload content to the cache.

Build cache performance
<div class="badge-wrapper">
 <a class="badge" href="https://dpeuniversity.gradle.com/app/courses/4fcbecbc-7cff-
449a-a509-07cf70403f0c/" target="_blank">
 LEARN
 Maintaining Optimal Gradle Build Cache
Performance >

</div>

The sole reason to use any build cache is to make builds faster. But how much faster can you go
when using the cache? Measuring the impact is both important and complicated, as cache
performance is determined by many factors. Performing measurements of the cache’s impact can
validate the extra effort (work, infrastructure) that is required to start using the cache. These
measurements can later serve as baselines for future improvements, and to watch for signs of
regressions.

NOTE
Proper configuration and maintenance of a build can improve caching performance
in a big way.

Fully cached builds

The most straightforward way to get a feel for what the cache can do for you is to measure the
difference between a non-cached build and a fully cached build. This will give you the theoretical
limit of how fast builds with the cache can get, if everything you’re trying to build has already been
built. The easiest way to measure this is using the local cache:

1. Clean the cache directory to avoid any hits from previous builds (rm -rf
$GRADLE_USER_HOME/caches/build-cache-*)

2. Run the build (e.g. ./gradlew --build-cache clean assemble), so that all the results from
cacheable tasks get stored in the cache.

3. Run the build again (e.g. ./gradlew --build-cache clean assemble); depending on your build, you
should see many of the tasks being retrieved from the cache.

4. Compare the execution time for the two builds

NOTE

You may encounter a few cached tasks even in the first of the two builds, where no
previously cached results should be available. This can happen if you have tasks in
your build that are configured to produce the same results from the same inputs; in
such a case once one of these tasks has finished, Gradle will simply reuse its output
for the rest of the tasks.

Normally, your fully cached build should be significantly faster than the clean build: this is the
theoretical limit of how much time using the build cache can save on your particular build. You
usually don’t get the achievable performance gains on the first try, see finding problems with task
output caching. As your build logic is evolving and changing it is also important to make sure that
the cache effectiveness is not regressing. Build scans provide a detailed performance breakdown
which show you how effectively your build is using the build cache:

Fully cached builds occur in situations when developers check out the latest from version control
and then build, for example to generate the latest sources they need in their IDE. The purpose of
running most builds though is to process some new changes. The structure of the software being
built (how many modules are there, how independent are its parts etc.), and the nature of the
changes themselves ("big refactor in the core of the system" vs. "small change to a unit test" etc.)
strongly influence the performance gains delivered by the build cache. As developers tend to
submit different kinds of changes over time, caching performance is expected to vary with each
change. As with any cache, the impact should therefore be measured over time.

In a setup where a team uses a shared cache backend, there are two locations worth measuring
cache impact at: on CI and on developer machines.

Cache impact on CI builds

The best way to learn about the impact of caching on CI is to set up the same builds with the cache
enabled and disabled, and compare the results over time. If you have a single Gradle build step that

you want to enable caching for, it’s easy to compare the results using your CI system’s built-in
statistical tools.

Measuring complex pipelines may require more work or external tools to collect and process
measurements. It’s important to distinguish those parts of the pipeline that caching has no effect
on, for example, the time builds spend waiting in the CI system’s queue, or time taken by checking
out source code from version control.

When using Develocity, you can use the Export API to access the necessary data and run your
analytics. Develocity provides much richer data compared to what can be obtained from CI servers.
For example, you can get insights into the execution of single tasks, how many tasks were retrieved
from the cache, how long it took to download from the cache, the properties that were used to
calculate the cache key and more. When using your CI servers built in functions, you can use
statistic charts if you use Teamcity for your CI builds. Most of time you will end up extracting data
from your CI server via the corresponding REST API (see Jenkins remote access API and Teamcity
REST API).

Typically, CI builds above a certain size include parallel sections to utilize multiple agents. With
parallel pipelines you can measure the wall-clock time it takes for a set of changes to go from
having been pushed to version control to being built, verified and deployed. The build cache’s effect
in this case can be measured in the reduction of the time developers have to wait for feedback from
CI.

You can also measure the cumulative time your build agents spent building a changeset, which will
give you a sense of the amount of work the CI infrastructure has to exert. The cache’s effect here is
less money spent on CI resources, as you don’t need as many CI agents to maintain the same
number of changes built.

If you want to look at the measurement for the Gradle build itself you can have a look at the blog
post "Introducing the build cache".

Measuring developer builds

Gradle’s build cache can be very useful in reducing CI infrastructure cost and feedback time, but it
usually has the biggest impact when developers can reuse cached results in their local builds. This
is also the hardest to quantify for a number of reasons:

• developers run different builds

• developers can have different hardware, or have different settings

• developers run all kinds of other things on their machines that can slow them down

When using Develocity you can use the Export API to extract data about developer builds, too. You
can then create statistics on how many tasks were cached per developer or build. You can even
compare the times it took to execute the task vs loading it from the cache and then estimate the
time saved per developer.

When using the Develocity build cache backend you should pay close attention to the hit rate in the
admin UI. A rise in the hit rate there probably indicates better usage by developers:

https://docs.gradle.com/enterprise/export-api/
https://confluence.jetbrains.com/display/TCD10/Statistic+Charts
https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API
https://confluence.jetbrains.com/display/TCD10/REST+API
https://confluence.jetbrains.com/display/TCD10/REST+API
https://blog.gradle.org/introducing-gradle-build-cache
https://docs.gradle.com/enterprise/export-api/
https://gradle.com/build-cache

Analyzing performance in build scans

Build scans provide a summary of all cache operations for a build via the "Build cache" section of
the "Performance" page.

This page details which tasks were able to be avoided by cache hits, and which missed. It also
indicates the hits and misses for the local and remote caches individually. For remote cache
operations, the time taken to transfer artifacts to and from the cache is given, along with the
transfer rate. This is particularly important for assessing the impact of network link quality on
performance, as transfer times contribute to build time.

Remote cache performance

Improving the network link between the build and the remote cache can significantly improve
build cache performance. How to do this depends on the remote cache in use and your network
environment.

The multi-node remote build cache provided by Develocity is a fast and efficient, purpose built,
remote build cache. In particular, if your development team is geographically distributed, its
replication features can significantly improve performance by allowing developers to use a cache
that they have a good network link to. See the “Build Cache Replication” section of the Develocity
Admin Manual for more information.

Important concepts
How much of your build gets loaded from the cache depends on many factors. In this section you
will see some of the tools that are essential for well-cached builds. Build scans are part of that
toolchain and will be used throughout this guide.

Build cache key

Artifacts in the build cache are uniquely identified by a build cache key. A build cache key is
assigned to each cacheable task when running with the build cache enabled and is used for both
loading and storing task outputs to the build cache. The following inputs contribute to the build
cache key for a task:

• The task implementation

• The task action implementations

• The names of the output properties

• The names and values of task inputs

Two tasks can reuse their outputs by using the build cache if their associated build cache keys are
the same.

Repeatable task outputs

Assume that you have a code generator task as part of your build. When you have a fully up to date
build and you clean and re-run the code generator task on the same code base it should generate
exactly the same output, so anything that depends on that output will stay up-to-date.

It might also be that your code generator adds some extra information to its output that doesn’t
depend on its declared inputs, like a timestamp. In such a case re-executing the task will result in
different code being generated (because the timestamp will be updated). Tasks that depend on the
code generator’s output will need to be re-executed.

When a task is cacheable, then the very nature of task output caching makes sure that the task will
have the same outputs for a given set of inputs. Therefore, cacheable tasks should have repeatable
task outputs. If they don’t, then the result of executing the task and loading the task from the cache
may be different, which can lead to hard-to-diagnose cache misses.

https://docs.gradle.com/develocity/helm-admin/current/#replication
https://docs.gradle.com/develocity/helm-admin/current/#replication
https://gradle.com/build-scans

In some cases even well-trusted tools can produce non-repeatable outputs, and lead to cascading
effects. One example is Oracle’s Java compiler, which, due to a bug, was producing different
bytecode depending on the order source files to be compiled were presented to it. If you were using
Oracle JDK 8u31 or earlier to compile code in the buildSrc subproject, this could lead to all of your
custom tasks producing occasional cache misses, because of the difference in their classpaths
(which include buildSrc).

The key here is that cacheable tasks should not use non-repeatable task outputs as an input.

Stable task inputs

Having a task repeatably produce the same output is not enough if its inputs keep changing all the
time. Such unstable inputs can be supplied directly to the task. Consider a version number that
includes a timestamp being added to the jar file’s manifest:

build.gradle.kts

version = "3.2-${System.currentTimeMillis()}"

tasks.jar {
 manifest {
 attributes(mapOf("Implementation-Version" to project.version))
 }
}

build.gradle

version = "3.2-${System.currentTimeMillis()}"

tasks.named('jar') {
 manifest {
 attributes('Implementation-Version': project.version)
 }
}

In the above example the inputs for the jar task will be different for each build execution since this
timestamp will continually change.

Another example for unstable inputs is the commit ID from version control. Maybe your version
number is generated via git describe (and you include it in the jar manifest as shown above). Or
maybe you include the commit hash directly in version.properties or a jar manifest attribute.
Either way, the outputs produced by any tasks depending on such data will only be re-usable by
builds running against the exact same commit.

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8067422

Another common, but less obvious source of unstable inputs is when a task consumes the output of
another task which produces non-repeatable results, such as the example before of a code
generator that embeds timestamps in its output.

A task can only be loaded from the cache if it has stable task inputs. Unstable task inputs result in
the task having a unique set of inputs for every build, which will always result in a cache miss.

Better reuse via input normalization

Having stable inputs is crucial for cacheable tasks. However, achieving byte for byte identical
inputs for each task can be challenging. In some cases sanitizing the output of a task to remove
unnecessary information can be a good approach, but this also means that a task’s output can only
be normalized for a single purpose.

This is where input normalization comes into play. Input normalization is used by Gradle to
determine if two task inputs are essentially the same. Gradle uses normalized inputs when doing
up-to-date checks and when determining if a cached result can be re-used instead of executing the
task. As input normalization is declared by the task consuming the data as input, different tasks can
define different ways to normalize the same data.

When it comes to file inputs, Gradle can normalize the path of the files as well as their contents.

Path sensitivity and relocatability

When sharing cached results between computers, it’s rare that everyone runs the build from the
exact same location on their computers. To allow cached results to be shared even when builds are
executed from different root directories, Gradle needs to understand which inputs can be relocated
and which cannot.

Tasks having files as inputs can declare the parts of a file’s path what are essential to them: this is
called the path sensitivity of the input. Task properties declared with ABSOLUTE path sensitivity are
considered non-relocatable. This is the default for properties not declaring path sensitivity, too.

For example, the class files produced by the Java compiler are dependent on the file names of the
Java source files: renaming the source files with public classes in them would fail the build. Though
moving the files around wouldn’t have an effect on the result of the compilation, for incremental
compilation the JavaCompile task relies on the relative path to find other classes in the same
package. Therefore, the path sensitivity for the sources of the JavaCompile task is RELATIVE. Because
of this only the normalized (relative) paths of the Java source files are considered as inputs to the
JavaCompile task.

NOTE
The Java compiler only respects the package declaration in the Java source files, not
the relative path of the sources. As a consequence, path sensitivity for Java sources
is NAME_ONLY and not RELATIVE.

Content normalization

incremental_build.pdf#sec:configure_input_normalization
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/PathSensitive.html

Compile avoidance for Java

When it comes to the dependencies of a JavaCompile task (i.e. its compile classpath), only changes to
the Application Binary Interface (ABI) of these dependencies require compilation to be executed.
Gradle has a deep understanding of what a compile classpath is and uses a sophisticated
normalization strategy for it. Task outputs can be re-used as long as the ABI of the classes on the
compile classpath stays the same. This enables Gradle to avoid Java compilation by using
incremental builds, or load results from the cache that were produced by different (but ABI-
compatible) versions of dependencies. For more information on compile avoidance see the
corresponding section.

Runtime classpath normalization

Similar to compile avoidance, Gradle also understands the concept of a runtime classpath, and uses
tailored input normalization to avoid running e.g. tests. For runtime classpaths Gradle inspects the
contents of jar files and ignores the timestamps and order of the entries in the jar file. This means
that a rebuilt jar file would be considered the same runtime classpath input. For details on what
level of understanding Gradle has for detecting changes to classpaths and what is considered as a
classpath see this section.

Filtering runtime classpaths

For a runtime classpath it is possible to provide better insights to Gradle which files are essential to
the input by configuring input normalization.

Given that you want to add a file build-info.properties to all your produced jar files which
contains volatile information about the build, e.g. the timestamp when the build started or some ID
to identify the CI job that published the artifact. This file is only used for auditing purposes, and has
no effect on the outcome of running tests. Nonetheless, this file is part of the runtime classpath for
the test task. Since the file changes on every build invocation, tests cannot be cached effectively. To
fix this you can ignore build-info.properties on any runtime classpath by adding the following
configuration to the build script in the consuming project:

build.gradle.kts

normalization {
 runtimeClasspath {
 ignore("build-info.properties")
 }
}

build.gradle

normalization {
 runtimeClasspath {
 ignore 'build-info.properties'
 }

java_plugin.pdf#sec:java_compile_avoidance
incremental_build.pdf#sec:task_input_using_classpath_annotations
incremental_build.pdf#sec:configure_input_normalization

}

If adding such a file to your jar files is something you do for all of the projects in your build, and
you want to filter this file for all consumers, you may wrap the configurations described above in
an allprojects {} or subprojects {} block in the root build script.

The effect of this configuration would be that changes to build-info.properties would be ignored
for both up-to-date checks and task output caching. All runtime classpath inputs for all tasks in the
project where this configuration has been made will be affected. This will not change the runtime
behavior of the test task — i.e. any test is still able to load build-info.properties, and the runtime
classpath stays the same as before.

The case against overlapping outputs

When two tasks write to the same output directory or output file, it is difficult for Gradle to
determine which output belongs to which task. There are many edge cases, and executing the tasks
in parallel cannot be done safely. For the same reason, Gradle cannot remove stale output files for
these tasks. Tasks that have discrete, non-overlapping outputs can always be handled in a safe
fashion by Gradle. For the aforementioned reasons, task output caching is automatically disabled
for tasks whose output directories overlap with another task.

Build scans show tasks where caching was disabled due to overlapping outputs in the timeline:

Reuse of outputs between different tasks

Some builds exhibit a surprising characteristic: even when executed against an empty cache, they
produce tasks loaded from cache. How is this possible? Rest assured that this is completely normal.

incremental_build.pdf#sec:stale_task_outputs

When considering task outputs, Gradle only cares about the inputs to the task: the task type itself,
input files and parameters etc., but it doesn’t care about the task’s name or which project it can be
found in. Running javac will produce the same output regardless of the name of the JavaCompile
task that invoked it. If your build includes two tasks that share every input, the one executing later
will be able to reuse the output produced by the first.

Having two tasks in the same build that do the same might sound like a problem to fix, but it is not
necessarily something bad. For example, the Android plugin creates several tasks for each variant
of the project; some of those tasks will potentially do the same thing. These tasks can safely reuse
each other’s outputs.

As discussed previously, you can use Develocity to diagnose the source build of these unexpected
cache-hits.

Non-cacheable tasks

You’ve seen quite a bit about cacheable tasks, which implies there are non-cacheable ones, too. If
caching task outputs is as awesome as it sounds, why not cache every task?

There are tasks that are definitely worth caching: tasks that do complex, repeatable processing and
produce moderate amounts of output. Compilation tasks are usually ideal candidates for caching.
At the other end of the spectrum lie I/O-heavy tasks, like Copy and Sync. Moving files around locally
typically cannot be sped up by copying them from a cache. Caching those tasks would even waste
good resources by storing all those redundant results in the cache.

Most tasks are either obviously worth caching, or obviously not. For those in-between a good rule of
thumb is to see if downloading results would be significantly faster than producing them locally.

Caching Java projects
As of Gradle 4.0, the build tool fully supports caching plain Java projects. Built-in tasks for
compiling, testing, documenting and checking the quality of Java code support the build cache out
of the box.

Java compilation

Caching Java compilation makes use of Gradle’s deep understanding of compile classpaths. The
mechanism avoids recompilation when dependencies change in a way that doesn’t affect their
application binary interfaces (ABI). Since the cache key is only influenced by the ABI of
dependencies (and not by their implementation details like private types and method bodies), task
output caching can also reuse compiled classes if they were produced by the same sources and ABI-
equivalent dependencies.

For example, take a project with two modules: an application depending on a library. Suppose the
latest version is already built by CI and uploaded to the shared cache. If a developer now modifies a
method’s body in the library, the library will need to be rebuilt on their computer. But they will be
able to load the compiled classes for the application from the shared cache. Gradle can do this
because the library used to compile the application on CI, and the modified library available locally
share the same ABI.

Annotation processors

Compile avoidance works out of the box. There is one caveat though: when using annotation
processors, Gradle uses the annotation processor classpath as an input. Unlike most compile
dependencies, in which only the ABI influences compilation, the implementation of annotation
processors must be considered as an input to the compiler. For this reason Gradle will treat
annotation processors as a runtime classpath, meaning less input normalization is taking place
there. If Gradle detects an annotation processor on the compile classpath, the annotation processor
classpath defaults to the compile classpath when not explicitly set, which in turn means the entire
compile classpath is treated as a runtime classpath input.

For the example above this would mean the ABI extracted from the compile classpath would be
unchanged, but the annotation processor classpath (because it’s not treated with compile
avoidance) would be different. Ultimately, the developer would end up having to recompile the
application.

The easiest way to avoid this performance penalty is to not use annotation processors. However, if
you need to use them, make sure you set the annotation processor classpath explicitly to include
only the libraries needed for annotation processing. The section on Java compile avoidance
describes how to do this.

NOTE

Some common Java dependencies (such as Log4j 2.x) come bundled with annotation
processors. If you use these dependencies, but do not leverage the features of the
bundled annotation processors, it’s best to disable annotation processing entirely.
This can be done by setting the annotation processor classpath to an empty set.

Unit test execution

The Test task used for test execution for JVM languages employs runtime classpath normalization
for its classpath. This means that changes to order and timestamps in jars on the test classpath will
not cause the task to be out-of-date or change the build cache key. For achieving stable task inputs
you can also wield the power of filtering the runtime classpath.

Integration test execution

Unit tests are easy to cache as they normally have no external dependencies. For integration tests
the situation can be quite different, as they can depend on a variety of inputs outside of the test and
production code. These external factors can be for example:

• operating system type and version,

• external tools being installed for the tests,

• environment variables and Java system properties,

• other services being up and running,

• a distribution of the software under test.

You need to be careful to declare these additional inputs for your integration test in order to avoid
incorrect cache hits. For example, declaring the operating system in use by Gradle as an input to a

java_plugin.pdf#sec:java_compile_avoidance

Test task called integTest would work as follows:

build.gradle.kts

tasks.integTest {
 inputs.property("operatingSystem") {
 System.getProperty("os.name")
 }
}

build.gradle

tasks.named('integTest') {
 inputs.property("operatingSystem") {
 System.getProperty("os.name")
 }
}

Archives as inputs

It is common for the integration tests to depend on your packaged application. If this happens to be
a zip or tar archive, then adding it as an input to the integration test task may lead to cache misses.
This is because, as described in repeatable task outputs, rebuilding an archive often changes the
metadata in the archive. You can depend on the exploded contents of the archive instead. See also
the section on dealing with non-repeatable outputs.

Dealing with file paths

You will probably pass some information from the build environment to your integration test tasks
by using system properties. Passing absolute paths will break relocatability of the integration test
task.

build.gradle.kts

// Don't do this! Breaks relocatability!
tasks.integTest {
 systemProperty("distribution.location",
layout.buildDirectory.dir("dist").get().asFile.absolutePath)
}

build.gradle

// Don't do this! Breaks relocatability!
tasks.named('integTest') {
 systemProperty "distribution.location", layout.buildDirectory.dir('dist'
).get().asFile.absolutePath
}

Instead of adding the absolute path directly as a system property, it is possible to add an annotated
CommandLineArgumentProvider to the integTest task:

build.gradle.kts

abstract class DistributionLocationProvider : CommandLineArgumentProvider {
①
 @get:InputDirectory
 @get:PathSensitive(PathSensitivity.RELATIVE) ②
 abstract val distribution: DirectoryProperty

 override fun asArguments(): Iterable<String> =
 listOf("-
Ddistribution.location=${distribution.get().asFile.absolutePath}") ③
}

tasks.integTest {
 jvmArgumentProviders.add(
 objects.newInstance<DistributionLocationProvider>().apply { ④
 distribution = layout.buildDirectory.dir("dist")
 }
)
}

build.gradle

abstract class DistributionLocationProvider implements
CommandLineArgumentProvider { ①
 @InputDirectory
 @PathSensitive(PathSensitivity.RELATIVE) ②
 abstract DirectoryProperty getDistribution()

 @Override
 Iterable<String> asArguments() {
 ["-Ddistribution.location=${distribution.get().asFile.absolutePath}"]
③

https://docs.gradle.org/8.12/javadoc/org/gradle/process/CommandLineArgumentProvider.html

 }
}

tasks.named('integTest') {
 jvmArgumentProviders.add(
 objects.newInstance(DistributionLocationProvider).tap { ④
 distribution = layout.buildDirectory.dir('dist')
 }
)
}

① Create a class implementing CommandLineArgumentProvider.

② Declare the inputs and outputs with the corresponding path sensitivity.

③ asArguments needs to return the JVM arguments passing the desired system properties to the test
JVM.

④ Add an instance of the newly created class as JVM argument provider to the integration test
task.[1]

Ignoring system properties

It may be necessary to ignore some system properties as inputs as they do not influence the
outcome of the integration tests. In order to do so, add a CommandLineArgumentProvider to the
integTest task:

build.gradle.kts

abstract class CiEnvironmentProvider : CommandLineArgumentProvider {
 @get:Internal ①
 abstract val agentNumber: Property<String>

 override fun asArguments(): Iterable<String> =
 listOf("-DagentNumber=${agentNumber.get()}") ②
}

tasks.integTest {
 jvmArgumentProviders.add(
 objects.newInstance<CiEnvironmentProvider>().apply { ③
 agentNumber =
providers.environmentVariable("AGENT_NUMBER").orElse("1")
 }
)
}

https://docs.gradle.org/8.12/javadoc/org/gradle/process/CommandLineArgumentProvider.html
https://docs.gradle.org/8.12/javadoc/org/gradle/process/CommandLineArgumentProvider.html

build.gradle

abstract class CiEnvironmentProvider implements CommandLineArgumentProvider {
 @Internal ①
 abstract Property<String> getAgentNumber()

 @Override
 Iterable<String> asArguments() {
 ["-DagentNumber=${agentNumber.get()}"] ②
 }
}

tasks.named('integTest') {
 jvmArgumentProviders.add(
 objects.newInstance(CiEnvironmentProvider).tap { ③
 agentNumber = providers.environmentVariable("AGENT_NUMBER")
.orElse("1")
 }
)
}

① @Internal means that this property does not influence the output of the integration tests.

② The system properties for the actual test execution.

③ Add an instance of the newly created class as JVM argument provider to the integration test
task.[1]

Caching Android projects
While it is true that Android uses the Java toolchain as its foundation, there are nevertheless some
significant differences from pure Java projects; these differences impact task cacheability. This is
even more true for Android projects that include Kotlin source code (and therefore use the kotlin-
android plugin).

Disambiguation

This guide is about Gradle’s build cache, but you may have also heard about the Android build
cache. These are different things. The Android cache is internal to certain tasks in the Android
plugin, and will eventually be removed in favor of native Gradle support.

Why use the build cache?

The build cache can significantly improve build performance for Android projects, in many cases by
30-40%. Many of the compilation and assembly tasks provided by the Android Gradle Plugin are
cacheable, and more are made so with each new iteration.

Faster CI builds

CI builds benefit particularly from the build cache. A typical CI build starts with a clean, which
means that pre-existing build outputs are deleted and none of the tasks that make up the build will
be UP-TO-DATE. However, it is likely that many of those tasks will have been run with exactly the
same inputs in a prior CI build, populating the build cache; the outputs from those prior runs can
safely be reused, resulting in dramatic build performance improvements.

Reusing CI builds for local development

When you sign into work at the start of your day, it’s not unusual for your first task to be pulling the
main branch and then running a build (Android Studio will probably do the latter, whether you ask
it to or not). Assuming all merges to main are built on CI (a best practice!), you can expect this first
local build of the day to enjoy a larger-than-typical benefit with Gradle’s remote cache. CI already
built this commit — why should you re-do that work?

Switching branches

During local development, it is not uncommon to switch branches several times per day. This
defeats incremental build (i.e., UP-TO-DATE checks), but this issue is mitigated via the use of the local
build cache. You might run a build on Branch A, which will populate the local cache. You then
switch to Branch B to conduct a code review, help a colleague, or address feedback on an open PR.
You then switch back to Branch A to continue your original work. When you next build, all of the
outputs previously built while working on Branch A can be reused from the cache, saving
potentially a lot of time.

The Android Gradle Plugin

Android Studio users should use the latest Android Gradle Plugin to ensure compatibility and
benefit from performance improvements in new releases.

The first thing you should always do when working to optimize your build is ensure you’re on the
latest stable, supported versions of the Android Gradle Plugin and the Gradle Build Tool. At the time
of writing, they are 3.3.0 and 5.0, respectively. Each new version of these tools includes many
performance improvements, not least of which is to the build cache.

Java and Kotlin compilation

The discussion above in “Caching Java projects” is equally relevant here, with the caveat that, for
projects that include Kotlin source code, the Kotlin compiler does not currently support compile
avoidance in the way that the Java compiler does.

Annotation processors and Kotlin

The advice above for pure Java projects also applies to Android projects. However, if you are using
annotation processors (such as Dagger2 or Butterknife) in conjunction with Kotlin and the kotlin-
kapt plugin, you should know that before Kotlin 1.3.30 kapt was not cached by default.

You can opt into it (which is recommended) by adding the following to build scripts:

incremental_build.pdf#incremental_build
java_plugin.pdf#sec:java_compile_avoidance
java_plugin.pdf#sec:java_compile_avoidance
https://youtrack.jetbrains.com/issue/KT-27675
https://blog.jetbrains.com/kotlin/2018/01/kotlin-1-2-20-is-out/

build.gradle.kts

pluginManager.withPlugin("kotlin-kapt") {
 configure<KaptExtension> { useBuildCache = true }
}

build.gradle

plugins.withId("kotlin-kapt") {
 kapt.useBuildCache = true
}

Unit test execution

Like unit tests in a pure Java project, the equivalent test task in an Android project (
AndroidUnitTest) is also cacheable since Android Gradle Plugin 3.6.0.

Instrumented test execution (i.e., Espresso tests)

Android instrumented tests (DeviceProviderInstrumentTestTask), often referred to as “Espresso”
tests, are also not cacheable. The Google Android team is also working to make such tests cacheable.
Please see this issue.

Lint

Users of Android’s Lint task are well aware of the heavy performance penalty they pay for using it,
but also know that it is indispensable for finding common issues in Android projects. Currently, this
task is not cacheable. This task is planned to be cacheable with the release of Android Gradle Plugin
3.5. This is another reason to always use the latest version of the Android plugin!

The Fabric Plugin and Crashlytics

The Fabric plugin, which is used to integrate the Crashlytics crash-reporting tool (among others), is
very popular, yet imposes some hefty performance penalties during the build process. This is due to
the need for each version of your app to have a unique identifier so that it can be identified in the
Crashlytics dashboard. In practice, the default behavior of Crashlytics is to treat “each version” as
synonymous with “each build”. This defeats incremental build, because each build will be unique. It
also breaks the cacheability of certain tasks in the build, and for the same reason. This can be fixed
by simply disabling Crashlytics in “debug” builds. You may find instructions for that in the
Crashlytics documentation.

NOTE
The fix described in the referenced documentation does not work directly if you are
using the Kotlin DSL; see below for the workaround.

https://issuetracker.google.com/issues/115873051
https://docs.fabric.io/android/fabric/overview.html
incremental_build.pdf#incremental_build
https://docs.fabric.io/android/crashlytics/build-tools.html

Kotlin DSL

The fix described in the referenced documentation does not work directly if you are using the
Kotlin DSL; this is due to incompatibilities between that Kotlin DSL and the Fabric plugin. There is a
simple workaround for this, based on this advice from the Kotlin DSL primer.

Create a file, fabric.gradle, in the module where you apply the io.fabric plugin. This file (known as
a script plugin), should have the following contents:

fabric.gradle

plugins.withId("com.android.application") { // or "com.android.library"
 android.buildTypes.debug.ext.enableCrashlytics = false
}

And then, in the module’s build.gradle.kts file, apply this script plugin:

build.gradle.kts

apply(from = "fabric.gradle")

Debugging and diagnosing cache misses
To make the most of task output caching, it is important that any necessary inputs to your tasks are
specified correctly, while at the same time avoiding unneeded inputs. Failing to specify an input
that affects the task’s outputs can result in incorrect builds, while needlessly specifying inputs that
do not affect the task’s output can cause cache misses.

This chapter is about finding out why a cache miss happened. If you have a cache hit which you
didn’t expect we suggest to declare whatever change you expected to trigger the cache miss as an
input to the task.

Finding problems with task output caching

Below we describe a step-by-step process that should help shake out any problems with caching in
your build.

Ensure incremental build works

First, make sure your build does the right thing without the cache. Run a build twice without
enabling the Gradle build cache. The expected outcome is that all actionable tasks that produce file
outputs are up-to-date. You should see something like this on the command-line:

$./gradlew clean --quiet ①
$./gradlew assemble ②

BUILD SUCCESSFUL
4 actionable tasks: 4 executed

$./gradlew assemble ③

BUILD SUCCESSFUL
4 actionable tasks: 4 up-to-date

① Make sure we start without any leftover results by running clean first.

② We are assuming your build is represented by running the assemble task in these examples, but
you can substitute whatever tasks make sense for your build.

③ Run the build again without running clean.

NOTE
Tasks that have no outputs or no inputs will always be executed, but that shouldn’t
be a problem.

Use the methods as described below to diagnose and fix tasks that should be up-to-date but aren’t. If
you find a task which is out of date, but no cacheable tasks depends on its outcome, then you don’t
have to do anything about it. The goal is to achieve stable task inputs for cacheable tasks.

In-place caching with the local cache

When you are happy with the up-to-date performance then you can repeat the experiment above,
but this time with a clean build, and the build cache turned on. The goal with clean builds and the
build cache turned on is to retrieve all cacheable tasks from the cache.

WARNING
When running this test make sure that you have no remote cache configured,
and storing in the local cache is enabled. These are the default settings.

This would look something like this on the command-line:

$ rm -rf ~/.gradle/caches/build-cache-1 ①
$./gradlew clean --quiet ②
$./gradlew assemble --build-cache ③

BUILD SUCCESSFUL
4 actionable tasks: 4 executed

$./gradlew clean --quiet ④
$./gradlew assemble --build-cache ⑤

BUILD SUCCESSFUL
4 actionable tasks: 1 executed, 3 from cache

① We want to start with an empty local cache.

② Clean the project to remove any unwanted leftovers from previous builds.

③ Build it once to let it populate the cache.

④ Clean the project again.

⑤ Build it again: this time everything cacheable should load from the just populated cache.

You should see all cacheable tasks loaded from cache, while non-cacheable tasks should be
executed.

Again, use the below methods to diagnose and fix cacheability issues.

Testing cache relocatability

Once everything loads properly while building the same checkout with the local cache enabled, it’s
time to see if there are any relocation problems. A task is considered relocatable if its output can be
reused when the task is executed in a different location. (More on this in path sensitivity and
relocatability.)

NOTE
Tasks that should be relocatable but aren’t are usually a result of absolute paths
being present among the task’s inputs.

To discover these problems, first check out the same commit of your project in two different
directories on your machine. For the following example let’s assume we have a checkout in
\~/checkout-1 and \~/checkout-2.

WARNING
Like with the previous test, you should have no remote cache configured, and
storing in the local cache should be enabled.

$ rm -rf ~/.gradle/caches/build-cache-1 ①
$ cd ~/checkout-1 ②
$./gradlew clean --quiet ③
$./gradlew assemble --build-cache ④

BUILD SUCCESSFUL
4 actionable tasks: 4 executed

$ cd ~/checkout-2 ⑤
$./gradlew clean --quiet ⑥
$./gradlew clean assemble --build-cache ⑦

BUILD SUCCESSFUL
4 actionable tasks: 1 executed, 3 from cache

① Remove all entries in the local cache first.

② Go to the first checkout directory.

③ Clean the project to remove any unwanted leftovers from previous builds.

④ Run a build to populate the cache.

⑤ Go to the other checkout directory.

⑥ Clean the project again.

⑦ Run a build again.

You should see the exact same results as you saw with the previous in place caching test step.

Cross-platform tests

If your build passes the relocation test, it is in good shape already. If your build requires support for
multiple platforms, it is best to see if the required tasks get reused between platforms, too. A typical
example of cross-platform builds is when CI runs on Linux VMs, while developers use macOS or
Windows, or a different variety or version of Linux.

To test cross-platform cache reuse, set up a remote cache (see share results between CI builds) and
populate it from one platform and consume it from the other.

Incremental cache usage

After these experiments with fully cached builds, you can go on and try to make typical changes to
your project and see if enough tasks are still cached. If the results are not satisfactory, you can think
about restructuring your project to reduce dependencies between different tasks.

Evaluating cache performance over time

Consider recording execution times of your builds, generating graphs, and analyzing the results.
Keep an eye out for certain patterns, like a build recompiling everything even though you expected
compilation to be cached.

You can also make changes to your code base manually or automatically and check that the
expected set of tasks is cached.

If you have tasks that are re-executing instead of loading their outputs from the cache, then it may
point to a problem in your build. Techniques for debugging a cache miss are explained in the
following section.

Helpful data for diagnosing a cache miss

A cache miss happens when Gradle calculates a build cache key for a task which is different from
any existing build cache key in the cache. Only comparing the build cache key on its own does not
give much information, so we need to look at some finer grained data to be able to diagnose the
cache miss. A list of all inputs to the computed build cache key can be found in the section on
cacheable tasks.

From most coarse grained to most fine grained, the items we will use to compare two tasks are:

• Build cache keys

• Task and Task action implementations

◦ classloader hash

◦ class name

• Task output property names

• Individual task property input hashes

• Hashes of files which are part of task input properties

If you want information about the build cache key and individual input property hashes, use
-Dorg.gradle.caching.debug=true:

$./gradlew :compileJava --build-cache -Dorg.gradle.caching.debug=true

.

.

.
Appending implementation to build cache key:
org.gradle.api.tasks.compile.JavaCompile_Decorated@470c67ec713775576db4e818e7a4c75d
Appending additional implementation to build cache key:
org.gradle.api.tasks.compile.JavaCompile_Decorated@470c67ec713775576db4e818e7a4c75d
Appending input value fingerprint for 'options' to build cache key:
e4eaee32137a6a587e57eea660d7f85d
Appending input value fingerprint for 'options.compilerArgs' to build cache key:
8222d82255460164427051d7537fa305
Appending input value fingerprint for 'options.debug' to build cache key:
f6d7ed39fe24031e22d54f3fe65b901c
Appending input value fingerprint for 'options.debugOptions' to build cache key:
a91a8430ae47b11a17f6318b53f5ce9c
Appending input value fingerprint for 'options.debugOptions.debugLevel' to build cache
key: f6bd6b3389b872033d462029172c8612
Appending input value fingerprint for 'options.encoding' to build cache key:
f6bd6b3389b872033d462029172c8612
.
.
.
Appending input file fingerprints for 'options.sourcepath' to build cache key:
5fd1e7396e8de4cb5c23dc6aadd7787a - RELATIVE_PATH{EMPTY}
Appending input file fingerprints for 'stableSources' to build cache key:

f305ada95aeae858c233f46fc1ec4d01 - RELATIVE_PATH{.../src/main/java=IGNORED / DIR,
.../src/main/java/Hello.java='Hello.java' / 9c306ba203d618dfbe1be83354ec211d}
Appending output property name to build cache key: destinationDir
Appending output property name to build cache key:
options.annotationProcessorGeneratedSourcesDirectory
Build cache key for task ':compileJava' is 8ebf682168823f662b9be34d27afdf77

The log shows e.g. which source files constitute the stableSources for the compileJava task. To find
the actual differences between two builds you need to resort to matching up and comparing those
hashes yourself.

TIP
Develocity already takes care of this for you; it lets you quickly diagnose a cache miss
with the Build Scan™ Comparison tool.

Diagnosing the reasons for a cache miss

Having the data from the last section at hand, you should be able to diagnose why the outputs of a
certain task were not found in the build cache. Since you were expecting more tasks to be cached,
you should be able to pinpoint a build which would have produced the artifact under question.

Before diving into how to find out why one task has not been loaded from the cache we should first
look into which task caused the cache misses. There is a cascade effect which causes dependent
tasks to be executed if one of the tasks earlier in the build is not loaded from the cache and has
different outputs. Therefore, you should locate the first cacheable task which was executed and
continue investigating from there. This can be done from the timeline view in a Build Scan™:

At first, you should check if the implementation of the task changed. This would mean checking the
class names and classloader hashes for the task class itself and for each of its actions. If there is a
change, this means that the build script, buildSrc or the Gradle version has changed.

https://docs.gradle.com/enterprise/tutorials/task-inputs-comparison/

NOTE
A change in the output of buildSrc also marks all the logic added by your build as
changed. Especially, custom actions added to cacheable tasks will be marked as
changed. This can be problematic, see section about doFirst and doLast.

If the implementation is the same, then you need to start comparing inputs between the two builds.
There should be at least one different input hash. If it is a simple value property, then the
configuration of the task changed. This can happen for example by

• changing the build script,

• conditionally configuring the task differently for CI or the developer builds,

• depending on a system property or an environment variable for the task configuration,

• or having an absolute path which is part of the input.

If the changed property is a file property, then the reasons can be the same as for the change of a
value property. Most probably though a file on the filesystem changed in a way that Gradle detects
a difference for this input. The most common case will be that the source code was changed by a
check in. It is also possible that a file generated by a task changed, e.g. since it includes a timestamp.
As described in Java version tracking, the Java version can also influence the output of the Java
compiler. If you did not expect the file to be an input to the task, then it is possible that you should
alter the configuration of the task to not include it. For example, having your integration test
configuration including all the unit test classes as a dependency has the effect that all integration
tests are re-executed when a unit test changes. Another option is that the task tracks absolute paths
instead of relative paths and the location of the project directory changed on disk.

Example

We will walk you through the process of diagnosing a cache miss. Let’s say we have build A and
build B and we expected all the test tasks for a sub-project sub1 to be cached in build B since only a
unit test for another sub-project sub2 changed. Instead, all the tests for the sub-project have been
executed. Since we have the cascading effect when we have cache misses, we need to find the task
which caused the caching chain to fail. This can easily be done by filtering for all cacheable tasks
which have been executed and then select the first one. In our case, it turns out that the tests for the
sub-project internal-testing were executed even though there was no code change to this project.
This means that the property classpath changed and some file on the runtime classpath actually did
change. Looking deeper into this, we actually see that the inputs for the task processResources
changed in that project, too. Finally, we find this in our build file:

build.gradle.kts

val currentVersionInfo =
tasks.register<CurrentVersionInfo>("currentVersionInfo") {
 version = project.version as String
 versionInfoFile = layout.buildDirectory.file("generated-
resources/currentVersion.properties")
}

sourceSets.main.get().output.dir(currentVersionInfo.map {
it.versionInfoFile.get().asFile.parentFile })

abstract class CurrentVersionInfo : DefaultTask() {
 @get:Input
 abstract val version: Property<String>

 @get:OutputFile
 abstract val versionInfoFile: RegularFileProperty

 @TaskAction
 fun writeVersionInfo() {
 val properties = Properties()
 properties.setProperty("latestMilestone", version.get())
 versionInfoFile.get().asFile.outputStream().use { out ->
 properties.store(out, null)
 }
 }
}

build.gradle

def currentVersionInfo = tasks.register('currentVersionInfo',
CurrentVersionInfo) {
 version = project.version
 versionInfoFile = layout.buildDirectory.file('generated-
resources/currentVersion.properties')
}

sourceSets.main.output.dir(currentVersionInfo.map { it.versionInfoFile.get()
.asFile.parentFile })

abstract class CurrentVersionInfo extends DefaultTask {
 @Input
 abstract Property<String> getVersion()

 @OutputFile
 abstract RegularFileProperty getVersionInfoFile()

 @TaskAction
 void writeVersionInfo() {
 def properties = new Properties()
 properties.setProperty('latestMilestone', version.get())
 versionInfoFile.get().asFile.withOutputStream { out ->
 properties.store(out, null)
 }
 }
}

Since properties files stored by Java’s Properties.store method contain a timestamp, this will cause
a change to the runtime classpath every time the build runs. In order to solve this problem see non-
repeatable task outputs or use input normalization.

NOTE
The compile classpath is not affected since compile avoidance ignores non-class
files on the classpath.

Solving common problems
Small problems in a build, like forgetting to declare a configuration file as an input to your task, can
be easily overlooked. The configuration file might change infrequently, or only change when some
other (correctly tracked) input changes as well. The worst that could happen is that your task
doesn’t execute when it should. Developers can always re-run the build with clean, and "fix" their
builds for the price of a slow rebuild. In the end nobody gets blocked in their work, and the incident
is chalked up to "Gradle acting up again."

With cacheable tasks incorrect results are stored permanently, and can come back to haunt you
later; re-running with clean won’t help in this situation either. When using a shared cache, these
problems even cross machine boundaries. In the example above, Gradle might end up loading a
result for your task that was produced with a different configuration. Resolving these problems
with the build therefore becomes even more important when task output caching is enabled.

Other issues with the build won’t cause it to produce incorrect results, but will lead to unnecessary
cache misses. In this chapter you will learn about some typical problems and ways to avoid them.
Fixing these issues will have the added benefit that your build will stop "acting up," and developers
can forget about running builds with clean altogether.

System file encoding

Most Java tools use the system file encoding when no specific encoding is specified. This means that
running the same build on machines with different file encoding can yield different outputs.
Currently Gradle only tracks on a per-task basis that no file encoding has been specified, but it does
not track the system encoding of the JVM in use. This can cause incorrect builds. You should always
set the file system encoding to avoid these kind of problems.

NOTE
Build scripts are compiled with the file encoding of the Gradle daemon. By default,
the daemon uses the system file encoding, too.

Setting the file encoding for the Gradle daemon mitigates both above problems by making sure that
the encoding is the same across builds. You can do so in your gradle.properties:

gradle.properties

org.gradle.jvmargs=-Dfile.encoding=UTF-8

Environment variable tracking

Gradle does not track changes in environment variables for tasks. For example for Test tasks it is
completely possible that the outcome depends on a few environment variables. To ensure that only
the right artifacts are re-used between builds, you need to add environment variables as inputs to
tasks depending on them.

Absolute paths are often passed as environment variables, too. You need to pay attention what you
add as an input to the task in this case. You would need to ensure that the absolute path is the same
between machines. Most times it makes sense to track the file or the contents of the directory the
absolute path points to. If the absolute path represents a tool being used it probably makes sense to
track the tool version as an input instead.

For example, if you are using tools in your Test task called integTest which depend on the contents
of the LANG variable you should do this:

build.gradle.kts

tasks.integTest {
 inputs.property("langEnvironment") {
 System.getenv("LANG")
 }
}

build.gradle

tasks.named('integTest') {
 inputs.property("langEnvironment") {
 System.getenv("LANG")
 }
}

If you add conditional logic to distinguish CI builds from local development builds, you have to
ensure that this does not break the loading of task outputs from CI onto developer machines. For
example, the following setup would break caching of Test tasks, since Gradle always detects the
differences in custom task actions.

build.gradle.kts

if ("CI" in System.getenv()) {
 tasks.withType<Test>().configureEach {
 doFirst {
 println("Running test on CI")

 }
 }
}

build.gradle

if (System.getenv().containsKey("CI")) {
 tasks.withType(Test).configureEach {
 doFirst {
 println "Running test on CI"
 }
 }
}

You should always add the action unconditionally:

build.gradle.kts

tasks.withType<Test>().configureEach {
 doFirst {
 if ("CI" in System.getenv()) {
 println("Running test on CI")
 }
 }
}

build.gradle

tasks.withType(Test).configureEach {
 doFirst {
 if (System.getenv().containsKey("CI")) {
 println "Running test on CI"
 }
 }
}

This way, the task has the same custom action on CI and on developer builds and its outputs can be
re-used if the remaining inputs are the same.

Line endings

If you are building on different operating systems be aware that some version control systems
convert line endings on check-out. For example, Git on Windows uses autocrlf=true by default
which converts all line endings to \r\n. As a consequence, compilation outputs can’t be re-used on
Windows since the input sources are different. If sharing the build cache across multiple operating
systems is important in your environment, then setting autocrlf=false across your build machines
is crucial for optimal build cache usage.

Symbolic links

When using symbolic links, Gradle does not store the link in the build cache but the actual file
contents of the destination of the link. As a consequence you might have a hard time when trying to
reuse outputs which heavily use symbolic links. There currently is no workaround for this
behavior.

For operating systems supporting symbolic links, the content of the destination of the symbolic link
will be added as an input. If the operating system does not support symbolic links, the actual
symbolic link file is added as an input. Therefore, tasks which have symbolic links as input files, e.g.
Test tasks having symbolic link as part of its runtime classpath, will not be cached between
Windows and Linux. If caching between operating systems is desired, symbolic links should not be
checked into version control.

Java version tracking

Gradle tracks only the major version of Java as an input for compilation and test execution.
Currently, it does not track the vendor nor the minor version. Still, the vendor and the minor
version may influence the bytecode produced by compilation.

NOTE
If you’re using Java Toolchains, the Java major version, the vendor (if specified) and
implementation (if specified) will be tracked automatically as an input for
compilation and test execution.

If you use different JVM vendors for compiling or running Java we strongly suggest that you add
the vendor as an input to the corresponding tasks. This can be achieved by using the runtime API as
shown in the following snippet.

build.gradle.kts

tasks.withType<AbstractCompile>().configureEach {
 inputs.property("java.vendor") {
 System.getProperty("java.vendor")
 }
}

tasks.withType<Test>().configureEach {
 inputs.property("java.vendor") {
 System.getProperty("java.vendor")

incremental_build.pdf#sec:task_input_output_runtime_api

 }
}

build.gradle

tasks.withType(AbstractCompile).configureEach {
 inputs.property("java.vendor") {
 System.getProperty("java.vendor")
 }
}

tasks.withType(Test).configureEach {
 inputs.property("java.vendor") {
 System.getProperty("java.vendor")
 }
}

With respect to tracking the Java minor version there are different competing aspects: developers
having cache hits and "perfect" results on CI. There are basically two situations when you may want
to track the minor version of Java: for compilation and for runtime. In the case of compilation,
there can sometimes be differences in the produced bytecode for different minor versions.
However, the bytecode should still result in the same runtime behavior.

NOTE Java compile avoidance will treat this bytecode the same since it extracts the ABI.

Treating the minor number as an input can decrease the likelihood of a cache hit for developer
builds. Depending on how standard development environments are across your team, it’s common
for many different Java minor version to be in use.

Even without tracking the Java minor version you may have cache misses for developers due to
some locally compiled class files which constitute an input to test execution. If these outputs made
it into the local build cache on this developers machine even a clean will not solve the situation.
Therefore, the choice for tracking the Java minor version is between sometimes or never re-using
outputs between different Java minor versions for test execution.

NOTE

The compiler infrastructure provided by the JVM used to run Gradle is also used by
the Groovy compiler. Therefore, you can expect differences in the bytecode of
compiled Groovy classes for the same reasons as above and the same suggestions
apply.

Avoid changing inputs external to your build

If your build is dependent on external dependencies like binary artifacts or dynamic data from a
web page you need to make sure that these inputs are consistent throughout your infrastructure.
Any variations across machines will result in cache misses.

java_plugin.pdf#sec:java_compile_avoidance

Never re-release a non-changing binary dependency with the same version number but different
contents: if this happens with a plugin dependency, you will never be able to explain why you don’t
see cache reuse between machines (it’s because they have different versions of that artifact).

Using SNAPSHOTs or other changing dependencies in your build by design violates the stable task
inputs principle. To use the build cache effectively, you should depend on fixed dependencies. You
may want to look into dependency locking or switch to using composite builds instead.

The same is true for depending on volatile external resources, for example a list of released
versions. One way of locking the changes would be to check the volatile resource into source
control whenever it changes so that the builds only depend on the state in source control and not
on the volatile resource itself.

Suggestions for authoring your build

Review usages of doFirst and doLast

Using doFirst and doLast from a build script on a cacheable task ties you to build script changes
since the implementation of the closure comes from the build script. If possible, you should use
separate tasks instead.

Modifying input or output properties via the runtime API in doFirst is discouraged since these
changes will not be detected for up-to-date checks and the build cache. Even worse, when the task
does not execute, then the configuration of the task is actually different from when it executes.
Instead of using doFirst for modifying the inputs consider using a separate task to configure the
task under question - a so called configure task. E.g., instead of doing

build.gradle.kts

tasks.jar {
 val runtimeClasspath: FileCollection =
configurations.runtimeClasspath.get()
 doFirst {
 manifest {
 val classPath = runtimeClasspath.map { it.name }.joinToString("
")
 attributes("Class-Path" to classPath)
 }
 }
}

build.gradle

tasks.named('jar') {
 FileCollection runtimeClasspath = configurations.runtimeClasspath
 doFirst {

 manifest {
 def classPath = runtimeClasspath.collect { it.name }.join(" ")
 attributes('Class-Path': classPath)
 }
 }
}

do

build.gradle.kts

val configureJar = tasks.register("configureJar") {
 doLast {
 tasks.jar.get().manifest {
 val classPath = configurations.runtimeClasspath.get().map {
it.name }.joinToString(" ")
 attributes("Class-Path" to classPath)
 }
 }
}
tasks.jar { dependsOn(configureJar) }

build.gradle

def configureJar = tasks.register('configureJar') {
 doLast {
 tasks.jar.manifest {
 def classPath = configurations.runtimeClasspath.collect { it.name
}.join(" ")
 attributes('Class-Path': classPath)
 }
 }
}

tasks.named('jar') { dependsOn(configureJar) }

WARNING
Note that configuring a task from other task is not supported when using the
configuration cache.

Build logic based on the outcome of a task

Do not base build logic on whether a task has been executed. In particular you should not assume

that the output of a task can only change if it actually executed. Actually, loading the outputs from
the build cache would also change them. Instead of relying on custom logic to deal with changes to
input or output files you should leverage Gradle’s built-in support by declaring the correct inputs
and outputs for your tasks and leave it to Gradle to decide if the task actions should be executed.
For the very same reason using outputs.upToDateWhen is discouraged and should be replaced by
properly declaring the task’s inputs.

Overlapping outputs

You already saw that overlapping outputs are a problem for task output caching. When you add
new tasks to your build or re-configure built-in tasks make sure you do not create overlapping
outputs for cacheable tasks. If you must you can add a Sync task which then would sync the merged
outputs into the target directory while the original tasks remain cacheable.

Develocity will show tasks where caching was disabled for overlapping outputs in the timeline and
in the task input comparison:

Achieving stable task inputs

It is crucial to have stable task inputs for every cacheable task. In the following section you will
learn about different situations which violate stable task inputs and look at possible solutions.

Volatile task inputs

If you use a volatile input like a timestamp as an input property for a task, then there is nothing
Gradle can do to make the task cacheable. You should really think hard if the volatile data is really
essential to the output or if it is only there for e.g. auditing purposes.

If the volatile input is essential to the output then you can try to make the task using the volatile
input cheaper to execute. You can do this by splitting the task into two tasks - the first task doing the

expensive work which is cacheable and the second task adding the volatile data to the output. In
this way the output stays the same and the build cache can be used to avoid doing the expensive
work. For example, for building a jar file the expensive part - Java compilation - is already a
different task while the jar task itself, which is not cacheable, is cheap.

If it is not an essential part of the output, then you should not declare it as an input. As long as the
volatile input does not influence the output then there is nothing else to do. Most times though, the
input will be part of the output.

Non-repeatable task outputs

Having tasks which generate different outputs for the same inputs can pose a challenge for the
effective use of task output caching as seen in repeatable task outputs. If the non-repeatable task
output is not used by any other task then the effect is very limited. It basically means that loading
the task from the cache might produce a different result than executing the same task locally. If the
only difference between the outputs is a timestamp, then you can either accept the effect of the
build cache or decide that the task is not cacheable after all.

Non-repeatable task outputs lead to non-stable task inputs as soon as another task depends on the
non-repeatable output. For example, re-creating a jar file from the files with the same contents but
different modification times yields a different jar file. Any other task depending on this jar file as
an input file cannot be loaded from the cache when the jar file is rebuilt locally. This can lead to
hard-to-diagnose cache misses when the consuming build is not a clean build or when a cacheable
task depends on the output of a non-cacheable task. For example, when doing incremental builds it
is possible that the artifact on disk which is considered up-to-date and the artifact in the build cache
are different even though they are essentially the same. A task depending on this task output would
then not be able to load outputs from the build cache since the inputs are not exactly the same.

As described in the stable task inputs section, you can either make the task outputs repeatable or
use input normalization. You already learned about the possibilities with configurable input
normalization.

Gradle includes some support for creating repeatable output for archive tasks. For tar and zip files
Gradle can be configured to create reproducible archives. This is done by configuring e.g. the Zip
task via the following snippet.

build.gradle.kts

tasks.register<Zip>("createZip") {
 isPreserveFileTimestamps = false
 isReproducibleFileOrder = true
 // ...
}

build.gradle

tasks.register('createZip', Zip) {
 preserveFileTimestamps = false
 reproducibleFileOrder = true
 // ...
}

Another way to make the outputs repeatable is to activate caching for a task with non-repeatable
outputs. If you can make sure that the same build cache is used for all builds then the task will
always have the same outputs for the same inputs by design of the build cache. Going down this
road can lead to different problems with cache misses for incremental builds as described above.
Moreover, race conditions between different builds trying to store the same outputs in the build
cache in parallel can lead to hard-to-diagnose cache misses. If possible, you should avoid going
down that route.

Limit the effect of volatile data

If none of the described solutions for dealing with volatile data work for you, you should still be
able to limit the effect of volatile data on effective use of the build cache. This can be done by
adding the volatile data later to the outputs as described in the volatile task inputs section. Another
option would be to move the volatile data so it affects fewer tasks. For example moving the
dependency from the compile to the runtime configuration may already have quite an impact.

Sometimes it is also possible to build two artifacts, one containing the volatile data and another one
containing a constant representation of the volatile data. The non-volatile output would be used e.g.
for testing while the volatile one would be published to an external repository. While this conflicts
with the Continuous Delivery "build artifacts once" principle it can sometimes be the only option.

Custom and third party tasks

If your build contains custom or third party tasks, you should take special care that these don’t
influence the effectiveness of the build cache. Special care should also be taken for code generation
tasks which may not have repeatable task outputs. This can happen if the code generator includes
e.g. a timestamp in the generated files or depends on the order of the input files. Other pitfalls can
be the use of HashMaps or other data structures without order guarantees in the task’s code.

WARNING

Some third party plugins can even influence cacheability of Gradle’s built-in
tasks. This can happen if they add inputs like absolute paths or volatile data to
tasks via the runtime API. In the worst case this can lead to incorrect builds
when the plugins try to depend on the outcome of a task and do not take FROM-
CACHE into account.

[1] The CommandLineArgumentProvider in this example is implemented as a managed type.

DEPENDENCY MANAGEMENT

CORE CONCEPTS

1. Declaring dependencies
Declaring dependencies in Gradle involves specifying libraries or files that your project depends
on.

Understanding producers and consumers

In dependency management, it is essential to understand the distinction between producers and
consumers.

When you build a library, you are acting as a producer, creating artifacts that will be consumed by
others, the consumers.

When you depend on that library, you are acting as a consumer. Consumers can be broadly defined
as:

• Projects that depend on other projects.

• Configurations that declare dependencies on specific artifacts.

The decisions we make in dependency management often depend on the type of project we are
building, specifically, what kind of consumer we are.

Adding a dependency

To add a dependency in Gradle, you use the dependencies{} block in your build script.

The dependencies block allows you to specify various types of dependencies such as external
libraries, local JAR files, or other projects within a multi-project build.

External dependencies in Gradle are declared using a configuration name (e.g., implementation,
compileOnly, testImplementation) followed by the dependency notation, which includes the group ID
(group), artifact ID (name), and version.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/dsl/DependencyHandler.html

build.gradle

dependencies {
 // Configuration Name + Dependency Notation - GroupID : ArtifactID (Name) :
Version
 configuration('<group>:<name>:<version>')
}

Note:

1. Gradle automatically includes transitive dependencies, which are dependencies of your
dependencies.

2. Gradle offers several configuration options for dependencies, which define the scope in which
dependencies are used, such as compile-time, runtime, or test-specific scenarios.

3. You can specify the repositories where Gradle should look for dependencies in your build file.

Understanding types of dependencies

There are three kinds of dependencies, module dependencies, project dependencies, and file
dependencies.

1. Module dependencies

Module dependencies are the most common dependencies. They refer to a module in a repository:

build.gradle.kts

dependencies {
 implementation("org.codehaus.groovy:groovy:3.0.5")
 implementation("org.codehaus.groovy:groovy-json:3.0.5")
 implementation("org.codehaus.groovy:groovy-nio:3.0.5")
}

build.gradle

dependencies {
 implementation 'org.codehaus.groovy:groovy:3.0.5'
 implementation 'org.codehaus.groovy:groovy-json:3.0.5'
 implementation 'org.codehaus.groovy:groovy-nio:3.0.5'
}

2. Project dependencies

Project dependencies allow you to declare dependencies on other projects within the same build.
This is useful in multi-project builds where multiple projects are part of the same Gradle build.

Project dependencies are declared by referencing the project path:

build.gradle.kts

dependencies {
 implementation(project(":utils"))
 implementation(project(":api"))
}

build.gradle

dependencies {
 implementation project(':utils')
 implementation project(':api')
}

3. File dependencies

In some projects, you might not rely on binary repository products like JFrog Artifactory or
Sonatype Nexus for hosting and resolving external dependencies. Instead, you might host these
dependencies on a shared drive or to check them into version control alongside the project source
code.

These are known as file dependencies because they represent files without any metadata (such as
information about transitive dependencies, origin, or author) attached to them.

https://jfrog.com/artifactory/
https://www.sonatype.com/products/sonatype-nexus-repository
glossary.pdf#sub:terminology_module_metadata

To add files as dependencies for a configuration, you simply pass a file collection as a dependency:

build.gradle.kts

dependencies {
 runtimeOnly(files("libs/a.jar", "libs/b.jar"))
 runtimeOnly(fileTree("libs") { include("*.jar") })
}

build.gradle

dependencies {
 runtimeOnly files('libs/a.jar', 'libs/b.jar')
 runtimeOnly fileTree('libs') { include '*.jar' }
}

WARNING
It is recommended to use project dependencies or external dependencies over
file dependencies.

Looking at an example

Let’s imagine an example for a Java application which uses Guava, a set of core Java libraries from
Google:

https://github.com/google/guava

The Java app contains the following Java class:

InitializeCollection.java

package org.example;

import com.google.common.collect.ImmutableMap; // Comes from the Guava
library

public class InitializeCollection {
 public static void main(String[] args) {
 ImmutableMap<String, Integer> immutableMap
 = ImmutableMap.of("coin", 3, "glass", 4, "pencil", 1);
 }
}

To add the Guava library to your Gradle project as a dependency, you must add the following line to
your build file:

build.gradle.kts

dependencies {
 implementation("com.google.guava:guava:23.0")
}

build.gradle

dependencies {
 implementation 'com.google.guava:guava:23.0'
}

Where:

• implementation is the configuration.

https://mvnrepository.com/artifact/com.google.guava/guava

• com.google.guava:guava:23.0 specifies the group, name, and version of the library:

◦ com.google.guava is the group ID.

◦ guava is the artifact ID (i.e., name).

◦ 23.0 is the version.

Take a quick look at the Guava page in Maven Central as a reference.

Listing project dependencies

The dependencies task provides an overview of the dependencies of your project. It helps you
understand what dependencies are being used, how they are resolved, and their relationships,
including any transitive dependencies by rendering a dependency tree from the command line.

This task can be particularly useful for debugging dependency issues, such as version conflicts or
missing dependencies.

For example, let’s say our app project contains the follow lines in its build script:

build.gradle.kts

dependencies {
 implementation("com.google.guava:guava:30.0-jre")
 runtimeOnly("org.apache.commons:commons-lang3:3.14.0")
}

build.gradle

dependencies {
 implementation("com.google.guava:guava:30.0-jre")
 runtimeOnly("org.apache.commons:commons-lang3:3.14.0")
}

Running the dependencies task on the app project yields the following:

$./gradlew app:dependencies

> Task :app:dependencies

--
Project ':app'
--

https://mvnrepository.com/artifact/com.google.guava/guava

implementation - Implementation dependencies for the 'main' feature. (n)
\--- com.google.guava:guava:30.0-jre (n)

runtimeClasspath - Runtime classpath of source set 'main'.
+--- com.google.guava:guava:30.0-jre
| +--- com.google.guava:failureaccess:1.0.1
| +--- com.google.guava:listenablefuture:9999.0-empty-to-avoid-conflict-with-
guava
| +--- com.google.code.findbugs:jsr305:3.0.2
| +--- org.checkerframework:checker-qual:3.5.0
| +--- com.google.errorprone:error_prone_annotations:2.3.4
| \--- com.google.j2objc:j2objc-annotations:1.3
\--- org.apache.commons:commons-lang3:3.14.0

runtimeOnly - Runtime-only dependencies for the 'main' feature. (n)
\--- org.apache.commons:commons-lang3:3.14.0 (n)

We can clearly see that for the implementation configuration, the com.google.guava:guava:30.0-jre
dependency has been added. As for the runtimeOnly configuration, the
org.org.apache.commons:commons-lang3:3.14.0 dependency has been added.

We also see a list of transitive dependencies for com.google.guava:guava:30.0-jre (which are the
dependencies for the guava library), such as com.google.guava:failureaccess:1.0.1 in the
runtimeClasspath configuration.

Next Step: Learn about Dependency Configurations >>

2. Dependency Configurations
Every dependency declared for a Gradle project applies to a specific scope.

For example, some dependencies should be used for compiling source code whereas others only
need to be available at runtime:

build.gradle.kts

dependencies {
 implementation("com.google.guava:guava:30.0-jre") // Needed to compile
and run the app
 runtimeOnly("org.slf4j:slf4j-simple:2.0.13") // Only needed at
runtime
}

build.gradle

dependencies {
 implementation("com.google.guava:guava:30.0-jre") // Needed to compile
and run the app
 runtimeOnly("org.slf4j:slf4j-simple:2.0.13") // Only needed at
runtime
}

Dependency configurations are a way to define different sets of dependencies for different
purposes within a project. They determine how and when dependencies are used in various stages
of the build process.

Configurations are a fundamental part of dependency resolution in Gradle.

Understanding dependency configurations

Gradle represents the scope of a dependency with the help of a Configuration. Every configuration
can be identified by a unique name.

Many Gradle plugins add pre-defined configurations to your project.

The Java Library plugin is used to define a project that produces a Java library. The plugin adds
many dependency configurations. These configurations represent the various classpaths needed for
source code compilation, executing tests, and more:

Configuration Name Description Used to:

api Dependencies required for both
compilation and runtime, and
included in the published API.

Declare Dependencies

implementation Dependencies required for both
compilation and runtime.

Declare Dependencies

compileOnly Dependencies needed only for
compilation, not included in
runtime or publication.

Declare Dependencies

compileOnlyApi Dependencies needed only for
compilation, but included in the
published API.

Declare Dependencies

runtimeOnly Dependencies needed only at
runtime, not included in the
compile classpath.

Declare Dependencies

testImplementation Dependencies required for
compiling and running tests.

Declare Dependencies

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.Configuration.html

Configuration Name Description Used to:

testCompileOnly Dependencies needed only for
test compilation.

Declare Dependencies

testRuntimeOnly Dependencies needed only for
running tests.

Declare Dependencies

Dependency declaration Configurations

The dependency declaration configurations (compileOnly, implementation, runtimeOnly) focus on
declaring and managing dependencies based on their usage (compile time, runtime, API exposure):

dependencies {
 implementation("com.google.guava:guava:30.1.1-jre") // Implementation
dependency
 compileOnly("org.projectlombok:lombok:1.18.20") // Compile-only
dependency
 runtimeOnly("mysql:mysql-connector-java:8.0.23") // Runtime-only
dependency
}

dependencies {
 implementation("com.google.guava:guava:30.1.1-jre") // Implementation
dependency
 compileOnly("org.projectlombok:lombok:1.18.20") // Compile-only
dependency
 runtimeOnly("mysql:mysql-connector-java:8.0.23") // Runtime-only
dependency
}

Other Configurations

There are other types of configurations (such as runtimeClasspath, compileClasspath, apiElements,
runtimeElements), but they are not used to declare dependencies.

It is also possible to create custom configurations. A custom configuration allows you to define a
distinct group of dependencies that can be used for specific purposes, such as toolchains or code
generation, separate from the standard configurations (e.g., implementation, testImplementation):

build.gradle.kts

val customConfig by configurations.creating

dependencies {
 customConfig("org.example:example-lib:1.0")
}

build.gradle

configurations {
 customConfig
}

dependencies {
 customConfig("org.example:example-lib:1.0")
}

Creating a custom configuration helps manage and isolate dependencies, ensuring they are only
included in the relevant classpaths and build processes.

Viewing configurations

The dependencies task provides an overview of the dependencies of your project. To focus on the
information about one dependency configuration, provide the optional parameter --configuration.

The following example show dependencies in the implementation dependency configuration of a
Java project:

$./gradlew -q app:dependencies --configuration implementation

--
Project ':app'
--

implementation - Implementation only dependencies for source set 'main'.
\--- com.google.guava:guava:30.0-jre

Next Step: Learn about Declaring Repositories >>

3. Declaring repositories
Gradle needs to know where it can download the dependencies used in the project.

For example, the com.google.guava:guava:30.0-jre dependency can be downloaded from the public
Maven Central repository mavenCentral(). Gradle will find and download the guava source code (as a
jar) from Maven Central and use it build the project.

You can add any number of repositories for your dependencies by configuring the repositories
block in your build.gradle(.kts) file:

build.gradle.kts

repositories {
 mavenCentral() ①
 maven { ②
 url = uri("https://company/com/maven2")
 }
 mavenLocal() ③
 flatDir { ④
 dirs("libs")
 }
}

① Public repository

② Private/Custom repository

③ Local repository

④ File location

build.gradle

repositories {
 mavenCentral() ①
 maven { ②
 url = uri("https://company/com/maven2")
 }
 mavenLocal() ③
 flatDir { ④
 dirs "libs"
 }
}

① Public repository

② Private/Custom repository

③ Local repository

④ File location

Gradle can resolve dependencies from one or many repositories based on Maven, Ivy or flat
directory formats.

If a library is available from more than one of the listed repositories, Gradle will simply pick the
first one.

Declaring a public repository

Organizations building software may want to leverage public binary repositories to download and
consume open source dependencies. Popular public repositories include Maven Central and the
Google Android repository.

Gradle provides built-in shorthand notations for these widely-used repositories:

build.gradle.kts

repositories {
 mavenCentral()
 google()
 gradlePluginPortal()
}

build.gradle

repositories {
 mavenCentral()
 google()
 gradlePluginPortal()
}

Under the covers Gradle resolves dependencies from the respective URL of the public repository
defined by the shorthand notation. All shorthand notations are available via the RepositoryHandler
API.

Declaring a private or custom repository

Most enterprise projects establish a binary repository accessible only within their intranet. In-
house repositories allow teams to publish internal binaries, manage users and security, and ensure
uptime and availability.

Specifying a custom URL is useful for declaring less popular but publicly-available repositories.
Repositories with custom URLs can be specified as Maven or Ivy repositories by calling the
corresponding methods available on the RepositoryHandler API:

https://repo.maven.apache.org/maven2/
https://maven.google.com/
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

build.gradle.kts

repositories {
 maven {
 url = uri("https://maven-central.storage.apis.com")
 }
 ivy {
 url = uri("https://github.com/ivy-rep/")
 }
}

build.gradle

repositories {
 maven {
 url = uri("https://maven-central.storage.apis.com")
 }
 ivy {
 url = uri("https://github.com/ivy-rep/")
 }
}

Declaring a local repository

Gradle can consume dependencies available in a local Maven repository.

To declare the local Maven cache as a repository, add this to your build script:

build.gradle.kts

repositories {
 mavenLocal()
}

build.gradle

repositories {
 mavenLocal()
}

https://maven.apache.org/guides/introduction/introduction-to-repositories.html

Understanding supported repository types

Gradle supports a wide range of sources for dependencies, both in terms of format and in terms of
connectivity. You may resolve dependencies from:

• Different formats

◦ a Maven compatible artifact repository (e.g: Maven Central)

◦ an Ivy compatible artifact repository (including custom layouts)

◦ local (flat) directories

• with different connectivity

◦ authenticated repositories

◦ a wide variety of remote protocols such as HTTPS, SFTP, AWS S3 and Google Cloud Storage
based on the presence of artifacts.

Here is a quick snapshot:

build.gradle

repositories {

 // Ivy Repository with Custom Layout
 ivy {
 url = 'https://your.ivy.repo/url'
 layout 'pattern', {
 ivy '[organisation]/[module]/[revision]/[type]s/[artifact]-
[revision].[ext]'
 artifact '[organisation]/[module]/[revision]/[type]s/[artifact]-
[revision].[ext]'
 }
 }

 // Authenticated HTTPS Maven Repository
 maven {
 url = 'https://your.secure.repo/url'
 credentials {
 username = 'your-username'
 password = 'your-password'
 }
 }

 // SFTP Repository
 maven {
 url = 'sftp://your.sftp.repo/url'
 credentials {
 username = 'your-username'
 password = 'your-password'
 }
 }

 // AWS S3 Repository
 maven {
 url = "s3://your-bucket/repository-path"
 credentials(AwsCredentials) {
 accessKey = 'your-access-key'
 secretKey = 'your-secret-key'
 }
 }

 // Google Cloud Storage Repository
 maven {
 url = "gcs://your-bucket/repository-path"
 }
}

Next Step: Learn about Centralizing Dependencies >>

4. Centralizing dependencies
Central dependencies can be managed in Gradle using various techniques such as platforms and
version catalogs. Each approach offers its own advantages and helps in centralizing and managing
dependencies efficiently.

Using platforms

A platform is a set of dependency constraints designed to manage the transitive dependencies of a
library or application.

When you define a platform in Gradle, you’re essentially specifying a set of dependencies that are
meant to be used together, ensuring compatibility and simplifying dependency management:

platform/build.gradle.kts

plugins {
 id("java-platform")
}

dependencies {
 constraints {
 api("org.apache.commons:commons-lang3:3.12.0")
 api("com.google.guava:guava:30.1.1-jre")
 api("org.slf4j:slf4j-api:1.7.30")
 }
}

platform/build.gradle

plugins {
 id("java-platform")
}

dependencies {
 constraints {
 api("org.apache.commons:commons-lang3:3.12.0")
 api("com.google.guava:guava:30.1.1-jre")
 api("org.slf4j:slf4j-api:1.7.30")
 }
}

Then, you can use that platform in your project:

app/build.gradle.kts

plugins {
 id("java-library")
}

dependencies {
 implementation(platform(project(":platform")))
}

app/build.gradle

plugins {
 id("java-library")
}

dependencies {
 implementation(platform(":platform"))
}

Here, platform defines versions for commons-lang3, guava, and slf4j-api, ensuring they are
compatible.

Maven’s BOM (Bill of Materials) is a popular type of platform that Gradle supports. A BOM file lists
dependencies with specific versions, allowing you to manage these versions in a centralized way.

A popular platform is the Spring Boot Bill of Materials. To use the BOM, you add it to the
dependencies of your project:

build.gradle.kts

dependencies {
 // import a BOM
 implementation(platform("org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE"))
 // define dependencies without versions
 implementation("com.google.code.gson:gson")
 implementation("dom4j:dom4j")
}

build.gradle

dependencies {
 // import a BOM
 implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE')
 // define dependencies without versions
 implementation 'com.google.code.gson:gson'
 implementation 'dom4j:dom4j'
}

By including the spring-boot-dependencies platform dependency, you ensure that all Spring
components use the versions defined in the BOM file.

Using a Version catalog

A version catalog is a centralized list of dependency coordinates that can be referenced in multiple
projects. You can reference this catalog in your build scripts to ensure each project depends on a
common set of well-known dependencies.

First, create a libs.versions.toml file in the gradle directory of your project. This file will define the
versions of your dependencies and plugins:

gradle/libs.versions.toml

[versions]
groovy = "3.0.5"
checkstyle = "8.37"

https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-dependencies

[libraries]
groovy-core = { module = "org.codehaus.groovy:groovy", version.ref = "groovy"
}
groovy-json = { module = "org.codehaus.groovy:groovy-json", version.ref =
"groovy" }
groovy-nio = { module = "org.codehaus.groovy:groovy-nio", version.ref =
"groovy" }
commons-lang3 = { group = "org.apache.commons", name = "commons-lang3",
version = { strictly = "[3.8, 4.0[", prefer="3.9" } }

[bundles]
groovy = ["groovy-core", "groovy-json", "groovy-nio"]

[plugins]
versions = { id = "com.github.ben-manes.versions", version = "0.45.0" }

Then, you can use the version catalog in you build file:

build.gradle.kts

plugins {
 `java-library`
 alias(libs.plugins.versions)
}

dependencies {
 api(libs.bundles.groovy)
}

build.gradle

plugins {
 id 'java-library'
 alias(libs.plugins.versions)
}

dependencies {
 api libs.bundles.groovy
}

Next Step: Learn about Dependency Constraints and Conflict Resolution >>

5. Dependency Constraints and Conflict Resolution
When the same library is declared multiple times or when two different libraries provide the same
functionality, a conflict can occur during dependency resolution.

Understanding types of conflicts

During dependency resolution, Gradle handles two types of conflicts:

1. Version conflicts: That is when two or more dependencies require a given module but with
different versions.

2. Capability conflicts: That is when the dependency graph contains multiple artifacts that
provide the same functionality.

Resolving version conflicts

A version conflict occurs when a component declares two dependencies that:

• Depend on the same module, let’s say com.google.guava:guava

• But on different versions, let’s say 20.0 and 25.1-android

◦ Our project itself depends on com.google.guava:guava:20.0

◦ Our project also depends on com.google.inject:guice:4.2.2 which itself depends on
com.google.guava:guava:25.1-android

Gradle will consider all requested versions, wherever they appear in the dependency graph. By
default, it will select the highest one out of these versions.

Resolving capability conflicts

Gradle uses attributes and capabilities to identify which artifacts a component provides. A
capability conflict occurs whenever two or more variants of a component in dependency graph
declare the same capability.

Gradle will generally fail the build and report the conflict.

You can resolve conflicts manually by specifying which capability to use in the resolutionStrategy
block:

configurations.configureEach {
 resolutionStrategy.capabilitiesResolution.withCapability("com.example:logging") {
 selectHighestVersion()
 }
}

Understanding dependency constraints

In order to help Gradle resolve issue with dependencies, a number of solutions are provided.

For example, the dependencies block provides a constraints block which can be used to help Gradle
pick a specific version of a dependency:

dependencies {
 constraints {
 implementation("org.apache.commons:commons-lang3:3.12.0")
 }
}

Next Step: Learn about Dependency Resolution >>

6. Dependency Resolution
Dependency resolution in Gradle involves two main steps:

1. Graph Resolution

2. Artifact Resolution

1. Graph Resolution

Graph resolution is the process of determining the full set of transitive dependencies, and their
versions, that are required for a given set of declared dependencies.

Graph resolution operates solely on dependency metadata (GMM, POMs). In this phase, artifacts
(JARs) are not resolved. Only the structure of the graph, based on the relationship between
dependencies, are calculated at this time.

1. Discovering dependencies

Graph resolution begins with the project and external (module) dependencies declared in the
build script.

• A module is a discrete unit of software that can be built and published, such as
com.fasterxml.jackson.core:jackson-databind.

• Each version of a module is referred to as a component, such as
com.fasterxml.jackson.core:jackson-databind:2.17.2.

A project contributes a single component to the dependency graph, which itself belongs to a
module.

In the example below, the component com.fasterxml.jackson.core:jackson-databind:2.17.2 is
added as a dependency to the implementation configuration in a Java application:

build.gradle.kts

dependencies {
 implementation("com.fasterxml.jackson.core:jackson-databind:2.17.2")
}

2. Perform conflict resolution

Gradle identifies and resolves any version conflicts when multiple declared or transitive
dependencies request different versions of the same module.

Even though a user might declare version 2.17.2 of a module, this may not be the version
ultimately resolved in the graph. Gradle’s conflict resolution strategy, which defaults to selecting
the highest version, selects a single version of a module when multiple are requested.

However, Gradle APIs can be used to change the outcome:

https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind
https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind/2.17.2

• Resolution Rules: Gradle allows configuring rules to enforce specific versions, reject certain
versions, or substitute dependencies as needed.

• Dependency Substitution: Rules defined in build logic can replace one dependency with
another, alter versions, or redirect requests for one module with another.

• Dynamic Versions: If dependencies are defined with dynamic versions (e.g., 1.0.+) or version
ranges (e.g., [1.0, 2.0)), Gradle resolves these to specific versions by querying the repositories.

• Dependency Locking: If enabled, Gradle checks lock files to ensure consistent versions across
build invocations, preventing unexpected changes in dependency versions.

In the example, Gradle selects the component com.fasterxml.jackson.core:jackson-databind:2.17.2
(the 2.17.2 version of the com.fasterxml.jackson.core:jackson-databind module).

3. Retrieve the metadata

Once Gradle has determined which version of an external module to resolve, it fetches the
metadata for the component from an ivy, pom, or GMM metadata file in the repository.

Here’s a sample of the metadata for com.fasterxml.jackson.core:jackson-databind:2.17.2:

{
 "formatVersion": "1.1",
 "component": {
 "group": "com.fasterxml.jackson.core",
 "module": "jackson-databind",
 "version": "2.17.2",
 },
 "variants": [
 {
 "name": "apiElements"
 },
 {
 "name": "runtimeElements",
 "attributes": {
 "org.gradle.category": "library",
 "org.gradle.dependency.bundling": "external",
 "org.gradle.libraryelements": "jar",
 "org.gradle.usage": "java-runtime"
 },
 "dependencies": [

https://repo1.maven.org/maven2/com/fasterxml/jackson/core/jackson-databind/2.17.2/jackson-databind-2.17.2.module
https://repo1.maven.org/maven2/com/fasterxml/jackson/core/jackson-databind/2.17.2/jackson-databind-2.17.2.module

 {
 "group": "com.fasterxml.jackson.core",
 "module": "jackson-annotations",
 "version": {
 "requires": "2.17.2"
 }
 },
 {
 "group": "com.fasterxml.jackson.core",
 "module": "jackson-core",
 "version": {
 "requires": "2.17.2"
 }
 },
 {
 "group": "com.fasterxml.jackson",
 "module": "jackson-bom",
 "version": {
 "requires": "2.17.2"
 }
 }
],
 "files": [
 {
 "name": "jackson-databind-2.17.2.jar"
 }
]
 }
]
}

As you can see, the com.fasterxml.jackson.core:jackson-databind:2.17.2 component offers two
variants:

• The apiElements variant includes dependencies required for compiling projects against Jackson
Databind.

• The runtimeElements variant includes dependencies required for executing Jackson Databind
during runtime.

A variant is a specific variation of a component tailored for a particular use case or environment.
Variants allow you to provide different definitions of your component depending on the context in
which it’s used.

Each variant consists of a set of artifacts and defines a set of dependencies. The runtimeElements
variant provides the jackson-databind-2.17.2.jar artifact, which will be downloaded later in the
Artifact Resolution phase.

4. Update the graph

Gradle builds a dependency graph that represents a configuration’s dependencies and their
relationships. This graph includes both direct dependencies (explicitly declared in the build script)
and transitive dependencies (dependencies of the direct dependencies and other transitive
dependencies).

The dependency graph is made up of nodes where:

• Each node represents a variant.

• Each dependency selects a variant from a component.

These nodes are connected by edges, representing the dependencies between variants. The edges
indicate how one variant relies on another.

For instance, if your project depends on Jackson Databind, and Jackson Databind depends on
jackson-annotations, the edge in the graph represents that jackson-annotations is a dependency of
one of Jackson Databind’s variants.

The dependencies task can be used to visualize the structure of a dependency graph:

$./gradlew app:dependencies

[...]

runtimeClasspath - Runtime classpath of source set 'main'.
\--- com.fasterxml.jackson.core:jackson-databind:2.17.2
 +--- com.fasterxml.jackson.core:jackson-annotations:2.17.2
 | \--- com.fasterxml.jackson:jackson-bom:2.17.2
 | +--- com.fasterxml.jackson.core:jackson-annotations:2.17.2 (c)
 | +--- com.fasterxml.jackson.core:jackson-core:2.17.2 (c)
 | \--- com.fasterxml.jackson.core:jackson-databind:2.17.2 (c)
 +--- com.fasterxml.jackson.core:jackson-core:2.17.2
 | \--- com.fasterxml.jackson:jackson-bom:2.17.2 (*)
 \--- com.fasterxml.jackson:jackson-bom:2.17.2 (*)

In this output, runtimeClasspath represent specific resolvable configurations in the project. Each
resolvable configuration calculates a separate dependency graph.

Different configurations can resolve to a different set of transitive dependencies for the same set of
declared dependencies. Each variant is owned by a specific version of a component.

5. Select a variant

Based on the requirements of the build, Gradle selects one of the variants of the module.

To describe and differentiate between variants, you use attributes. Attributes are used to define
specific characteristics or properties of variants and the context in which those variants should be
used.

In the metadata for Jackson Databind, we see that the runtimeElements variant is described by the
org.gradle.category, org.gradle.dependency.bundling, org.gradle.libraryelement, and
org.gradle.usage attributes:

{
 "variants": [
 {
 "name": "runtimeElements",
 "attributes": {
 "org.gradle.category": "library",
 "org.gradle.dependency.bundling": "external",
 "org.gradle.libraryelements": "jar",
 "org.gradle.usage": "java-runtime" ①
 }
 }
]
}

① For the apiElements variant, this attribute differs: "org.gradle.usage": "java-api"`

Attributes are used to select the appropriate variant during dependency resolution.

In the case of our Java application example, which has Jackson Databind as a dependency, Gradle
will select the runtime variant to build the app.

To see a more detailed view of which variant Gradle resolved for a given configuration, you can
run the dependencyInsight task:

$./gradlew :app:dependencyInsight --configuration runtimeClasspath --dependency
com.fasterxml.jackson.core:jackson-databind:2.17.2

> Task :app:dependencyInsight

com.fasterxml.jackson.core:jackson-databind:2.17.2 (by constraint)
 Variant runtimeElements:
 | Attribute Name | Provided | Requested |
 |--------------------------------|--------------|--------------|
 | org.gradle.status | release | |
 | org.gradle.category | library | library |
 | org.gradle.dependency.bundling | external | external |
 | org.gradle.libraryelements | jar | jar |
 | org.gradle.usage | java-runtime | java-runtime |
 | org.gradle.jvm.environment | | standard-jvm |
 | org.gradle.jvm.version | | 11 |

com.fasterxml.jackson.core:jackson-databind:2.17.2
+--- runtimeClasspath
\--- com.fasterxml.jackson:jackson-bom:2.17.2
 +--- com.fasterxml.jackson.core:jackson-annotations:2.17.2
 | +--- com.fasterxml.jackson:jackson-bom:2.17.2 (*)
 | \--- com.fasterxml.jackson.core:jackson-databind:2.17.2 (*)
 +--- com.fasterxml.jackson.core:jackson-core:2.17.2
 | +--- com.fasterxml.jackson:jackson-bom:2.17.2 (*)
 | \--- com.fasterxml.jackson.core:jackson-databind:2.17.2 (*)
 \--- com.fasterxml.jackson.core:jackson-databind:2.17.2 (*)

In this example, Gradle uses the runtimeElements variant of jackson-databind for the
runtimeClasspath configuration.

2. Artifact Resolution

Artifact resolution occurs after the dependency graph is constructed. For each node in the
dependency graph, Gradle fetches the necessary physical files (artifacts).

This process uses the resolved graph and repository definitions to produce the required files as
output.

1. Fetching artifacts

Gradle locates and downloads the actual artifacts (such as JAR files, ZIP files, etc.) referenced in the
graph. These artifacts correspond to the nodes discovered during graph resolution.

In our example, Gradle resolved the runtimeElements variant of
com.fasterxml.jackson.core:jackson-databind during the dependency graph resolution. That
variant corresponds to the JAR file jackson-databind-2.17.2.jar as the artifact:

{
 "component": {
 "group": "com.fasterxml.jackson.core",
 "module": "jackson-databind",
 "version": "2.17.2"
 },
 "variants": [
 {
 "name": "apiElements",
 "dependencies": [],
 "files": [
 {
 "name": "jackson-databind-2.17.2.jar"
 }
]
 }
]
}

Gradle also fetches the resolved transitive dependencies of Jackson Databind including jackson-
annotations and jackson-core which correspond to jackson-annotations-2.17.2.jar and jackson-
core-2.17.2.jar respectively.

2. Transform artifacts

Gradle can transform artifacts using artifact transforms if needed or requested. Transforms are
typically applied automatically during dependency resolution when Gradle needs to convert one
artifact format into another that your build requires.

For example, jackson-databind might only produce a ZIP file as an artifact called jackson-databind-
2.17.2.zip, but the build needs jackson-databind-2.17.2.jar. Gradle can use Gradle provided
transforms or user programmed transforms to convert the zip file into a jar file.

Next Step: View Variant-Aware Dependency Resolution in Action >>

7. Variant Aware Dependency Resolution
In Gradle, dependency resolution is often thought of from the standpoint of a consumer and a
producer. The consumer declares dependencies and performs dependency resolution, while
producers satisfy those dependencies by exposing variants.

Gradle’s resolution engine follows a dynamic approach to dependency resolution called variant-
aware resolution, where the consumer defines requirements using attributes, which are matched
with the attributes declared by the producer.

Variant-aware resolution allows Gradle to automatically select the correct variant from a producer
without the consumer explicitly specifying which one to use.

For instance, if you’re working with different architectures (like arm64 and i386), Gradle can choose
the appropriate version of a library (myLib) for each architecture:

1. The producer, myLib, exposes variants (arm64Elements, i386Elements) with specific attributes
(e.g., ArchType.ARM64, ArchType.I386).

2. The consumer, myApp, specifies the required attributes (e.g., ArchType.ARM64) in its resolvable
configuration (runtimeClasspath).

3. If the consumer, myApp, requires dependencies for the arm64 architecture, Gradle will
automatically pick the arm64Elements variant from the myLib producer and use its
corresponding artifact.

A coded example

Consider a Java library where you create a new variant called instrumentedJars and want to ensure
it’s selected for testing:

1. Producer Project: Creates a specialized instrumentedJars variant marked with specific
attributes.

2. Consumer Project: Configured to request the instrumented-jar attribute for testing.

Let’s look at the build files of the producer and consumer.

The producer side

1. Create an instrumented JAR:

Our Java library has a task called instrumentedJar which produces a JAR file. We expect other
projects to consume this JAR file.

producer/build.gradle.kts

val instrumentedJar = tasks.register("instrumentedJar", Jar::class) {

 archiveClassifier = "instrumented"
}

producer/build.gradle

def instrumentedJar = tasks.register("instrumentedJar", Jar) {
 archiveClassifier = "instrumented"
}

2. Create a custom outgoing configuration:

We want our instrumented classes to be used when executing tests, so we need to define proper
attributes on our variant. We create a new configuration named instrumentedJars. This
configuration:

• Can be consumed by other projects.

• Cannot be resolved (i.e., it’s meant to be used as an output, not an input).

• Has specific attributes, including LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE set to
"instrumented-jar", which explains what the variant contains.

producer/build.gradle.kts

val instrumentedJars by configurations.creating {
 isCanBeConsumed = true
 isCanBeResolved = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage.JAVA_RUNTIME))
 attribute(Bundling.BUNDLING_ATTRIBUTE,
objects.named(Bundling.EXTERNAL))
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
JavaVersion.current().majorVersion.toInt())
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
objects.named("instrumented-jar"))
 }
}

producer/build.gradle

configurations {
 instrumentedJars {

 canBeConsumed = true
 canBeResolved = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_RUNTIME))
 attribute(Bundling.BUNDLING_ATTRIBUTE, objects.named(Bundling,
Bundling.EXTERNAL))
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
JavaVersion.current().majorVersion.toInteger())
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE, objects
.named(LibraryElements, 'instrumented-jar'))
 }
 }
}

3. Attach the Artifact:

The instrumentedJar task’s output is added to the instrumentedJars configuration as an artifact.
When this variant is included in a dependency graph, this artifact will be resolved during artifact
resolution.

producer/build.gradle.kts

artifacts {
 add("instrumentedJars", instrumentedJar)
}

producer/build.gradle

artifacts {
 instrumentedJars(instrumentedJar)
}

What we have done here is that we have added a new variant, which can be used at runtime, but
contains instrumented classes instead of the normal classes. However, it now means that for
runtime, the consumer has to choose between two variants:

1. runtimeElements, the regular variant offered by the java-library plugin

2. instrumentedJars, the variant we have created

The consumer side

1. Add dependencies:

First, on the consumer side, like any other project, we define the Java library as a dependency:

consumer/build.gradle.kts

dependencies {
 testImplementation("junit:junit:4.13")
 testImplementation(project(":producer"))
}

consumer/build.gradle

dependencies {
 testImplementation 'junit:junit:4.13'
 testImplementation project(':producer')
}

At this point, Gradle will still select the default runtimeElements variant for your dependencies. This
is because the testRuntimeClasspath configuration is requesting artifacts with the jar library
elements attribute, while the producer defines the instrumentedJars variant with a different
attribute.

2. Adjust the requested attributes:

The testRuntimeClasspath configuration is modified to ask for "instrumented-jar" versions of the
dependencies. This means that when Gradle resolves dependencies for this configuration, it will
prefer JAR files that are marked as "instrumented":

consumer/build.gradle.kts

configurations {
 testRuntimeClasspath {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
objects.named(LibraryElements::class.java, "instrumented-jar"))
 }
 }
}

consumer/build.gradle

configurations {
 testRuntimeClasspath {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE, objects
.named(LibraryElements, 'instrumented-jar'))
 }
 }
}

By following these steps, Gradle will intelligently select the correct variants based on the
configuration and attributes, while also handling cases where specialized variants are not
available.

DECLARING DEPENDENCIES

Declaring Dependencies Basics

Types of dependencies

There are three main types of dependencies in Gradle:

1. Module Dependencies: Refer to libraries from external repositories.

2. Project Dependencies: Refer to other projects in the same multi-project build.

3. File Dependencies: Refer to local files or directories, such as .jar or .aar files.

1. Module dependencies

Module dependencies are the most common dependencies. They refer to a dependency that is
identified by module coordinates (group, name, and version):

build.gradle.kts

dependencies {
 runtimeOnly(group = "org.springframework", name = "spring-core", version
= "2.5")
 runtimeOnly("org.springframework:spring-aop:2.5")
 runtimeOnly("org.hibernate:hibernate:3.0.5") {
 isTransitive = true
 }
 runtimeOnly(group = "org.hibernate", name = "hibernate", version =
"3.0.5") {
 isTransitive = true
 }
}

build.gradle

dependencies {
 runtimeOnly group: 'org.springframework', name: 'spring-core', version:
'2.5'
 runtimeOnly 'org.springframework:spring-core:2.5',
 'org.springframework:spring-aop:2.5'
 runtimeOnly(
 [group: 'org.springframework', name: 'spring-core', version: '2.5'],
 [group: 'org.springframework', name: 'spring-aop', version: '2.5']
)
 runtimeOnly('org.hibernate:hibernate:3.0.5') {
 transitive = true

 }
 runtimeOnly group: 'org.hibernate', name: 'hibernate', version: '3.0.5',
transitive: true
 runtimeOnly(group: 'org.hibernate', name: 'hibernate', version: '3.0.5')
{
 transitive = true
 }
}

Gradle offers multiple notations for declaring module dependencies, including string notation and
map notation.

• String Notation: Simplifies dependency declaration by combining the group, name, and
version into a single string.

• Map Notation: Allows for specifying each part of the coordinates separately.

For advanced configurations, such as enforcing strict versions, you can also provide a closure when
alongside these notations.

2. Project dependencies

Project dependencies allow you to reference other projects within a multi-project Gradle build.

This is useful for organizing large projects into smaller, modular components:

web-service/build.gradle.kts

dependencies {
 implementation(project(":utils"))
 implementation(project(":api"))

}

web-service/build.gradle

dependencies {
 implementation project(':utils')
 implementation project(':api')
}

Gradle uses the project() function to define a project dependency. This function takes the relative
path to the target project within the build. The path is typically defined using a colon (:) to separate
different levels of the project structure.

Project dependencies are automatically resolved such that the dependent project is always built
before the project that depends on it.

Type-safe project dependencies

Type-safe project accessors are an incubating feature which must be enabled explicitly.
Implementation may change at any time.

To add support for type-safe project accessors, add
enableFeaturePreview("TYPESAFE_PROJECT_ACCESSORS") this to your settings.gradle(.kts) file:

settings.gradle.kts

enableFeaturePreview("TYPESAFE_PROJECT_ACCESSORS")

settings.gradle

enableFeaturePreview 'TYPESAFE_PROJECT_ACCESSORS'

One downside of using the project(":some:path") notation is the need to remember project paths
for dependencies. Moreover, changing a project path requires manually updating every
occurrence, increasing the risk of missing one.

Instead, the experimental type-safe project accessors API provides IDE completion, making it easier
to declare dependencies:

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:project(java.lang.String)

web-service/build.gradle.kts

dependencies {
 implementation(projects.utils)
 implementation(projects.api)
}

web-service/build.gradle

dependencies {
 implementation projects.utils
 implementation projects.api
}

With this API, incorrectly specified projects in Kotlin DSL scripts trigger compilation errors, helping
you avoid missed updates.

Project accessors are based on project paths. For instance, the path :commons:utils:some:lib
becomes projects.commons.utils.some.lib, while kebab-case (some-lib) and snake-case (some_lib)
are converted to camel case: projects.someLib.

3. File dependencies

File dependencies allow you to include external JARs or other files directly into your project by
referencing their file paths. File dependencies also allow you to add a set of files directly to a
configuration without using a repository.

NOTE
File dependencies are generally discouraged. Instead, prefer declaring
dependencies on an external repository, or if necessary, declaring a maven or ivy
repository using a file:// URL.

File dependencies are unique because they represent a direct reference to files on the filesystem
without any associated metadata, such as transitive dependencies, origin, or author information.

build.gradle.kts

configurations {
 create("antContrib")
 create("externalLibs")
 create("deploymentTools")
}

dependencies {
 "antContrib"(files("ant/antcontrib.jar"))
 "externalLibs"(files("libs/commons-lang.jar", "libs/log4j.jar"))
 "deploymentTools"(fileTree("tools") { include("*.exe") })
}

build.gradle

configurations {
 antContrib
 externalLibs
 deploymentTools
}

dependencies {
 antContrib files('ant/antcontrib.jar')
 externalLibs files('libs/commons-lang.jar', 'libs/log4j.jar')

glossary.pdf#sub:terminology_module_metadata

 deploymentTools(fileTree('tools') { include '*.exe' })
}

In this example, each dependency explicitly specifies its location within the file system. Common
methods for referencing these files include:

• link:Project.files(): Accepts one or more file paths directly.

• ProjectLayout.files(): Accepts one or more file paths directly.

• Project.fileTree(): Defines a directory and includes or excludes specific file patterns.

NOTE

The order of files in a FileTree is not guaranteed to be stable, even on the same
computer. As a result, dependency configurations using FileTree may produce
resolution results with varying order, which can impact the cacheability of tasks
that use these results as inputs. To ensure more predictable and stable behavior, it
is recommended to use the simpler files method where possible.

Alternatively, you can use a flat directory repository to specify the source directory for multiple file
dependencies.

Ideally, you should use Maven or Ivy repository with a local URL:

repositories {
 maven {
 url = 'file:///path/to/local/files' // Replace with your actual path
 }
}

To add files as dependencies, pass a file collection to the configuration:

build.gradle.kts

dependencies {
 runtimeOnly(files("libs/a.jar", "libs/b.jar"))
 runtimeOnly(fileTree("libs") { include("*.jar") })
}

build.gradle

dependencies {
 runtimeOnly files('libs/a.jar', 'libs/b.jar')
 runtimeOnly fileTree('libs') { include '*.jar' }
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

Note that file dependencies are not included in the published dependency descriptor for your
project. However, they are available in transitive dependencies within the same build, meaning
they can be used within the current build but not outside it.

You should specify which tasks produce the files for a file dependency. Otherwise, the necessary
tasks might not run when you depend on them transitively from another project:

build.gradle.kts

dependencies {
 implementation(files(layout.buildDirectory.dir("classes")) {
 builtBy("compile")
 })
}

tasks.register("compile") {
 doLast {
 println("compiling classes")
 }
}

tasks.register("list") {
 val compileClasspath: FileCollection = configurations["compileClasspath"]
 dependsOn(compileClasspath)
 doLast {
 println("classpath = ${compileClasspath.map { file: File -> file.name
}}")
 }
}

build.gradle

dependencies {
 implementation files(layout.buildDirectory.dir('classes')) {
 builtBy 'compile'
 }
}

tasks.register('compile') {
 doLast {
 println 'compiling classes'
 }
}

tasks.register('list') {
 FileCollection compileClasspath = configurations.compileClasspath
 dependsOn compileClasspath

 doLast {
 println "classpath = ${compileClasspath.collect { File file -> file
.name }}"
 }
}

$ gradle -q list
compiling classes
classpath = [classes]

Gradle distribution-specific dependencies

Gradle API dependency

You can declare a dependency on the API of the current version of Gradle by using the
DependencyHandler.gradleApi() method. This is useful when you are developing custom Gradle
tasks or plugins:

build.gradle.kts

dependencies {
 implementation(gradleApi())
}

build.gradle

dependencies {
 implementation gradleApi()
}

Gradle TestKit dependency

You can declare a dependency on the TestKit API of the current version of Gradle by using the
DependencyHandler.gradleTestKit() method. This is useful for writing and executing functional
tests for Gradle plugins and build scripts:

build.gradle.kts

dependencies {

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleTestKit()

 testImplementation(gradleTestKit())
}

build.gradle

dependencies {
 testImplementation gradleTestKit()
}

Local Groovy dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandler.localGroovy() method. This is useful when you are developing custom Gradle
tasks or plugins in Groovy:

build.gradle.kts

dependencies {
 implementation(localGroovy())
}

build.gradle

dependencies {
 implementation localGroovy()
}

Documenting dependencies

When declaring a dependency or a dependency constraint, you can provide a reason to clarify why
the dependency is included. This helps make your build script and the dependency insight report
easier to interpret:

build.gradle.kts

plugins {
 `java-library`
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.ow2.asm:asm:7.1") {
 because("we require a JDK 9 compatible bytecode generator")
 }
}

build.gradle

plugins {
 id 'java-library'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation('org.ow2.asm:asm:7.1') {
 because 'we require a JDK 9 compatible bytecode generator'
 }
}

In this example, the because() method provides a reason for including the asm library, which helps
explain its purpose in the context of the build:

$ gradle -q dependencyInsight --dependency asm
org.ow2.asm:asm:7.1
 Variant compile:
 | Attribute Name | Provided | Requested |
 |--------------------------------|----------|--------------|
 | org.gradle.status | release | |
 | org.gradle.category | library | library |
 | org.gradle.libraryelements | jar | classes |
 | org.gradle.usage | java-api | java-api |
 | org.gradle.dependency.bundling | | external |
 | org.gradle.jvm.environment | | standard-jvm |
 | org.gradle.jvm.version | | 11 |
 Selection reasons:
 - Was requested: we require a JDK 9 compatible bytecode generator

org.ow2.asm:asm:7.1
\--- compileClasspath

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/DependencyConstraint.html#because(java.lang.String)

A web-based, searchable dependency report is available by adding the --scan option.

Viewing Dependencies
Gradle offers tools to navigate the results of dependency management, allowing you to more
precisely understand how and why Gradle resolves dependencies. You can render a full
dependency graph, identify the origin of a given dependency, and see why specific versions were
selected. Dependencies can come from build script declarations or transitive relationships.

To visualize dependencies, you can use:

• The dependencies task

• The dependencyInsight task

• A Build Scan

List project dependencies using the dependencies task

Gradle provides the built-in dependencies task to render a dependency tree from the command line.
By default, the task shows dependencies for all configurations within a single project. The
dependency tree shows the selected version of each dependency and provides information on
conflict resolution.

The dependencies task is particularly useful for analyzing transitive dependencies. While your build
file lists direct dependencies, the task helps you understand which transitive dependencies are
resolved during the build.

$./gradlew dependencies

TIP
To render the graph of dependencies declared in the buildscript classpath
configuration, use the buildEnvironment task.

Understanding output annotations

$./gradlew :app:dependencies

> Task :app:dependencies

--
Project ':app'
--

annotationProcessor - Annotation processors and their dependencies for source set
'main'.
No dependencies

https://scans.gradle.com/

compileClasspath - Compile classpath for source set 'main'.
\--- com.fasterxml.jackson.core:jackson-databind:2.17.2
 +--- com.fasterxml.jackson.core:jackson-annotations:2.17.2
 | \--- com.fasterxml.jackson:jackson-bom:2.17.2
 | +--- com.fasterxml.jackson.core:jackson-annotations:2.17.2 (c)
 | +--- com.fasterxml.jackson.core:jackson-core:2.17.2 (c)
 | \--- com.fasterxml.jackson.core:jackson-databind:2.17.2 (c)
 +--- com.fasterxml.jackson.core:jackson-core:2.17.2
 | \--- com.fasterxml.jackson:jackson-bom:2.17.2 (*)
 \--- com.fasterxml.jackson:jackson-bom:2.17.2 (*)

...

The dependencies task marks dependency trees with the following annotations:

• (*): Indicates repeated occurrences of a transitive dependency subtree. Gradle expands
transitive dependency subtrees only once per project; repeat occurrences only display the root
of the subtree, followed by this annotation.

• (c): This element is a dependency constraint, not a dependency. Look for the matching
dependency elsewhere in the tree.

• (n): A dependency or dependency configuration that cannot be resolved.

Specifying a dependency configuration

To focus on a specific dependency configuration, use the optional --configuration parameter.

Like project and task names, Gradle allows abbreviated names for dependency configurations. For
example, you can use tRC instead of testRuntimeClasspath, as long as it matches a unique
configuration.

The following examples display dependencies for the testRuntimeClasspath configuration in a Java
project:

$ gradle -q dependencies --configuration testRuntimeClasspath

$ gradle -q dependencies --configuration tRC

To view a list of all configurations in a project, including those provided by plugins, run the
resolvableConfigurations report. For more details, refer to the plugin’s documentation, such as the
Java Plugin here.

Looking at an example

Consider a project that uses the JGit library to execute Source Control Management (SCM)
operations for a release process. You can declare dependencies for external tooling with the help of
a custom dependency configuration. This avoids polluting other contexts, such as the compilation
classpath for your production source code.

java_plugin.pdf#sec:java_plugin_and_dependency_management
https://www.eclipse.org/jgit/

The following example declares a custom dependency configuration named scm that contains the
JGit dependency:

build.gradle.kts

configurations {
 create("scm")
}

dependencies {
 "scm"("org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r")
}

build.gradle

configurations {
 scm
}

dependencies {
 scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r'
}

Use the following command to view a dependency tree for the scm dependency configuration:

$ gradle -q dependencies --configuration scm

--
Root project 'dependencies-report'
--

scm
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
 +--- com.jcraft:jsch:0.1.54
 +--- com.googlecode.javaewah:JavaEWAH:1.1.6
 +--- org.apache.httpcomponents:httpclient:4.3.6
 | +--- org.apache.httpcomponents:httpcore:4.3.3
 | +--- commons-logging:commons-logging:1.1.3
 | \--- commons-codec:commons-codec:1.6
 \--- org.slf4j:slf4j-api:1.7.2

A web-based, searchable dependency report is available by adding the --scan option.

Identify the selected version using the dependencyInsight task

A project may request two different versions of the same dependency either directly or transitively
that may result in a version conflict.

The following example introduces a conflict with commons-codec:commons-codec, added both as a
direct dependency and a transitive dependency of JGit:

build.gradle.kts

repositories {
 mavenCentral()
}

configurations {
 create("scm")
}

dependencies {
 "scm"("org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r")
 "scm"("commons-codec:commons-codec:1.7")
}

build.gradle

repositories {
 mavenCentral()
}

configurations {
 scm
}

dependencies {
 scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r'
 scm 'commons-codec:commons-codec:1.7'
}

Gradle provides the built-in dependencyInsight task to render a dependency insight report from the
command line.

Dependency insights provide information about a single dependency within a single configuration.
Given a dependency, you can identify the reason and origin for its version selection.

dependencyInsight accepts the following parameters:

--dependency <dependency> (mandatory)

The dependency to investigate. You can supply a complete group:name, or part of it. If multiple
dependencies match, Gradle generates a report covering all matching dependencies.

--configuration <name> (mandatory)

The dependency configuration which resolves the given dependency. This parameter is optional
for projects that use the Java plugin, since the plugin provides a default value of
compileClasspath.

--single-path (optional)

Render only a single path to the dependency.

--all-variants (optional)

Render information about all variants, not only the selected variant.

The following code snippet demonstrates how to run a dependency insight report for all paths to a
dependency named commons-codec within the scm configuration:

$ gradle -q dependencyInsight --dependency commons-codec --configuration scm
commons-codec:commons-codec:1.7
 Variant default:
 | Attribute Name | Provided | Requested |
 |-------------------|----------|-----------|
 | org.gradle.status | release | |
 Selection reasons:
 - By conflict resolution: between versions 1.7 and 1.6

commons-codec:commons-codec:1.7
\--- scm

commons-codec:commons-codec:1.6 -> 1.7
\--- org.apache.httpcomponents:httpclient:4.3.6
 \--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
 \--- scm

A web-based, searchable dependency report is available by adding the --scan option.

Understanding the selection reasons

The "Selection reasons" section of the dependency insight report lists the reasons why a
dependency was selected.

Reason Meaning

(Absent) No reason other than a reference, direct or transitive, was
present.

Was requested : <text> The dependency appears in the graph, and the inclusion came
with a because text.

java_plugin.pdf#java_plugin

Reason Meaning

Was requested : didn’t match
versions <versions>

The dependency appears with a dynamic version which did
not include the listed versions. May be followed by a because
text.

Was requested : reject version
<versions>

The dependency appears with a rich version containing one or
more reject. May be followed by a because text.

By conflict resolution : between
versions <version>

The dependency appeared multiple times, with different
version requests. This resulted in conflict resolution to select
the most appropriate version.

By constraint A dependency constraint participated in the version selection.
May be followed by a because text.

By ancestor There is a rich version with a strictly which enforces the
version of this dependency.

Selected by rule A dependency resolution rule overruled the default selection
process. May be followed by a because text.

Rejection : <version> by rule
because <text>

A ComponentSelection.reject rejected the given version of the
dependency.

Rejection: version <version>:
<attributes information>

The dependency has a dynamic version and some versions did
not match the requested attributes.

Forced The build enforces the version of the dependency through an
enforced platform or resolution strategy.

If multiple selection reasons exist, the insight report lists all of them.

Get a holistic view using Build Scans

The dependency tree in a Build Scan shows information about conflicts.

A Build Scan was created for the commons-codec example above and a URL was provided with the
results.

Head over to the Dependencies tab and navigate to your desired dependency. Select the Required By
tab to see the selection reason and origin of the dependency:

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)
https://scans.gradle.com/

Resolving unsafe configuration resolution errors

Resolving a configuration can have side effects on Gradle’s project model, so Gradle needs manage
access to each project’s configurations. There are a number of ways a configuration might be
resolved unsafely. Gradle will produce a deprecation warning for each unsafe access. Each of these
are bad practices and can cause strange and indeterminate errors.

If your build has an unsafe access deprecation warning, it needs to be fixed.

For example:

• A task from one project directly resolves a configuration in another project in the task’s action.

• A task specifies a configuration from another project as an input file collection.

• A build script for one project resolves a configuration in another project during evaluation.

• Project configurations are resolved in the settings file.

In most cases, this issue can be resolved by creating a cross-project dependency on the other
project. See the documentation for sharing outputs between projects for more information.

If you find a use case that can’t be resolved using these techniques, please let us know by filing a
GitHub Issue adhering to our issue guidelines.

Declaring Versions and Ranges
You can specify dependencies with exact versions or version ranges to define which versions your
project can use:

dependencies {
 implementation("org.springframework:spring-core:5.3.8")
 implementation("org.springframework:spring-core:5.3.+")
 implementation("org.springframework:spring-core:latest.release")
 implementation("org.springframework:spring-core:[5.2.0, 5.3.8]")
 implementation("org.springframework:spring-core:[5.2.0,)")
}

https://github.com/gradle/gradle/issues

Understanding version declaration

Gradle supports various ways to declare versions and ranges:

Version Example Note

Exact version 1.3, 1.3.0-beta3, 1.0-
20150201.131010-1

A specific version.

Maven-style range [1.0,), [1.1, 2.0),
(1.2, 1.5]

[] indicates inclusive bounds; () indicates
exclusive bounds. See below to learn more.

When the upper or lower bound is missing, the
range has no upper or lower bound.

An upper bound exclude acts as a prefix
exclude.

Prefix version range 1.+, 1.3.+ Only versions exactly matching the portion
before the + are included.

Declaring a version as +, without any prefix, will
include any version.

latest-status version latest.integration,
latest.release

Matches the highest version with the specified
status. See ComponentMetadata.getStatus().

Maven SNAPSHOT version 1.0-SNAPSHOT, 1.4.9-
beta1-SNAPSHOT

Indicates a snapshot version.

Maven-style range

There are a number of options to indicate bounds in the Maven-style:

• [and] indicate an inclusive bound → [1.1, 2.0]

• (and) indicate an exclusive bound → (1.1, 2.0) or (1.2, 1.5] or [1.1, 2.0)

•] can be used instead of (for an exclusive lower bound →]1.2, 1.5] instead of (1.2, 1.5]

• [can be used instead of) for exclusive upper bound → [1.1, 2.0[instead of [1.1, 2.0)

Understanding version ordering

dependencies {
 implementation("org.springframework:spring-core:1.1") // This is a newer version
than 1.a
 implementation("org.springframework:spring-core:1.a") // This is a older version
than 1.1
}

Version ordering is used to:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ComponentMetadata.html#getStatus--

• Determine if a particular version is included in a range.

• Determine which version is newest when performing conflict resolution (using "base
versions").

Versions are ordered based on the following rules:

• Splitting Versions into Parts:

◦ Versions are divided into parts using the characters [. - _ +].

◦ Parts containing both digits and letters are split further, e.g., 1a1 becomes 1.a.1.

◦ Only the parts are compared, not the separators, so 1.a.1, 1-a+1, 1.a-1, and 1a1 are
equivalent. (Note: There are exceptions during conflict resolution).

• Comparing Equivalent Parts:

◦ Numeric vs. Numeric: Higher numeric value is considered higher: 1.1 < 1.2.

◦ Numeric vs. Non-numeric: Numeric parts are higher than non-numeric parts: 1.a < 1.1.

◦ Non-numeric vs. Non-numeric: Parts are compared alphabetically and case-sensitively: 1.A
< 1.B < 1.a < 1.b.

◦ Extra Numeric Part: A version with an additional numeric part is higher, even if it’s zero:
1.1 < 1.1.0.

◦ Extra Non-numeric Part: A version with an extra non-numeric part is lower: 1.1.a < 1.1.

• Special Non-numeric Parts:

◦ dev is lower than any other non-numeric part: 1.0-dev < 1.0-ALPHA < 1.0-alpha < 1.0-rc.

◦ rc, snapshot, final, ga, release, and sp are higher than any other string part, in this order:
1.0-zeta < 1.0-rc < 1.0-snapshot < 1.0-final < 1.0-ga < 1.0-release < 1.0-sp.

◦ These special values are not case-sensitive and their ordering does not depend on the
separator used: 1.0-RC-1 == 1.0.rc.1.

Declaring rich versions

When you declare a version using the shorthand notation, then the version is considered a
required version:

build.gradle.kts

dependencies {
 implementation("org.slf4j:slf4j-api:1.7.15")
}

build.gradle

dependencies {

 implementation('org.slf4j:slf4j-api:1.7.15')
}

This means the minimum version will be 1.7.15 and it can be optimistically upgraded by the
engine.

To enforce a strict version and ensure that only the specified version of a dependency is used,
rejecting any other versions even if they would normally be compatible:

build.gradle.kts

dependencies {
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly("[1.7, 1.8[")
 prefer("1.7.25")
 }
 }
}
dependencies {
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly("[1.7, 1.8[")
 prefer("1.7.25")
 }
 }
}

build.gradle

dependencies {
 implementation('org.slf4j:slf4j-api') {
 version {
 strictly '[1.7, 1.8['
 prefer '1.7.25'
 }
 }
}
dependencies {
 implementation('org.slf4j:slf4j-api') {
 version {
 strictly '[1.7, 1.8['
 prefer '1.7.25'
 }
 }

}

Gradle supports a model for rich version declarations, allowing you to combine different levels of
version specificity.

The key terms, listed from strongest to weakest, are:

strictly or !!

This is the strongest version declaration. Any version not matching this notation will be
excluded. If used on a declared dependency, strictly can downgrade a version. For transitive
dependencies, if no acceptable version is found, dependency resolution will fail.

Dynamic versions are supported.

When defined, it overrides any previous require declaration and clears any previous reject
already declared on that dependency.

require

This ensures that the selected version cannot be lower than what require accepts, but it can be
higher through conflict resolution, even if the higher version has an exclusive upper bound. This
is the default behavior for a direct dependency.

Dynamic versions are supported.

When defined, it overrides any previous strictly declaration and clears any previous reject
already declared on that dependency.

prefer

This is the softest version declaration. It applies only if there is no stronger non-dynamic version
specified.

This term does not support dynamic versions and can complement strictly or require.

When defined, it overrides any previous prefer declaration and clears any previous reject
already declared on that dependency.

Additionally, there is a term outside the hierarchy:

reject

This term specifies versions that are not accepted for the module, causing dependency
resolution to fail if a rejected version is selected.

Dynamic versions are supported.

Rich version declaration is accessed through the version DSL method on a dependency or constraint
declaration, which gives you access to MutableVersionConstraint:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/MutableVersionConstraint.html

build.gradle.kts

dependencies {
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly("[1.7, 1.8[")
 prefer("1.7.25")
 }
 }

 constraints {
 add("implementation", "org.springframework:spring-core") {
 version {
 require("4.2.9.RELEASE")
 reject("4.3.16.RELEASE")
 }
 }
 }
}

build.gradle

dependencies {
 implementation('org.slf4j:slf4j-api') {
 version {
 strictly '[1.7, 1.8['
 prefer '1.7.25'
 }
 }

 constraints {
 implementation('org.springframework:spring-core') {
 version {
 require '4.2.9.RELEASE'
 reject '4.3.16.RELEASE'
 }
 }
 }
}

To enforce strict versions, you can also use the !! notation:

build.gradle.kts

dependencies {
 // short-hand notation with !!
 implementation("org.slf4j:slf4j-api:1.7.15!!")
 // is equivalent to
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly("1.7.15")
 }
 }

 // or...
 implementation("org.slf4j:slf4j-api:[1.7, 1.8[!!1.7.25")
 // is equivalent to
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly("[1.7, 1.8[")
 prefer("1.7.25")
 }
 }
}

build.gradle

dependencies {
 // short-hand notation with !!
 implementation('org.slf4j:slf4j-api:1.7.15!!')
 // is equivalent to
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly '1.7.15'
 }
 }

 // or...
 implementation('org.slf4j:slf4j-api:[1.7, 1.8[!!1.7.25')
 // is equivalent to
 implementation('org.slf4j:slf4j-api') {
 version {
 strictly '[1.7, 1.8['
 prefer '1.7.25'
 }
 }
}

The notation [1.7, 1.8[!!1.7.25 above is equivalent to:

• strictly [1.7, 1.8[

• prefer 1.7.25

This means that the engine must select a version between 1.7 (included) and 1.8 (excluded). If no
other component in the graph needs a different version, it should prefer 1.7.25.

TIP
A strict version cannot be upgraded and overrides any transitive dependency
versions, therefore using ranges with strict versions is recommended.

The following table illustrates several use cases:

Which version(s) of this
dependency are acceptable?

stri
ctly

requir
e

prefer reje
cts

Selection result

Tested with version 1.5;
believe all future versions
should work.

1.5 Any version starting from 1.5,
equivalent to org:foo:1.5. An upgrade
to 2.4 is accepted.

Tested with 1.5, soft constraint
upgrades according to
semantic versioning.

[1.0,
2.0[

1.5 Any version between 1.0 and 2.0, 1.5
if nobody else cares. An upgrade to
2.4 is accepted.
ὑ�

Tested with 1.5, but follows
semantic versioning.

[1.0,
2.0[

1.5 Any version between 1.0 and 2.0
(exclusive), 1.5 if nobody else cares.
Overwrites versions from transitive
dependencies.
ὑ�

Same as above, with 1.4
known broken.

[1.0,
2.0[

1.5 1.4 Any version between 1.0 and 2.0
(exclusive) except for 1.4, 1.5 if
nobody else cares.
Overwrites versions from transitive
dependencies.
ὑ�

No opinion, works with 1.5. 1.5 1.5 if no other opinion, any otherwise.

No opinion, prefer the latest
release.

latest
.relea
se

The latest release at build time.
ὑ�

On the edge, latest release, no
downgrade.

latest
.relea
se

The latest release at build time.
ὑ�

No other version than 1.5. 1.5 1.5, or failure if another strict or
higher require constraint disagrees.
Overwrites versions from transitive
dependencies.

Which version(s) of this
dependency are acceptable?

stri
ctly

requir
e

prefer reje
cts

Selection result

1.5 or a patch version of it
exclusively.

[1.5,
1.6[

Latest 1.5.x patch release, or failure if
another strict or higher require
constraint disagrees.
Overwrites versions from transitive
dependencies.
ὑ�

Lines annotated with a lock (ὑ�) indicate situations where leveraging dependency locking is
recommended. NOTE: When using dependency locking, publishing resolved versions is always
recommended.

Using strictly in a library requires careful consideration, as it affects downstream consumers.
However, when used correctly, it helps consumers understand which combinations of libraries may
be incompatible in their context. For more details, refer to the section on overriding dependency
versions.

NOTE

Rich version information is preserved in the Gradle Module Metadata format.
However, converting this information to Ivy or Maven metadata formats is lossy.
The highest level of version declaration—strictly or require over prefer—will be
published, and any reject will be ignored.

Endorsing strict versions

Gradle resolves any dependency version conflicts by selecting the greatest version found in the
dependency graph. Some projects might need to divert from the default behavior and enforce an
earlier version of a dependency e.g. if the source code of the project depends on an older API of a
dependency than some of the external libraries.

In general, forcing dependencies is done to downgrade a dependency. There are common use cases
for downgrading:

• A bug was discovered in the latest release.

• Your code depends on an older version that is not binary compatible with the newer one.

• Your code does not use the parts of the library that require a newer version.

WARNING

Forcing a version of a dependency requires careful consideration, as changing
the version of a transitive dependency might lead to runtime errors if external
libraries expect a different version. It is often better to upgrade your source
code to be compatible with newer versions if possible.

Let’s say a project uses the HttpClient library for performing HTTP calls. HttpClient pulls in Commons
Codec as transitive dependency with version 1.10. However, the production source code of the
project requires an API from Commons Codec 1.9 which is no longer available in 1.10. The
dependency version can be enforced by declaring it as strict it in the build script:

https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://commons.apache.org/proper/commons-codec/
https://commons.apache.org/proper/commons-codec/

build.gradle.kts

dependencies {
 implementation("org.apache.httpcomponents:httpclient:4.5.4")
 implementation("commons-codec:commons-codec") {
 version {
 strictly("1.9")
 }
 }
}

build.gradle

dependencies {
 implementation 'org.apache.httpcomponents:httpclient:4.5.4'
 implementation('commons-codec:commons-codec') {
 version {
 strictly '1.9'
 }
 }
}

Consequences of using strict versions

Using a strict version must be carefully considered:

• For Library Authors: Strict versions effectively act like forced versions. They take precedence
over transitive dependencies and override any other strict versions found transitively. This
could lead to build failures if the consumer project requires a different version.

• For Consumers: Strict versions are considered globally during resolution. If a strict version
conflicts with a consumer’s version requirement, it will trigger a resolution error.

For example, if project B strictly depends on C:1.0, but consumer project A requires C:1.1, a
resolution error will occur.

To avoid this, it is recommended to use version ranges and a preferred version within those ranges.

For example, B might say, instead of strictly 1.0, that it strictly depends on the [1.0, 2.0[range,
but prefers 1.0. Then if a consumer chooses 1.1 (or any other version in the range), the build will no
longer fail.

Declaring without version

For larger projects, it’s advisable to declare dependencies without versions and manage versions

using platforms:

build.gradle.kts

dependencies {
 implementation("org.springframework:spring-web")
}

dependencies {
 constraints {
 implementation("org.springframework:spring-web:5.0.2.RELEASE")
 }
}

build.gradle

dependencies {
 implementation 'org.springframework:spring-web'
}

dependencies {
 constraints {
 implementation 'org.springframework:spring-web:5.0.2.RELEASE'
 }
}

This approach centralizes version management, including transitive dependencies.

Declaring dynamic versions

There are many situations where you might need to use the latest version of a specific module
dependency or the latest within a range of versions. This is often necessary during development or
when creating a library that needs to be compatible with various dependency versions. Projects
might adopt a more aggressive approach to consuming dependencies by always integrating the
latest version to access cutting-edge features.

You can easily manage these ever-changing dependencies by using a dynamic version. A dynamic
version can be either a version range (e.g., 2.+) or a placeholder for the latest available version (e.g.,
latest.integration):

build.gradle.kts

plugins {

 `java-library`
}

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.springframework:spring-web:5.+")
}

build.gradle

plugins {
 id 'java-library'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.springframework:spring-web:5.+'
}

Using dynamic versions and changing modules can lead to unreproducible builds. As new versions
of a module are published, its API may become incompatible with your source code. Therefore, use
this feature with caution.

CAUTION

For reproducible builds, it’s crucial to use dependency locking when declaring
dependencies with dynamic versions. Without this, the module you request
may change even for the same version, which is known as a changing version.
For example, a Maven SNAPSHOT module always points to the latest artifact
published, making it a "changing module."

Declaring changing versions

A team may implement a series of features before releasing a new version of the application or
library. A common strategy to allow consumers to integrate an unfinished version of their artifacts
early is to release a module with a changing version. A changing version indicates that the
feature set is still under active development and hasn’t released a stable version for general
availability yet.

In Maven repositories, changing versions are commonly referred to as snapshot versions. Snapshot
versions contain the suffix -SNAPSHOT.

https://maven.apache.org/guides/getting-started/index.html#what-is-a-snapshot-version

The following example demonstrates how to declare a snapshot version on the Spring dependency:

build.gradle.kts

plugins {
 `java-library`
}

repositories {
 mavenCentral()
 maven {
 url = uri("https://repo.spring.io/snapshot/")
 }
}

dependencies {
 implementation("org.springframework:spring-web:5.0.3.BUILD-SNAPSHOT")
}

build.gradle

plugins {
 id 'java-library'
}

repositories {
 mavenCentral()
 maven {
 url = 'https://repo.spring.io/snapshot/'
 }
}

dependencies {
 implementation 'org.springframework:spring-web:5.0.3.BUILD-SNAPSHOT'
}

Gradle is flexible enough to treat any version as a changing version. All you need to do is to set the
property ExternalModuleDependency.setChanging(boolean) to true.

Declaring Dependency Constraints
Dependency constraints function similarly to dependencies, with the key distinction that they do
not introduce a dependency themselves. Instead, constraints define version requirements that
influence the resolution process when a dependency is brought into the project by other means.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-

Although constraints are not strict versions by default, you can specify a strict version constraint if
needed. Once the dependency is included, the version specified by the constraint participates in
conflict resolution just as if it were declared as a direct dependency.

When developing a single-project library, constraints can be directly declared alongside direct
dependencies. However, when developing multi-project libraries and applications, dependencies
are best declared centrally in a platform:

build.gradle.kts

plugins {
 `java-platform`
}

dependencies {
 constraints {
 // Platform declares some versions of libraries used in subprojects
 api("commons-httpclient:commons-httpclient:3.1")
 api("org.apache.commons:commons-lang3:3.8.1")
 }
}

build.gradle

plugins {
 id 'java-platform'
}

dependencies {
 constraints {
 // Platform declares some versions of libraries used in subprojects
 api 'commons-httpclient:commons-httpclient:3.1'
 api 'org.apache.commons:commons-lang3:3.8.1'
 }
}

In general, dependencies are categorized as either direct or transitive:

• Direct dependencies are those explicitly specified within a component’s build or metadata.

• Transitive dependencies are not directly specified; they are pulled in automatically as
dependencies of the direct dependencies.

A component may require both direct and transitive dependencies to compile or run.

Declaring constraints alongside direct dependencies

Dependency constraints allow you to define the version or version range for a specific
dependency, whenever that dependency is encountered during resolution.

This is the preferred method for managing the version of a component across multiple
configurations or projects.

When Gradle resolves a module version, it considers all relevant factors, including rich versions,
transitive dependencies, and dependency constraints for that module. The highest version that
meets all the conditions is selected. If no such version exists, Gradle will fail with an error, detailing
the conflicting declarations.

In such cases, you can adjust your dependency declarations, dependency constraints, or make
necessary changes to transitive dependencies.

Like dependency declarations, dependency constraints are scoped by configurations, allowing you
to selectively apply them to specific parts of a build.

The constraints{} block is used within the dependencies{} block to declare these constraints:

build.gradle.kts

plugins {
 `java-platform`
}

dependencies {
 constraints {
 api("commons-httpclient:commons-httpclient:3.1")
 runtime("org.postgresql:postgresql:42.2.5")
 }
}

build.gradle

plugins {
 id 'java-platform'
}

dependencies {
 constraints {
 api 'commons-httpclient:commons-httpclient:3.1'
 runtime 'org.postgresql:postgresql:42.2.5'
 }
}

1. api("commons-httpclient:commons-httpclient:3.1"):

◦ This line creates a constraint on the api configuration, asserting that if commons-httpclient is
ever resolved by a resolvable configuration that extends the api configuration, its version
must be 3.1 or higher.

◦ If a transitive dependency (a dependency of a dependency) or another module in the project
pulls in a different version of commons-httpclient, Gradle enforce the dependency to resolve
to at least version 3.1.

◦ This constraint ensures that the library commons-httpclient will be at least version 3.1 across
all configuration that extend the api configuration.

2. runtime("org.postgresql:postgresql:42.2.5"):

◦ Similarly, this line applies a constraint on the runtime configuration, enforcing that
org.postgresql:postgresql must resolve to at least version 42.2.5.

◦ Even if other dependencies or modules within the project try to bring in a different version
of postgresql, Gradle will choose the higher of 42.2.5 and the other declared versions.

◦ This ensures that any runtime dependencies on postgresql will resolve to at least version
42.2.5 across all resolvable configurations that extend the runtime configuration.

Adding constraints on transitive dependencies

Issues with dependency management often arise from transitive dependencies. Developers
sometimes mistakenly address these issues by adding direct dependencies instead of handling them
properly with constraints.

Dependency constraints allow you to control the selection of transitive dependencies.

In the following example, the version constraint for commons-codec:1.11 applies only when commons-
codec is brought in as a transitive dependency since it is not directly declared as a dependency in
the project. If commons-codec is not pulled in transitively, the constraint has no effect:

build.gradle.kts

dependencies {
 implementation("org.apache.httpcomponents:httpclient")
 constraints {
 implementation("org.apache.httpcomponents:httpclient:4.5.3") {
 because("previous versions have a bug impacting this
application")
 }
 implementation("commons-codec:commons-codec:1.11") {
 because("version 1.9 pulled from httpclient has bugs affecting
this application")
 }
 }
}

build.gradle

dependencies {
 implementation 'org.apache.httpcomponents:httpclient'
 constraints {
 implementation('org.apache.httpcomponents:httpclient:4.5.3') {
 because 'previous versions have a bug impacting this application'
 }
 implementation('commons-codec:commons-codec:1.11') {
 because 'version 1.9 pulled from httpclient has bugs affecting
this application'
 }
 }
}

Dependency constraints can also define rich version constraints and support strict versions,
allowing you to enforce a specific version even if it conflicts with a transitive dependency’s version
(e.g., if a downgrade is necessary).

NOTE

Dependency constraints are only published when using Gradle Module Metadata.
This means they are fully supported only when both publishing and consuming
modules with Gradle. If modules are consumed with Maven or Ivy, the constraints
may not be preserved.

Dependency constraints are transitive. If library A depends on library B, and library B declares a
constraint on module C, that constraint will affect the version of module C that library A depends on.

For example, if library A depends on module C version 2, but library B declares a constraint on
module C version 3, library A will resolve version 3 of module C.

Declaring Dependency Configurations
In Gradle, dependencies are associated with specific scopes, such as compile-time or runtime. These
scopes are represented by configurations, each identified by a unique name.

Gradle plugins often add pre-defined configurations to your project.

For example, when applied, the Java plugin adds configurations to your project for source code
compilation (implementation), test execution (testImplementation), and more (api, compileOnly,
runtimeOnly, etc.):

build.gradle.kts

plugins {
 `java-library`
}
dependencies {
 implementation("org.hibernate:hibernate-core:3.6.7.Final")
 testImplementation("junit:junit:4.+")
 api("com.google.guava:guava:23.0")
}

build.gradle

plugins {
 id 'java-library'
}
dependencies {
 implementation 'org.hibernate:hibernate-core:3.6.7.Final'
 testImplementation 'junit:junit:4.+'
 api 'com.google.guava:guava:23.0'
}

This example highlights dependencies declared on the implementation, testImplementation, and api
configuration for a Java project. See the Java plugin documentation for details.

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.Configuration.html
java_plugin.pdf#sec:java_plugin_and_dependency_management

Resolvable and consumable configurations

Configurations aren’t used just for declaring dependencies, they serve various roles in dependency
management:

1. Declaring Dependencies Role: Configurations that define a set of dependencies.

2. Consumer Role: Configurations that are used to resolve dependencies into artifacts.

3. Producer Role: Configurations that expose artifacts for consumption by other projects.

1. Configurations for declaring dependencies (i.e, declarable configuration)

To declare dependencies in your project, you can use or create declarable configurations. These
configurations help organize and categorize dependencies for different parts of the project.

For example, to express a dependency on another project, you would use a declarable
configurations like implementation:

build.gradle.kts

dependencies {
 // add a project dependency to the implementation configuration
 implementation(project(":lib"))
}

build.gradle

dependencies {
 // add a project dependency to the implementation configuration
 implementation project(":lib")
}

Configurations used for declaring dependencies define and manage the specific libraries or
projects your code requires for tasks such as compilation or testing.

2. Configurations for consumers (i.e, resolvable configuration)

To control how dependencies are resolved and used within your project, you can use or create
resolvable configurations. These configurations define classpaths and other sets of artifacts that
your project needs during different stages, like compilation or runtime.

For example, the implementation configuration declares the dependencies, while compileClasspath
and runtimeClasspath are resolvable configurations designed for specific purposes. When
resolved, they represent the classpaths needed for compilation and runtime, respectively:

build.gradle.kts

configurations {
 // declare a resolvable configuration that is going to resolve the
compile classpath of the application
 resolvable("compileClasspath") {
 //isCanBeConsumed = false
 //isCanBeDeclared = false
 extendsFrom(implementation)
 }
}

build.gradle

configurations {
 // declare a resolvable configuration that is going to resolve the
compile classpath of the application
 resolvable("compileClasspath") {
 //canBeConsumed = false
 //canBeDeclared = false
 extendsFrom(implementation)
 }
}

Resolvable configurations are those that can be resolved to produce a set of files or artifacts.
These configurations are used to define the classpath for different stages of a build process, such as
compilation or runtime.

3. Configurations for producers (i.e., consumable configuration)

Consumable configurations are used to expose artifacts to other projects. These configurations
define what parts of your project can be consumed by others, like APIs or runtime dependencies,
but are not meant to be resolved directly within your project.

For example, the exposedApi configuration is a consumable configuration that exposes the API of a
component to consumers:

build.gradle.kts

configurations {
 // a consumable configuration meant for consumers that need the API of
this component
 consumable("exposedApi") {

 //isCanBeResolved = false
 //isCanBeDeclared = false
 extendsFrom(implementation)
 }
}

build.gradle

configurations {
 // a consumable configuration meant for consumers that need the API of
this component
 consumable("exposedApi") {
 //canBeResolved = false
 //canBeDeclared = false
 extendsFrom(implementation)
 }
}

A library typically provides consumable configurations like apiElements (for compilation) and
runtimeElements (for runtime dependencies). These configurations expose the necessary artifacts for
other projects to consume, without being resolvable within the current project. The canBeDeclared,
isCanBeConsumed and isCanBeResolved flags help distinguish the roles of these configurations.

Configuration flags and roles

Configurations have three key flags:

• canBeResolved: Indicates that this configuration is intended for resolving a set of dependencies
into a dependency graph. A resolvable configuration should not be declarable or consumable.

• canBeConsumed: Indicates that this configuration is intended for exposing artifacts outside this
project. A consumable configuration should not be declarable or resolvable.

• canBeDeclared: Indicates that this configuration is intended for declaring dependencies. A
declarable configuration should not be resolvable or consumable.

TIP Configurations should only have one of these flags enabled.

In short, a configuration’s role is determined by the canBeResolved, canBeConsumed, or canBeDeclared
flag:

Configuration role Can be resolved Can be consumed Can be declared

Dependency Scope false false true

Resolve for certain usage true false false

Exposed to consumers false true false

Configuration role Can be resolved Can be consumed Can be declared

Legacy, don’t use true true true

For backwards compatibility, the flags have a default value of true, but as a plugin author, you
should always determine the right values for those flags, or you might accidentally introduce
resolution errors.

This example demonstrates how to manually declare the core Java configurations (normally
provided by the Java plugin) in Gradle:

build.gradle.kts

// declare a "configuration" named "implementation"
val implementation by configurations.creating {
 isCanBeConsumed = false
 isCanBeResolved = false
}

dependencies {
 // add a project dependency to the implementation configuration
 implementation(project(":lib"))
}

configurations {
 // declare a resolvable configuration that is going to resolve the
compile classpath of the application
 resolvable("compileClasspath") {
 //isCanBeConsumed = false
 //isCanBeDeclared = false
 extendsFrom(implementation)
 }
 // declare a resolvable configuration that is going to resolve the
runtime classpath of the application
 resolvable("runtimeClasspath") {
 //isCanBeConsumed = false
 //isCanBeDeclared = false
 extendsFrom(implementation)
 }
}

configurations {
 // a consumable configuration meant for consumers that need the API of
this component
 consumable("exposedApi") {
 //isCanBeResolved = false
 //isCanBeDeclared = false
 extendsFrom(implementation)
 }
 // a consumable configuration meant for consumers that need the

java_plugin.pdf#java_plugin

implementation of this component
 consumable("exposedRuntime") {
 //isCanBeResolved = false
 //isCanBeDeclared = false
 extendsFrom(implementation)
 }
}

build.gradle

// declare a "configuration" named "implementation"
configurations {
 // declare a "configuration" named "implementation"
 implementation {
 canBeConsumed = false
 canBeResolved = false
 }
}

dependencies {
 // add a project dependency to the implementation configuration
 implementation project(":lib")
}

configurations {
 // declare a resolvable configuration that is going to resolve the
compile classpath of the application
 resolvable("compileClasspath") {
 //canBeConsumed = false
 //canBeDeclared = false
 extendsFrom(implementation)
 }
 // declare a resolvable configuration that is going to resolve the
runtime classpath of the application
 resolvable("runtimeClasspath") {
 //canBeConsumed = false
 //canBeDeclared = false
 extendsFrom(implementation)
 }
}

configurations {
 // a consumable configuration meant for consumers that need the API of
this component
 consumable("exposedApi") {
 //canBeResolved = false
 //canBeDeclared = false
 extendsFrom(implementation)
 }

 // a consumable configuration meant for consumers that need the
implementation of this component
 consumable("exposedRuntime") {
 //canBeResolved = false
 //canBeDeclared = false
 extendsFrom(implementation)
 }
}

The following configurations are created:

• implementation: Used for declaring project dependencies but neither consumed nor resolved.

• compileClasspath + runtimeClasspath: Resolvable configurations that collect compile-time and
runtime dependencies from implementation.

• exposedApi + exposedRuntime: Consumable configurations that expose artifacts (API and runtime)
to other projects, but aren’t meant for internal resolution.

This setup mimics the behavior of the implementation, compileClasspath, runtimeClasspath,
apiElements, and runtimeElements configurations in the Java plugin.

Deprecated configurations

In the past, some configurations did not define which role they were intended to be used for.

A deprecation warning is emitted when a configuration is used in a way that was not intended. To
fix the deprecation, you will need to stop using the configuration in the deprecated role. The exact
changes required depend on how the configuration is used and if there are alternative
configurations that should be used instead.

Creating custom configurations

You can define custom configurations to declare separate scopes of dependencies for specific
purposes.

Suppose you want to generate Javadocs with AsciiDoc formatting embedded within your Java
source code comments. By setting up the asciidoclet configuration, you enable Gradle to use
Asciidoclet, allowing your Javadoc task to produce HTML documentation with enhanced formatting
options:

build.gradle.kts

val asciidoclet by configurations.creating

dependencies {
 asciidoclet("org.asciidoctor:asciidoclet:1.+")
}

java_plugin.pdf#java_plugin

tasks.register("configureJavadoc") {
 doLast {
 tasks.javadoc {
 options.doclet = "org.asciidoctor.Asciidoclet"
 options.docletpath = asciidoclet.files.toList()
 }
 }
}

build.gradle

configurations {
 asciidoclet
}

dependencies {
 asciidoclet 'org.asciidoctor:asciidoclet:1.+'
}

You can manage custom configurations using the configurations block. Configurations must have
names and can extend each other. For more details, refer to the ConfigurationContainer API.

NOTE
Configurations are intended to be used for a single role: declaring dependencies,
performing resolution, or defining consumable variants.

There are three main use cases for creating custom configurations:

1. API/Implementation Separation: Create custom configurations to separate API dependencies
(exposed to consumers) from implementation dependencies (used internally during
compilation or runtime).

◦ You might create an api configuration for libraries that consumers will depend on, and an
implementation configuration for libraries that are only needed internally. The api
configuration is typically consumed by downstream projects, while implementation
dependencies are hidden from consumers but used internally.

◦ This separation ensures that your project maintains clean boundaries between its public API
and strictly internal mechanisms.

2. Resolvable Configuration Creation: Create a custom resolvable configuration to resolve
specific sets of dependencies, like classpaths, at various build stages.

◦ You might create a compileClasspath configuration that resolves only the dependencies
needed to compile your project. Similarly, you could create a runtimeClasspath configuration
to resolve the dependencies needed to run the project at runtime.

◦ This allows fine-grained control over which dependencies are available during different

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

build phases, such as compilation or testing.

3. Consumable Configuration from Dependency Configuration: Create a custom consumable
configuration to expose artifacts or dependencies for other projects to consume, typically when
your project produces artifacts like JARs.

◦ You might create an exposedApi configuration to expose the API dependencies of your project
for consumption by other projects. Similarly, a runtimeElements configuration could be
created to expose the runtime dependencies or artifacts that other projects need.

◦ Consumable configurations ensure that only the necessary artifacts or dependencies are
exposed to consumers.

Configuration API incubating methods

Several incubating factory methods—resolvable(), consumable(), and dependencyScope()—within the
ConfigurationContainer API can be used to simplify the creation of configurations with specific
roles.

These methods help build authors document the purpose of a configuration and avoid manually
setting various configuration flags, streamlining the process and ensuring consistency:

• resolvable(): Creates a configuration intended for resolving dependencies. This means the
configuration can be used to resolve dependencies but not consumed by other projects.

• consumable(): Creates a configuration meant to be consumed by other projects but not used to
resolve dependencies itself.

• dependencyScope(): Creates a configuration that establishes a dependency scope, setting up the
necessary properties to act both as a consumer and provider, depending on the use case.

Configuration inheritance

Configurations can inherit from other configurations, creating an inheritance hierarchy.

Configurations form an inheritance hierarchy using the Configuration.extendsFrom(Configuration…
) method. A configuration can extend any other configuration other than a detached configuration,
regardless of how it is defined in the build script or plugin.

TIP
Avoid extending consumable or resolvable configurations with configurations that are
not consumable or resolvable, respectively.

Configurations can only extend configurations within the same project.

When extending a configuration, the new configuration inherits:

• dependencies

• dependency constraints

• exclude rules

• artifacts

• capabilities

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ConfigurationContainer.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom)
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom)
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.api.artifacts/-configuration-container/detached-configuration.html

The extension does not include attributes. It also does not extend
consumable/resolvable/declarable status.

Dependency resolution

The entrypoint to all dependency resolution APIs is a resolvable Configuration. The Java plugins
primarily use the compileClasspath, and runtimeClasspath configurations to resolve jars for
compilation and runtime respectively.

A resolvable configuration is intended for initiating dependency resolution. The dependencies to be
resolved are declared on dependency scope configurations. The Java plugins use the api,
implementation, and runtimeOnly dependency scope configurations, among others, as a source of
dependencies to be resolved by the resolvable configurations.

Consider the following example that demonstrates how to declare a set of configurations intended
for resolution:

NOTE This example uses incubating APIs.

build.gradle.kts

val implementation = configurations.dependencyScope("implementation")
val runtimeClasspath = configurations.resolvable("runtimeClasspath") {
 extendsFrom(implementation.get())
}

build.gradle

configurations {
 dependencyScope("implementation")
 resolvable("runtimeClasspath") {
 extendsFrom(implementation)
 }
}

Dependencies can be declared on the implementation configuration using the dependencies block.
See the Declaring Dependencies chapter for more information on the types of dependencies that
can be declared, and the various options for customizing dependency declarations.

build.gradle.kts

dependencies {
 implementation("com.google.guava:guava:33.2.1-jre")

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Configuration.html

}

build.gradle

dependencies {
 implementation("com.google.guava:guava:33.2.1-jre")
}

Now that we’ve created a dependency scope configuration for declaring dependencies, and a
resolvable configuration for resolving those dependencies, we can use Gradle’s dependency
resolution APIs to access the results of resolution.

Unsafe configuration resolution errors

Resolving a configuration can have side effects on Gradle’s project model. As a result, Gradle must
manage access to each project’s configurations.

There are a number of ways a configuration might be resolved unsafely. For example:

• A task from one project directly resolves a configuration in another project in the task’s action.

• A task specifies a configuration from another project as an input file collection.

• A build script for one project resolves a configuration in another project during evaluation.

• Project configurations are resolved in the settings file.

Gradle produces a deprecation warning for each unsafe access.

Unsafe access can cause indeterminate errors. You should fix unsafe access warnings in your build.

In most cases, you can resolve unsafe accesses by creating a proper cross-project dependency.

DECLARING REPOSITORIES

Declaring Repositories Basics
Gradle can resolve local or external dependencies from one or many repositories based on Maven,
Ivy or flat directory formats.

Repositories intended for use in a single project are declared in your build.gradle(.kts) file:

build.gradle.kts

repositories {
 mavenCentral()
 maven {
 url = uri("https://repo.spring.io/snapshot/")
 }
}

build.gradle

repositories {
 mavenCentral()
 maven {
 url = 'https://repo.spring.io/snapshot/'
 }
}

To centralize repository declarations in your settings.gradle(.kts) file, head over to Centralizing
Repository Declarations.

Declaring a publicly-available repository

Organizations building software may want to leverage public binary repositories to download and
consume publicly available dependencies. Popular public repositories include Maven Central and
the Google Android repository.

Gradle provides built-in shorthand notations for these widely-used repositories.

Under the covers, Gradle resolves dependencies from the respective URL of the public repository
defined by the shorthand notation. All shorthand notations are available via the RepositoryHandler
API.

Alternatively, you can explicitly specify the URL of the repository for more fine-grained control.

Maven Central repository

Maven Central is a popular repository hosting open source libraries for consumption by Java
projects.

To declare the Maven Central repository for your build add this to your script:

build.gradle.kts

repositories {
 mavenCentral()
}

build.gradle

repositories {
 mavenCentral()
}

Google Maven repository

The Google repository hosts Android-specific artifacts including the Android SDK. For usage
examples, see the relevant Android documentation.

To declare the Google Maven repository add this to your build script:

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
https://repo.maven.apache.org/maven2/
https://developer.android.com/studio/build/dependencies.html#google-maven
https://maven.google.com/

build.gradle.kts

repositories {
 google()
}

build.gradle

repositories {
 google()
}

Declaring a custom repository by URL

Most enterprise projects set up a binary repository available only within an intranet. In-house
repositories enable teams to publish internal binaries, setup user management and security
measures, and ensure uptime and availability.

Specifying a custom URL is also helpful if you want to declare publicly-available repository that
Gradle does not provide a shorthand for.

Repositories with custom URLs can be specified as Maven or Ivy repositories by calling the
corresponding methods available on the RepositoryHandler API:

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/maven2")
 }
}

build.gradle

repositories {
 maven {
 url = "http://repo.mycompany.com/maven2"
 }
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Gradle supports additional protocols beyond http and https, such as file, sftp, and s3 for custom
URLs.

For full coverage, see the section on supported repository types.

You can also define your own repository layout by using ivy { } repositories, as they are very
flexible in terms of how modules are organised in a repository:

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 }
}

build.gradle

repositories {
 ivy {
 url = "http://repo.mycompany.com/repo"
 }
}

Declaring multiple repositories

You can define more than one repository for resolving dependencies. Declaring multiple
repositories is helpful if some dependencies are only available in one repository but not the other.

You can mix any type of repository described in the reference section.

build.gradle.kts

repositories {
 mavenCentral()
 maven {
 url = uri("https://repo.spring.io/release")
 }
 maven {
 url = uri("https://repository.jboss.org/maven2")
 }
}

build.gradle

repositories {
 mavenCentral()
 maven {
 url = "https://repo.spring.io/release"
 }
 maven {
 url = "https://repository.jboss.org/maven2"
 }
}

The order of repository declaration determines the order that Gradle will search for dependencies
during resolution. If Gradle finds a dependency’s metadata in a particular repository, it will attempt
to download all the artifacts for that module from the same repository.

You can learn more about the inner workings of dependency downloads.

Plugin repositories

Gradle uses a different set of repositories for resolving Gradle plugins and resolving project
dependencies:

1. Plugin dependencies: When resolving plugins for build scripts, Gradle uses a distinct set of
repositories to locate and load the required plugins.

2. Project dependencies: When resolving project dependencies, Gradle only uses the repositories
declared in the build script and ignores the plugin repositories.

By default, Gradle uses the Gradle Plugin Portal to search for plugins:

settings.gradle.kts

pluginManagement {
 repositories {
 mavenCentral()
 gradlePluginPortal()
 }
}

settings.gradle

pluginManagement {
 repositories {
 mavenCentral()

http://plugins.gradle.org

 gradlePluginPortal()
 }
}

However, some plugins may be hosted in other repositories (public or private). To include these
plugins, you need to specify additional repositories in your build script so Gradle knows where to
search.

Since declaring repositories depends on how the plugin is applied, refer to the Custom Plugin
Repositories for more details on configuring repositories for plugins from different sources.

Centralizing Repository Declarations
Instead of declaring repositories in every subproject of your build or via an allprojects block,
Gradle provides a way to declare them centrally for all projects.

NOTE Central declaration of repositories is an incubating feature.

You can declare repositories that will be used by convention in every subproject in the
settings.gradle(.kts) file:

settings.gradle.kts

dependencyResolutionManagement {
 repositories {
 mavenCentral()
 }
}

settings.gradle

dependencyResolutionManagement {
 repositories {
 mavenCentral()
 }
}

The dependencyResolutionManagement repositories block accepts the same notations as in a project,
including Maven or Ivy repositories, with or without credentials.

Repositories mode

By default, repositories declared in a project’s build.gradle(.kts) file will override those declared
in settings.gradle(.kts). However, you can control this behavior using the repositoriesMode
setting:

settings.gradle.kts

dependencyResolutionManagement {
 repositoriesMode = RepositoriesMode.PREFER_PROJECT
}

settings.gradle

dependencyResolutionManagement {
 repositoriesMode = RepositoriesMode.PREFER_PROJECT
}

[[sec:available-modes] == Available modes

There are three modes for dependency resolution management:

Mode Description Default? Use-Case

PREFER_PROJECT Repositories declared
in a project override
those declared in
settings.gradle(.kts).

Yes Useful when teams
need to use different
repositories specific to
their subprojects.

PREFER_SETTINGS Repositories declared
in
settings.gradle(.kts)
override those declared
in a project.

No Useful for enforcing the
use of approved
repositories across
large teams.

FAIL_ON_PROJECT_REPOS Declaring a repository
in a project triggers a
build error.

No Strictly enforces the use
of repositories declared
in
settings.gradle(.kts).

You can change the behavior to prefer the repositories in settings.gradle(.kts):

settings.gradle.kts

dependencyResolutionManagement {
 repositoriesMode = RepositoriesMode.PREFER_SETTINGS
}

settings.gradle

dependencyResolutionManagement {
 repositoriesMode = RepositoriesMode.PREFER_SETTINGS
}

Gradle will warn you if a project or plugin declares a repository when using this mode.

To enforce that only repositories declared in settings.gradle(.kts) are used, you can configure
Gradle to fail the build when a project plugin is declared:

settings.gradle.kts

dependencyResolutionManagement {
 repositoriesMode = RepositoriesMode.FAIL_ON_PROJECT_REPOS
}

settings.gradle

dependencyResolutionManagement {
 repositoriesMode = RepositoriesMode.FAIL_ON_PROJECT_REPOS
}

Repository Types
Gradle supports various sources for resolving dependencies, accommodating different metadata
formats and connectivity methods. You can resolve dependencies from:

• Maven-compatible artifact repositories (e.g., Maven Central)

• Ivy-compatible artifact repositories (including custom layouts)

• Local (flat) directories

Maven repositories

Many organizations host dependencies in Maven repositories. Gradle can declare Maven
repositories by specifying their URL:

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/maven2")
 }
}

build.gradle

repositories {
 maven {
 url = "http://repo.mycompany.com/maven2"
 }
}

Composite Maven repository

Sometimes, POMs are published in one location, and JARs in another. You can define such a
repository as follows:

build.gradle.kts

repositories {
 maven {
 // Look for POMs and artifacts, such as JARs, here
 url = uri("http://repo2.mycompany.com/maven2")
 // Look for artifacts here if not found at the above location
 artifactUrls("http://repo.mycompany.com/jars")
 artifactUrls("http://repo.mycompany.com/jars2")
 }
}

build.gradle

repositories {

 maven {
 // Look for POMs and artifacts, such as JARs, here
 url = "http://repo2.mycompany.com/maven2"
 // Look for artifacts here if not found at the above location
 artifactUrls "http://repo.mycompany.com/jars"
 artifactUrls "http://repo.mycompany.com/jars2"
 }
}

Gradle will first look for POMs and artifacts at the base URL, and if the artifact is not found, it will
check the additional artifactUrls.

Authenticated Maven repository

You can specify credentials for Maven repositories that require authentication. See Supported
Repository Protocols for authentication options.

Local Maven repository

Gradle can consume dependencies from a local Maven repository, that is repositories on the local
file system:

build.gradle.kts

repositories {
 maven {
 url = uri(layout.buildDirectory.dir("repo"))
 }
}

build.gradle

repositories {
 maven {
 url = uri(layout.buildDirectory.dir("repo"))
 }
}

Gradle can consume dependencies from the local Maven repository. This is useful for teams that
want to test their setup locally before publishing their plugin.

You should ensure that using the local Maven repository is necessary before adding mavenLocal() to
your build script:

https://maven.apache.org/guides/introduction/introduction-to-repositories.html

build.gradle.kts

repositories {
 mavenLocal()
}

build.gradle

repositories {
 mavenLocal()
}

NOTE
Gradle manages its own cache and doesn’t need to declare the local Maven
repository even if you resolve dependencies from a remote Maven repository.

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If a
settings.xml file is defined in the user’s home directory (~/.m2/settings.xml), this location takes
precedence over M2_HOME/conf Otherwise, Gradle defaults to ~/.m2/repository.

TIP
As a general recommendation, avoid using mavenLocal(). Unlike Maven builds, Gradle
can share artifacts between projects using project dependencies. Publishing to the
local maven repo is not necessary for sharing artifacts between projects.

Ivy repositories

Many organizations host dependencies in Ivy repositories.

Standard layout Ivy repository

To declare an Ivy repository with the standard layout, simply specify the URL:

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 }
}

build.gradle

repositories {
 ivy {
 url = "http://repo.mycompany.com/repo"
 }
}

Named layout Ivy repository

You can specify that your repository follows the Ivy default layout:

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 layout("maven")
 }
}

build.gradle

repositories {
 ivy {
 url = "http://repo.mycompany.com/repo"
 layout "maven"
 }
}

Valid named layout values are gradle (default), maven, and ivy. Refer to
IvyArtifactRepository.layout(java.lang.String) in the API documentation for more details.

Custom pattern layout Ivy repository

To define an Ivy repository with a non-standard layout, you can set up a pattern layout:

build.gradle.kts

repositories {

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String)

 ivy {
 url = uri("http://repo.mycompany.com/repo")
 patternLayout {
 artifact("[module]/[revision]/[type]/[artifact].[ext]")
 }
 }
}

build.gradle

repositories {
 ivy {
 url = "http://repo.mycompany.com/repo"
 patternLayout {
 artifact "[module]/[revision]/[type]/[artifact].[ext]"
 }
 }
}

For an Ivy repository that fetches Ivy files and artifacts from different locations, define separate
patterns:

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 patternLayout {
 artifact("3rd-party-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]")
 artifact("company-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]")
 ivy("ivy-files/[organisation]/[module]/[revision]/ivy.xml")
 }
 }
}

build.gradle

repositories {
 ivy {
 url = "http://repo.mycompany.com/repo"
 patternLayout {

 artifact "3rd-party-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 artifact "company-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 ivy "ivy-files/[organisation]/[module]/[revision]/ivy.xml"
 }
 }
}

Optionally, you can enable Maven-style layout for the 'organisation' part, with forward slashes
replacing dots:

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 patternLayout {
 artifact("[organisation]/[module]/[revision]/[artifact]-
[revision].[ext]")
 setM2compatible(true)
 }
 }
}

build.gradle

repositories {
 ivy {
 url = "http://repo.mycompany.com/repo"
 patternLayout {
 artifact "[organisation]/[module]/[revision]/[artifact]-
[revision].[ext]"
 m2compatible = true
 }
 }
}

Authenticated Ivy repository

You can specify credentials for Ivy repositories that require authentication. See Supported
Repository Protocols for authentication options.

Local Ivy repository

Gradle can consume dependencies from a local Ivy repository, that is repositories on the local file
system:

build.gradle.kts

repositories {
 ivy {
 // URL can refer to a local directory
 url = uri("../local-repo")
 }
}

build.gradle

repositories {
 ivy {
 // URL can refer to a local directory
 url = file("../local-repo")
 }
}

Flat directory repository

Some projects store dependencies on a shared drive or within the project’s source code rather than
using a binary repository. To use a flat filesystem directory as a repository, you can configure it like
this:

build.gradle.kts

repositories {
 flatDir {
 dirs("lib")
 }
 flatDir {
 dirs("lib1", "lib2")
 }
}

build.gradle

repositories {
 flatDir {
 dirs 'lib'
 }
 flatDir {
 dirs 'lib1', 'lib2'
 }
}

This configuration adds repositories that search specified directories for dependencies.

NOTE
Flat directory repositories are discouraged, as they do not support metadata
formats like Ivy XML or Maven POM files.

In general, binary dependencies should be sourced from an external repository, but if storing
dependencies externally is not an option, prefer declaring a Maven or Ivy repository using a local
file URL instead.

When resolving dependencies from a flat dir repo, Gradle dynamically generates adhoc
dependency metadata based on the presence of artifacts. Gradle prefers modules with real
metadata over those generated by flat directory repositories. For this reason, flat directories cannot
override artifacts with real metadata from other declared repositories.

For instance, if Gradle finds jmxri-1.2.1.jar in a flat directory and jmxri-1.2.1.pom in another
repository, it will use the metadata from the latter.

Metadata Formats
Dependency metadata refers to the information associated with a dependency that describes its
characteristics, relationships, and requirements.

This metadata includes details such as:

1. Identity: Module dependencies are uniquely identified by their group, name, and version (GAV)
coordinates.

2. Dependencies: A list of other binaries that this dependency requires, including their versions.

3. Variants: Different forms of the component (e.g., compile, runtime, apiElements,
runtimeElements) that can be consumed in different contexts.

4. Artifacts: The actual files (like JARs, ZIPs, etc.) produced by the component, which may include
compiled code, resources, or documentation.

5. Capabilities: Describes the functionality or features that a module provides or consumes,
helping to avoid conflicts when different modules provide the same capability.

6. Attributes: Key-value pairs used to differentiate between variants (e.g.
org.gradle.jvm.version:8).

Depending on the repository type, dependency metadata are stored in different formats:

• Gradle: Gradle Module Metadata (.module) files

• Maven: Maven POM (pom.xml) files

• Ivy: Ivy Descriptor (ivy.xml) files

Some repositories may contain multiple types of metadata for a single component. When Gradle
publishes to a Maven repository, it publishes both a Gradle Module Metadata (GMM) files and a
Maven POM file.

This metadata plays a crucial role in dependency resolution, by allowing the dependencies of
binary artifacts to be tracked alongside the artifact itself. By reading dependency metadata, Gradle
is able to determine which versions of other artifacts a given dependency requires.

Supported metadata formats

External module dependencies require module metadata so that Gradle can determine the
transitive dependencies of a module. Gradle supports various metadata formats to achieve this.

Gradle Module Metadata (GMM) files

Gradle Module Metadata is specifically designed to support all features of Gradle’s dependency
management model, making it the preferred format.

You can find the specification here.

{
 "formatVersion": "1.1",
 "component": {
 "group": "com.example",
 "module": "my-library",
 "version": "1.0"
 }
}

POM files

Gradle natively supports Maven POM files. By default, Gradle will first look for a POM file.
However, if the file contains a special marker, Gradle will use Gradle Module Metadata instead.

<project xmlns="http://maven.apache.org/POM/4.0.0">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.example</groupId>
 <artifactId>my-library</artifactId>
 <version>1.0</version>

https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://maven.apache.org/pom.html

</project>

Ivy files

Gradle also supports Ivy descriptor files. Gradle will first look for an ivy.xml file, but if this file
contains a special marker, it will use Gradle Module Metadata instead.

<ivy-module version="2.0">
 <info organisation="com.example" module="my-library" revision="1.0"/>
 <dependencies>
 <dependency org="org.example" name="dependency" rev="1.2"/>
 </dependencies>
</ivy-module>

Supported metadata sources

When searching for a component in a repository, Gradle checks for supported metadata file formats
by default.

Gradle first looks for .module (Gradle module metadata) files. In a Maven repository, Gradle then
looks for .pom files. In an Ivy repository, it checks for ivy.xml files. And in a flat directory repository,
it looks directly for .jar files without expecting any metadata.

If you define a custom repository, you can configure how Gradle searches for metadata. For
instance, you can set up a Maven repository will optionally resolve JARs that don’t have associated
POM files. This is done by configuring metadata sources for the repository:

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/repo")
 metadataSources {
 mavenPom()
 artifact()
 }
 }
}

build.gradle

repositories {
 maven {
 url = "http://repo.mycompany.com/repo"
 metadataSources {

http://ant.apache.org/ivy/

 mavenPom()
 artifact()
 }
 }
}

You can specify multiple metadata sources, and Gradle will search through them in a predefined
order. The following metadata sources are supported:

Metadata
source

Description Default
Order

Mave
n

Ivy / flat
dir

gradleMetadata(
)

Look for Gradle .module files 1st yes yes

mavenPom() Look for Maven .pom files 2nd yes yes

ivyDescriptor() Look for ivy.xml files 2nd no yes

artifact() Look directly for artifact without associated
metadata

3rd yes yes

By default, Gradle will require that a dependency has associated metadata.

To relax this requirement and allow Gradle to resolve artifacts without associated metadata, specify
the artifact metadata source:

mavenCentral {
 metadataSources {
 mavenPom()
 artifact()
 }
}

The above example instructs Gradle to first look for component metadata from a POM file, and if
not present, to derive metadata from the artifact itself.

When parsing metadata files (Ivy or Maven), Gradle checks for a marker that indicates the presence
of a matching Gradle Module Metadata file. If found, Gradle will prefer the Gradle metadata.

To disable this behavior, use the ignoreGradleMetadataRedirection() option:

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/repo")
 metadataSources {

 mavenPom()
 artifact()
 ignoreGradleMetadataRedirection()
 }
 }
}

build.gradle

repositories {
 maven {
 url = "http://repo.mycompany.com/repo"
 metadataSources {
 mavenPom()
 artifact()
 ignoreGradleMetadataRedirection()
 }
 }
}

Supported Protocols
Gradle supports a variety of transport protocols for Maven and Ivy repositories.

Supported transport protocols

These protocols determine how Gradle communicates with the repositories to resolve
dependencies.

Type Credential types Link

file none

http username/password Documentation

https username/password Documentation

sftp username/password Documentation

s3 access key/secret key/session token or Environment variables Documentation

gcs default application credentials sourced from well known
files, Environment variables etc.

Documentation

NOTE

Usernames and passwords should never be stored in plain text in your build files.
Instead, store credentials in a local gradle.properties file or use an open-source
Gradle plugin for encrypting and consuming credentials, such as the credentials
plugin.

https://developers.google.com/identity/protocols/application-default-credentials
https://plugins.gradle.org/plugin/nu.studer.credentials
https://plugins.gradle.org/plugin/nu.studer.credentials

The transport protocol is specified as part of the repository URL.

Below are examples of how to declare repositories using various protocols:

Example 15. Declaring HTTP-based Maven and Ivy Repositories

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/maven2")
 }

 ivy {
 url = uri("http://repo.mycompany.com/repo")
 }
}

build.gradle

repositories {
 maven {
 url = "http://repo.mycompany.com/maven2"
 }

 ivy {
 url = "http://repo.mycompany.com/repo"
 }
}

Example 16. Declaring an SFTP Protocol for a Repository

build.gradle.kts

repositories {
 maven {
 url = uri("sftp://repo.mycompany.com:22/maven2")
 credentials {
 username = "user"
 password = "password"
 }
 }

 ivy {
 url = uri("sftp://repo.mycompany.com:22/repo")

#ex-declaring-http-based-maven-and-ivy-repositories
#ex-declaring-an-sftp-protocol-for-a-repository

 credentials {
 username = "user"
 password = "password"
 }
 }
}

build.gradle

repositories {
 maven {
 url = "sftp://repo.mycompany.com:22/maven2"
 credentials {
 username = "user"
 password = "password"
 }
 }

 ivy {
 url = "sftp://repo.mycompany.com:22/repo"
 credentials {
 username = "user"
 password = "password"
 }
 }
}

Example 17. Declaring an S3-Backed Maven and Ivy Repository

build.gradle.kts

repositories {
 maven {
 url = uri("s3://myCompanyBucket/maven2")
 credentials(AwsCredentials::class) {
 accessKey = "someKey"
 secretKey = "someSecret"
 // optional
 sessionToken = "someSTSToken"
 }
 }

 ivy {
 url = uri("s3://myCompanyBucket/ivyrepo")
 credentials(AwsCredentials::class) {
 accessKey = "someKey"

#ex-declaring-an-s3-backed-maven-and-ivy-repository

 secretKey = "someSecret"
 // optional
 sessionToken = "someSTSToken"
 }
 }
}

build.gradle

repositories {
 maven {
 url = "s3://myCompanyBucket/maven2"
 credentials(AwsCredentials) {
 accessKey = "someKey"
 secretKey = "someSecret"
 // optional
 sessionToken = "someSTSToken"
 }
 }

 ivy {
 url = "s3://myCompanyBucket/ivyrepo"
 credentials(AwsCredentials) {
 accessKey = "someKey"
 secretKey = "someSecret"
 // optional
 sessionToken = "someSTSToken"
 }
 }
}

Example 18. Declaring an S3-Backed Maven and Ivy Repository Using IAM

build.gradle.kts

repositories {
 maven {
 url = uri("s3://myCompanyBucket/maven2")
 authentication {
 create<AwsImAuthentication>("awsIm") // load from EC2 role or env
var
 }
 }

 ivy {
 url = uri("s3://myCompanyBucket/ivyrepo")

#ex-declaring-an-s3-backed-maven-and-ivy-repository-using-iam

 authentication {
 create<AwsImAuthentication>("awsIm")
 }
 }
}

build.gradle

repositories {
 maven {
 url = "s3://myCompanyBucket/maven2"
 authentication {
 awsIm(AwsImAuthentication) // load from EC2 role or env var
 }
 }

 ivy {
 url = "s3://myCompanyBucket/ivyrepo"
 authentication {
 awsIm(AwsImAuthentication)
 }
 }
}

Example 19. Declaring a GCS-Backed Maven and Ivy Repository

build.gradle.kts

repositories {
 maven {
 url = uri("gcs://myCompanyBucket/maven2")
 }

 ivy {
 url = uri("gcs://myCompanyBucket/ivyrepo")
 }
}

build.gradle

repositories {
 maven {
 url = "gcs://myCompanyBucket/maven2"

#ex-declaring-a-gcs-backed-maven-and-ivy-repository

 }

 ivy {
 url = "gcs://myCompanyBucket/ivyrepo"
 }
}

Configuring authentication schemes

HTTP(S) authentication schemes configuration

When configuring a repository that uses HTTP or HTTPS transport protocols, several authentication
schemes are available. By default, Gradle attempts to use all schemes supported by the Apache
HttpClient library. However, you may want to explicitly specify which authentication schemes
should be used when interacting with a remote server. When explicitly declared, only those
specified schemes will be used.

Basic authentication

You can specify credentials for Maven repositories secured by basic authentication using
PasswordCredentials:

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/maven2")
 credentials {
 username = "user"
 password = "password"
 }
 }
}

build.gradle

repositories {
 maven {
 url = "http://repo.mycompany.com/maven2"
 credentials {
 username = "user"
 password = "password"
 }
 }

http://hc.apache.org/httpcomponents-client-ga/
http://hc.apache.org/httpcomponents-client-ga/
https://docs.gradle.org/8.12/javadoc/org/gradle/api/credentials/PasswordCredentials.html

}

Digest Authentication

To configure a repository to use only DigestAuthentication:

build.gradle.kts

repositories {
 maven {
 url = uri("https://repo.mycompany.com/maven2")
 credentials {
 username = "user"
 password = "password"
 }
 authentication {
 create<DigestAuthentication>("digest")
 }
 }
}

build.gradle

repositories {
 maven {
 url = 'https://repo.mycompany.com/maven2'
 credentials {
 username = "user"
 password = "password"
 }
 authentication {
 digest(DigestAuthentication)
 }
 }
}

Supported Authentication Schemes

BasicAuthentication

Basic access authentication over HTTP. Credentials are sent preemptively.

https://docs.gradle.org/8.12/javadoc/org/gradle/authentication/http/DigestAuthentication.html
https://docs.gradle.org/8.12/javadoc/org/gradle/authentication/http/BasicAuthentication.html

DigestAuthentication

Digest access authentication over HTTP.

HttpHeaderAuthentication

Authentication based on a custom HTTP header, such as private tokens or OAuth tokens.

Using preemptive authentication

By default, Gradle submits credentials only when a server responds with an authentication
challenge (HTTP 401). However, some servers might respond with a different code (e.g., GitHub
returns a 404) that could cause dependency resolution to fail. In such cases, you can configure
Gradle to send credentials preemptively by explicitly using the BasicAuthentication scheme:

build.gradle.kts

repositories {
 maven {
 url = uri("https://repo.mycompany.com/maven2")
 credentials {
 username = "user"
 password = "password"
 }
 authentication {
 create<BasicAuthentication>("basic")
 }
 }
}

build.gradle

repositories {
 maven {
 url = 'https://repo.mycompany.com/maven2'
 credentials {
 username = "user"
 password = "password"
 }
 authentication {
 basic(BasicAuthentication)
 }
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/authentication/http/DigestAuthentication.html
https://docs.gradle.org/8.12/javadoc/org/gradle/authentication/http/HttpHeaderAuthentication.html
https://docs.gradle.org/8.12/javadoc/org/gradle/authentication/http/BasicAuthentication.html

Using HTTP header authentication

For Maven repositories that require token-based, OAuth2, or other HTTP header-based
authentication, you can use HttpHeaderCredentials and HttpHeaderAuthentication:

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/maven2")
 credentials(HttpHeaderCredentials::class) {
 name = "Private-Token"
 value = "TOKEN"
 }
 authentication {
 create<HttpHeaderAuthentication>("header")
 }
 }
}

build.gradle

repositories {
 maven {
 url = "http://repo.mycompany.com/maven2"
 credentials(HttpHeaderCredentials) {
 name = "Private-Token"
 value = "TOKEN"
 }
 authentication {
 header(HttpHeaderAuthentication)
 }
 }
}

AWS S3 repositories configuration

When configuring a repository that uses AWS S3, several options and settings are available.

S3 configuration properties

The following system properties can be used to configure interactions with S3 repositories:

org.gradle.s3.endpoint

Overrides the AWS S3 endpoint when using a non-AWS, S3 API-compatible storage service.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/credentials/HttpHeaderCredentials.html
https://docs.gradle.org/8.12/javadoc/org/gradle/authentication/http/HttpHeaderAuthentication.html

org.gradle.s3.maxErrorRetry

Specifies the maximum number of retry attempts when the S3 server responds with an HTTP
5xx status code. The default value is 3 if not specified.

S3 URL formats

S3 URLs must use the 'virtual-hosted-style' format:

s3://<bucketName>[.<regionSpecificEndpoint>]/<s3Key>

Example: s3://myBucket.s3.eu-central-1.amazonaws.com/maven/release

• myBucket: The AWS S3 bucket name.

• s3.eu-central-1.amazonaws.com: The optional region-specific endpoint.

• /maven/release: The AWS S3 key (a unique identifier for an object within a bucket).

S3 proxy settings

A proxy for S3 can be configured using the following system properties:

• For HTTPS:

◦ https.proxyHost

◦ https.proxyPort

◦ https.proxyUser

◦ https.proxyPassword

◦ http.nonProxyHosts (NOTE: this is not a typo.) *For HTTP (if org.gradle.s3.endpoint is set with
an HTTP URI):

◦ http.proxyHost

◦ http.proxyPort

◦ http.proxyUser

◦ http.proxyPassword

◦ http.nonProxyHosts

S3 V4 Signatures (AWS4-HMAC-SHA256)

Some S3 regions (e.g., eu-central-1 in Frankfurt) require that all HTTP requests are signed using
AWS’s signature version 4. It is recommended to specify S3 URLs containing the region-specific
endpoint when using buckets that require V4 signatures:

s3://somebucket.s3.eu-central-1.amazonaws.com/maven/release

If the region-specific endpoint is not specified for buckets requiring V4 Signatures, Gradle defaults
to the us-east-1 region and will issue a warning:

Attempting to re-send the request to with AWS V4 authentication. To avoid this
warning in the future, use region-specific endpoint to access buckets located in
regions that require V4 signing.

Failing to specify the region-specific endpoint for such buckets results in:

• Increased network traffic: Three round-trips to AWS per file upload/download instead of one.

• Slower builds: Due to increased network latency.

• Higher transmission failure rates: Due to additional network overhead.

S3 Cross Account Access

In organizations with multiple AWS accounts (e.g., one per team), the bucket owner may differ from
the artifact publisher or consumers. To ensure consumers can access the artifacts, the bucket
owner must grant the appropriate access. Gradle automatically applies the bucket-owner-full-
control Canned ACL to uploaded objects. Ensure the publisher has the required IAM permissions
(PutObjectAcl and PutObjectVersionAcl if bucket versioning is enabled), either directly or through
an assumed IAM Role. For more details, see AWS S3 Access Permissions.

Google Cloud Storage repositories configuration

When configuring a repository that uses Google Cloud Storage (GCS), several configuration options
and settings are available.

GCS configuration properties

You can use the following system properties to configure interactions with GCS repositories:

org.gradle.gcs.endpoint

Overrides the Google Cloud Storage endpoint, useful when working with a storage service
compatible with the GCS API but not hosted on Google Cloud Platform.

org.gradle.gcs.servicePath

Specifies the root service path from which the GCS client builds requests, with a default value of
/.

GCS URL formats

GCS URLs use a 'virtual-hosted-style' format and must adhere to the following structure:

gcs://<bucketName>/<objectKey>

• <bucketName>: The name of the Google Cloud Storage bucket.

• <objectKey>: The unique identifier for an object within a bucket.

Example: gcs://myBucket/maven/release

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://cloud.google.com/storage/

• myBucket: The bucket name.

• /maven/release: The GCS object key.

Handling credentials

Repository credentials should never be hardcoded in your build script but kept external. Gradle
provides an API in artifact repositories that allows you to declare the type of credentials required,
with their values being looked up from Gradle properties during the build.

For example, consider the following repository configuration:

build.gradle.kts

repositories {
 maven {
 name = "mySecureRepository"
 credentials(PasswordCredentials::class)
 // url = uri(<<some repository url>>)
 }
}

build.gradle

repositories {
 maven {
 name = 'mySecureRepository'
 credentials(PasswordCredentials)
 // url = uri(<<some repository url>>)
 }
}

In this example, the username and password are automatically looked up from properties named
mySecureRepositoryUsername and mySecureRepositoryPassword.

Configuration property prefix

The configuration property prefix, known as the identity, is derived from the repository name.
Credentials can be provided through any of the supported Gradle property mechanisms:
gradle.properties file, command-line arguments, environment variables, or a combination of these.

Conditional credential requirement

Credentials are only required when the build process needs them. For example, if a project is
configured to publish artifacts to a secured repository, but the publishing task isn’t invoked, Gradle

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/repositories/AuthenticationSupported.html#credentials-java.lang.Class-

won’t require the credentials. However, if a task requiring credentials is part of the build process,
Gradle will check for their presence before running any tasks to prevent build failures due to
missing credentials.

Supported credential types

Lookup is only supported for the credential types listed in the table below:

Type Argument Base property name Required?

PasswordCredentials username Username required

password Password required

AwsCredentials accessKey AccessKey required

secretKey SecretKey required

sessionToken SessionToken optional

HttpHeaderCredentials name AuthHeaderName required

value AuthHeaderValue required

Filtering Repository Content
Gradle exposes an API to declare what a repository may or may not contain. There are different use
cases for it:

• Performance when you know a dependency will never be found in a specific repository

• Security by avoiding leaking what dependencies are used in a private project

• Reliability when some repositories contain invalid or incorrect metadata or artifacts

It’s even more important when considering that the declared order of repositories matter.

Declaring a repository filter

build.gradle.kts

repositories {
 maven {
 url = uri("https://repo.mycompany.com/maven2")
 content {
 // this repository *only* contains artifacts with group
"my.company"
 includeGroup("my.company")
 }
 }
 mavenCentral {
 content {
 // this repository contains everything BUT artifacts with group

https://docs.gradle.org/8.12/javadoc/org/gradle/api/credentials/PasswordCredentials.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/credentials/AwsCredentials.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/credentials/HttpHeaderCredentials.html

starting with "my.company"
 excludeGroupByRegex("my\\.company.*")
 }
 }
}

build.gradle

repositories {
 maven {
 url = "https://repo.mycompany.com/maven2"
 content {
 // this repository *only* contains artifacts with group
"my.company"
 includeGroup "my.company"
 }
 }
 mavenCentral {
 content {
 // this repository contains everything BUT artifacts with group
starting with "my.company"
 excludeGroupByRegex "my\\.company.*"
 }
 }
}

By default, repositories include everything and exclude nothing:

• If you declare an include, then it excludes everything but what is included.

• If you declare an exclude, then it includes everything but what is excluded.

• If you declare both includes and excludes, then it includes only what is explicitly included and
not excluded.

It is possible to filter either by explicit group, module or version, either strictly or using regular
expressions. When using a strict version, it is possible to use a version range, using the format
supported by Gradle. In addition, there are filtering options by resolution context: configuration
name or even configuration attributes. See RepositoryContentDescriptor for details.

Declaring content exclusively found in one repository

Filters declared using the repository-level content filter are not exclusive. This means that declaring
that a repository includes an artifact doesn’t mean that the other repositories can’t have it either:
you must declare what every repository contains in extension.

Alternatively, Gradle provides an API which lets you declare that a repository exclusively includes

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/repositories/RepositoryContentDescriptor.html

an artifact. If you do so:

• an artifact declared in a repository can’t be found in any other

• exclusive repository content must be declared in extension (just like for repository-level
content)

build.gradle.kts

repositories {
 // This repository will _not_ be searched for artifacts in my.company
 // despite being declared first
 mavenCentral()
 exclusiveContent {
 forRepository {
 maven {
 url = uri("https://repo.mycompany.com/maven2")
 }
 }
 filter {
 // this repository *only* contains artifacts with group
"my.company"
 includeGroup("my.company")
 }
 }
}

build.gradle

repositories {
 // This repository will _not_ be searched for artifacts in my.company
 // despite being declared first
 mavenCentral()
 exclusiveContent {
 forRepository {
 maven {
 url = "https://repo.mycompany.com/maven2"
 }
 }
 filter {
 // this repository *only* contains artifacts with group
"my.company"
 includeGroup "my.company"
 }
 }
}

It is possible to filter either by explicit group, module or version, either strictly or using regular
expressions. See InclusiveRepositoryContentDescriptor for details.

NOTE

If you leverage exclusive content filtering in the pluginManagement section of the
settings.gradle(.kts), it becomes illegal to add more repositories through the
project buildscript.repositories. In that case, the build configuration will fail.

Your options are either to declare all repositories in settings or to use non-exclusive
content filtering.

Maven repository filtering

For Maven repositories, it’s often the case that a repository would either contain releases or
snapshots. Gradle lets you declare what kind of artifacts are found in a repository using this DSL:

build.gradle.kts

repositories {
 maven {
 url = uri("https://repo.mycompany.com/releases")
 mavenContent {
 releasesOnly()
 }
 }
 maven {
 url = uri("https://repo.mycompany.com/snapshots")
 mavenContent {
 snapshotsOnly()
 }
 }
}

build.gradle

repositories {
 maven {
 url = "https://repo.mycompany.com/releases"
 mavenContent {
 releasesOnly()
 }
 }
 maven {
 url = "https://repo.mycompany.com/snapshots"
 mavenContent {
 snapshotsOnly()
 }
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/repositories/InclusiveRepositoryContentDescriptor.html

}

CENTRALIZING DEPENDENCIES

Platforms
Platforms are used to ensure that all dependencies in a project align with a consistent set of
versions.

Platforms help you manage and enforce version consistency across different modules or libraries,
especially when you are working with a set of related dependencies that need to be kept in sync.

Using a platform

A platform is a specialized software component used to control transitive dependency versions.
Typically, it consists of dependency constraints that either recommend or enforce specific versions.
Platforms are particularly useful when you need to share consistent dependency versions across
multiple projects.

In a typical setup you have:

• A Platform Project: Which defines constraints for dependencies used across different
subprojects.

• A Number of Subprojects: Which depend on the platform and declare dependencies without
specifying versions.

The java-platform plugin supports creating platforms in the Java ecosystem. Platforms are also
commonly published as Maven BOMs (Bill of Materials), which Gradle natively supports.

To use a platform, declare a dependency with the platform keyword:

build.gradle.kts

dependencies {
 // get recommended versions from the platform project
 api(platform(project(":platform")))
 // no version required
 api("commons-httpclient:commons-httpclient")
}

build.gradle

dependencies {
 // get recommended versions from the platform project
 api platform(project(':platform'))
 // no version required
 api 'commons-httpclient:commons-httpclient'

}

This notation automatically performs several actions:

• Sets the org.gradle.category attribute to platform, ensuring Gradle selects the platform
component.

• Enables the endorseStrictVersions behavior by default, enforcing strict versions defined in the
platform.

If strict version enforcement isn’t needed, you can disable it using the doNotEndorseStrictVersions
method.

Creating a platform

In Java projects, the java-platform plugin combined with dependency constraints can be used to
create a platform:

plugins {
 id("java-platform")
}

dependencies {
 constraints {
 api("com.google.guava:guava:30.1-jre")
 api("org.apache.commons:commons-lang3:3.12.0")
 }
}

This defines a custom platform with specific versions of guava and commons-lang3 that can be applied
in other projects.

Importing a platform

Gradle supports importing BOMs, which are POM files containing <dependencyManagement> sections
that manage dependency versions.

In order to qualify as a BOM, a .pom file needs to have pom set. This means that the POM file should
explicitly specify <packaging>pom</packaging> in its metadata.

Gradle treats all entries in the block of a BOM similar to Adding Constraints On Dependencies.

Regular Platform

To import a BOM, declare a dependency on it using the platform dependency modifier method:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Category.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Category.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ModuleDependency.html#endorseStrictVersions--
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Importing_Dependencies

build.gradle.kts

dependencies {
 // import a BOM
 implementation(platform("org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE"))
 // define dependencies without versions
 implementation("com.google.code.gson:gson")
 implementation("dom4j:dom4j")
}

build.gradle

dependencies {
 // import a BOM
 implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE')
 // define dependencies without versions
 implementation 'com.google.code.gson:gson'
 implementation 'dom4j:dom4j'
}

In this example, the Spring Boot BOM provides the versions for gson and dom4j, so no explicit
versions are needed.

Enforced Platform

The enforcedPlatform keyword can be used to override any versions found in the dependency
graph, but should be used with caution as it is effectively transitive and exports forced versions to
all consumers of your project:

build.gradle.kts

dependencies {
 // import a BOM. The versions used in this file will override any other
version found in the graph
 implementation(enforcedPlatform("org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE"))

 // define dependencies without versions
 implementation("com.google.code.gson:gson")
 implementation("dom4j:dom4j")

 // this version will be overridden by the one found in the BOM
 implementation("org.codehaus.groovy:groovy:1.8.6")
}

build.gradle

dependencies {
 // import a BOM. The versions used in this file will override any other
version found in the graph
 implementation enforcedPlatform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE')

 // define dependencies without versions
 implementation 'com.google.code.gson:gson'
 implementation 'dom4j:dom4j'

 // this version will be overridden by the one found in the BOM
 implementation 'org.codehaus.groovy:groovy:1.8.6'
}

When using enforcedPlatform, exercise caution if your software component is intended for
consumption by others. This declaration is transitive and affects the dependency graph of your
consumers. If they disagree with any enforced versions, they’ll need to use exclude. Instead, if your
reusable component strongly favors specific third-party dependency versions, consider using a rich
version declaration with strictly.

Version Catalogs
A version catalog is a selected list of dependencies that can be referenced in build scripts,
simplifying dependency management.

Instead of specifying dependencies directly using string notation, you can pick them from a version
catalog:

build.gradle.kts

dependencies {
 implementation(libs.groovy.core)
}

build.gradle

dependencies {
 implementation(libs.groovy.core)
}

In this example, libs represents the catalog, and groovy is a dependency available in it.

Where the version catalog defining libs.groovy.core is a libs.versions.toml file in the gradle
directory:

gradle/libs.versions.toml

[libraries]
groovy-core = { group = "org.codehaus.groovy", name = "groovy", version = "3.0.5" }

Version catalogs offer several advantages:

• Type-Safe Accessors: Gradle generates type-safe accessors for each catalog, enabling
autocompletion in IDEs.

• Centralized Version Management: Each catalog is visible to all projects in a build.

• Dependency Bundles: Catalogs can group commonly used dependencies into bundles.

• Version Separation: Catalogs can separate dependency coordinates from version information,
allowing shared version declarations.

• Conflict Resolution: Like regular dependency notation, version catalogs declare requested
versions but do not enforce them during conflict resolution.

While version catalogs define versions, they don’t influence the dependency resolution process.
Gradle may still select different versions due to dependency graph conflicts or constraints applied
through platforms or dependency management APIs.

WARNING
Versions declared in a catalog are typically not enforced, meaning the actual
version used in the build may differ based on dependency resolution.

Accessing a catalog

To access items in a version catalog defined in the standard libs.versions.toml file located in the
gradle directory, you use the libs object in your build scripts. For example, to reference a library,
you can use libs.<alias>, and for a plugin, you can use libs.plugins.<alias>.

Declaring dependencies using a version catalog:

build.gradle.kts

dependencies {
 implementation(libs.groovy.core)
 implementation(libs.groovy.json)
 implementation(libs.groovy.nio)
}

build.gradle

dependencies {
 implementation libs.groovy.core
 implementation libs.groovy.json
 implementation libs.groovy.nio
}

Is the same as:

build.gradle.kts

dependencies {
 implementation("org.codehaus.groovy:groovy:3.0.5")
 implementation("org.codehaus.groovy:groovy-json:3.0.5")
 implementation("org.codehaus.groovy:groovy-nio:3.0.5")
}

build.gradle

dependencies {
 implementation 'org.codehaus.groovy:groovy:3.0.5'
 implementation 'org.codehaus.groovy:groovy-json:3.0.5'
 implementation 'org.codehaus.groovy:groovy-nio:3.0.5'
}

Accessors map directly to the aliases and versions defined in the TOML file, offering type-safe
access to dependencies and plugins. This enables IDEs to provide autocompletion, highlight typos,
and identify missing dependencies as errors.

Aliases and type-safe accessors

Aliases in a version catalog consist of identifiers separated by a dash (-), underscore (_), or dot (.).
Type-safe accessors are generated for each alias, normalized to dot notation:

Example aliases Generated accessors

guava libs.guava

groovy-core libs.groovy.core

androidx.awesome.lib libs.androidx.awesome.lib

Creating a catalog

Version catalogs are conventionally declared using a libs.versions.toml file located in the gradle
subdirectory of the root build:

gradle/libs.versions.toml

[versions]
groovy = "3.0.5"
checkstyle = "8.37"

[libraries]
groovy-core = { module = "org.codehaus.groovy:groovy", version.ref = "groovy"
}
groovy-json = { module = "org.codehaus.groovy:groovy-json", version.ref =
"groovy" }
groovy-nio = { module = "org.codehaus.groovy:groovy-nio", version.ref =
"groovy" }
commons-lang3 = { group = "org.apache.commons", name = "commons-lang3",
version = { strictly = "[3.8, 4.0[", prefer="3.9" } }

[bundles]
groovy = ["groovy-core", "groovy-json", "groovy-nio"]

[plugins]
versions = { id = "com.github.ben-manes.versions", version = "0.45.0" }

The TOML catalog format

The TOML file has four sections:

• [versions] – Declares version identifiers.

• [libraries] – Maps aliases to GAV coordinates.

• [bundles] – Defines dependency bundles.

• [plugins] – Declares plugin versions.

https://toml.io/

The TOML file format is very lenient and lets you write "dotted" properties as shortcuts to full
object declarations.

Versions

Versions can be declared either as a single string, in which case they are interpreted as a required
version, or as a rich version:

[versions]
other-lib = "5.5.0" # Required version
my-lib = { strictly = "[1.0, 2.0[", prefer = "1.2" } # Rich version

Supported members of a version declaration are:

• require: the required version

• strictly: the strict version

• prefer: the preferred version

• reject: the list of rejected versions

• rejectAll: a boolean to reject all versions

Libraries

Each library is mapped to a GAV coordinate: group, artifact, version. They can be declared as a
simple string, in which case they are interpreted coordinates, or separate group and name:

[versions]
common = "1.4"

[libraries]
my-lib = "com.mycompany:mylib:1.4"
my-lib-no-version.module = "com.mycompany:mylib"
my-other-lib = { module = "com.mycompany:other", version = "1.4" }
my-other-lib2 = { group = "com.mycompany", name = "alternate", version = "1.4" }
mylib-full-format = { group = "com.mycompany", name = "alternate", version = { require
= "1.4" } }

[plugins]
short-notation = "some.plugin.id:1.4"
long-notation = { id = "some.plugin.id", version = "1.4" }
reference-notation = { id = "some.plugin.id", version.ref = "common" }

You can also define strict or preferred versions using strictly or prefer:

[libraries]
commons-lang3 = { group = "org.apache.commons", name = "commons-lang3", version = {
strictly = "[3.8, 4.0[", prefer = "3.9" } }

In case you want to reference a version declared in the [versions] section, use the version.ref
property:

[versions]
some = "1.4"

[libraries]
my-lib = { group = "com.mycompany", name="mylib", version.ref="some" }

Bundles

Bundles group multiple library aliases, so they can be referenced together in the build script.

[versions]
groovy = "3.0.9"

[libraries]
groovy-core = { group = "org.codehaus.groovy", name = "groovy", version.ref = "groovy"
}
groovy-json = { group = "org.codehaus.groovy", name = "groovy-json", version.ref =
"groovy" }
groovy-nio = { group = "org.codehaus.groovy", name = "groovy-nio", version.ref =
"groovy" }

[bundles]
groovy = ["groovy-core", "groovy-json", "groovy-nio"]

This is useful for pulling in several related dependencies with a single alias:

build.gradle.kts

dependencies {
 implementation(libs.bundles.groovy)
}

build.gradle

dependencies {
 implementation libs.bundles.groovy
}

Plugins

This section defines the plugins and their versions by mapping plugin IDs to version numbers. Just
like libraries, you can define plugin versions using aliases from the [versions] section or directly
specify the version.

[plugins]
versions = { id = "com.github.ben-manes.versions", version = "0.45.0" }

Which can be accessed in any project of the build using the plugins {} block. To refer to a plugin
from the catalog, use the alias() function:

build.gradle.kts

plugins {
 `java-library`
 checkstyle
 alias(libs.plugins.versions)
}

build.gradle

plugins {
 id 'java-library'
 id 'checkstyle'
 // Use the plugin `versions` as declared in the `libs` version catalog
 alias(libs.plugins.versions)
}

WARNING
You cannot use a plugin declared in a version catalog in your settings file or
settings plugin.

Avoiding subgroup accessors

To avoid generating subgroup accessors, use camelCase notation:

Aliases Accessors

groovyCore libs.groovyCore

groovyJson-core libs.groovyJsonCore

Reserved keywords

Certain keywords, like extensions, class, and convention, are reserved and cannot be used as aliases.
Additionally, bundles, versions, and plugins cannot be the first subgroup in a dependency alias.

For example, the alias versions-dependency is not valid, but versionsDependency or dependency-
versions are valid.

Publishing a catalog

In most cases, the gradle/libs.versions.toml will be checked into a repository and available for
consumption.

However, this doesn’t always solve the problem of sharing a catalog in an organization or for
external consumers. Another option to share a catalog is to write a settings plugin, publish it on the
Gradle plugin portal or an internal repository, and let the consumers apply the plugin on their
settings file.

Alternatively, Gradle offers a version catalog plugin, which has the ability to declare and publish a
catalog.

To do this, you need to apply the version-catalog plugin:

build.gradle.kts

plugins {
 `version-catalog`
 `maven-publish`
}

build.gradle

plugins {
 id 'version-catalog'
 id 'maven-publish'
}

This plugin will then expose the catalog extension that you can use to declare a catalog:

build.gradle.kts

catalog {
 // declare the aliases, bundles and versions in this block
 versionCatalog {

https://docs.gradle.org/8.12/javadoc/org/gradle/api/plugins/catalog/CatalogPluginExtension.html

 library("my-lib", "com.mycompany:mylib:1.2")
 }
}

build.gradle

catalog {
 // declare the aliases, bundles and versions in this block
 versionCatalog {
 library('my-lib', 'com.mycompany:mylib:1.2')
 }
}

The plugin must be created programmatically, see Programming catalogs for details.

Such a catalog can then be published by applying either the maven-publish or ivy-publish plugin and
configuring the publication to use the versionCatalog component:

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("maven") {
 from(components["versionCatalog"])
 }
 }
}

build.gradle

publishing {
 publications {
 maven(MavenPublication) {
 from components.versionCatalog
 }
 }
}

When publishing such a project, a libs.versions.toml file will automatically be generated (and
uploaded), which can then be consumed from other Gradle builds.

Importing a published catalog

A catalog produced by the Version Catalog Plugin can be imported via the Settings API:

settings.gradle.kts

dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 from("com.mycompany:catalog:1.0")
 }
 }
}

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 from("com.mycompany:catalog:1.0")
 }
 }
}

Importing a catalog from a file

IMPORTANT
Gradle automatically imports a catalog in the gradle directory named
libs.versions.toml.

The version catalog builder API allows importing a catalog from an external file, enabling reuse
across different parts of a build, such as sharing the main build’s catalog with buildSrc.

For example, you can include a catalog in the buildSrc/settings.gradle(.kts) file as follows:

settings.gradle.kts

dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 from(files("../gradle/libs.versions.toml"))
 }
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/resolve/DependencyResolutionManagement.html#getVersionCatalogs()
https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/dsl/VersionCatalogBuilder.html

}

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 from(files("../gradle/libs.versions.toml"))
 }
 }
}

The VersionCatalogBuilder.from(Object dependencyNotation) method accepts only a single file,
meaning that notations like Project.files(java.lang.Object…) must refer to one file. Otherwise, the
build will fail.

TIP
Remember that you don’t need to import the version catalog named
libs.versions.toml if it resides in your gradle folder. It will be imported automatically.

However, if you need to import version catalogs from multiple files, it’s recommended to use a
code-based approach instead of relying on TOML files. This approach allows for the declaration of
multiple catalogs from different files:

settings.gradle.kts

dependencyResolutionManagement {
 versionCatalogs {
 // declares an additional catalog, named 'testLibs', from the 'test-
libs.versions.toml' file
 create("testLibs") {
 from(files("gradle/test-libs.versions.toml"))
 }
 }
}

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 // declares an additional catalog, named 'testLibs', from the 'test-
libs.versions.toml' file
 testLibs {

https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/dsl/VersionCatalogBuilder.html#from-java.lang.Object-
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

 from(files('gradle/test-libs.versions.toml'))
 }
 }
}

Importing multiple catalogs

You can declare multiple catalogs to organize dependencies better by using the Settings API:

settings.gradle.kts

dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 from(files("gradle/libs.versions.toml"))
 }
 create("tools") {
 from(files("gradle/tools.versions.toml"))
 }
 }
}

build.gradle.kts

dependencies {
 implementation(libs.someDependency)
 implementation(tools.someTool)
}

NOTE
To minimize the risk of naming conflicts, each catalog generates an extension
applied to all projects, so it’s advisable to choose a unique name. One effective
approach is to select a name that ends with Libs.

Changing the catalog name

By default, the libs.versions.toml file is used as input for the libs catalog. However, you can
rename the default catalog if an extension with the same name already exists:

settings.gradle.kts

dependencyResolutionManagement {
 defaultLibrariesExtensionName = "projectLibs"
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/Settings.html#dependencyResolutionManagement(org.gradle.api.Action)

settings.gradle

dependencyResolutionManagement {
 defaultLibrariesExtensionName = 'projectLibs'
}

Overwriting catalog versions

You can overwrite versions when importing a catalog:

settings.gradle.kts

dependencyResolutionManagement {
 versionCatalogs {
 create("amendedLibs") {
 from("com.mycompany:catalog:1.0")
 // overwrite the "groovy" version declared in the imported
catalog
 version("groovy", "3.0.6")
 }
 }
}

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 amendedLibs {
 from("com.mycompany:catalog:1.0")
 // overwrite the "groovy" version declared in the imported
catalog
 version("groovy", "3.0.6")
 }
 }
}

In the examples above, any dependency referencing the groovy version will automatically be
updated to use 3.0.6.

NOTE
Overwriting a version only affects what is imported and used when declaring
dependencies. The actual resolved dependency version may differ due to conflict

resolution.gi

Programming catalogs

Version catalogs can be declared programmatically in the settings.gradle(.kts) file.

settings.gradle.kts

dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 version("groovy", "3.0.5")
 version("checkstyle", "8.37")
 library("groovy-core", "org.codehaus.groovy",
"groovy").versionRef("groovy")
 library("groovy-json", "org.codehaus.groovy", "groovy-
json").versionRef("groovy")
 library("groovy-nio", "org.codehaus.groovy", "groovy-
nio").versionRef("groovy")
 library("commons-lang3", "org.apache.commons", "commons-
lang3").version {
 strictly("[3.8, 4.0[")
 prefer("3.9")
 }
 }
 }
}

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 version('groovy', '3.0.5')
 version('checkstyle', '8.37')
 library('groovy-core', 'org.codehaus.groovy', 'groovy')
.versionRef('groovy')
 library('groovy-json', 'org.codehaus.groovy', 'groovy-json')
.versionRef('groovy')
 library('groovy-nio', 'org.codehaus.groovy', 'groovy-nio')
.versionRef('groovy')
 library('commons-lang3', 'org.apache.commons', 'commons-lang3')
.version {
 strictly '[3.8, 4.0['
 prefer '3.9'
 }
 }

 }
}

TIP
Don’t use libs for your programmatic version catalog name if you have the default
libs.versions.toml in your project.

Creating a version catalog programmatically uses the Settings API:

settings.gradle.kts

dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 version("groovy", "3.0.5")
 version("checkstyle", "8.37")
 library("groovy-core", "org.codehaus.groovy",
"groovy").versionRef("groovy")
 library("groovy-json", "org.codehaus.groovy", "groovy-
json").versionRef("groovy")
 library("groovy-nio", "org.codehaus.groovy", "groovy-
nio").versionRef("groovy")
 library("commons-lang3", "org.apache.commons", "commons-
lang3").version {
 strictly("[3.8, 4.0[")
 prefer("3.9")
 }
 bundle("groovy", listOf("groovy-core", "groovy-json", "groovy-
nio"))
 }
 }
}

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 version('groovy', '3.0.5')
 version('checkstyle', '8.37')
 library('groovy-core', 'org.codehaus.groovy', 'groovy')
.versionRef('groovy')
 library('groovy-json', 'org.codehaus.groovy', 'groovy-json')
.versionRef('groovy')
 library('groovy-nio', 'org.codehaus.groovy', 'groovy-nio')
.versionRef('groovy')

https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/Settings.html

 library('commons-lang3', 'org.apache.commons', 'commons-lang3')
.version {
 strictly '[3.8, 4.0['
 prefer '3.9'
 }
 bundle('groovy', ['groovy-core', 'groovy-json', 'groovy-nio'])
 }
 }
}

Using Catalogs with Platforms
Both platforms and version catalogs help manage dependency versions in a project, but they serve
different purposes and have different effects on dependency resolution:

Version Catalogs

• Purpose: A version catalog centralizes and standardizes dependency coordinates (group, name,
version) and provides type-safe accessors in the build script, making dependencies easier to
manage.

• Effect on Dependency Graph: Version catalogs do not directly affect dependency resolution.
The versions defined in the catalog must be explicitly referenced in a dependencies block, and
once referenced, they behave the same as any locally declared dependency. Additionally, the
catalog’s contents are transparent to downstream consumers, meaning that consumers
cannot identify whether a dependency was declared locally or sourced from a catalog.

libs.versions.toml

[libraries]
mylib = { group = "com.example", name = "mylib", version = "1.0.0" }

Platforms

• Purpose: A platform is a module in the dependency graph that enforces or aligns versions of
dependencies (including transitive dependencies). It influences dependency resolution and
ensures version consistency across different modules.

• Effect on Dependency Graph: Platforms apply or enforce versions to dependencies that are
declarated locally without versions. These versions in a platform are propagated through the
dependency graph, affecting transitive dependencies and downstream consumers. They are a
formal part of the dependency graph and can dictate the version chosen during resolution.

build.gradle.kts

plugins {
 `java-platform`

}

dependencies {
 constraints {
 api("com.example:mylib:2.0.0")
 }
}

Using a catalog with a platform

Even if a version catalog defines a version for a dependency, Gradle might pick a different version
during resolution if another component (e.g., a platform or a transitive dependency) suggests a
different version (unless enforcedPlatform is used).

For example, a version catalog may define mylib as version 1.0.0, but if a platform enforces 2.0.0,
Gradle will select version 2.0.0.

To ensure consistent version alignment, a good approach is to use a version catalog to define
dependency versions alongside a platform to enforce them.

Version Catalog:

gradle/libs.versions.toml

[versions]
junit-jupiter = "5.10.3"

[libraries]
guava = { module = "com.google.guava:guava"}
junit-jupiter = { module = "org.junit.jupiter:junit-jupiter", version.ref =
"junit-jupiter" }
junit-jupiter-launcher = { module = "org.junit.platform:junit-platform-
launcher" }

Platform:

platform/build.gradle.kts

plugins {
 `java-platform`
}

javaPlatform {
 allowDependencies()
}

dependencies {
 constraints {
 api("org.junit.jupiter:junit-jupiter:5.11.1") // Enforcing version
range
 api("com.google.guava:guava:[33.1.0-jre,)") // Enforcing specific
version
 }
}

platform/build.gradle

plugins {
 id 'java-platform'
}

javaPlatform {
 allowDependencies()
}

dependencies {
 constraints {
 api 'org.junit.jupiter:junit-jupiter:5.11.1' // Enforcing specific
version
 api 'com.google.guava:guava:[33.1.0-jre,)' // Enforcing version range
 }
}

Consumer:

consumer/build.gradle.kts

dependencies {
 // Platform
 implementation(platform(project(":platform")))
 // Catalog
 testImplementation(libs.junit.jupiter)
 testRuntimeOnly(libs.junit.jupiter.launcher)
 implementation(libs.guava)
}

consumer/build.gradle

dependencies {
 // Platform
 implementation platform(project(":platform"))
 // Catalog
 testImplementation libs.junit.jupiter
 testRuntimeOnly libs.junit.jupiter.launcher
 implementation libs.guava
}

Best Practices for using both a catalog and a platform:

1. Use version catalogs for defining and sharing dependency coordinates across projects. They
make dependency declarations consistent and easier to manage but do not guarantee version
alignment.

2. Use platforms when you need to influence or enforce version alignment across modules.
Platforms ensure that dependencies resolve to the desired version, particularly in large or
multi-module projects.

MANAGING DEPENDENCIES

Locking Versions
Using dynamic dependency versions (e.g., 1.+ or [1.0,2.0)) can cause builds to break unexpectedly
because the exact version of a dependency that gets resolved can change over time:

build.gradle.kts

dependencies {
 // Depend on the latest 5.x release of Spring available in the searched
repositories
 implementation("org.springframework:spring-web:5.+")
}

build.gradle

dependencies {
 // Depend on the latest 5.x release of Spring available in the searched
repositories
 implementation 'org.springframework:spring-web:5.+'
}

To ensure reproducible builds, it’s necessary to lock versions of dependencies and their transitive
dependencies. This guarantees that a build with the same inputs will always resolve to the same
module versions, a process known as dependency locking.

Dependency locking is a process where Gradle saves the resolved versions of dependencies to a
lock file, ensuring that subsequent builds use the same dependency versions. This lock state is
stored in a file and helps to prevent unexpected changes in the dependency graph.

Dependency locking offers several key advantages:

• Avoiding Cascading Failures: Teams managing multiple repositories no longer need to rely on
-SNAPSHOT or changing dependencies, which can lead to unexpected failures if a dependency
introduces a bug or incompatibility.

• Dynamic Version Flexibility with Stability: Teams that use the latest versions of dependencies
can rely on dynamic versions during development and testing phases, locking them only for
releases.

• Publishing Resolved Versions: By combining dependency locking with the practice of
publishing resolved versions, dynamic versions are replaced with the actual resolved versions
at the time of publication.

https://reproducible-builds.org/

• Optimizing Build Cache Usage: Since dynamic or changing dependencies violate the principle
of stable task inputs, locking dependencies ensures that tasks have consistent inputs.

• Enhanced Development Workflow: Developers can lock dependencies locally for stability
while working on a feature or debugging an issue, while CI environments can test the latest
SNAPSHOT or nightly versions to provide early feedback on integration issues. This allows teams
to balance stability and early feedback during development.

Activate locking for specific configurations

Locking is enabled per dependency configuration.

Once enabled, you must create an initial lock state, causing Gradle to verify that resolution results
do not change. This ensures that if the selected dependencies differ from the locked ones (due to
newer versions being available), the build will fail, preventing unexpected version changes.

WARNING

Dependency locking is effective with dynamic versions, but it should not be
used with changing versions (e.g., -SNAPSHOT), where the coordinates remain
the same, but the content may change.

Using dependency locking with changing versions indicates a
misunderstanding of these features and can lead to unpredictable results.

Gradle will emit a warning when persisting the lock state if changing
dependencies are present in the resolution result.

Locking of a configuration happens through the ResolutionStrategy API:

build.gradle.kts

configurations {
 compileClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
}

build.gradle

configurations {
 compileClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
}

Only configurations that can be resolved will have lock state attached to them. Applying locking on

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

non resolvable-configurations is a no-op.

Activate locking for all configurations

The following locks all configurations:

build.gradle.kts

dependencyLocking {
 lockAllConfigurations()
}

build.gradle

dependencyLocking {
 lockAllConfigurations()
}

The above will lock all project configurations, but not the buildscript ones.

Disable locking for specific configurations

You can also disable locking on a specific configuration.

This can be useful if a plugin configured locking on all configurations, but you happen to add one
that should not be locked:

build.gradle.kts

configurations.compileClasspath {
 resolutionStrategy.deactivateDependencyLocking()
}

build.gradle

configurations {
 compileClasspath {
 resolutionStrategy.deactivateDependencyLocking()
 }
}

Activate locking for a buildscript classpath configuration

If you apply plugins to your build, you may want to leverage dependency locking there as well.

To lock the classpath configuration used for script plugins:

build.gradle.kts

buildscript {
 configurations.classpath {
 resolutionStrategy.activateDependencyLocking()
 }
}

build.gradle

buildscript {
 configurations.classpath {
 resolutionStrategy.activateDependencyLocking()
 }
}

Generating and updating dependency locks

To generate or update the lock state, add the --write-locks argument while invoking whatever
tasks that would trigger the locked configurations to be resolved:

$./gradlew dependencies --write-locks

This will create or update the lock state for each resolved configuration during that build execution.
If a lock state already exists, it will be overwritten.

gradle.lockfile

This is a Gradle generated file for dependency locking.
Manual edits can break the build and are not advised.
This file is expected to be part of source control.
com.google.code.findbugs:jsr305:3.0.2=classpath
com.google.errorprone:error_prone_annotations:2.3.2=classpath
com.google.gradle:osdetector-gradle-plugin:1.7.1=classpath
com.google.guava:failureaccess:1.0.1=classpath
com.google.guava:guava:28.1-jre=classpath
com.google.guava:listenablefuture:9999.0-empty-to-avoid-conflict-with-guava=classpath
com.google.j2objc:j2objc-annotations:1.3=classpath

empty=

NOTE
Gradle won’t write the lock state to disk if the build fails, preventing the persistence
of potentially invalid states.

Lock all configurations in a single build execution

When working with multiple configurations, you may want to lock them all at once in a single build
execution. You have two options for this:

1. Run gradle dependencies --write-locks:

◦ This command will lock all resolvable configurations that have locking enabled.

◦ In a multi-project setup, note that dependencies is executed only on one project, typically the
root project.

2. Declare a Custom Task to Resolve All Configurations:

◦ This approach is particularly useful if you need more control over which configurations are
locked.

This custom task resolves all configurations, locking them in the process:

build.gradle.kts

tasks.register("resolveAndLockAll") {
 notCompatibleWithConfigurationCache("Filters configurations at execution
time")
 doFirst {
 require(gradle.startParameter.isWriteDependencyLocks) { "$path must
be run from the command line with the `--write-locks` flag" }
 }
 doLast {
 configurations.filter {
 // Add any custom filtering on the configurations to be resolved
 it.isCanBeResolved
 }.forEach { it.resolve() }
 }
}

build.gradle

tasks.register('resolveAndLockAll') {
 notCompatibleWithConfigurationCache("Filters configurations at execution
time")
 doFirst {
 assert gradle.startParameter.writeDependencyLocks : "$path must be

run from the command line with the `--write-locks` flag"
 }
 doLast {
 configurations.findAll {
 // Add any custom filtering on the configurations to be resolved
 it.canBeResolved
 }.each { it.resolve() }
 }
}

By filtering and resolving specific configurations, you ensure that only the relevant ones are locked,
tailoring the locking process to your project’s needs. This is especially useful in environments like
native builds, where not all configurations can be resolved on a single platform.

Understanding lock state location and format

A lockfile is a critical component that records the exact versions of dependencies used in a project,
allowing for verification during builds to ensure consistent results across different environments
and over time. It helps identify discrepancies in dependencies when a project is built on different
machines or at different times.

TIP Lockfiles should be checked in to source control.

Location of lock files

• The lock state is preserved in a file named gradle.lockfile, located at the root of each project or
subproject directory.

• The exception is the lockfile for the buildscript itself, which is named buildscript-
gradle.lockfile.

Structure of lock files

Consider the following dependency declaration:

build.gradle.kts

configurations {
 compileClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
 runtimeClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
 annotationProcessor {
 resolutionStrategy.activateDependencyLocking()
 }

}

dependencies {
 implementation("org.springframework:spring-beans:[5.0,6.0)")
}

build.gradle

configurations {
 compileClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
 runtimeClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
 annotationProcessor {
 resolutionStrategy.activateDependencyLocking()
 }
}

dependencies {
 implementation 'org.springframework:spring-beans:[5.0,6.0)'
}

With the above configuration, the generated gradle.lockfile will look like this:

gradle.lockfile

This is a Gradle generated file for dependency locking.
Manual edits can break the build and are not advised.
This file is expected to be part of source control.
org.springframework:spring-beans:5.0.5.RELEASE=compileClasspath, runtimeClasspath
org.springframework:spring-core:5.0.5.RELEASE=compileClasspath, runtimeClasspath
org.springframework:spring-jcl:5.0.5.RELEASE=compileClasspath, runtimeClasspath
empty=annotationProcessor

Where:

• Each line represents a single dependency in the group:artifact:version format.

• Configurations: After the version, the configurations that include the dependency are listed.

• Ordering: Dependencies and configurations are listed alphabetically to make version control
diffs easier to manage.

• Empty Configurations: The last line lists configurations that are empty, meaning they contain
no dependencies.

This lockfile should be included in source control to ensure that all team members and
environments use the exact same dependency versions.

Migrating your legacy lockfile

If your project uses the legacy lock file format of a file per locked configuration, follow these
instructions to migrate to the new format:

1. Follow the documentation for writing or updating dependency lock state.

2. Upon writing the single lock file per project, Gradle will also delete all lock files per
configuration for which the state was transferred.

NOTE
Migration can be done one configuration at a time. Gradle will keep sourcing the
lock state from the per configuration files as long as there is no information for that
configuration in the single lock file.

Configuring the lock file name and location

When using a single lock file per project, you can configure its name and location.

This capability allows you to specify a file name based on project properties, enabling a single
project to store different lock states for different execution contexts.

For example, in the JVM ecosystem, the Scala version is often included in artifact coordinates:

build.gradle.kts

val scalaVersion = "2.12"
dependencyLocking {
 lockFile = file("$projectDir/locking/gradle-${scalaVersion}.lockfile")
}

build.gradle

def scalaVersion = "2.12"
dependencyLocking {
 lockFile = file("$projectDir/locking/gradle-${scalaVersion}.lockfile")
}

Running a build with lock state present

The moment a build needs to resolve a configuration that has locking enabled, and it finds a
matching lock state, it will use it to verify that the given configuration still resolves the same

versions.

A successful build indicates that the same dependencies are used by your build as stored in the lock
state, regardless if new versions matching the dynamic selector are available in any of the
repositories your build uses.

The complete validation is as follows:

• Existing entries in the lock state must be matched in the build

◦ A version mismatch or missing resolved module causes a build failure

• Resolution result must not contain extra dependencies compared to the lock state

Fine-tuning dependency locking behaviour with lock mode

While the default lock mode behaves as described above, two other modes are available:

Strict mode

In this mode, in addition to the validations above, dependency locking will fail if a configuration
marked as locked does not have lock state associated with it.

Lenient mode

In this mode, dependency locking will still pin dynamic versions but otherwise changes to the
dependency resolution are no longer errors. Other changes include:

• Adding or removing dependencies, even if they are strictly versioned, without causing a
build failure.

• Allowing transitive dependencies to shift, as long as dynamic versions are still pinned.

This mode offers flexibility for situations where you might want to explore or test new
dependencies or changes in versions without breaking the build, making it useful for testing nightly
or snapshot builds.

The lock mode can be controlled from the dependencyLocking block as shown below:

build.gradle.kts

dependencyLocking {
 lockMode = LockMode.STRICT
}

build.gradle

dependencyLocking {
 lockMode = LockMode.STRICT
}

Updating lock state entries selectively

In order to update only specific modules of a configuration, you can use the --update-locks
command line flag. It takes a comma (,) separated list of module notations. In this mode, the
existing lock state is still used as input to resolution, filtering out the modules targeted by the
update:

$./gradlew dependencies --update-locks org.apache.commons:commons-
lang3,org.slf4j:slf4j-api

Wildcards, indicated with *, can be used in the group or module name. They can be the only
character or appear at the end of the group or module respectively. The following wildcard notation
examples are valid:

• org.apache.commons:*: will let all modules belonging to group org.apache.commons update

• *:guava: will let all modules named guava, whatever their group, update

• org.springframework.spring*:spring*: will let all modules having their group starting with
org.springframework.spring and name starting with spring update

NOTE
The resolution may cause other module versions to update, as dictated by the
Gradle resolution rules.

Disabling dependency locking

To disable dependency locking for a configuration:

1. Remove Locking Configuration: Ensure that the configuration you no longer want to lock is
not configured with dependency locking. This means removing or commenting out any
activateDependencyLocking() calls for that configuration.

2. Update Lock State: The next time you update and save the lock state (using the --write-locks
option), Gradle will automatically clean up any stale lock state associated with the
configurations that are no longer locked.

NOTE
Gradle must resolve a configuration that is no longer marked as locked to detect
and drop the associated lock state. Without resolving the configuration, Gradle
cannot identify which lock state should be cleaned up.

Ignoring specific dependencies from the lock state

In some scenarios, you may want to use dependency locking for other reasons than build
reproducibility.

As a build author, you might want certain dependencies to update more frequently than others. For
example, internal dependencies within an organization might always use the latest version, while
third-party dependencies follow a different update cycle.

CAUTION
This approach can compromise reproducibility. Consider using different lock
modes or separate lock files for specific cases.

You can configure dependencies to be ignored in the dependencyLocking project extension:

build.gradle.kts

dependencyLocking {
 ignoredDependencies.add("com.example:*")
}

build.gradle

dependencyLocking {
 ignoredDependencies.add('com.example:*')
}

The notation <group>:<name> is used to specify dependencies, where * acts as a trailing wildcard.
Note that *:* is not accepted, as it effectively disables locking. See the description on updating lock
files for more details.

Ignoring dependencies will have the following effects:

• Ignored dependencies apply across all locked configurations, and the setting is project scoped.

• Ignoring a dependency does not exclude its transitive dependencies from the lock state.

• No validation ensures that an ignored dependency is present in any configuration resolution.

• If the dependency is present in lock state, loading it will filter out the dependency.

• If the dependency is present in the resolution result, it will be ignored when validating the
resolution against the lock state.

• When the lock state is updated and persisted, any ignored dependency will be omitted from the
written lock state.

Understanding locking limitations

• Dependency locking does not currently apply to source dependencies.

Using Resolution Rules
Gradle provides several mechanisms to directly influence the behavior of the dependency
resolution engine.

Unlike dependency constraints or component metadata rules, which serve as inputs to the
resolution process, these mechanisms allow you to inject rules directly into the resolution engine.
Because of their direct impact, they can be considered brute-force solutions that may mask
underlying issues, such as the introduction of new dependencies.

TIP
It’s generally advisable to resort to resolution rules only when other approaches are
insufficient.

If you’re developing a library, it’s best to use dependency constraints, as they are shared with your
consumers.

Here are the key resolution strategies in Gradle:

Strategy Info

1 Forcing Dependency
Versions

Force a specific version of a dependency.

2 Module Replacement Substitute one module for another with an explanation.

3 Dependency Substitution Substitute dependencies dynamically.

4 Component Selection Rules Control which versions of a module are allowed. Reject
specific versions that are known to be broken or
undesirable.

5 Default Dependencies Automatically add dependencies to a configuration
when no dependencies are explicitly declared.

6 Excluding Transitive
Dependencies

Exclude transitive dependencies that you don’t want to
be included in the dependency graph.

7 Force Failed Resolution
Strategies

Force builds to fail when certain conditions occur
during resolution.

8 Disabling Transitive
Dependencies

Dependencies are transitive by default, but you can
disable this behavior for individual dependencies.

9 Dependency Resolve Rules
and Other Conditionals

Transform or filter dependencies directly as they are
resolved and other corner case scenarios.

1. Forcing Dependency Versions

You can enforce a specific version of a dependency, regardless of what versions might be requested
or resolved by other parts of the build script.

This is useful for ensuring consistency and avoiding conflicts due to different versions of the same
dependency being used.

build.gradle.kts

configurations {
 "compileClasspath" {

 resolutionStrategy.force("commons-codec:commons-codec:1.9")
 }
}

dependencies {
 implementation("org.apache.httpcomponents:httpclient:4.5.4")
}

build.gradle

configurations {
 compileClasspath {
 resolutionStrategy.force 'commons-codec:commons-codec:1.9'
 }
}

dependencies {
 implementation 'org.apache.httpcomponents:httpclient:4.5.4'
}

2. Module Replacement

While it’s generally better to manage module conflicts using capabilities, there are
scenarios—especially when working with older versions of Gradle-that require a different
approach. In these cases, module replacement rules offer a solution by allowing you to specify
that a legacy library has been replaced by a newer one.

Module replacement rules allow you to declare that a legacy library has been replaced by a newer
one. For instance, the migration from google-collections to guava involved renaming the module
from com.google.collections:google-collections to com.google.guava:guava. Such changes impact
conflict resolution because Gradle doesn’t treat them as version conflicts due to different module
coordinates.

Consider a scenario where both libraries appear in the dependency graph. Your project depends on
guava, but a transitive dependency pulls in google-collections. This can cause runtime errors since
Gradle won’t automatically resolve this as a conflict. Common solutions include:

• Declaring an exclusion rule to avoid google-collections.

• Avoiding dependencies that pull in legacy libraries.

• Upgrading dependencies that no longer use google-collections.

• Downgrading to google-collections (not recommended).

• Assigning capabilities so google-collections and guava are mutually exclusive.

These methods can be insufficient for large-scale projects. By declaring module replacements, you

can address this issue globally across projects, allowing organizations to handle such conflicts
holistically.

build.gradle.kts

dependencies {
 modules {
 module("com.google.collections:google-collections") {
 replacedBy("com.google.guava:guava", "google-collections is now
part of Guava")
 }
 }
}

build.gradle

dependencies {
 modules {
 module("com.google.collections:google-collections") {
 replacedBy("com.google.guava:guava", "google-collections is now
part of Guava")
 }
 }
}

Once declared, Gradle treats any version of guava as superior to google-collections during conflict
resolution, ensuring only guava appears in the classpath. However, if google-collections is the only
module present, it won’t be automatically replaced unless there’s a conflict.

For more examples, refer to the DSL reference for ComponentMetadataHandler.

NOTE
Gradle does not currently support replacing a module with multiple modules, but
multiple modules can be replaced by a single module.

3. Dependency Substitution

Dependency substitution rules allow for replacing project and module dependencies with
specified alternatives, making them interchangeable. While similar to dependency resolve rules,
they offer more flexibility by enabling substitution between project and module dependencies.

However, adding a dependency substitution rule affects the timing of configuration resolution.
Instead of resolving on first use, the configuration is resolved during task graph construction,
which can cause issues if the configuration is modified later or depends on modules published
during task execution.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/dsl/ComponentMetadataHandler.html

Explanation:

• A configuration can serve as input to a task and include project dependencies when resolved.

• If a project dependency is an input to a task (via a configuration), then tasks to build those
artifacts are added as dependencies.

• To determine project dependencies that are inputs to a task, Gradle must resolve the
configuration inputs.

• Because the Gradle task graph is fixed once task execution has commenced, Gradle needs to
perform this resolution prior to executing any tasks.

Without substitution rules, Gradle assumes that external module dependencies don’t reference
project dependencies, simplifying dependency traversal. With substitution rules, this assumption
no longer holds, so Gradle must fully resolve the configuration to determine project dependencies.

Substituting an external module dependency with a project dependency

Dependency substitution can be used to replace an external module with a locally developed
project, which is helpful when testing a patched or unreleased version of a module.

The external module can be replaced whether a version is specified:

build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(module("org.utils:api"))
 .using(project(":api")).because("we work with the unreleased
development version")
 substitute(module("org.utils:util:2.5")).using(project(":util"))
 }
}

build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute module("org.utils:api") using project(":api") because "we
work with the unreleased development version"
 substitute module("org.utils:util:2.5") using project(":util")
 }
}

• Substituted projects must be part of the multi-project build (included via settings.gradle).

• The substitution replaces the module dependency with the project dependency and sets up task
dependencies, but doesn’t automatically include the project in the build.

Substituting a project dependency with a module replacement

You can also use substitution rules to replace a project dependency with an external module in a
multi-project build.

This technique can accelerate development by allowing certain dependencies to be downloaded
from a repository instead of being built locally:

build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(project(":api"))
 .using(module("org.utils:api:1.3")).because("we use a stable
version of org.utils:api")
 }
}

build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute project(":api") using module("org.utils:api:1.3") because
"we use a stable version of org.utils:api"
 }
}

• The substituted module must include a version.

• Even after substitution, the project remains part of the multi-project build, but tasks to build it
won’t be executed when resolving the configuration.

Conditionally substituting a dependency

You can conditionally substitute a module dependency with a local project in a multi-project build
using dependency substitution rules.

This is particularly useful when you want to use a locally developed version of a dependency if it
exists, otherwise fall back to the external module:

build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution.all {
 requested.let {
 if (it is ModuleComponentSelector && it.group == "org.example") {
 val targetProject = findProject(":${it.module}")
 if (targetProject != null) {
 useTarget(targetProject)
 }
 }
 }
 }
}

build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution.all { DependencySubstitution
dependency ->
 if (dependency.requested instanceof ModuleComponentSelector &&
dependency.requested.group == "org.example") {
 def targetProject = findProject(":${dependency.requested.module}
")
 if (targetProject != null) {
 dependency.useTarget targetProject
 }
 }
 }
}

• The substitution only occurs if a local project matching the dependency name is found.

• The local project must already be included in the multi-project build (via settings.gradle).

Substituting a dependency with another variant

You can substitute a dependency with another variant, such as switching between a platform
dependency and a regular library dependency.

This is useful when your build process needs to change the type of dependency based on specific
conditions:

configurations.all {
 resolutionStrategy.dependencySubstitution {

 all {
 if (requested is ModuleComponentSelector && requested.group ==
"org.example" && requested.version == "1.0") {
 useTarget(module("org.example:library:1.0")).because("Switching from
platform to library variant")
 }
 }
 }
}

• The substitution is based on the requested dependency’s attributes (like group and version).

• This approach allows you to switch from a platform component to a library or vice versa.

• It uses Gradle’s variant-aware engine to ensure the correct variant is selected based on the
configuration and consumer attributes.

This flexibility is often required when working with complex dependency graphs where different
component types (platforms, libraries) need to be swapped dynamically.

Substituting a dependency with attributes

Substituting a dependency based on attributes allows you to override the default selection of a
component by targeting specific attributes (like platform vs. regular library).

This technique is useful for managing platform and library dependencies in complex builds,
particularly when you want to consume a regular library but the platform dependency was
incorrectly declared:

lib/build.gradle.kts

dependencies {
 // This is a platform dependency but you want the library
 implementation(platform("com.google.guava:guava:28.2-jre"))
}

lib/build.gradle

dependencies {
 // This is a platform dependency but you want the library
 implementation platform('com.google.guava:guava:28.2-jre')
}

In this example, the substitution rule targets the platform version of com.google.guava:guava and
replaces it with the regular library version:

consumer/build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(platform(module("com.google.guava:guava:28.2-jre")))
 .using(module("com.google.guava:guava:28.2-jre"))
 }
}

consumer/build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(platform(module('com.google.guava:guava:28.2-jre'))).
 using module('com.google.guava:guava:28.2-jre')
 }
}

Without the platform keyword, the substitution would not specifically target the platform
dependency.

The following rule performs the same substitution but uses the more granular variant notation,
allowing for customization of the dependency’s attributes:

consumer/build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(variant(module("com.google.guava:guava:28.2-jre")) {
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.REGULAR_PLATFORM))
 }
 }).using(module("com.google.guava:guava:28.2-jre"))
 }
}

consumer/build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {

 substitute variant(module('com.google.guava:guava:28.2-jre')) {
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(
Category, Category.REGULAR_PLATFORM))
 }
 } using module('com.google.guava:guava:28.2-jre')
 }
}

By using attribute-based substitution, you can precisely control which dependencies are replaced,
ensuring Gradle resolves the correct versions and variants in your build.

Refer to the DependencySubstitutions API for a complete reference.

WARNING

In composite builds, the rule that you have to match the exact requested
dependency attributes is not applied. When using composites, Gradle will
automatically match the requested attributes. In other words, it is implicit that
if you include another build, you are substituting all variants of the substituted
module with an equivalent variant in the included build.

Substituting a dependency with a dependency with capabilities

You can substitute a dependency with a different variant that includes specific capabilities.
Capabilities allow you to specify that a particular variant of a dependency offers a set of related
features or functionality, such as test fixtures.

This example substitutes a regular dependency with its test fixtures using a capability:

build.gradle.kts

configurations.testCompileClasspath {
 resolutionStrategy.dependencySubstitution {

substitute(module("com.acme:lib:1.0")).using(variant(module("com.acme:lib:1.0
")) {
 capabilities {
 requireCapability("com.acme:lib-test-fixtures")
 }
 })
 }
}

build.gradle

configurations.testCompileClasspath {

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/DependencySubstitutions.html#variant-org.gradle.api.artifacts.component.ComponentSelector-org.gradle.api.Action-

 resolutionStrategy.dependencySubstitution {
 substitute(module('com.acme:lib:1.0'))
 .using variant(module('com.acme:lib:1.0')) {
 capabilities {
 requireCapability('com.acme:lib-test-fixtures')
 }
 }
 }
}

Here, we substitute the regular com.acme:lib:1.0 dependency with its lib-test-fixtures variant.
The requireCapability function specifies that the new variant must have the com.acme:lib-test-
fixtures capability, ensuring the right version of the dependency is selected for testing purposes.

Capabilities within the substitution rule are used to precisely match dependencies, and Gradle only
substitutes dependencies that match the required capabilities.

Refer to the DependencySubstitutions API for a complete reference of the variant substitution API.

Substituting a dependency with a classifier or artifact

You can substitute dependencies that have a classifier with ones that don’t or vice versa. Classifiers
are often used to represent different versions of the same artifact, such as platform-specific builds
or dependencies with different APIs. Although Gradle discourages the use of classifiers, it provides
a way to handle substitutions for cases where classifiers are still in use.

Consider the following setup:

consumer/build.gradle.kts

dependencies {
 implementation("com.google.guava:guava:28.2-jre")
 implementation("co.paralleluniverse:quasar-core:0.8.0")
 implementation(project(":lib"))
}

consumer/build.gradle

dependencies {
 implementation 'com.google.guava:guava:28.2-jre'
 implementation 'co.paralleluniverse:quasar-core:0.8.0'
 implementation project(':lib')
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/DependencySubstitutions.html#variant-org.gradle.api.artifacts.component.ComponentSelector-org.gradle.api.Action-

In the example above, the first level dependency on quasar makes us think that Gradle would
resolve quasar-core-0.8.0.jar but it’s not the case.

The build fails with this message:

Execution failed for task ':consumer:resolve'.
> Could not resolve all files for configuration ':consumer:runtimeClasspath'.
 > Could not find quasar-core-0.8.0-jdk8.jar (co.paralleluniverse:quasar-
core:0.8.0).
 Searched in the following locations:
 https://repo.maven.apache.org/maven2/co/paralleluniverse/quasar-
core/0.8.0/quasar-core-0.8.0-jdk8.jar

That’s because there’s a dependency on another project, lib, which itself depends on a different
version of quasar-core:

lib/build.gradle.kts

dependencies {
 implementation("co.paralleluniverse:quasar-core:0.7.10:jdk8")
}

lib/build.gradle

dependencies {
 implementation "co.paralleluniverse:quasar-core:0.7.10:jdk8"
}

• The consumer depends on quasar-core:0.8.0 without a classifier.

• The lib project depends on quasar-core:0.7.10 with the jdk8 classifier.

• Gradle’s conflict resolution selects the higher version (0.8.0), but quasar-core:0.8.0 doesn’t have
the jdk8 classifier, leading to a resolution error.

To resolve this conflict, you can instruct Gradle to ignore classifiers when resolving quasar-core
dependencies:

consumer/build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(module("co.paralleluniverse:quasar-core"))

 .using(module("co.paralleluniverse:quasar-core:0.8.0"))
 .withoutClassifier()
 }
}

consumer/build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute module('co.paralleluniverse:quasar-core') using module(
'co.paralleluniverse:quasar-core:0.8.0') withoutClassifier()
 }
}

This rule effectively replaces any dependency on quasar-core found in the graph with a dependency
without classifier.

If you need to substitute with a specific classifier or artifact, you can specify the classifier or artifact
details in the substitution rule.

For more detailed information, refer to:

• Artifact selection via the Substitution DSL

• Artifact selection via the DependencySubstitution API

• Artifact selection via the ResolutionStrategy API

4. Component Selection Rules

Component selection rules may influence which component instance should be selected when
multiple versions are available that match a version selector. Rules are applied against every
available version and allow the version to be explicitly rejected.

This allows Gradle to ignore any component instance that does not satisfy conditions set by the rule.
Examples include:

• For a dynamic version like 1.+ certain versions may be explicitly rejected from selection.

• For a static version like 1.4 an instance may be rejected based on extra component metadata
such as the Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the ComponentSelectionRules object. Each rule configured will be called
with a ComponentSelection object as an argument that contains information about the candidate
version being considered. Calling ComponentSelection.reject(java.lang.String) causes the given
candidate version to be explicitly rejected, in which case the candidate will not be considered for
the selector.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/DependencySubstitutions.Substitution.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/DependencySubstitution.html#artifactSelection-org.gradle.api.Action-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ResolutionStrategy.html#dependencySubstitution-org.gradle.api.Action-
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.ComponentSelection.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

The following example shows a rule that disallows a particular version of a module but allows the
dynamic version to choose the next best candidate:

build.gradle.kts

configurations {
 implementation {
 resolutionStrategy {
 componentSelection {
 // Accept the highest version matching the requested version
that isn't '1.5'
 all {
 if (candidate.group == "org.sample" && candidate.module
== "api" && candidate.version == "1.5") {
 reject("version 1.5 is broken for 'org.sample:api'")
 }
 }
 }
 }
 }
}

dependencies {
 implementation("org.sample:api:1.+")
}

build.gradle

configurations {
 implementation {
 resolutionStrategy {
 componentSelection {
 // Accept the highest version matching the requested version
that isn't '1.5'
 all { ComponentSelection selection ->
 if (selection.candidate.group == 'org.sample' &&
selection.candidate.module == 'api' && selection.candidate.version == '1.5')
{
 selection.reject("version 1.5 is broken for
'org.sample:api'")
 }
 }
 }
 }
 }
}

dependencies {
 implementation 'org.sample:api:1.+'
}

Note that version selection is applied starting with the highest version first. The version selected
will be the first version found that all component selection rules accept.

IMPORTANT A version is considered accepted if no rule explicitly rejects it.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of
group:module:

build.gradle.kts

configurations {
 create("targetConfig") {
 resolutionStrategy {
 componentSelection {
 withModule("org.sample:api") {
 if (candidate.version == "1.5") {
 reject("version 1.5 is broken for 'org.sample:api'")
 }
 }
 }
 }
 }
}

build.gradle

configurations {
 targetConfig {
 resolutionStrategy {
 componentSelection {
 withModule("org.sample:api") { ComponentSelection selection
->
 if (selection.candidate.version == "1.5") {
 selection.reject("version 1.5 is broken for
'org.sample:api'")
 }
 }
 }
 }
 }

}

Component selection rules can also consider component metadata when selecting a version.
Possible additional metadata that can be considered are ComponentMetadata and
IvyModuleDescriptor.

Note that this extra information may not always be available and thus should be checked for null
values:

build.gradle.kts

configurations {
 create("metadataRulesConfig") {
 resolutionStrategy {
 componentSelection {
 // Reject any versions with a status of 'experimental'
 all {
 if (candidate.group == "org.sample" && metadata?.status
== "experimental") {
 reject("don't use experimental candidates from
'org.sample'")
 }
 }
 // Accept the highest version with either a "release" branch
or a status of 'milestone'
 withModule("org.sample:api") {
 if (getDescriptor(IvyModuleDescriptor::class)?.branch !=
"release" && metadata?.status != "milestone") {
 reject("'org.sample:api' must have testing branch or
milestone status")
 }
 }
 }
 }
 }
}

build.gradle

configurations {
 metadataRulesConfig {
 resolutionStrategy {
 componentSelection {
 // Reject any versions with a status of 'experimental'
 all { ComponentSelection selection ->

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

 if (selection.candidate.group == 'org.sample' &&
selection.metadata?.status == 'experimental') {
 selection.reject("don't use experimental candidates
from 'org.sample'")
 }
 }
 // Accept the highest version with either a "release" branch
or a status of 'milestone'
 withModule('org.sample:api') { ComponentSelection selection
->
 if (selection.getDescriptor(IvyModuleDescriptor)?.branch
!= "release" && selection.metadata?.status != 'milestone') {
 selection.reject("'org.sample:api' must be a release
branch or have milestone status")
 }
 }
 }
 }
 }
}

A ComponentSelection argument is always required as a parameter when declaring a component
selection rule.

5. Default Dependencies

You can set default dependencies for a configuration to ensure that a default version is used when
no explicit dependencies are specified.

This is useful for plugins that rely on versioned tools and want to provide a default if the user
doesn’t specify a version:

build.gradle.kts

configurations {
 create("pluginTool") {
 defaultDependencies {
 add(project.dependencies.create("org.gradle:my-util:1.0"))
 }
 }
}

build.gradle

configurations {

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.ComponentSelection.html

 pluginTool {
 defaultDependencies { dependencies ->
 dependencies.add(project.dependencies.create("org.gradle:my-
util:1.0"))
 }
 }
}

In this example, the pluginTool configuration will use org.gradle:my-util:1.0 as a default
dependency unless another version is specified.

6. Excluding Transitive Dependencies

To completely exclude a transitive dependency for a particular configuration, use the
Configuration.exclude(Map) method.

This approach will automatically exclude the specified transitive dependency from all
dependencies declared within the configuration:

build.gradle.kts

configurations {
 "implementation" {
 exclude(group = "commons-collections", module = "commons-
collections")
 }
}

dependencies {
 implementation("commons-beanutils:commons-beanutils:1.9.4")
 implementation("com.opencsv:opencsv:4.6")
}

build.gradle

configurations {
 implementation {
 exclude group: 'commons-collections', module: 'commons-collections'
 }
}

dependencies {
 implementation 'commons-beanutils:commons-beanutils:1.9.4'
 implementation 'com.opencsv:opencsv:4.6'

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:exclude(java.util.Map)

}

In this example, the commons-collections dependency will be excluded from the implementation
configuration, regardless of whether it is a direct or transitive dependency.

7. Force Failed Resolution Strategies

Version conflicts can be forced to fail using:

• failOnNonReproducibleResolution()

• failOnDynamicVersions()

• failOnChangingVersions()

• failOnVersionConflict()

This will fail the build when conflicting versions of the same dependency are found:

build.gradle.kts

configurations.all {
 resolutionStrategy {
 failOnVersionConflict()
 }
}

build.gradle

configurations.all {
 resolutionStrategy {
 failOnVersionConflict()
 }
}

8. Disabling Transitive Dependencies

By default, Gradle resolves all transitive dependencies for a given module.

However, there are situations where you may want to disable this behavior, such as when you need
more control over dependencies or when the dependency metadata is incorrect.

You can tell Gradle to disable transitive dependency management for a dependency by setting
ModuleDependency.setTransitive(boolean) to false.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ModuleDependency.html#setTransitive-boolean-

In the following example, transitive dependency resolution is disabled for the guava dependency:

build.gradle.kts

dependencies {
 implementation("com.google.guava:guava:23.0") {
 isTransitive = false
 }
}

build.gradle

dependencies {
 implementation('com.google.guava:guava:23.0') {
 transitive = false
 }
}

This ensures only the main artifact for guava is resolved, and none of its transitive dependencies
will be included.

NOTE
Disabling transitive dependency resolution will likely require you to declare the
necessary runtime dependencies in your build script which otherwise would have
been resolved automatically. Not doing so might lead to runtime classpath issues.

If you want to disable transitive resolution globally across all dependencies, you can set this
behavior at the configuration level:

build.gradle.kts

configurations.all {
 isTransitive = false
}

dependencies {
 implementation("com.google.guava:guava:23.0")
}

build.gradle

configurations.all {

 transitive = false
}
dependencies {
 implementation 'com.google.guava:guava:23.0'
}

This disables transitive resolution for all dependencies in the project. Be aware that this may
require you to manually declare any transitive dependencies that are required at runtime.

For more information, see Configuration.setTransitive(boolean).

9. Dependency Resolve Rules and Other Conditionals

Dependency resolve rules are executed for each dependency as it’s being resolved, providing a
powerful API to modify a dependency’s attributes—such as group, name, or version—before the
resolution is finalized.

This allows for advanced control over dependency resolution, enabling you to substitute one
module for another during the resolution process.

This feature is particularly useful for implementing advanced dependency management patterns.
With dependency resolve rules, you can redirect dependencies to specific versions or even
different modules entirely, allowing you to enforce consistent versions across a project or override
problematic dependencies:

build.gradle.kts

configurations.all {
 resolutionStrategy {
 eachDependency {
 if (requested.group == "com.example" && requested.name == "old-
library") {
 useTarget("com.example:new-library:1.0.0")
 because("Our license only allows use of version 1")
 }
 }
 }
}

build.gradle

configurations.all {
 resolutionStrategy {
 eachDependency {
 if (requested.group == "com.example" && requested.name == "old-

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/Configuration.html#setTransitive-boolean-

library") {
 useTarget("com.example:new-library:1.0.0")
 because("Our license only allows use of version 1")
 }
 }
 }
}

In this example, if a dependency on com.example:old-library is requested, it will be substituted with
com.example:new-library:1.0.0 during resolution.

For more advanced usage and additional examples, refer to the ResolutionStrategy class in the API
documentation.

Implementing a custom versioning scheme

In some corporate environments, module versions in Gradle builds are maintained and audited
externally. Dependency resolve rules offer an effective way to implement this:

• Developers declare dependencies in the build script using the module’s group and name, but
specify a placeholder version like default.

• A dependency resolve rule then resolves the default version to an approved version, which is
retrieved from a corporate catalog of sanctioned modules.

This approach ensures that only approved versions are used, while allowing developers to work
with a simplified and consistent versioning scheme.

The rule implementation can be encapsulated in a corporate plugin, making it easy to apply across
all projects within the organization:

build.gradle.kts

configurations.all {
 resolutionStrategy.eachDependency {
 if (requested.version == "default") {
 val version = findDefaultVersionInCatalog(requested.group,
requested.name)
 useVersion(version.version)
 because(version.because)
 }
 }
}

data class DefaultVersion(val version: String, val because: String)

fun findDefaultVersionInCatalog(group: String, name: String): DefaultVersion
{

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

 //some custom logic that resolves the default version into a specific
version
 return DefaultVersion(version = "1.0", because = "tested by QA")
}

build.gradle

configurations.all {
 resolutionStrategy.eachDependency { DependencyResolveDetails details ->
 if (details.requested.version == 'default') {
 def version = findDefaultVersionInCatalog(details.requested.
group, details.requested.name)
 details.useVersion version.version
 details.because version.because
 }
 }
}

def findDefaultVersionInCatalog(String group, String name) {
 //some custom logic that resolves the default version into a specific
version
 [version: "1.0", because: 'tested by QA']
}

In this setup, whenever a developer specifies default as the version, the resolve rule replaces it
with the approved version from the corporate catalog.

This strategy ensures compliance with corporate policies while providing flexibility and ease of use
for developers. Encapsulating this logic in a plugin also ensures consistency across multiple
projects.

Replacing unwanted dependency versions

Dependency resolve rules offer a powerful mechanism for blocking specific versions of a
dependency and substituting them with an alternative.

This is particularly useful when a specific version is known to be problematic—such as a version
that introduces bugs or relies on a library that isn’t available in public repositories. By defining a
resolve rule, you can automatically replace a problematic version with a stable one.

Consider a scenario where version 1.2 of a library is broken, but version 1.2.1 contains important
fixes and should always be used instead. With a resolve rule, you can enforce this substitution:
"anytime version 1.2 is requested, it will be replaced with 1.2.1. Unlike forcing a version, this rule
only affects the specific version 1.2, leaving other versions unaffected:

build.gradle.kts

configurations.all {
 resolutionStrategy.eachDependency {
 if (requested.group == "org.software" && requested.name == "some-
library" && requested.version == "1.2") {
 useVersion("1.2.1")
 because("fixes critical bug in 1.2")
 }
 }
}

build.gradle

configurations.all {
 resolutionStrategy.eachDependency { DependencyResolveDetails details ->
 if (details.requested.group == 'org.software' && details.requested
.name == 'some-library' && details.requested.version == '1.2') {
 details.useVersion '1.2.1'
 details.because 'fixes critical bug in 1.2'
 }
 }
}

If version 1.3 is also present in the dependency graph, then even with this rule, Gradle’s default
conflict resolution strategy would select 1.3 as the latest version.

Difference from Rich Version Constraints: Using rich version constraints, you can reject certain
versions outright, causing the build to fail or select a non-rejected version if a dynamic dependency
is used. In contrast, a dependency resolve rule like the one shown here manipulates the version
being requested, replacing it with a known good version when a rejected one is found. This
approach is a solution for handling rejected versions, while rich version constraints are about
expressing the intent to avoid certain versions.

Lazily influencing resolved dependencies

Plugins can lazily influence dependencies by adding them conditionally or setting preferred
versions when no version is specified by the user.

Below are two examples illustrating these use cases.

This example demonstrates how to add a dependency to a configuration based on some condition,
evaluated lazily:

Example 20. Example 1: Conditionally Adding a Dependency

build.gradle.kts

configurations {
 implementation {
 dependencies.addLater(project.provider {
 val dependencyNotation = conditionalLogic()
 if (dependencyNotation != null) {
 project.dependencies.create(dependencyNotation)
 } else {
 null
 }
 })
 }
}

build.gradle

configurations {
 implementation {
 dependencies.addLater(project.provider {
 def dependencyNotation = conditionalLogic()
 if (dependencyNotation != null) {
 return project.dependencies.create(dependencyNotation)
 } else {
 return null
 }
 })
 }
}

In this case, addLater is used to defer the evaluation of the dependency, allowing it to be added only
when certain conditions are met.

In this example, the build script sets a preferred version of a dependency, which will be used if no
version is explicitly specified:

Example 2: Preferring a Default Version of a Dependency

build.gradle.kts

dependencies {
 implementation("org:foo")

#ex-example-1-conditionally-adding-a-dependency

 // Can indiscriminately be added by build logic
 constraints {
 implementation("org:foo:1.0") {
 version {
 // Applied to org:foo if no other version is specified
 prefer("1.0")
 }
 }
 }
}

build.gradle

dependencies {
 implementation("org:foo")

 // Can indiscriminately be added by build logic
 constraints {
 implementation("org:foo:1.0") {
 version {
 // Applied to org:foo if no other version is specified
 prefer("1.0")
 }
 }
 }
}

This ensures that org:foo uses version 1.0 unless the user specifies another version.

Modifying Dependency Metadata
Each component pulled from a repository includes metadata, such as its group, name, version, and
the various variants it provides along with their artifacts and dependencies.

Occasionally, this metadata might be incomplete or incorrect.

Gradle offers an API to address this issue, allowing you to write component metadata rules
directly within the build script. These rules are applied after a module’s metadata is downloaded,
but before it’s used in dependency resolution.

Writing a component metadata rule

Component metadata rules are applied within the components section of the dependencies block in a
build script or in the settings script.

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

These rules can be defined in two ways:

1. Inline as an Action: Directly within the components section.

2. As a Separate Class: Implementing the ComponentMetadataRule interface.

While inline actions are convenient for quick experimentation, it’s generally recommended to
define rules as separate classes.

Rules written as isolated classes can be annotated with @CacheableRule, allowing their results to be
cached and avoiding re-execution each time dependencies are resolved.

TIP
A rule should always be cacheable to avoid major impacts on build performance and
ensure faster build times.

build.gradle.kts

@CacheableRule
abstract class TargetJvmVersionRule @Inject constructor(val jvmVersion: Int)
: ComponentMetadataRule {
 @get:Inject abstract val objects: ObjectFactory

 override fun execute(context: ComponentMetadataContext) {
 context.details.withVariant("compile") {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
jvmVersion)
 attribute(Usage.USAGE_ATTRIBUTE,
objects.named(Usage.JAVA_API))
 }
 }
 }
}
dependencies {
 components {
 withModule<TargetJvmVersionRule>("commons-io:commons-io") {
 params(7)
 }
 withModule<TargetJvmVersionRule>("commons-collections:commons-
collections") {
 params(8)
 }
 }
 implementation("commons-io:commons-io:2.6")
 implementation("commons-collections:commons-collections:3.2.2")
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ComponentMetadataRule.html

build.gradle

@CacheableRule
abstract class TargetJvmVersionRule implements ComponentMetadataRule {
 final Integer jvmVersion
 @Inject TargetJvmVersionRule(Integer jvmVersion) {
 this.jvmVersion = jvmVersion
 }

 @Inject abstract ObjectFactory getObjects()

 void execute(ComponentMetadataContext context) {
 context.details.withVariant("compile") {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
jvmVersion)
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_API))
 }
 }
 }
}
dependencies {
 components {
 withModule("commons-io:commons-io", TargetJvmVersionRule) {
 params(7)
 }
 withModule("commons-collections:commons-collections",
TargetJvmVersionRule) {
 params(8)
 }
 }
 implementation("commons-io:commons-io:2.6")
 implementation("commons-collections:commons-collections:3.2.2")
}

In this example, the TargetJvmVersionRule class implements ComponentMetadataRule and is further
configured using ActionConfiguration.

Gradle enforces isolation of instances of ComponentMetadataRule, requiring that all parameters must
be Serializable or recognized Gradle types.

Additionally, services like ObjectFactory can be injected into your rule’s constructor using @Inject.

A component metadata rule can be applied to all modules using all(rule) or to a specific module
using withModule(groupAndName, rule). Typically, a rule is tailored to enrich the metadata of a
specific module, so the withModule API is preferred.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ComponentMetadataRule.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/ActionConfiguration.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/model/ObjectFactory.html

Declaring rules in a central place

NOTE Declaring component metadata rules in settings is an incubating feature

Component metadata rules can be declared in the settings.gradle(.kts) file for the entire build,
rather than in each subproject individually. Rules declared in settings are applied to all projects by
default unless overridden by project-specific rules.

settings.gradle.kts

dependencyResolutionManagement {
 components {
 withModule<GuavaRule>("com.google.guava:guava")
 }
}

settings.gradle

dependencyResolutionManagement {
 components {
 withModule("com.google.guava:guava", GuavaRule)
 }
}

By default, project-specific rules take precedence over settings rules. However, this behavior can be
adjusted:

settings.gradle.kts

dependencyResolutionManagement {
 rulesMode = RulesMode.PREFER_SETTINGS
}

settings.gradle

dependencyResolutionManagement {
 rulesMode = RulesMode.PREFER_SETTINGS
}

If this method is called and that a project or plugin declares rules, a warning will be issued. You can
make this a failure instead by using this alternative:

settings.gradle.kts

dependencyResolutionManagement {
 rulesMode = RulesMode.FAIL_ON_PROJECT_RULES
}

settings.gradle

dependencyResolutionManagement {
 rulesMode = RulesMode.FAIL_ON_PROJECT_RULES
}

The default behavior is equivalent to calling this method:

settings.gradle.kts

dependencyResolutionManagement {
 rulesMode = RulesMode.PREFER_PROJECT
}

settings.gradle

dependencyResolutionManagement {
 rulesMode = RulesMode.PREFER_PROJECT
}

Which parts of metadata can be modified?

The Component Metadata Rules API focuses on the features supported by Gradle Module Metadata
and the dependencies API. The key difference between using metadata rules and defining
dependencies/artifacts in a build script is that component metadata rules operate directly on
variants, whereas build scripts often affect multiple variants at once (e.g., an api dependency is
applied to both api and runtime variants of a Java library).

Variants can be modified through the following methods:

• allVariants: Modify all variants of a component.

• withVariant(name): Modify a specific variant identified by its name.

• addVariant(name) or addVariant(name, base): Add a new variant from scratch or copy details
from an existing variant (base).

The following variant details can be modified:

• Attributes: Use the attributes {} block to adjust attributes that identify the variant.

• Capabilities: Use the withCapabilities {} block to define the capabilities the variant provides.

• Dependencies: Use the withDependencies {} block to manage the variant’s dependencies,
including rich version constraints.

• Dependency Constraints: Use the withDependencyConstraints {} block to define the variant’s
dependency constraints, including rich versions.

• Published Files: Use the withFiles {} block to specify the location of the files that make up the
variant’s content.

Additionally, several component-level properties can be changed:

• Component Attributes: The only meaningful attribute here is org.gradle.status.

• Status Scheme: Influence how the org.gradle.status attribute is interpreted during version
selection.

• BelongsTo Property: Used for <component_capabilities.adoc#sec:declaring-capabilities-
external-modules,version alignment>> via virtual platforms.

The format of a module’s metadata affects how it maps to the variant-centric representation:

• Gradle Module Metadata: The data structure is similar to the module’s .module file.

• POM Metadata: For modules published with .pom metadata, fixed variants are derived as
explained in the "Mapping POM Files to Variants", section.

• Ivy Metadata: If a module was published with an ivy.xml file, Ivy configurations can be
accessed in place of variants. Their dependencies, constraints, and files can be modified. You
can also use addVariant(name, baseVariantOrConfiguration) to derive variants from Ivy
configurations, such as defining compile and runtime variants for the Java library plugin.

Before using component metadata rules to adjust a module’s metadata, determine whether the
module was published with Gradle Module Metadata (.module file) or traditional metadata (.pom
or ivy.xml):

• Modules with Gradle Module Metadata: These typically have complete metadata, but issues
can still occur. Only apply component metadata rules if you’ve clearly identified a problem with
the metadata. For dependency resolution issues, first consider using dependency constraints
with rich versions. If you’re developing a library, note that dependency constraints are
published as part of your own library’s metadata, making it easier to share the solution with
consumers. In contrast, component metadata rules apply only within your own build.

• Modules with Traditional Metadata (.pom or ivy.xml): These are more likely to have

incomplete metadata since features like variants and dependency constraints aren’t supported
in these formats. Such modules might have variants or constraints that were omitted or
incorrectly defined as dependencies. In the following sections, we explore examples of OSS
modules with incomplete metadata and the rules to add missing information.

As a rule of thumb, you should contemplate if the rule you are writing also works out of context of
your build. That is, does the rule still produce a correct and useful result if applied in any other
build that uses the module(s) it affects?

Fixing incorrect dependency details

Consider the Jaxen XPath Engine (version 1.1.3) published on Maven Central. Its pom file declares
several unnecessary dependencies in the compile scope, which were later removed in version 1.1.4.
If you need to work with version 1.1.3, you can fix the metadata using the following rule:

build.gradle.kts

@CacheableRule
abstract class JaxenDependenciesRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 context.details.allVariants {
 withDependencies {
 removeAll { it.group in listOf("dom4j", "jdom", "xerces",
"maven-plugins", "xml-apis", "xom") }
 }
 }
 }
}

build.gradle

@CacheableRule
abstract class JaxenDependenciesRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 context.details.allVariants {
 withDependencies {
 removeAll { it.group in ["dom4j", "jdom", "xerces", "maven-
plugins", "xml-apis", "xom"] }
 }
 }
 }
}

In the withDependencies block, you have access to the full list of dependencies and can use Java

collection methods to inspect and modify that list. You can also add dependencies using the
add(notation, configureAction) method. Similarly, you can inspect and modify dependency
constraints within the withDependencyConstraints block.

In Jaxen version 1.1.4, the dom4j, jdom, and xerces dependencies are still present but marked as
optional. Optional dependencies are not processed automatically by Gradle or Maven, as they
indicate feature variants that require additional dependencies. However, the pom file lacks
information about these features and their corresponding dependencies. This can be represented in
Gradle Module Metadata through variants and capabilities, which we can add via a component
metadata rule.

build.gradle.kts

@CacheableRule
abstract class JaxenCapabilitiesRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 context.details.addVariant("runtime-dom4j", "runtime") {
 withCapabilities {
 removeCapability("jaxen", "jaxen")
 addCapability("jaxen", "jaxen-dom4j",
context.details.id.version)
 }
 withDependencies {
 add("dom4j:dom4j:1.6.1")
 }
 }
 }
}

build.gradle

@CacheableRule
abstract class JaxenCapabilitiesRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 context.details.addVariant("runtime-dom4j", "runtime") {
 withCapabilities {
 removeCapability("jaxen", "jaxen")
 addCapability("jaxen", "jaxen-dom4j", context.details.id
.version)
 }
 withDependencies {
 add("dom4j:dom4j:1.6.1")
 }
 }
 }
}

In this example, we create a new variant called runtime-dom4j using the addVariant(name,
baseVariant) method. This variant represents an optional feature, defined by the capability jaxen-
dom4j. We then add the required dependency dom4j:dom4j:1.6.1 to this feature.

build.gradle.kts

dependencies {
 components {
 withModule<JaxenDependenciesRule>("jaxen:jaxen")
 withModule<JaxenCapabilitiesRule>("jaxen:jaxen")
 }
 implementation("jaxen:jaxen:1.1.3")
 runtimeOnly("jaxen:jaxen:1.1.3") {
 capabilities { requireCapability("jaxen:jaxen-dom4j") }
 }
}

build.gradle

dependencies {
 components {
 withModule("jaxen:jaxen", JaxenDependenciesRule)
 withModule("jaxen:jaxen", JaxenCapabilitiesRule)
 }
 implementation("jaxen:jaxen:1.1.3")
 runtimeOnly("jaxen:jaxen:1.1.3") {
 capabilities { requireCapability("jaxen:jaxen-dom4j") }
 }
}

By applying these rules, Gradle uses the enriched metadata to correctly resolve the optional
dependencies when the jaxen-dom4j feature is required.

Making variants published as classified jars explicit

In modern builds, variants are often published as separate artifacts, each represented by its own
jar file. For example, libraries may provide distinct jars for different Java versions, ensuring that
the correct version is used at runtime or compile time based on the environment.

For instance, version 0.7.9 of the asynchronous programming library Quasar, published on Maven
Central, includes both quasar-core-0.7.9.jar and quasar-core-0.7.9-jdk8.jar. Publishing jars with a
classifier, such as jdk8, is common practice in Maven repositories. However, neither Maven nor
Gradle metadata provides information about these classified jars. As a result, there is no clear way
to determine their existence or any differences, such as dependencies, between the variants.

https://repo1.maven.org/maven2/co/paralleluniverse/quasar-core/0.7.9
https://repo1.maven.org/maven2/co/paralleluniverse/quasar-core/0.7.9

In Gradle Module Metadata, variant information would be present. For the already published
Quasar library, we can add this information using the following rule:

build.gradle.kts

@CacheableRule
abstract class QuasarRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 listOf("compile", "runtime").forEach { base ->
 context.details.addVariant("jdk8${base.capitalize()}", base) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
8)
 }
 withFiles {
 removeAllFiles()
 addFile("${context.details.id.name}-
${context.details.id.version}-jdk8.jar")
 }
 }
 context.details.withVariant(base) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
7)
 }
 }
 }
 }
}

build.gradle

@CacheableRule
abstract class QuasarRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 ["compile", "runtime"].each { base ->
 context.details.addVariant("jdk8${base.capitalize()}", base) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
8)
 }
 withFiles {
 removeAllFiles()
 addFile("${context.details.id.name}-${context.details.id
.version}-jdk8.jar")
 }
 }

 context.details.withVariant(base) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
7)
 }
 }
 }
 }
}

In this case, the jdk8 classifier clearly indicates the target Java version, which corresponds to a
known attribute in the Java ecosystem. Since we need both compile and runtime variants for Java
8, we create two new variants using the existing compile and runtime variants as a base. This
ensures that all other Java ecosystem attributes are set correctly, and dependencies are carried
over.

We assign the TARGET_JVM_VERSION_ATTRIBUTE to 8 for both new variants, remove any existing files
with removeAllFiles(), and then add the jdk8 jar using addFile(). Removing the files is necessary
because the reference to the main jar quasar-core-0.7.9.jar is copied from the base variant.

Finally, we enrich the existing compile and runtime variants with the information that they target
Java 7 using attribute(TARGET_JVM_VERSION_ATTRIBUTE, 7).

With these changes, you can now request Java 8 versions for all dependencies on the compile
classpath, and Gradle will automatically select the best-fitting variant. In the case of Quasar, this
will be the jdk8Compile variant, which exposes the quasar-core-0.7.9-jdk8.jar.

build.gradle.kts

configurations["compileClasspath"].attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 8)
}
dependencies {
 components {
 withModule<QuasarRule>("co.paralleluniverse:quasar-core")
 }
 implementation("co.paralleluniverse:quasar-core:0.7.9")
}

build.gradle

configurations.compileClasspath.attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 8)
}
dependencies {

 components {
 withModule("co.paralleluniverse:quasar-core", QuasarRule)
 }
 implementation("co.paralleluniverse:quasar-core:0.7.9")
}

With this configuration, Gradle will select the Java 8 variant of Quasar for the compile classpath.

Making variants encoded in versions explicit

Another solution to publish multiple alternatives for the same library is the usage of a versioning
pattern as done by the popular Guava library. Here, each new version is published twice by
appending the classifier to the version instead of the jar artifact. In the case of Guava 28 for
example, we can find a 28.0-jre (Java 8) and 28.0-android (Java 6) version on Maven central. The
advantage of using this pattern when working only with pom metadata is that both variants are
discoverable through the version. The disadvantage is that there is no information as to what the
different version suffixes mean semantically. So in the case of conflict, Gradle would just pick the
highest version when comparing the version strings.

Turning this into proper variants is a bit more tricky, as Gradle first selects a version of a module
and then selects the best fitting variant. So the concept that variants are encoded as versions is not
supported directly. However, since both variants are always published together we can assume that
the files are physically located in the same repository. And since they are published with Maven
repository conventions, we know the location of each file if we know module name and version. We
can write the following rule:

build.gradle.kts

@CacheableRule
abstract class GuavaRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 val variantVersion = context.details.id.version
 val version = variantVersion.substring(0, variantVersion.indexOf("-
"))
 listOf("compile", "runtime").forEach { base ->
 mapOf(6 to "android", 8 to "jre").forEach { (targetJvmVersion,
jarName) ->

context.details.addVariant("jdk$targetJvmVersion${base.capitalize()}", base)
{
 attributes {

attributes.attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
targetJvmVersion)
 }
 withFiles {

https://repo1.maven.org/maven2/com/google/guava/guava

 removeAllFiles()
 addFile("guava-$version-$jarName.jar", "../$version-
$jarName/guava-$version-$jarName.jar")
 }
 }
 }
 }
 }
}

build.gradle

@CacheableRule
abstract class GuavaRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 def variantVersion = context.details.id.version
 def version = variantVersion.substring(0, variantVersion.indexOf("-"
))
 ["compile", "runtime"].each { base ->
 [6: "android", 8: "jre"].each { targetJvmVersion, jarName ->
 context.details.addVariant("jdk$targetJvmVersion${base
.capitalize()}", base) {
 attributes {
 attributes.attribute(TargetJvmVersion
.TARGET_JVM_VERSION_ATTRIBUTE, targetJvmVersion)
 }
 withFiles {
 removeAllFiles()
 addFile("guava-$version-${jarName}.jar", "../$version
-$jarName/guava-$version-${jarName}.jar")
 }
 }
 }
 }
 }
}

Similar to the previous example, we add runtime and compile variants for both Java versions. In
the withFiles block however, we now also specify a relative path for the corresponding jar file
which allows Gradle to find the file no matter if it has selected a -jre or -android version. The path is
always relative to the location of the metadata (in this case pom) file of the selection module version.
So with this rules, both Guava 28 "versions" carry both the jdk6 and jdk8 variants. So it does not
matter to which one Gradle resolves. The variant, and with it the correct jar file, is determined
based on the requested TARGET_JVM_VERSION_ATTRIBUTE value.

build.gradle.kts

configurations["compileClasspath"].attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 6)
}
dependencies {
 components {
 withModule<GuavaRule>("com.google.guava:guava")
 }
 // '23.3-android' and '23.3-jre' are now the same as both offer both
variants
 implementation("com.google.guava:guava:23.3+")
}

build.gradle

configurations.compileClasspath.attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 6)
}
dependencies {
 components {
 withModule("com.google.guava:guava", GuavaRule)
 }
 // '23.3-android' and '23.3-jre' are now the same as both offer both
variants
 implementation("com.google.guava:guava:23.3+")
}

Adding variants for native jars

Jars with classifiers are also used to separate parts of a library for which multiple alternatives
exists, for example native code, from the main artifact. This is for example done by the Lightweight
Java Game Library (LWGJ), which publishes several platform specific jars to Maven central from
which always one is needed, in addition to the main jar, at runtime. It is not possible to convey this
information in pom metadata as there is no concept of putting multiple artifacts in relation through
the metadata. In Gradle Module Metadata, each variant can have arbitrary many files and we can
leverage that by writing the following rule:

build.gradle.kts

@CacheableRule
abstract class LwjglRule: ComponentMetadataRule {
 data class NativeVariant(val os: String, val arch: String, val

https://repo1.maven.org/maven2/org/lwjgl/lwjgl/3.2.3

classifier: String)

 private val nativeVariants = listOf(
 NativeVariant(OperatingSystemFamily.LINUX, "arm32", "natives-
linux-arm32"),
 NativeVariant(OperatingSystemFamily.LINUX, "arm64", "natives-
linux-arm64"),
 NativeVariant(OperatingSystemFamily.WINDOWS, "x86", "natives-
windows-x86"),
 NativeVariant(OperatingSystemFamily.WINDOWS, "x86-64", "natives-
windows"),
 NativeVariant(OperatingSystemFamily.MACOS, "x86-64", "natives-
macos")
)

 @get:Inject abstract val objects: ObjectFactory

 override fun execute(context: ComponentMetadataContext) {
 context.details.withVariant("runtime") {
 attributes {

attributes.attribute(OperatingSystemFamily.OPERATING_SYSTEM_ATTRIBUTE,
objects.named("none"))

attributes.attribute(MachineArchitecture.ARCHITECTURE_ATTRIBUTE,
objects.named("none"))
 }
 }
 nativeVariants.forEach { variantDefinition ->
 context.details.addVariant("${variantDefinition.classifier}-
runtime", "runtime") {
 attributes {

attributes.attribute(OperatingSystemFamily.OPERATING_SYSTEM_ATTRIBUTE,
objects.named(variantDefinition.os))

attributes.attribute(MachineArchitecture.ARCHITECTURE_ATTRIBUTE,
objects.named(variantDefinition.arch))
 }
 withFiles {
 addFile("${context.details.id.name}-
${context.details.id.version}-${variantDefinition.classifier}.jar")
 }
 }
 }
 }
}

build.gradle

@CacheableRule
abstract class LwjglRule implements ComponentMetadataRule { //val os: String,
val arch: String, val classifier: String)
 private def nativeVariants = [
 [os: OperatingSystemFamily.LINUX, arch: "arm32", classifier:
"natives-linux-arm32"],
 [os: OperatingSystemFamily.LINUX, arch: "arm64", classifier:
"natives-linux-arm64"],
 [os: OperatingSystemFamily.WINDOWS, arch: "x86", classifier:
"natives-windows-x86"],
 [os: OperatingSystemFamily.WINDOWS, arch: "x86-64", classifier:
"natives-windows"],
 [os: OperatingSystemFamily.MACOS, arch: "x86-64", classifier:
"natives-macos"]
]

 @Inject abstract ObjectFactory getObjects()

 void execute(ComponentMetadataContext context) {
 context.details.withVariant("runtime") {
 attributes {
 attributes.attribute(OperatingSystemFamily
.OPERATING_SYSTEM_ATTRIBUTE, objects.named(OperatingSystemFamily, "none"))
 attributes.attribute(MachineArchitecture
.ARCHITECTURE_ATTRIBUTE, objects.named(MachineArchitecture, "none"))
 }
 }
 nativeVariants.each { variantDefinition ->
 context.details.addVariant("${variantDefinition.classifier}
-runtime", "runtime") {
 attributes {
 attributes.attribute(OperatingSystemFamily
.OPERATING_SYSTEM_ATTRIBUTE, objects.named(OperatingSystemFamily,
variantDefinition.os))
 attributes.attribute(MachineArchitecture
.ARCHITECTURE_ATTRIBUTE, objects.named(MachineArchitecture,
variantDefinition.arch))
 }
 withFiles {
 addFile("${context.details.id.name}-${context.details.id
.version}-${variantDefinition.classifier}.jar")
 }
 }
 }
 }
}

This rule is quite similar to the Quasar library example above. Only this time we have five different
runtime variants we add and nothing we need to change for the compile variant. The runtime
variants are all based on the existing runtime variant and we do not change any existing
information. All Java ecosystem attributes, the dependencies and the main jar file stay part of each
of the runtime variants. We only set the additional attributes OPERATING_SYSTEM_ATTRIBUTE and
ARCHITECTURE_ATTRIBUTE which are defined as part of Gradle’s native support. And we add the
corresponding native jar file so that each runtime variant now carries two files: the main jar and
the native jar.

In the build script, we can now request a specific variant and Gradle will fail with a selection error
if more information is needed to make a decision.

Gradle is able to understand the common case where a single attribute is missing that would have
removed the ambiguity. In this case, rather than listing information about all attributes on all
available variants, Gradle helpfully lists only possible values for that attribute along with the
variants each value would select.

build.gradle.kts

configurations["runtimeClasspath"].attributes {
 attribute(OperatingSystemFamily.OPERATING_SYSTEM_ATTRIBUTE,
objects.named("windows"))
}
dependencies {
 components {
 withModule<LwjglRule>("org.lwjgl:lwjgl")
 }
 implementation("org.lwjgl:lwjgl:3.2.3")
}

build.gradle

configurations["runtimeClasspath"].attributes {
 attribute(OperatingSystemFamily.OPERATING_SYSTEM_ATTRIBUTE, objects.
named(OperatingSystemFamily, "windows"))
}
dependencies {
 components {
 withModule("org.lwjgl:lwjgl", LwjglRule)
 }
 implementation("org.lwjgl:lwjgl:3.2.3")
}

Gradle fails to select a variant because a machine architecture needs to be chosen:

building_cpp_projects.pdf#building_cpp_projects

> Could not resolve all files for configuration ':runtimeClasspath'.
 > Could not resolve org.lwjgl:lwjgl:3.2.3.
 Required by:
 project :
 > The consumer was configured to find a library for use during runtime,
compatible with Java 11, packaged as a jar, preferably optimized for standard JVMs,
and its dependencies declared externally, as well as attribute
'org.gradle.native.operatingSystem' with value 'windows'. There are several available
matching variants of org.lwjgl:lwjgl:3.2.3
 The only attribute distinguishing these variants is
'org.gradle.native.architecture'. Add this attribute to the consumer's configuration
to resolve the ambiguity:
 - Value: 'x86-64' selects variant: 'natives-windows-runtime'
 - Value: 'x86' selects variant: 'natives-windows-x86-runtime'

Making different flavors of a library available through capabilities

Because it is difficult to model optional feature variants as separate jars with pom metadata,
libraries sometimes comprise different jars with different feature sets. That is, instead of
composing your flavor of the library from different feature variants, you select one of the pre-
composed variants (offering everything in one jar). One such library is the well-known dependency
injection framework Guice, published on Maven central, which offers a complete flavor (the main
jar) and a reduced variant without aspect-oriented programming support (guice-4.2.2-no_aop.jar).
That second variant with a classifier is not mentioned in the pom metadata. With the following
rule, we create compile and runtime variants based on that file and make it selectable through a
capability named com.google.inject:guice-no_aop.

build.gradle.kts

@CacheableRule
abstract class GuiceRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 listOf("compile", "runtime").forEach { base ->
 context.details.addVariant("noAop${base.capitalize()}", base) {
 withCapabilities {
 addCapability("com.google.inject", "guice-no_aop",
context.details.id.version)
 }
 withFiles {
 removeAllFiles()
 addFile("guice-${context.details.id.version}-no_aop.jar")
 }
 withDependencies {
 removeAll { it.group == "aopalliance" }
 }
 }
 }

https://repo1.maven.org/maven2/com/google/inject/guice/4.2.2

 }
}

build.gradle

@CacheableRule
abstract class GuiceRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 ["compile", "runtime"].each { base ->
 context.details.addVariant("noAop${base.capitalize()}", base) {
 withCapabilities {
 addCapability("com.google.inject", "guice-no_aop",
context.details.id.version)
 }
 withFiles {
 removeAllFiles()
 addFile("guice-${context.details.id.version}-no_aop.jar")
 }
 withDependencies {
 removeAll { it.group == "aopalliance" }
 }
 }
 }
 }
}

The new variants also have the dependency on the standardized aop interfaces library
aopalliance:aopalliance removed, as this is clearly not needed by these variants. Again, this is
information that cannot be expressed in pom metadata. We can now select a guice-no_aop variant
and will get the correct jar file and the correct dependencies.

build.gradle.kts

dependencies {
 components {
 withModule<GuiceRule>("com.google.inject:guice")
 }
 implementation("com.google.inject:guice:4.2.2") {
 capabilities { requireCapability("com.google.inject:guice-no_aop") }
 }
}

build.gradle

dependencies {
 components {
 withModule("com.google.inject:guice", GuiceRule)
 }
 implementation("com.google.inject:guice:4.2.2") {
 capabilities { requireCapability("com.google.inject:guice-no_aop") }
 }
}

Adding missing capabilities to detect conflicts

Another usage of capabilities is to express that two different modules, for example log4j and log4j-
over-slf4j, provide alternative implementations of the same thing. By declaring that both provide
the same capability, Gradle only accepts one of them in a dependency graph. This example, and
how it can be tackled with a component metadata rule, is described in detail in the feature
modelling section.

Making Ivy modules variant-aware

Modules published using Ivy do not have variants available by default.

However, Ivy configurations can be mapped to variants as the addVariant(name,
baseVariantOrConfiguration) accepts any Ivy configuration that was published as base. This can be
used, for example, to define runtime and compile variants. An example of a corresponding rule can
be found here. Ivy details of Ivy configurations (e.g. dependencies and files) can also be modified
using the withVariant(configurationName) API. However, modifying attributes or capabilities on Ivy
configurations has no effect.

For very Ivy specific use cases, the component metadata rules API also offers access to other details
only found in Ivy metadata. These are available through the IvyModuleDescriptor interface and can
be accessed using getDescriptor(IvyModuleDescriptor) on the ComponentMetadataContext.

build.gradle.kts

@CacheableRule
abstract class IvyComponentRule : ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 val descriptor = context.getDescriptor(IvyModuleDescriptor::class)
 if (descriptor != null && descriptor.branch == "testing") {
 context.details.status = "rc"
 }
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ComponentMetadataContext.html

build.gradle

@CacheableRule
abstract class IvyComponentRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 def descriptor = context.getDescriptor(IvyModuleDescriptor)
 if (descriptor != null && descriptor.branch == "testing") {
 context.details.status = "rc"
 }
 }
}

Filter using Maven metadata

For Maven specific use cases, the component metadata rules API also offers access to other details
only found in POM metadata. These are available through the PomModuleDescriptor interface and
can be accessed using getDescriptor(PomModuleDescriptor) on the ComponentMetadataContext.

build.gradle.kts

@CacheableRule
abstract class MavenComponentRule : ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 val descriptor = context.getDescriptor(PomModuleDescriptor::class)
 if (descriptor != null && descriptor.packaging == "war") {
 // ...
 }
 }
}

build.gradle

@CacheableRule
abstract class MavenComponentRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 def descriptor = context.getDescriptor(PomModuleDescriptor)
 if (descriptor != null && descriptor.packaging == "war") {
 // ...
 }
 }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/maven/PomModuleDescriptor.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ComponentMetadataContext.html

Modifying metadata on the component level for alignment

While all the examples above made modifications to variants of a component, there is also a limited
set of modifications that can be done to the metadata of the component itself. This information can
influence the version selection process for a module during dependency resolution, which is
performed before one or multiple variants of a component are selected.

The first API available on the component is belongsTo() to create virtual platforms for aligning
versions of multiple modules without Gradle Module Metadata. It is explained in detail in the
section on aligning versions of modules not published with Gradle.

Modifying metadata on the component level for version selection based on
status

Gradle and Gradle Module Metadata also allow attributes to be set on the whole component instead
of a single variant. Each of these attributes carries special semantics as they influence version
selection which is done before variant selection. While variant selection can handle any custom
attribute, version selection only considers attributes for which specific semantics are implemented.
At the moment, the only attribute with meaning here is org.gradle.status.

The org.gradle.status module attribute indicates the lifecycle status or maturity level of a module
or library:

1. integration: This indicates that the module is under active development and may not be stable.

2. milestone: A module with this status is more mature than one marked as integration.

3. release: This status signifies that the module is stable and officially released.

It is therefore recommended to only modify this attribute, if any, on the component level. A
dedicated API setStatus(value) is available for this. To modify another attribute for all variants of a
component withAllVariants { attributes {} } should be utilised instead.

A module’s status is taken into consideration when a latest version selector is resolved. Specifically,
latest.someStatus will resolve to the highest module version that has status someStatus or a more
mature status. For example, latest.integration will select the highest module version regardless of
its status (because integration is the least mature status as explained below), whereas
latest.release will select the highest module version with status release.

The interpretation of the status can be influenced by changing a module’s status scheme through
the setStatusScheme(valueList) API. This concept models the different levels of maturity that a
module transitions through over time with different publications. The default status scheme,
ordered from least to most mature status, is integration, milestone, release. The org.gradle.status
attribute must be set, to one of the values in the component’s status scheme. Thus each component
always has a status which is determined from the metadata as follows:

• Gradle Module Metadata: the value that was published for the org.gradle.status attribute on
the component

• Ivy metadata: status defined in the ivy.xml, defaults to integration if missing

• Pom metadata: integration for modules with a SNAPSHOT version, release for all others

The following example demonstrates latest selectors based on a custom status scheme declared in
a component metadata rule that applies to all modules:

build.gradle.kts

@CacheableRule
abstract class CustomStatusRule : ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 context.details.statusScheme = listOf("nightly", "milestone", "rc",
"release")
 if (context.details.status == "integration") {
 context.details.status = "nightly"
 }
 }
}

dependencies {
 components {
 all<CustomStatusRule>()
 }
 implementation("org.apache.commons:commons-lang3:latest.rc")
}

build.gradle

@CacheableRule
abstract class CustomStatusRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 context.details.statusScheme = ["nightly", "milestone", "rc",
"release"]
 if (context.details.status == "integration") {
 context.details.status = "nightly"
 }
 }
}

dependencies {
 components {
 all(CustomStatusRule)
 }
 implementation("org.apache.commons:commons-lang3:latest.rc")
}

Compared to the default scheme, the rule inserts a new status rc and replaces integration with
nightly. Existing modules with the status integration are mapped to nightly.

Dependency Caching
Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise
the number of remote requests made in dependency resolution, while striving to guarantee that the
results of dependency resolution are correct and reproducible.

1. Local Cache: Gradle caches dependencies locally to avoid repeated downloads. The cache is
located in the .gradle directory under the user’s home folder (e.g., ~/.gradle/caches/modules-2).
When a dependency is requested, Gradle first checks this local cache before attempting to fetch
it from remote repositories.

2. Changing Dependencies: By default, Gradle treats dependencies marked as "changing" (e.g.,
SNAPSHOT or dynamic dependencies) differently and refreshes them more frequently. The
caching times for these dependencies can be altered programmatically.

3. Offline Mode: Gradle can run in offline mode, using only the cached dependencies without
trying to download anything from remote repositories. You can enable offline mode with the
--offline flag, ensuring that your build only uses cached artifacts.

4. Refreshing Dependencies: To force Gradle to update its dependencies, use the --refresh
-dependencies flag. This option instructs Gradle to bypass the cache and check for updated
artifacts in remote repositories. Gradle downloads them, but only if it detects a change, using
hashes to avoid unnecessary downloads.

1. The dependency cache

The Gradle dependency cache consists of two storage types located under $GRADLE_USER_HOME/caches:

1. A file-based store of downloaded artifacts, including binaries like jars as well as raw
downloaded meta-data like POM files and Ivy files. Artifacts are stored under a checksum, so
name clashes will not cause issues.

2. A binary store of resolved module metadata, including the results of resolving dynamic
versions, module descriptors, and artifacts.

Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata
cache.

The information stored in the metadata cache includes:

• The result of resolving a dynamic version (e.g. 1.+) to a concrete version (e.g. 1.2).

• The resolved module metadata for a particular module, including module artifacts and module
dependencies.

• The resolved artifact metadata for a particular artifact, including a pointer to the downloaded
artifact file.

• The absence of a particular module or artifact in a particular repository, eliminating repeated
attempts to access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the
information as well as a timestamp that can be used for cache expiry.

Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is
identified by its URL, type and layout.

If a module or artifact has not been previously resolved from this repository, Gradle will attempt to
resolve the module against the repository. This will always involve a remote lookup on the
repository, however in many cases no download will be required.

Dependency resolution will fail if required artifacts aren’t available in the repository from which
they were originally resolved. Once resolved from a specific repository, artifacts become "sticky,"
meaning Gradle will avoid resolving them from other repositories to prevent unexpected or
potentially unsafe changes in artifact sources. This ensures consistency across environments, but it
may also lead to failures if repositories differ between machines.

Repository independence allows builds to be isolated from each other. This is a key feature to
create builds that are reliable and reproducible in any environment.

Artifact reuse

Before downloading an artifact, Gradle attempts to retrieve the artifact’s checksum by downloading
an associated .sha512, .sha256, .sha1, or .md5 file (attempting each in order).

If the checksum is available, Gradle skips the download if an artifact with the same ID and
checksum already exists. However, if the checksum cannot be retrieved from the remote server,
Gradle proceeds to download the artifact but will ignore it if it matches an existing one.

Gradle also tries to reuse artifacts from the local Maven repository. If an artifact previously
downloaded by Maven is a match, Gradle will use it, provided it can be verified against the
checksum from the remote server.

Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same
artifact identifier.

This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact which is
republished without changing its identifier. By caching artifacts based on their checksum, Gradle is
able to maintain multiple versions of the same artifact. This means that when resolving against one
repository Gradle will never overwrite the cached artifact file from a different repository. This is
done without requiring a separate artifact file store per repository.

Cache locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by
multiple Gradle processes concurrently. The lock is held whenever the binary metadata store is
being read or written, but is released for slow operations such as downloading remote artifacts.

This concurrent access is only supported if the different Gradle processes can communicate
together. This is usually not the case for containerized builds.

Cache cleanup

Gradle tracks which artifacts in the dependency cache are accessed. Based on this information, the
cache is periodically scanned (no more than once every 24 hours) to identify artifacts that haven’t
been used in over 30 days. These obsolete artifacts are then deleted to prevent the cache from
growing indefinitely.

You can learn more about cache cleanup in Gradle-managed Directories.

2. Changing dependencies

Gradle treats dependencies marked as "changing" (such as SNAPSHOT dependencies) differently
from regular dependencies, refreshing them more frequently to ensure that you are always using
the latest version.

To declare a dependency as changing, you can set the changing = true attribute in your dependency
declaration. This is useful for dependencies expected to change frequently without a new version
number:

dependencies {
 implementation("com.example:some-library:1.0-SNAPSHOT") // Automatically gets
treated as changing
 implementation("com.example:my-library:1.0") { // Must be explicitly set as
changing
 changing = true
 }
}

Caching changing dependencies

By default, Gradle caches these dependencies (including dynamic versions and changing modules)
for 24 hours, meaning it does not contact remote repositories for new versions during this time.

To have Gradle check for newer versions more frequently or with every build, you can adjust the
caching threshold or time-to-live (TTL) settings accordingly.

NOTE
Using a short TTL threshold for dynamic or changing versions may result in longer
build times due to increased remote repository accesses.

You can fine-tune certain aspects of caching programmatically using the ResolutionStrategy for a
configuration. The programmatic approach is useful if you want to change the settings
permanently.

To change how long Gradle will cache the resolved version for a dynamic version, use:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ResolutionStrategy.html

build.gradle.kts

configurations.all {
 resolutionStrategy.cacheDynamicVersionsFor(10, "minutes")
}

build.gradle

configurations.all {
 resolutionStrategy.cacheDynamicVersionsFor 10, 'minutes'
}

To change how long Gradle will cache the metadata and artifacts for a changing module, use:

build.gradle.kts

configurations.all {
 resolutionStrategy.cacheChangingModulesFor(4, "hours")
}

build.gradle

configurations.all {
 resolutionStrategy.cacheChangingModulesFor 4, 'hours'
}

3. Using offline mode

The --offline command-line switch instructs Gradle to use dependency modules from the cache,
regardless of whether they are due to be checked again. When running with offline, Gradle will
not attempt to access the network for dependency resolution. If the required modules are not in the
dependency cache, the build will fail.

4. Force-refreshing dependencies

You can control the behavior of dependency caching for a distinct build invocation from the
command line. Command line options help make a selective, ad-hoc choice for a single build
execution.

At times, the Gradle Dependency Cache can become out of sync with the actual state of the
configured repositories. Perhaps a repository was initially misconfigured, or maybe a "non-
changing" module was published incorrectly. To refresh all dependencies in the dependency cache,
use the --refresh-dependencies option on the command line.

The --refresh-dependencies option tells Gradle to ignore all cached entries for resolved modules
and artifacts. A fresh resolve will be performed against all configured repositories, with dynamic
versions recalculated, modules refreshed, and artifacts downloaded. However, where possible
Gradle will check if the previously downloaded artifacts are valid before downloading again. This is
done by comparing published checksum values in the repository with the checksum values for
existing downloaded artifacts.

Refreshing dependencies will cause Gradle to invalidate its listing caches. However:

• it will perform HTTP HEAD requests on metadata files but will not re-download them if they are
identical

• it will perform HTTP HEAD requests on artifact files but will not re-download them if they are
identical

In other words, refreshing dependencies only has an impact if you actually use dynamic
dependencies or that you have changing dependencies that you were not aware of (in which case it
is your responsibility to declare them correctly to Gradle as changing dependencies).

It’s a common misconception to think that using --refresh-dependencies will force the download of
dependencies. This is not the case: Gradle will only perform what is strictly required to refresh the
dynamic dependencies. This may involve downloading new listings, metadata files, or even
artifacts, but the impact is minimal if nothing changed.

Dealing with ephemeral builds

It’s a common practice to run builds in ephemeral containers. A container is typically spawned to
only execute a single build before it is destroyed. This can become a practical problem when a build
depends on a lot of dependencies which each container has to re-download. To help with this
scenario, Gradle provides a couple of options:

• copying the dependency cache into each container

• sharing a read-only dependency cache between multiple containers

Copying and reusing the cache

The dependency cache, both the file and metadata parts, are fully encoded using relative paths.
This means that it is perfectly possible to copy a cache around and see Gradle benefit from it.

The path that can be copied is $GRADLE_USER_HOME/caches/modules-<version>. The only constraint is
placing it using the same structure at the destination, where the value of GRADLE_USER_HOME can be
different.

Do not copy the *.lock or gc.properties files if they exist.

Note that creating the cache and consuming it should be done using compatible Gradle version, as
shown in the table below. Otherwise, the build might still require some interactions with remote
repositories to complete missing information, which might be available in a different version. If
multiple incompatible Gradle versions are in play, all should be used when seeding the cache.

Module cache version File cache version Metadata cache version Gradle version(s)

modules-2 files-2.1 metadata-2.95 Gradle 6.1 to Gradle 6.3

modules-2 files-2.1 metadata-2.96 Gradle 6.4 to Gradle 6.7

modules-2 files-2.1 metadata-2.97 Gradle 6.8 to Gradle 7.4

modules-2 files-2.1 metadata-2.99 Gradle 7.5 to Gradle 7.6.1

modules-2 files-2.1 metadata-2.101 Gradle 7.6.2

modules-2 files-2.1 metadata-2.100 Gradle 8.0

modules-2 files-2.1 metadata-2.105 Gradle 8.1

modules-2 files-2.1 metadata-2.106 Gradle 8.2 to Gradle 8.10.2

modules-2 files-2.1 metadata-2.107 Gradle 8.11 and above

Sharing the dependency cache with other Gradle instances

Instead of copying the dependency cache into each container, it’s possible to mount a shared, read-
only directory that will act as a dependency cache for all containers. This cache, unlike the classical
dependency cache, is accessed without locking, making it possible for multiple builds to read from
the cache concurrently. It’s important that the read-only cache is not written to when other builds
may be reading from it.

When using the shared read-only cache, Gradle looks for dependencies (artifacts or metadata) in
both the writable cache in the local Gradle User Home directory and the shared read-only cache. If
a dependency is present in the read-only cache, it will not be downloaded. If a dependency is
missing from the read-only cache, it will be downloaded and added to the writable cache. In
practice, this means that the writable cache will only contain dependencies that are unavailable in
the read-only cache.

The read-only cache should be sourced from a Gradle dependency cache that already contains
some of the required dependencies. The cache can be incomplete; however, an empty shared cache
will only add overhead.

NOTE The shared read-only dependency cache is an incubating feature.

The first step in using a shared dependency cache is to create one by copying of an existing local
cache. For this you need to follow the instructions above.

Then set the GRADLE_RO_DEP_CACHE environment variable to point to the directory containing the
cache:

$GRADLE_RO_DEP_CACHE
 |-- modules-2 : the read-only dependency cache, should be mounted with read-only

privileges

$GRADLE_HOME
 |-- caches
 |-- modules-2 : the container specific dependency cache, should be writable
 |-- ...
 |-- ...

In a CI environment, it’s a good idea to have one build which "seeds" a Gradle dependency cache,
which is then copied to a different directory or distributed, for example, as a Docker volume. This
directory can then be used as the read-only cache for other builds. You shouldn’t use an existing
Gradle installation cache as the read-only cache, because this directory may contain locks and may
be modified by the seeding build.

UNDERSTANDING DEPENDENCY
RESOLUTION

Understanding the Dependency Resolution Model
This chapter explains how dependency resolution works within Gradle. After learning how to
declare repositories and dependencies, the next step is understanding how these declarations are
combined during the dependency resolution process.

Dependency resolution happens in two key phases, repeated until the entire dependency graph is
constructed:

1. Conflict Resolution: When a new dependency is introduced, Gradle resolves any conflicts to
determine the version that should be added to the graph.

2. Dependency Metadata Retrieval: Once a specific dependency (a module with a version) is
included in the graph, Gradle retrieves its metadata, adding its own dependencies to the graph
in turn.

This process continues until the entire dependency tree is resolved.

Phase 1. Conflict resolution

When performing dependency resolution, Gradle handles two types of conflicts:

1. Version conflicts: Occur when multiple dependencies request the same dependency but with
different versions. Gradle must choose which version to include in the graph.

2. Implementation / Capability conflicts: Occur when the dependency graph contains different
modules that provide the same functionality or capability. Gradle resolves these by selecting one
module to avoid duplicate implementations.

The dependency resolution process is highly customizable and many APIs can influence the
process.

A. Version conflicts

A version conflict occurs when two components:

• Depend on the same module, such as com.google.guava:guava

• But on different versions, for example, 20.0 and 25.1-android:

◦ Our project directly depends on com.google.guava:guava:20.0

◦ Our project also depends on com.google.inject:guice:4.2.2, which in turn depends on
com.google.guava:guava:25.1-android

Gradle must resolve this conflict by selecting one version to include in the dependency graph.

Gradle considers all requested versions across the dependency graph and, by default, selects the

highest version. Detailed version ordering is explained in version ordering.

Gradle also supports the concept of rich version declarations, which means that what constitutes
the "highest" version depends on how the versions were declared:

• Without ranges: The highest non-rejected version will be selected.

◦ If a strictly version is declared that is lower than the highest, resolution will fail.

• With ranges:

◦ If a non-range version fits within the range or is higher than the upper bound, it will be
selected.

◦ If only ranges exist, the selection depends on the intersection of those ranges:

▪ If ranges overlap, the highest existing version in the intersection is selected.

▪ If no clear intersection exists, the highest version from the largest range will be selected.
If no version exists in the highest range, the resolution fails.

◦ If a strictly version is declared that is lower than the highest, resolution will fail.

For version ranges, Gradle needs to perform intermediate metadata lookups to determine which
versions are available, as explained in Phase 2. Dependency metadata retrieval.

Versions with qualifiers

The term "qualifier" refers to the portion of a version string that comes after a non-dot separator,
like a hyphen or underscore.

For example:

Original version Base version Qualifier

1.2.3 1.2.3 <none>

1.2-3 1.2 3

1_alpha 1 alpha

abc abc <none>

1.2b3 1.2 b3

abc.1+3 abc.1 3

b1-2-3.3 b 1-2-3.3

As you can see separators are any of the ., -, _, + characters, plus the empty string when a numeric
and a non-numeric part of the version are next to each-other.

Gradle gives preference to versions without qualifiers when resolving conflicts.

For example, in version 1.0-beta, the base form is 1.0, and beta is the qualifier. Versions without
qualifiers are considered more stable, so Gradle will prioritize them.

Here are a few examples to clarify:

• 1.0.0 (no qualifier)

• 1.0.0-beta (qualifier: beta)

• 2.1-rc1 (qualifier: rc1)

Even if the qualifier is lexicographically higher, Gradle will typically consider a version like 1.0.0
higher than 1.0.0-beta.

When resolving conflicts between versions, Gradle applies the following logic:

1. Base version comparison: Gradle first selects versions with the highest base version, ignoring
any qualifiers. All others are discarded.

2. Qualifier handling: If there are still multiple versions with the same base version, Gradle picks
one with a preference for versions without qualifiers (i.e., release versions). If all versions have
qualifiers, Gradle will consider the qualifier’s order, preferring more stable ones like "release"
over others such as "beta" or "alpha."

B. Implementation / Capability conflicts

Gradle uses variants and capabilities to define what a module provides.

Conflicts arise in the following scenarios:

• Incompatible variants: When two modules attempt to select different, incompatible variants of
a dependency.

• Same capability: When multiple modules declare the same capability, creating an overlap in
functionality.

For more details on how variant selection works and how it enables flexible dependency
management, refer to the Understanding variant selection below.

Phase 2. Dependency metadata retrieval

Gradle requires module metadata in the dependency graph for two reasons:

1. Determining existing versions for dynamic dependencies: When a dynamic version (like 1.+
or latest.release) is specified, Gradle must identify the concrete versions available.

2. Resolving module dependencies for a specific version: Gradle retrieves the dependencies
associated with a module based on the specified version, ensuring the correct transitive
dependencies are included in the build.

A. Determining existing versions for dynamic dependencies

When faced with a dynamic version, Gradle must identify the available concrete versions through
the following steps:

1. Inspecting repositories: Gradle checks each defined repository in the order they were added. It
doesn’t stop at the first one that returns metadata but continues through all available
repositories.

2. Maven repositories: Gradle retrieves version information from the maven-metadata.xml file,
which lists available versions.

3. Ivy repositories: Gradle resorts to a directory listing to gather available versions.

The result is a list of candidate versions that Gradle evaluates and matches to the dynamic version.
Gradle caches this information to optimize future resolution. At this point, version conflict
resolution is resumed.

B. Resolving module dependencies for a specific version

When Gradle tries to resolve a required dependency with a specific version, it follows this process:

1. Repository inspection: Gradle checks each repository in the order they are defined.

◦ It looks for metadata files describing the module (.module, .pom, or ivy.xml), or directly for
artifact files.

◦ Modules with metadata files (.module, .pom, or ivy.xml) are prioritized over those with just an
artifact file.

◦ Once metadata is found in a repository, subsequent repositories are ignored.

2. Retrieving and parsing metadata: If metadata is found, it is parsed.

◦ If the POM file has a parent POM, Gradle recursively resolves each parent module.

3. Requesting artifacts: All artifacts for the module are fetched from the same repository that
provided the metadata.

4. Caching: All data, including the repository source and any potential misses, are stored in the
dependency cache for future use.

NOTE

The point above highlights a potential issue with integrating Maven Local. Since
Maven Local acts as a Maven cache, it may occasionally miss artifacts for a module.
When Gradle sources a module from Maven Local and artifacts are missing, it
assumes those artifacts are entirely unavailable.

Repository disabling

When Gradle fails to retrieve information from a repository, it disables the repository for the
remainder of the build and fails all dependency resolution.

This behavior ensures reproducibility.

If the build were to continue while ignoring the faulty repository, subsequent builds could produce
different results once the repository is back online.

HTTP Retries

Gradle will attempt to connect to a repository multiple times before disabling it. If the connection
fails, Gradle retries on specific errors that might be temporary, with increasing wait times between
retries.

A repository is blacklisted when it cannot be reached, either due to a permanent error or after the
maximum number of retries has been exhausted.

Understanding variant selection

Gradle’s dependency management engine is variant aware.

In addition to components, Gradle introduces the concept of variants. Variants represent different
ways a component can be used, such as for Java compilation, native linking, or documentation.
Each variant may have its own artifacts and dependencies.

When multiple variants are available, Gradle uses attributes to determine which variant to choose.
These attributes provide meaning to the variants and ensure that the dependency resolution
process produces a consistent result.

Here are some examples of common variants in Gradle:

1. Java Component Variants:

◦ compile: Used for compiling Java code, with dependencies needed at compile-time.

◦ runtime: Used for running the application, with dependencies needed at runtime.

2. Android Build Variants:

◦ debug: A variant used for development, with debug symbols and test configurations enabled.

◦ release: A production-ready variant with optimizations, obfuscation, and without debugging
tools.

◦ flavors: Variants that represent different product flavors, such as freeDebug, paidRelease, etc.

Gradle distinguishes between two types of components:

• Local components (like projects), which are built from sources such as :json-library

• External components, which are published to repositories such as org.apache.commons:commons-
lang3:3.12.0

For local components, variants are mapped to consumable configurations. For external
components, variants are defined by Gradle Module Metadata or derived from Ivy/Maven
metadata.

Variants vs Configurations

Variants and configurations are sometimes used interchangeably in Gradle’s documentation, DSLs,
or APIs due to historical reasons.

All components provide variants, and these variants may be backed by a consumable configuration.
However, not all configurations are variants, as some are used solely for declaring or resolving
dependencies rather than representing consumable component variants.

Variant attributes

Attributes are type-safe key-value pairs used by both the consumer and the producer during
variant selection.

• Consumer attributes: Define the desired characteristics of a variant for a resolvable
configuration. The consumer can specify multiple attributes to narrow down the available
options.

• Producer attributes: Each variant can have a set of attributes that describe its purpose. For
example, the org.gradle.usage attribute specifies whether the variant is meant for compilation,
runtime execution, or other uses. Not all attributes of a variant need to match the consumer’s
specified attributes for selection.

Variant attribute matching

IMPORTANT
The variant name is primarily used for debugging and error messages. It
does not play a role in variant matching; only the variant’s attributes are
used in the matching process.

There are no restrictions on how many variants a component can define. A typical component will
include at least an implementation variant but may also provide additional variants, such as test
fixtures, documentation, or source code. Furthermore, a component can offer different variants for
the same usage, depending on the consumer. For instance, during compilation, a component may
provide different headers for Linux, Windows, and macOS.

Gradle performs variant-aware selection by matching the attributes specified by the consumer with
those defined by the producer. The details of this process are covered in the selection algorithm
section.

NOTE There are two exceptions to the variant-aware resolution process:

• When a producer has no variants, a default artifact is selected.

• When a consumer explicitly selects a configuration by name, the artifacts
associated with that configuration are used.

A simple example

Let’s walk through an example where a consumer is trying to use a library for compilation.

First, the consumer details how it’s going to use the result of dependency resolution. This is
achieved by setting attributes on the consumer’s resolvable configuration.

In this case, the consumer wants to resolve a variant that matches org.gradle.usage=java-api.

Next, the producer exposes different variants of its component:

• API variant (named apiElements) with the attribute org.gradle.usage=java-api

• Runtime variant (named runtimeElements) with the attribute org.gradle.usage=java-runtime

Finally, Gradle evaluates the variants and selects the correct one:

• The consumer requests a variant with attributes org.gradle.usage=java-api

• The producer’s apiElements variant matches this request.

• The producer’s runtimeElements variant does not match.

As a result, Gradle selects the apiElements variant and provides its artifacts and dependencies to the
consumer.

A complicated example

In real-world scenarios, both consumers and producers often work with multiple attributes.

For instance, a Java Library project in Gradle will involve several attributes:

• org.gradle.usage describes how the variant is used.

• org.gradle.dependency.bundling describes how the variant handles dependencies (e.g., shadow
jar, fat jar, regular jar).

• org.gradle.libraryelements describes the packaging of the variant (e.g., classes or jar).

• org.gradle.jvm.version describes the minimal version of Java the variant targets.

• org.gradle.jvm.environment describes the type of JVM the variant targets.

Let’s consider a scenario where the consumer wants to run tests using a library on Java 8, and the
producer supports two versions: Java 8 and Java 11.

Step 1: Consumer specifies the requirements.

The consumer wants to resolve a variant that:

• Can be used at runtime (org.gradle.usage=java-runtime).

• Can run on at least Java 8 (org.gradle.jvm.version=8).

Step 2: Producer exposes multiple variants.

The producer offers variants for both Java 8 and Java 11 for both API and runtime usage:

• API variant for Java 8 (named apiJava8Elements) with attributes org.gradle.usage=java-api and
org.gradle.jvm.version=8.

• Runtime variant for Java 8 (named runtime8Elements) with attributes org.gradle.usage=java-
runtime and org.gradle.jvm.version=8.

• API variant for Java 11 (named apiJava11Elements) with attributes org.gradle.usage=java-api
and org.gradle.jvm.version=11.

• Runtime variant for Java 11 (named runtime11Elements) with attributes org.gradle.usage=java-
runtime and org.gradle.jvm.version=11.

Step 3: Gradle matches the attributes.

Gradle compares the consumer’s requested attributes with the producer’s variants:

• The consumer requests a variant with org.gradle.usage=java-runtime and
org.gradle.jvm.version=8.

• Both runtime8Elements and runtime11Elements match the org.gradle.usage=java-runtime
attribute.

• The API variants (apiJava8Elements and apiJava11Elements) are discarded as they don’t match
org.gradle.usage=java-runtime.

• The variant runtime8Elements is selected because it is compatible with Java 8.

• The variant runtime11Elements is incompatible because it requires Java 11.

Gradle selects runtime8Elements and provides its artifacts and dependencies to the consumer.

What happens if the consumer sets org.gradle.jvm.version=7?

In this case, dependency resolution would fail, with an error explaining there is no suitable variant.
Gradle knows the consumer requires a Java 7-compatible library, but the producer’s minimum
version is 8.

If the consumer requested org.gradle.jvm.version=15, Gradle could choose either the Java 8 or Java
11 variant. Gradle would then select the highest compatible version—Java 11.

Variant selection errors

When Gradle attempts to select the most compatible variant of a component, resolution may fail
due to:

• Ambiguity error: When more than one variant from the producer matches the consumer’s
attributes, leading to confusion over which to select.

• Incompatibility error: When none of the producer’s variants match the consumer’s attributes,
causing the resolution to fail.

Dealing with ambiguity errors

An ambiguous variant selection looks like this:

> Could not resolve all files for configuration ':compileClasspath'.
 > Could not resolve project :lib.
 Required by:
 project :ui
 > Cannot choose between the following variants of project :lib:
 - feature1ApiElements
 - feature2ApiElements
 All of them match the consumer attributes:
 - Variant 'feature1ApiElements' capability org.test:test-capability:1.0:
 - Unmatched attribute:
 - Found org.gradle.category 'library' but wasn't required.
 - Compatible attributes:
 - Provides org.gradle.dependency.bundling 'external'
 - Provides org.gradle.jvm.version '11'
 - Required org.gradle.libraryelements 'classes' and found value
'jar'.
 - Provides org.gradle.usage 'java-api'
 - Variant 'feature2ApiElements' capability org.test:test-capability:1.0:
 - Unmatched attribute:
 - Found org.gradle.category 'library' but wasn't required.
 - Compatible attributes:
 - Provides org.gradle.dependency.bundling 'external'
 - Provides org.gradle.jvm.version '11'
 - Required org.gradle.libraryelements 'classes' and found value
'jar'.
 - Provides org.gradle.usage 'java-api'

In this scenario, all compatible candidate variants are listed along with their attributes:

• Unmatched attributes: Shown first, these indicate what attributes may be missing or
misaligned for selecting the proper variant.

• Compatible attributes: Shown next, these highlight how the candidate variants align with the
consumer’s requirements.

• Incompatible attributes: Will not be shown, as incompatible variants are excluded.

In the example above, the issue isn’t with attribute matching but with capability matching. Both
feature1ApiElements and feature2ApiElements offer the same attributes and capabilities, making
them indistinguishable to Gradle.

To resolve this, you can modify the producer (project :lib) to provide different capabilities or
express a capability choice on the consumer side (project :ui) to disambiguate between the
variants.

Dealing with no matching variant errors

A no matching variant error might look like this:

> No variants of project :lib match the consumer attributes:
 - Configuration ':lib:compile':
 - Incompatible attribute:
 - Required artifactType 'dll' and found incompatible value 'jar'.
 - Other compatible attribute:
 - Provides usage 'api'
 - Configuration ':lib:compile' variant debug:
 - Incompatible attribute:
 - Required artifactType 'dll' and found incompatible value 'jar'.
 - Other compatible attributes:
 - Found buildType 'debug' but wasn't required.
 - Provides usage 'api'
 - Configuration ':lib:compile' variant release:
 - Incompatible attribute:
 - Required artifactType 'dll' and found incompatible value 'jar'.
 - Other compatible attributes:
 - Found buildType 'release' but wasn't required.
 - Provides usage 'api'

Or:

> No variants of project : match the consumer attributes:
 - Configuration ':myElements' declares attribute 'color' with value 'blue':
 - Incompatible because this component declares attribute 'artifactType' with
value 'jar' and the consumer needed attribute 'artifactType' with value 'dll'
 - Configuration ':myElements' variant secondary declares attribute 'color' with
value 'blue':
 - Incompatible because this component declares attribute 'artifactType' with
value 'jar' and the consumer needed attribute 'artifactType' with value 'dll'

In these cases, potentially compatible candidate variants are displayed, showing:

• Incompatible attributes: Listed first to help identify why a variant could not be selected.

• Other attributes: Including requested and compatible attributes, and any extra producer
attributes that the consumer did not request.

The goal here is to understand which variant could be selected, if any. In some cases, there may
simply be no compatible variants from the producer (for example, if the consumer requires a dll
but the producer only offers a jar or if a library is built for Java 11, but the consumer requires Java
8).

Dealing with incompatible variant errors

An incompatible variant error looks like the following example, where a consumer wants to select a

variant with color=green, but the only variant available has color=blue:

> Could not resolve all dependencies for configuration ':resolveMe'.
 > Could not resolve project :.
 Required by:
 project :
 > Configuration 'mismatch' in project : does not match the consumer attributes
 Configuration 'mismatch':
 - Incompatible because this component declares attribute 'color' with value
'blue' and the consumer needed attribute 'color' with value 'green'

It occurs when Gradle cannot select a single variant of a dependency because an explicitly
requested attribute value does not match (and is not compatible with) the value of that attribute on
any of the variants of the dependency.

A sub-type of this failure occurs when Gradle successfully selects multiple variants of the same
component, but the selected variants are incompatible with each other.

This looks like the following, where a consumer wants to select two different variants of a
component, each supplying different capabilities, which is acceptable. Unfortunately one variant
has color=blue and the other has color=green:

> Could not resolve all dependencies for configuration ':resolveMe'.
 > Could not resolve project :.
 Required by:
 project :
 > Multiple incompatible variants of org.example:nyvu:1.0 were selected:
 - Variant org.example:nyvu:1.0 variant blueElementsCapability1 has
attributes {color=blue}
 - Variant org.example:nyvu:1.0 variant greenElementsCapability2 has
attributes {color=green}

 > Could not resolve project :.
 Required by:
 project :
 > Multiple incompatible variants of org.example:pi2e5:1.0 were selected:
 - Variant org.example:pi2e5:1.0 variant blueElementsCapability1 has
attributes {color=blue}
 - Variant org.example:pi2e5:1.0 variant greenElementsCapability2 has
attributes {color=green}

Dealing with ambiguous transformation errors

ArtifactTransforms can be used to transform artifacts from one type to another, changing their
attributes. Variant selection can use the attributes available as the result of an artifact transform as
a candidate variant.

If a project registers multiple artifact transforms, needs to use an artifact transform to produce a

matching variant for a consumer’s request, and multiple artifact transforms could each be used to
accomplish this, then Gradle will fail with an ambiguous transformation error like the following:

> Could not resolve all dependencies for configuration ':resolveMe'.
 > Found multiple transforms that can produce a variant of project : with requested
attributes:
 - color 'red'
 - shape 'round'
 Found the following transforms:
 - From 'configuration ':roundBlueLiquidElements'':
 - With source attributes:
 - color 'blue'
 - shape 'round'
 - state 'liquid'
 - Candidate transform(s):
 - Transform 'BrokenTransform' producing attributes:
 - color 'red'
 - shape 'round'
 - state 'gas'
 - Transform 'BrokenTransform' producing attributes:
 - color 'red'
 - shape 'round'
 - state 'solid'

Visualizing variant information

Outgoing variants report

The report task outgoingVariants shows the list of variants available for selection by consumers of
the project. It displays the capabilities, attributes and artifacts for each variant.

This task is similar to the dependencyInsight reporting task.

By default, outgoingVariants prints information about all variants. It offers the optional parameter
--variant <variantName> to select a single variant to display. It also accepts the --all flag to include
information about legacy and deprecated configurations, or --no-all to exclude this information.

Here is the output of the outgoingVariants task on a freshly generated java-library project:

> Task :outgoingVariants
--
Variant apiElements
--
API elements for the 'main' feature.

Capabilities
 - new-java-library:lib:unspecified (default capability)
Attributes
 - org.gradle.category = library

 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-api
Artifacts
 - build/libs/lib.jar (artifactType = jar)

Secondary Variants (*)

 --
 Secondary Variant classes
 --
 Description = Directories containing compiled class files for main.

 Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = classes
 - org.gradle.usage = java-api
 Artifacts
 - build/classes/java/main (artifactType = java-classes-directory)

--
Variant mainSourceElements (i)
--
Description = List of source directories contained in the Main SourceSet.

Capabilities
 - new-java-library:lib:unspecified (default capability)
Attributes
 - org.gradle.category = verification
 - org.gradle.dependency.bundling = external
 - org.gradle.verificationtype = main-sources
Artifacts
 - src/main/java (artifactType = directory)
 - src/main/resources (artifactType = directory)

--
Variant runtimeElements
--
Runtime elements for the 'main' feature.

Capabilities
 - new-java-library:lib:unspecified (default capability)
Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-runtime

Artifacts
 - build/libs/lib.jar (artifactType = jar)

Secondary Variants (*)

 --
 Secondary Variant classes
 --
 Description = Directories containing compiled class files for main.

 Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = classes
 - org.gradle.usage = java-runtime
 Artifacts
 - build/classes/java/main (artifactType = java-classes-directory)

 --
 Secondary Variant resources
 --
 Description = Directories containing the project's assembled resource files
for use at runtime.

 Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = resources
 - org.gradle.usage = java-runtime
 Artifacts
 - build/resources/main (artifactType = java-resources-directory)

--
Variant testResultsElementsForTest (i)
--
Description = Directory containing binary results of running tests for the test Test
Suite's test target.

Capabilities
 - new-java-library:lib:unspecified (default capability)
Attributes
 - org.gradle.category = verification
 - org.gradle.testsuite.name = test
 - org.gradle.testsuite.target.name = test
 - org.gradle.testsuite.type = unit-test
 - org.gradle.verificationtype = test-results
Artifacts
 - build/test-results/test/binary (artifactType = directory)

(i) Configuration uses incubating attributes such as Category.VERIFICATION.
(*) Secondary variants are variants created via the Configuration#getOutgoing():
ConfigurationPublications API which also participate in selection, in addition to the
configuration itself.

From this you can see the two main variants that are exposed by a java library, apiElements and
runtimeElements. Notice that the main difference is on the org.gradle.usage attribute, with values
java-api and java-runtime. As they indicate, this is where the difference is made between what
needs to be on the compile classpath of consumers, versus what’s needed on the runtime classpath.

It also shows secondary variants, which are exclusive to Gradle projects and not published. For
example, the secondary variant classes from apiElements is what allows Gradle to skip the JAR
creation when compiling against a java-library project.

Information about invalid consumable configurations

A project cannot have multiple configurations with the same attributes and capabilities. In that
case, the project will fail to build.

In order to be able to visualize such issues, the outgoing variant reports handle those errors in a
lenient fashion. This allows the report to display information about the issue.

Resolvable configurations report

Gradle also offers a complimentary report task called resolvableConfigurations that displays the
resolvable configurations of a project, which are those which can have dependencies added and be
resolved. The report will list their attributes and any configurations that they extend. It will also list
a summary of any attributes which will be affected by Compatibility Rules or Disambiguation Rules
during resolution.

By default, resolvableConfigurations prints information about all purely resolvable configurations.
These are configurations that are marked resolvable but not marked consumable. Though some
resolvable configurations are also marked consumable, these are legacy configurations that should
not have dependencies added in build scripts. This report offers the optional parameter
--configuration <configurationName> to select a single configuration to display. It also accepts the
--all flag to include information about legacy and deprecated configurations, or --no-all to
exclude this information. Finally, it accepts the --recursive flag to list in the extended
configurations section those configurations which are extended transitively rather than directly.
Alternatively, --no-recursive can be used to exclude this information.

Here is the output of the resolvableConfigurations task on a freshly generated java-library project:

> Task :resolvableConfigurations
--
Configuration annotationProcessor
--
Description = Annotation processors and their dependencies for source set 'main'.

Attributes

 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.environment = standard-jvm
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-runtime

--
Configuration compileClasspath
--
Description = Compile classpath for source set 'main'.

Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.environment = standard-jvm
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = classes
 - org.gradle.usage = java-api
Extended Configurations
 - compileOnly
 - implementation

--
Configuration runtimeClasspath
--
Description = Runtime classpath of source set 'main'.

Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.environment = standard-jvm
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-runtime
Extended Configurations
 - implementation
 - runtimeOnly

--
Configuration testAnnotationProcessor
--
Description = Annotation processors and their dependencies for source set 'test'.

Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.environment = standard-jvm
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-runtime

--

Configuration testCompileClasspath
--
Description = Compile classpath for source set 'test'.

Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.environment = standard-jvm
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = classes
 - org.gradle.usage = java-api
Extended Configurations
 - testCompileOnly
 - testImplementation

--
Configuration testRuntimeClasspath
--
Description = Runtime classpath of source set 'test'.

Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.environment = standard-jvm
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-runtime
Extended Configurations
 - testImplementation
 - testRuntimeOnly

--
Compatibility Rules
--
Description = The following Attributes have compatibility rules defined.

 - org.gradle.dependency.bundling
 - org.gradle.jvm.environment
 - org.gradle.jvm.version
 - org.gradle.libraryelements
 - org.gradle.plugin.api-version
 - org.gradle.usage

--
Disambiguation Rules
--
Description = The following Attributes have disambiguation rules defined.

 - org.gradle.category
 - org.gradle.dependency.bundling
 - org.gradle.jvm.environment

 - org.gradle.jvm.version
 - org.gradle.libraryelements
 - org.gradle.plugin.api-version
 - org.gradle.usage

From this you can see the two main configurations used to resolve dependencies, compileClasspath
and runtimeClasspath, as well as their corresponding test configurations.

Mapping from Maven/Ivy to Gradle variants

Neither Maven nor Ivy have the concept of variants, which are only natively supported by Gradle
Module Metadata. Gradle can still work with Maven and Ivy by using different variant derivation
strategies.

Relationship with Gradle Module Metadata

Gradle Module Metadata is a metadata format for modules published on Maven, Ivy and other
kinds of repositories. It is similar to the pom.xml or ivy.xml metadata file, but this format contains
details about variants.

See the Gradle Module Metadata specification for more information.

Mapping of Maven POM metadata to variants

Modules published on a Maven repository are automatically converted into variant-aware
modules.

There is no way for Gradle to know which kind of component was published:

• a BOM that represents a Gradle platform

• a BOM used as a super-POM

• a POM that is both a platform and a library

The default strategy used by Java projects in Gradle is to derive 8 different variants:

• two "library" variants (attribute org.gradle.category = library)

◦ the compile variant maps the <scope>compile</scope> dependencies. This variant is
equivalent to the apiElements variant of the Java Library plugin. All dependencies of this
scope are considered API dependencies.

◦ the runtime variant maps both the <scope>compile</scope> and <scope>runtime</scope>
dependencies. This variant is equivalent to the runtimeElements variant of the Java Library
plugin. All dependencies of those scopes are considered runtime dependencies.

▪ in both cases, the <dependencyManagement> dependencies are not converted to constraints

• a "sources" variant that represents the sources jar for the component

• a "javadoc" variant that represents the javadoc jar for the component

• four "platform" variants derived from the <dependencyManagement> block (attribute
org.gradle.category = platform):

https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-latest-specification.md

◦ the platform-compile variant maps the <scope>compile</scope> dependency management
dependencies as dependency constraints.

◦ the platform-runtime variant maps both the <scope>compile</scope> and
<scope>runtime</scope> dependency management dependencies as dependency constraints.

◦ the enforced-platform-compile is similar to platform-compile but all the constraints are forced

◦ the enforced-platform-runtime is similar to platform-runtime but all the constraints are forced

You can understand more about the use of platform and enforced platforms variants by looking at
the importing BOMs section of the manual. By default, whenever you declare a dependency on a
Maven module, Gradle is going to look for the library variants. However, using the platform or
enforcedPlatform keyword, Gradle is now looking for one of the "platform" variants, which allows
you to import the constraints from the POM files, instead of the dependencies.

Mapping of Ivy files to variants

Gradle has no built-in derivation strategy implemented for Ivy files. Ivy is a flexible format that
allows you to publish arbitrary files and can be heavily customized.

If you want to implement a derivation strategy for compile and runtime variants for Ivy, you can do
so with component metadata rule. The component metadata rules API allows you to access Ivy
configurations and create variants based on them. If you know that all the Ivy modules your are
consuming have been published with Gradle without further customizations of the ivy.xml file, you
can add the following rule to your build:

Example 21. Deriving compile and runtime variants for Ivy metadata

build.gradle.kts

abstract class IvyVariantDerivationRule @Inject internal
constructor(objectFactory: ObjectFactory) : ComponentMetadataRule {
 private val jarLibraryElements: LibraryElements
 private val libraryCategory: Category
 private val javaRuntimeUsage: Usage
 private val javaApiUsage: Usage

 init {
 jarLibraryElements = objectFactory.named(LibraryElements.JAR)
 libraryCategory = objectFactory.named(Category.LIBRARY)
 javaRuntimeUsage = objectFactory.named(Usage.JAVA_RUNTIME)
 javaApiUsage = objectFactory.named(Usage.JAVA_API)
 }

 override fun execute(context: ComponentMetadataContext) {
 // This filters out any non Ivy module
 if(context.getDescriptor(IvyModuleDescriptor::class) == null) {
 return
 }

#ex-deriving-compile-and-runtime-variants-for-ivy-metadata

 context.details.addVariant("runtimeElements", "default") {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
jarLibraryElements)
 attribute(Category.CATEGORY_ATTRIBUTE, libraryCategory)
 attribute(Usage.USAGE_ATTRIBUTE, javaRuntimeUsage)
 }
 }
 context.details.addVariant("apiElements", "compile") {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
jarLibraryElements)
 attribute(Category.CATEGORY_ATTRIBUTE, libraryCategory)
 attribute(Usage.USAGE_ATTRIBUTE, javaApiUsage)
 }
 }
 }
}

dependencies {
 components { all<IvyVariantDerivationRule>() }
}

build.gradle

abstract class IvyVariantDerivationRule implements ComponentMetadataRule {
 final LibraryElements jarLibraryElements
 final Category libraryCategory
 final Usage javaRuntimeUsage
 final Usage javaApiUsage

 @Inject
 IvyVariantDerivationRule(ObjectFactory objectFactory) {
 jarLibraryElements = objectFactory.named(LibraryElements,
LibraryElements.JAR)
 libraryCategory = objectFactory.named(Category, Category.LIBRARY)
 javaRuntimeUsage = objectFactory.named(Usage, Usage.JAVA_RUNTIME)
 javaApiUsage = objectFactory.named(Usage, Usage.JAVA_API)
 }

 void execute(ComponentMetadataContext context) {
 // This filters out any non Ivy module
 if(context.getDescriptor(IvyModuleDescriptor) == null) {
 return
 }

 context.details.addVariant("runtimeElements", "default") {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,

jarLibraryElements)
 attribute(Category.CATEGORY_ATTRIBUTE, libraryCategory)
 attribute(Usage.USAGE_ATTRIBUTE, javaRuntimeUsage)
 }
 }
 context.details.addVariant("apiElements", "compile") {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
jarLibraryElements)
 attribute(Category.CATEGORY_ATTRIBUTE, libraryCategory)
 attribute(Usage.USAGE_ATTRIBUTE, javaApiUsage)
 }
 }
 }
}

dependencies {
 components { all(IvyVariantDerivationRule) }
}

The rule creates an apiElements variant based on the compile configuration and a runtimeElements
variant based on the default configuration of each ivy module. For each variant, it sets the
corresponding Java ecosystem attributes. Dependencies and artifacts of the variants are taken from
the underlying configurations. If not all consumed Ivy modules follow this pattern, the rule can be
adjusted or only applied to a selected set of modules.

For all Ivy modules without variants, Gradle has a fallback selection method. Gradle does not
perform variant aware resolution and instead selects either the default configuration or an
explicitly named configuration.

Capabilities
In a dependency graph, it’s common for multiple implementations of the same API to be
accidentally included, especially with libraries like logging frameworks where different bindings
are selected by various transitive dependencies.

Since these implementations typically reside at different group, artifact, and version (GAV)
coordinates, build tools often can’t detect the conflict.

To address this, Gradle introduces the concept of capability.

Understanding capabilities

A capability is essentially a way to declare that different components (dependencies) offer the same
functionality.

It’s illegal for Gradle to include more than one component providing the same capability in a single
dependency graph. If Gradle detects two components providing the same capability (e.g., different

bindings for a logging framework), it will fail the build with an error, indicating the conflicting
modules. This ensures that conflicting implementations are resolved, avoiding issues on the
classpath.

For instance, suppose you have dependencies on two different libraries for database connection
pooling:

dependencies {
 implementation("com.zaxxer:HikariCP:4.0.3") // A popular connection pool
 implementation("org.apache.commons:commons-dbcp2:2.8.0") // Another connection
pool
}

configurations.all {
 resolutionStrategy.capabilitiesResolution.withCapability("database:connection-
pool") {
 select("com.zaxxer:HikariCP")
 }
}

In this case, both HikariCP and commons-dbcp2 provide the same functionality (connection pooling).
Gradle will fail if both are on the classpath.

Since only one should be used, Gradle’s resolution strategy allows you to select HikariCP, resolving
the conflict.

Understanding capability coordinates

A capability is identified by a (group, module, version) triplet.

Every component defines an implicit capability based on its GAV coordinates: group, artifact, and
version.

For instance, the org.apache.commons:commons-lang3:3.8 module has an implicit capability with the
group org.apache.commons, name commons-lang3, and version 3.8:

dependencies {
 implementation("org.apache.commons:commons-lang3:3.8")
}

It’s important to note that capabilities are versioned.

Declaring component capabilities

To detect conflicts early, it’s useful to declare component capabilities through rules, allowing
conflicts to be caught during the build instead of at runtime.

One common scenario is when a component is relocated to different coordinates in a newer

release.

For example, the ASM library was published under asm:asm until version 3.3.1, and then relocated
to org.ow2.asm:asm starting with version 4.0. Including both versions on the classpath is illegal
because they provide the same feature, under different coordinates.

Since each component has an implicit capability based on its GAV coordinates, we can address this
conflict by using a rule that declares the asm:asm module as providing the org.ow2.asm:asm
capability:

build.gradle.kts

class AsmCapability : ComponentMetadataRule {
 override
 fun execute(context: ComponentMetadataContext) = context.details.run {
 if (id.group == "asm" && id.name == "asm") {
 allVariants {
 withCapabilities {
 // Declare that ASM provides the org.ow2.asm:asm
capability, but with an older version
 addCapability("org.ow2.asm", "asm", id.version)
 }
 }
 }
 }
}

build.gradle

@CompileStatic
class AsmCapability implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 context.details.with {
 if (id.group == "asm" && id.name == "asm") {
 allVariants {
 it.withCapabilities {
 // Declare that ASM provides the org.ow2.asm:asm
capability, but with an older version
 it.addCapability("org.ow2.asm", "asm", id.version)
 }
 }
 }
 }
 }
}

With this rule in place, the build will fail if both asm:asm (< = 3.3.1) and org.ow2.asm:asm (4.0+) are
present in the dependency graph.

NOTE
Gradle won’t resolve the conflict automatically, but this helps you realize that the
problem exists. It’s recommended to package such rules into plugins for use in
builds, allowing users to decide which version to use or to fix the classpath conflict.

Selecting between candidates

At some point, a dependency graph is going to include either incompatible modules, or modules
which are mutually exclusive.

For example, you may have different logger implementations, and you need to choose one binding.
Capabilities help understand the conflict, then Gradle provides you with tools to solve the conflicts.

Selecting between different capability candidates

In the relocation example above, Gradle was able to tell you that you have two versions of the same
API on classpath: an "old" module and a "relocated" one. We can solve the conflict by automatically
choosing the component which has the highest capability version:

build.gradle.kts

configurations.all {

resolutionStrategy.capabilitiesResolution.withCapability("org.ow2.asm:asm") {
 selectHighestVersion()
 }
}

build.gradle

configurations.all {
 resolutionStrategy.capabilitiesResolution.withCapability('
org.ow2.asm:asm') {
 selectHighestVersion()
 }
}

However, choosing the highest capability version conflict resolution is not always suitable.

For a logging framework, for example, it doesn’t matter what version of the logging frameworks we
use. In this case, we explicitly select slf4j as the preferred option:

build.gradle.kts

configurations.all {
 resolutionStrategy.capabilitiesResolution.withCapability("log4j:log4j") {
 val toBeSelected = candidates.firstOrNull { it.id.let { id -> id is
ModuleComponentIdentifier && id.module == "log4j-over-slf4j" } }
 if (toBeSelected != null) {
 select(toBeSelected)
 }
 because("use slf4j in place of log4j")
 }
}

build.gradle

configurations.all {
 resolutionStrategy.capabilitiesResolution.withCapability("log4j:log4j") {
 def toBeSelected = candidates.find { it.id instanceof
ModuleComponentIdentifier && it.id.module == 'log4j-over-slf4j' }
 if (toBeSelected != null) {
 select(toBeSelected)
 }
 because 'use slf4j in place of log4j'
 }
}

This approach works also well if you have multiple slf4j bindings on the classpath; bindings are
basically different logger implementations, and you need only one. However, the selected
implementation may depend on the configuration being resolved.

For instance, in testing environments, the lightweight slf4j-simple logging implementation might
be sufficient, while in production, a more robust solution like logback may be preferable.

Resolution can only be made in favor of a module that is found in the dependency graph. The
select method accepts only a module from the current set of candidates. If the desired module is
not part of the conflict, you can choose not to resolve that particular conflict, effectively leaving it
unresolved. Another conflict in the graph may have the module you want to select.

If no resolution is provided for all conflicts on a given capability, the build will fail because the
module chosen for resolution was not found in the graph. Additionally, calling select(null) will
result in an error and should be avoided.

For more information, refer to the capabilities resolution API.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ResolutionStrategy.html#capabilitiesResolution

Variants and Attributes
Variants represent different versions or aspects of a component, like api vs implementation or debug
vs release. Attributes define which variant is selected based on the consumer’s requirements.

For example, a library may have an api and an implementation variant. Here, the consumer wants
an external implementation variant:

configurations {
 implementation {
 attributes {
 attribute(Bundling.BUNDLING_ATTRIBUTE, objects.named(Bundling.EXTERNAL))
 }
 }
}

For example, a build might have debug and release variants. This selects the debug variant based on
the attribute.

configurations {
 compileClasspath {
 attributes {
 attribute(TargetConfiguration.TARGET_ATTRIBUTE, objects.named("debug"))
 }
 }
}

Attributes help Gradle match the right variant by comparing the requested attributes with what’s
available:

attribute(TargetConfiguration.TARGET_ATTRIBUTE, objects.named("debug"))

This sets the TargetConfiguration.TARGET_ATTRIBUTE to "debug", meaning Gradle will attempt to
resolve dependencies that have a "debug" variant, instead of other available variants (like
"release").

To understand how Gradle’s dependency management engine works to select the best matching
variant, see our Understanding Variant Selection chapter.

Standard attributes defined by Gradle

As a user of Gradle, attributes are often hidden as implementation details. But it might be useful to
understand the standard attributes defined by Gradle and its core plugins.

As a plugin author, these attributes, and the way they are defined, can serve as a basis for building
your own set of attributes in your ecosystem plugin.

Ecosystem-independent standard attributes

Attribute
name

Description Values compatibility and
disambiguation rules

org.gradle.
usage

Indicates main purpose
of variant

Usage values built from
constants defined in
Usage

Following ecosystem semantics
(e.g. java-runtime can be used in
place of java-api but not the
opposite)

org.gradle.
category

Indicates the category
of this software
component

Category values built
from constants defined
in Category

Following ecosystem semantics
(e.g. library is default on the JVM,
no compatibility otherwise)

org.gradle.
libraryelem
ents

Indicates the contents
of a
org.gradle.category=lib
rary variant

LibraryElements values
built from constants
defined in
LibraryElements

Following ecosystem
semantics(e.g. in the JVM world,
jar is the default and is
compatible with classes)

org.gradle.
docstype

Indicates the contents
of a
org.gradle.category=doc
umentation variant

DocsType values built
from constants defined
in DocsType

No default, no compatibility

org.gradle.
dependency.
bundling

Indicates how
dependencies of a
variant are accessed.

Bundling values built
from constants defined
in Bundling

Following ecosystem semantics
(e.g. in the JVM world, embedded is
compatible with external)

org.gradle.
verificatio
ntype

Indicates what kind of
verification task
produced this output.

VerificationType values
built from constants
defined in
VerificationType

No default, no compatibility

When the Category attribute is present with the incubating value org.gradle.category=verification
on a variant, that variant is considered to be a verification-time only variant.

These variants are meant to contain only the results of running verification tasks, such as test
results or code coverage reports. They are not publishable, and will produce an error if added to a
component which is published.

Attribute
name

Description Values compatibility and
disambiguation
rules

org.gradl
e.status

Component level
attribute, derived

Based on a status scheme, with a default
one existing based on the source repository.

Based on the scheme
in use

JVM ecosystem specific attributes

In addition to the ecosystem independent attributes defined above, the JVM ecosystem adds the
following attribute:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Usage.html#USAGE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Usage.html#USAGE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Usage.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Category.html#CATEGORY_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Category.html#CATEGORY_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Category.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/LibraryElements.html#LIBRARY_ELEMENTS_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/LibraryElements.html#LIBRARY_ELEMENTS_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/LibraryElements.html#LIBRARY_ELEMENTS_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/LibraryElements.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/DocsType.html#DOCS_TYPE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/DocsType.html#DOCS_TYPE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/DocsType.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Bundling.html#BUNDLING_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Bundling.html#BUNDLING_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Bundling.html#BUNDLING_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/Bundling.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/VerificationType.html#VERIFICATION_TYPE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/VerificationType.html#VERIFICATION_TYPE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/VerificationType.html#VERIFICATION_TYPE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/VerificationType.html

Attribute
name

Description Values compatibility and
disambiguation rules

org.gradle
.jvm.versi
on

Indicates the JVM
version compatibility.

Integer using the version
after the 1. for Java 1.4 and
before, the major version for
Java 5 and beyond.

Defaults to the JVM version
used by Gradle, lower is
compatible with higher,
prefers highest compatible.

org.gradle
.jvm.envir
onment

Indicates that a variant
is optimized for a
certain JVM
environment.

Common values are standard-
jvm and android. Other values
are allowed.

The attribute is used to prefer
one variant over another if
multiple are available, but in
general all values are
compatible. The default is
standard-jvm.

org.gradle
.testsuite
.name

Indicates the name of
the TestSuite that
produced this output.

Value is the name of the Suite. No default, no compatibility

org.gradle
.testsuite
.target.na
me

Indicates the name of
the TestSuiteTarget that
produced this output.

Value is the name of the
Target.

No default, no compatibility

org.gradle
.testsuite
.type

Indicates the type of
test suite (unit test,
integration test,
performance test, etc.)

TestSuiteType values built
from constants defined in
TestSuiteType or other
custom values for user-
defined test suite types.

No default, no compatibility

The JVM ecosystem also contains a number of compatibility and disambiguation rules over the
different attributes. The reader willing to know more can take a look at the code for
org.gradle.api.internal.artifacts.JavaEcosystemSupport.

Native ecosystem specific attributes

In addition to the ecosystem independent attributes defined above, the native ecosystem adds the
following attributes:

Attribute
name

Description Values compatibility
and
disambiguation
rules

org.gradle.nat
ive.debuggable

Indicates if the binary
was built with
debugging symbols

Boolean N/A

org.gradle.nat
ive.optimized

Indicates if the binary
was built with
optimization flags

Boolean N/A

https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/java/TargetJvmVersion.html#TARGET_JVM_VERSION_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/java/TargetJvmVersion.html#TARGET_JVM_VERSION_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/java/TargetJvmVersion.html#TARGET_JVM_VERSION_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/java/TargetJvmEnvironment.html#TARGET_JVM_ENVIRONMENT_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/java/TargetJvmEnvironment.html#TARGET_JVM_ENVIRONMENT_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/java/TargetJvmEnvironment.html#TARGET_JVM_ENVIRONMENT_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteType.html#TEST_SUITE_NAME_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteType.html#TEST_SUITE_NAME_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteType.html#TEST_SUITE_NAME_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/testing/base/TestSuite.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteTargetName.html#TEST_SUITE_TARGET_NAME_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteTargetName.html#TEST_SUITE_TARGET_NAME_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteTargetName.html#TEST_SUITE_TARGET_NAME_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteTargetName.html#TEST_SUITE_TARGET_NAME_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/testing/base/TestSuiteTarget.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteType.html#TEST_SUITE_TYPE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteType.html#TEST_SUITE_TYPE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteType.html#TEST_SUITE_TYPE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/TestSuiteType.html
https://docs.gradle.org/8.12/javadoc/org/gradle/language/cpp/CppBinary.html#DEBUGGABLE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/language/cpp/CppBinary.html#DEBUGGABLE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/language/cpp/CppBinary.html#OPTIMIZED_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/language/cpp/CppBinary.html#OPTIMIZED_ATTRIBUTE

Attribute
name

Description Values compatibility
and
disambiguation
rules

org.gradle.nat
ive.architectu
re

Indicates the target
architecture of the
binary

MachineArchitecture values built
from constants defined in
MachineArchitecture

None

org.gradle.nat
ive.operatingS
ystem

Indicates the target
operating system of the
binary

OperatingSystemFamily values built
from constants defined in
OperatingSystemFamily

None

Gradle plugin ecosystem specific attributes

For Gradle plugin development, the following attribute is supported since Gradle 7.0. A Gradle
plugin variant can specify compatibility with a Gradle API version through this attribute.

Attribute
name

Description Values compatibility and disambiguation rules

org.gradle.pl
ugin.api‑versi
on

Indicates the Gradle
API version
compatibility.

Valid Gradle
version
strings.

Defaults to the currently running Gradle,
lower is compatible with higher, prefers
highest compatible.

Using a standard attribute

For this example, let’s assume you are creating a library with different variants for different JVM
versions.

lib/build.gradle.kts

plugins {
 id("java-library")
}

configurations {
 named("apiElements") {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 17)
 }
 }
}

lib/build.gradle

plugins {

https://docs.gradle.org/8.12/javadoc/org/gradle/nativeplatform/MachineArchitecture.html#ARCHITECTURE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/nativeplatform/MachineArchitecture.html#ARCHITECTURE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/nativeplatform/MachineArchitecture.html#ARCHITECTURE_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/nativeplatform/MachineArchitecture.html
https://docs.gradle.org/8.12/javadoc/org/gradle/nativeplatform/OperatingSystemFamily.html#OPERATING_SYSTEM_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/nativeplatform/OperatingSystemFamily.html#OPERATING_SYSTEM_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/nativeplatform/OperatingSystemFamily.html#OPERATING_SYSTEM_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/nativeplatform/OperatingSystemFamily.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/plugin/GradlePluginApiVersion.html#GRADLE_PLUGIN_API_VERSION_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/plugin/GradlePluginApiVersion.html#GRADLE_PLUGIN_API_VERSION_ATTRIBUTE
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/plugin/GradlePluginApiVersion.html#GRADLE_PLUGIN_API_VERSION_ATTRIBUTE

 id 'java-library'
}

configurations {
 apiElements {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 17)
 }
 }
}

In the consumer project (that uses the library), you can specify the JVM version attribute when
declaring dependencies.

consumer/build.gradle.kts

plugins {
 id("application")
}

dependencies {
 implementation(project(":lib")) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 17)
 }
 }
}

consumer/build.gradle

plugins {
 id 'application'
}

dependencies {
 implementation(project(':lib')) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 17)
 }
 }
}

By defining and using the JVM version attribute, you ensure that your library and its consumers are

compatible with the specified JVM version. Essentially, this ensures that Gradle resolves to the
variant that matches the desired JVM version.

Viewing and debugging attributes

The dependencyInsight task is useful for inspecting specific dependencies and their attributes,
including how they are resolved:

$./gradlew dependencyInsight --configuration compileClasspath --dependency
com.example:your-library

> Task :dependencyInsight

com.example:your-library:1.0 (compileClasspath)
 variant "apiElements" [
 org.gradle.api.attributes.Attribute: org.gradle.api.attributes.Usage = [java-
api]
 org.gradle.api.attributes.Attribute: org.gradle.api.attributes.Usage = [java-
runtime]
 org.gradle.api.attributes.Attribute:
org.gradle.api.attributes.JavaLanguageVersion = [1.8]
]
 variant "runtimeElements" [
 org.gradle.api.attributes.Attribute: org.gradle.api.attributes.Usage = [java-
runtime]
 org.gradle.api.attributes.Attribute:
org.gradle.api.attributes.JavaLanguageVersion = [1.8]
]

 Selection reasons:
 - By constraint from configuration ':compileClasspath'
 - Declared in build.gradle.kts

 Resolved to:
 com.example:your-library:1.0 (runtime)

 Additional Information:
 - Dependency declared in the 'implementation' configuration
 - No matching variants found for the requested attributes in the
'compileClasspath' configuration

Declaring custom attributes

When extending Gradle with custom attributes, it’s important to consider their long-term impact,
especially if you plan to publish libraries. Custom attributes allow you to integrate variant-aware
dependency management in your plugin, but libraries using these attributes must also ensure
consumers can interpret them correctly. This is typically done by applying the corresponding
plugin, which defines compatibility and disambiguation rules.

If your plugin is publicly available and libraries are published to public repositories, introducing
new attributes becomes a significant responsibility. Published attributes must remain supported or
have a compatibility layer in future versions of the plugin to ensure backward compatibility.

Here’s an example of declaring and using custom attributes in a Gradle plugin:

lib/build.gradle.kts

// Define a custom attribute
val myAttribute = Attribute.of("com.example.my-attribute",
String::class.java)

configurations {
 create("myConfig") {
 // Set custom attribute
 attributes {
 attribute(myAttribute, "special-value")
 }
 }
}

dependencies {
 // Apply the custom attribute to a dependency
 add("myConfig","com.google.guava:guava:31.1-jre") {
 attributes {
 attribute(myAttribute, "special-value")
 }
 }
}

lib/build.gradle

// Define a custom attribute
def myAttribute = Attribute.of("com.example.my-attribute", String)

// Create a custom configuration
configurations {
 create("myConfig") {
 // Set custom attribute
 attributes {
 attribute(myAttribute, "special-value")
 }
 }
}

dependencies {
 // Apply the custom attribute to a dependency

 add("myConfig", "com.google.guava:guava:31.1-jre") {
 attributes {
 attribute(myAttribute, "special-value")
 }
 }
}

In this example: - A custom attribute my-attribute is defined. - The attribute is set on a custom
configuration (myConfig). - When adding a dependency, the custom attribute is applied to match the
configuration.

If publishing a library with this attribute, ensure that consumers apply the plugin that understands
and handles my-attribute.

Creating attributes in a build script or plugin

Attributes are typed. An attribute can be created via the Attribute<T>.of method:

build.gradle.kts

// An attribute of type `String`
val myAttribute = Attribute.of("my.attribute.name", String::class.java)
// An attribute of type `Usage`
val myUsage = Attribute.of("my.usage.attribute", Usage::class.java)

build.gradle

// An attribute of type `String`
def myAttribute = Attribute.of("my.attribute.name", String)
// An attribute of type `Usage`
def myUsage = Attribute.of("my.usage.attribute", Usage)

Attribute types support most Java primitive classes; such as String and Integer. Or anything
extending org.gradle.api.Named.

Attributes should always be declared in the attribute schema found on the dependencies handler:

build.gradle.kts

dependencies.attributesSchema {
 // registers this attribute to the attributes schema

 attribute(myAttribute)
 attribute(myUsage)
}

build.gradle

dependencies.attributesSchema {
 // registers this attribute to the attributes schema
 attribute(myAttribute)
 attribute(myUsage)
}

Registering an attribute with the schema is required in order to use Compatibility and
Disambiguation rules that can resolve ambiguity between multiple selectable variants during
Attribute Matching.

Each configuration has a container of attributes. Attributes can be configured to set values:

build.gradle.kts

configurations {
 create("myConfiguration") {
 attributes {
 attribute(myAttribute, "my-value")
 }
 }
}

build.gradle

configurations {
 myConfiguration {
 attributes {
 attribute(myAttribute, 'my-value')
 }
 }
}

For attributes which type extends Named, the value of the attribute must be created via the object
factory:

build.gradle.kts

configurations {
 "myConfiguration" {
 attributes {
 attribute(myUsage, project.objects.named(Usage::class.java, "my-
value"))
 }
 }
}

build.gradle

configurations {
 myConfiguration {
 attributes {
 attribute(myUsage, project.objects.named(Usage, 'my-value'))
 }
 }
}

Dealing with attribute matching

In Gradle, attribute matching and attribute disambiguation are key mechanisms for resolving
dependencies with varying attributes.

Attribute matching allows Gradle to select compatible dependency variants based on predefined
rules, even if an exact match isn’t available. Attribute disambiguation, on the other hand, helps
Gradle choose the most suitable variant when multiple compatible options exist.

Attribute compatibility rules

Attributes let the engine select compatible variants. There are cases where a producer may not have
exactly what the consumer requests but has a variant that can be used.

lib/build.gradle.kts

lib/build.gradle

1. Attribute Definition: Define the attribute you want to apply compatibility rules to. In this case,
JavaLanguageVersion.

2. Register Compatibility Rule: Use the attributeMatchingStrategy to specify how to handle
compatibility for the defined attribute. For instance, you can define which versions of the
attribute are compatible.

3. Compatibility Logic: Specify the compatibility logic inside the rule. You can define specific
versions or attributes that are considered compatible or incompatible.

Gradle provides attribute compatibility rules that can be defined for each attribute. The role of a
compatibility rule is to explain which attribute values are compatible based on what the consumer
asked for.

Attribute compatibility rules have to be registered via the attribute matching strategy that you can
obtain from the attributes schema.

Attribute disambiguation rules

When multiple variants of a dependency are compatible with the consumer’s requested attributes,
Gradle needs to decide which variant to select. This process of determining the "best" candidate
among compatible options is called attribute disambiguation.

In Gradle, different variants might satisfy the consumer’s request, but not all are equal. For
example, you might have several versions of a library that are compatible with a Java version
requested by the consumer. Disambiguation helps Gradle choose the most appropriate one based
on additional criteria.

You can define disambiguation rules to guide Gradle in selecting the most suitable variant when
multiple candidates are found. This is done by implementing an attribute disambiguation rule:

import org.gradle.api.attributes.Attribute
import org.gradle.api.attributes.AttributeMatchingStrategy

// Define custom attribute
val javaLanguageVersion = Attribute.of("org.gradle.jvm.version", String::class.java)

// Register disambiguation rules
configurations.all {

https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/AttributeCompatibilityRule.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/AttributeMatchingStrategy.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/AttributesSchema.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/AttributeDisambiguationRule.html

 attributes {
 // Define the attribute matching strategy
 attribute(javaLanguageVersion, "1.8") {
 // Set up disambiguation logic
 disambiguationStrategy {
 // Example disambiguation: Prefer newer versions
 preferNewer()
 }
 }
 }
}

1. Attribute Definition: Create or reference the attribute you want to apply disambiguation rules
to. Here, javaLanguageVersion is used.

2. Register Disambiguation Rules: Apply the disambiguation strategy using
disambiguationStrategy within the attributes block. This example sets up a simple rule to prefer
newer versions.

3. Disambiguation Logic: The preferNewer() method is a placeholder for your custom logic. You
can implement more complex rules based on your requirements.

Attribute disambiguation rules have to be registered via the attribute matching strategy that you
can obtain from the attributes schema, which is a member of DependencyHandler.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/AttributeMatchingStrategy.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/AttributesSchema.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/dsl/DependencyHandler.html

CONTROLLING DEPENDENCY RESOLUTION

Dependency Resolution Basics
Dependency resolution in Gradle can largely be thought of as a two-step process.

First, the graph resolution phase constructs the dependency graph based on declared dependencies.
Second, the artifact resolution phase fetches the actual files (artifacts) for the resolved components:

1. Graph resolution phase:

◦ Driven by declared dependencies and their metadata

◦ Uses the request attributes defined by the configuration being resolved

2. Artifact resolution phase:

◦ Based on nodes in the resolved dependency graph

◦ Matches each node to a variant and an artifact

The outcome of these processes can be accessed via different APIs, each designed for specific use
cases.

1. Graph Resolution

During the graph resolution phase, Gradle downloads and analyzes component metadata (GMM,
POM, or Ivy XML) for declared and transitive dependencies. This information is used to construct a
dependency graph, which models the relationships between different components and their
variants.

The ResolutionResult API represents the output of the graph resolution phase, providing access to
the resolved dependency graph without triggering artifact downloads. The graph itself focuses on
component variants, not the artifacts (files) associated with those variants:

• ResolvedComponentResult - Represents a resolved component in the raw dependency graph.

• ResolvedVariantResult - Represents a resolved variant of a component in the raw dependency
graph.

See Dependency Graph Resolution to learn more.

2. Artifact Resolution

Once the dependency graph is resolved, the artifact resolution phase determines which actual files
(artifacts) need to be downloaded or retrieved.

An ArtifactView operates on top of the resolved graph, defined by the ResolutionResult. It allows
you to query for specific artifacts based on attributes. The same attributes used during graph
resolution typically guide artifact selection.

The ArtifactView API provides flexible ways to access these resolved artifacts:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/result/ResolvedComponentResult.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/result/ResolvedVariantResult.html

• FileCollection - A flat list of files, which is the most commonly way to work with resolved
artifacts.

• ArtifactCollection - Offers access to both the metadata and the files of resolved artifacts,
allowing for more advanced artifact handling.

See Artifact Resolution to learn more.

Dependency Graph Resolution
The output of the graph resolution phase is a fully resolved dependency graph, which is used as the
input to the artifact resolution phase.

The ResolutionResult API provides access to the resolved dependency graph without triggering
artifact resolution. This API presents the resolved dependency graph, where each node in the graph
is a variant of a component.

Raw access to the dependency graph can be useful for a number of use cases:

• Visualizing the dependency graph, for example generating a .dot file for Graphviz.

• Exposing diagnostics about a given resolution, similar to the dependencies or dependencyInsight
tasks.

• Resolving a subset of the artifacts for a dependency graph when used in conjunction with the
ArtifactView API.

Consider the following function that traverses a dependency graph, starting from the root node.
Callbacks are notified for each node and edge in the graph. This function can be used as a base for
any use case that requires traversing a dependency graph:

build.gradle.kts

fun traverseGraph(
 rootComponent: ResolvedComponentResult,
 rootVariant: ResolvedVariantResult,
 nodeCallback: (ResolvedVariantResult) -> Unit,
 edgeCallback: (ResolvedVariantResult, ResolvedVariantResult) -> Unit
) {
 val seen = mutableSetOf<ResolvedVariantResult>(rootVariant)
 nodeCallback(rootVariant)

 val queue = ArrayDeque(listOf(rootVariant to rootComponent))
 while (queue.isNotEmpty()) {
 val (variant, component) = queue.removeFirst()

 // Traverse this variant's dependencies
 component.getDependenciesForVariant(variant).forEach { dependency ->
 val resolved = when (dependency) {
 is ResolvedDependencyResult -> dependency

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ArtifactCollection.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html

 is UnresolvedDependencyResult -> throw dependency.failure
 else -> throw AssertionError("Unknown dependency type:
$dependency")
 }
 if (!resolved.isConstraint) {
 val toVariant = resolved.resolvedVariant

 if (seen.add(toVariant)) {
 nodeCallback(toVariant)
 queue.addLast(toVariant to resolved.selected)
 }

 edgeCallback(variant, toVariant)
 }
 }
 }
}

build.gradle

void traverseGraph(
 ResolvedComponentResult rootComponent,
 ResolvedVariantResult rootVariant,
 Consumer<ResolvedVariantResult> nodeCallback,
 BiConsumer<ResolvedVariantResult, ResolvedVariantResult> edgeCallback
) {
 Set<ResolvedVariantResult> seen = new HashSet<>()
 seen.add(rootVariant)
 nodeCallback(rootVariant)

 def queue = new ArrayDeque<Tuple2<ResolvedVariantResult,
ResolvedComponentResult>>()
 queue.add(new Tuple2(rootVariant, rootComponent))
 while (!queue.isEmpty()) {
 def entry = queue.removeFirst()
 def variant = entry.v1
 def component = entry.v2

 // Traverse this variant's dependencies
 component.getDependenciesForVariant(variant).each { dependency ->
 if (dependency instanceof UnresolvedDependencyResult) {
 throw dependency.failure
 }
 if ((!dependency instanceof ResolvedDependencyResult)) {
 throw new RuntimeException("Unknown dependency type:
$dependency")
 }

 def resolved = dependency as ResolvedDependencyResult

 if (!dependency.constraint) {
 def toVariant = resolved.resolvedVariant

 if (seen.add(toVariant)) {
 nodeCallback(toVariant)
 queue.add(new Tuple2(toVariant, resolved.selected))
 }

 edgeCallback(variant, toVariant)
 }
 }
 }
}

This function starts at the root variant, and performs a breadth-first traversal of the graph. The
ResolutionResult API is lenient, so it is important to check whether a visited edge is unresolved
(failed) or resolved. With this function, the node callback is always called before the edge callback
for any given node.

Below, we leverage the above traversal function to transform a dependency graph into a .dot file
for visualization:

build.gradle.kts

abstract class GenerateDot : DefaultTask() {

 @get:Input
 abstract val rootComponent: Property<ResolvedComponentResult>

 @get:Input
 abstract val rootVariant: Property<ResolvedVariantResult>

 @TaskAction
 fun traverse() {
 println("digraph {")
 traverseGraph(
 rootComponent.get(),
 rootVariant.get(),
 { node -> println(" ${toNodeId(node)} [shape=box]") },
 { from, to -> println(" ${toNodeId(from)} -> ${toNodeId(to)}")
}
)
 println("}")
 }

 fun toNodeId(variant: ResolvedVariantResult): String {
 return "\"${variant.owner.displayName}:${variant.displayName}\""

 }
}

build.gradle

abstract class GenerateDot extends DefaultTask {

 @Input
 abstract Property<ResolvedComponentResult> getRootComponent()

 @Input
 abstract Property<ResolvedVariantResult> getRootVariant()

 @TaskAction
 void traverse() {
 println("digraph {")
 traverseGraph(
 rootComponent.get(),
 rootVariant.get(),
 node -> { println(" ${toNodeId(node)} [shape=box]") },
 (from, to) -> { println(" ${toNodeId(from)} -> ${toNodeId(to)
}") }
)
 println("}")
 }

 String toNodeId(ResolvedVariantResult variant) {
 return "\"${variant.owner.displayName}:${variant.displayName}\""
 }
}

NOTE
A proper implementation would not use println but would write to an output file.
For more details on declaring task inputs and outputs, see the Writing Tasks section.

When we register the task, we use the ResolutionResult API to access the root component and root
variant of the runtimeClasspath configuration:

build.gradle.kts

tasks.register<GenerateDot>("generateDot") {
 rootComponent = runtimeClasspath.flatMap {
 it.incoming.resolutionResult.rootComponent
 }
 rootVariant = runtimeClasspath.flatMap {

 it.incoming.resolutionResult.rootVariant
 }
}

build.gradle

tasks.register("generateDot", GenerateDot) {
 rootComponent = configurations.runtimeClasspath.incoming.
resolutionResult.rootComponent
 rootVariant = configurations.runtimeClasspath.incoming.resolutionResult
.rootVariant
}

NOTE This example uses incubating APIs.

Running this task, we get the following output:

digraph {
 "root project ::runtimeClasspath" [shape=box]
 "com.google.guava:guava:33.2.1-jre:jreRuntimeElements" [shape=box]
 "root project ::runtimeClasspath" -> "com.google.guava:guava:33.2.1-
jre:jreRuntimeElements"
 "com.google.guava:failureaccess:1.0.2:runtime" [shape=box]
 "com.google.guava:guava:33.2.1-jre:jreRuntimeElements" ->
"com.google.guava:failureaccess:1.0.2:runtime"
 "com.google.guava:listenablefuture:9999.0-empty-to-avoid-conflict-with-
guava:runtime" [shape=box]
 "com.google.guava:guava:33.2.1-jre:jreRuntimeElements" ->
"com.google.guava:listenablefuture:9999.0-empty-to-avoid-conflict-with-guava:runtime"
 "com.google.code.findbugs:jsr305:3.0.2:runtime" [shape=box]
 "com.google.guava:guava:33.2.1-jre:jreRuntimeElements" ->
"com.google.code.findbugs:jsr305:3.0.2:runtime"
 "org.checkerframework:checker-qual:3.42.0:runtimeElements" [shape=box]
 "com.google.guava:guava:33.2.1-jre:jreRuntimeElements" ->
"org.checkerframework:checker-qual:3.42.0:runtimeElements"
 "com.google.errorprone:error_prone_annotations:2.26.1:runtime" [shape=box]
 "com.google.guava:guava:33.2.1-jre:jreRuntimeElements" ->
"com.google.errorprone:error_prone_annotations:2.26.1:runtime"
}

Compare this to the output of the dependencies task:

runtimeClasspath
\--- com.google.guava:guava:33.2.1-jre

 +--- com.google.guava:failureaccess:1.0.2
 +--- com.google.guava:listenablefuture:9999.0-empty-to-avoid-conflict-with-guava
 +--- com.google.code.findbugs:jsr305:3.0.2
 +--- org.checkerframework:checker-qual:3.42.0
 \--- com.google.errorprone:error_prone_annotations:2.26.1

Notice how the graph is the same for both representations.

Artifact Resolution
After constructing a dependency graph, Gradle can perform artifact resolution on the resolved
graph.

Gradle APIs can be used to influence the process of artifact selection — the mapping of a graph to
a set of artifacts.

Gradle can then expose the results of artifact selection as an ArtifactCollection. More commonly,
the results are exposed as a FileCollection, which is a flat list of files.

Artifact selection

Artifact selection operates on the dependency graph on a node-by-node basis. Each node in the
graph may expose multiple sets of artifacts, but only one of those sets may be selected. For example,
the runtimeElements variant of the Java plugins exposes a jar, classes, and resources artifact set.
These three artifact sets represent the same distributable, but in different forms.

For each node (variant) in a graph, Gradle performs attribute matching over each set of artifacts
exposed by that node to determine the best artifact set. If no artifact sets match the requested
attributes, Gradle will attempt to construct an artifact transform chain to satisfy the request.

For more details on the attribute matching process, see the attribute matching section.

Implicit artifact selection

By default, the attributes used for artifact selection are the same as those used for variant selection
during graph resolution. These attributes are specified by the Configuration#getAttributes()
property.

To perform artifact selection (and implicitly, graph resolution) using these default attributes, use
the FileCollection and ArtifactCollection APIs.

NOTE

Files can also be accessed from the configuration’s ResolvedConfiguration,
LenientConfiguration, ResolvedArtifact and ResolvedDependency APIs. However,
these APIs are in maintenance mode and are discouraged for use in new
development. These APIs perform artifact selection using the default attributes.

https://docs.gradle.org/8.12/javadoc/org/gradle/api/attributes/HasAttributes.html#getAttributes()

Resolving files

To resolve files, we first define a task that accepts a ConfigurableFileCollection as input:

build.gradle.kts

abstract class ResolveFiles : DefaultTask() {

 @get:InputFiles
 abstract val files: ConfigurableFileCollection

 @TaskAction
 fun print() {
 files.forEach {
 println(it.name)
 }
 }
}

build.gradle

abstract class ResolveFiles extends DefaultTask {

 @InputFiles
 abstract ConfigurableFileCollection getFiles()

 @TaskAction
 void print() {
 files.each {
 println(it.name)
 }
 }
}

Then, we can wire up a resolvable configuration’s files to the task’s input. The Configuration
directly implements FileCollection and can be wired directly. Alternatively, wiring through
Configuration#getIncoming() is a more explicit approach:

build.gradle.kts

tasks.register<ResolveFiles>("resolveConfiguration") {
 files.from(configurations.runtimeClasspath)
}
tasks.register<ResolveFiles>("resolveIncomingFiles") {

 files.from(configurations.runtimeClasspath.map { it.incoming.files })
}

build.gradle

tasks.register("resolveConfiguration", ResolveFiles) {
 files.from(configurations.runtimeClasspath)
}
tasks.register("resolveIncomingFiles", ResolveFiles) {
 files.from(configurations.runtimeClasspath.incoming.files)
}

Running both of these tasks, we can see the output is identical:

> Task :resolveConfiguration
junit-platform-commons-1.11.0.jar
junit-jupiter-api-5.11.0.jar
opentest4j-1.3.0.jar

> Task :resolveIncomingFiles
junit-platform-commons-1.11.0.jar
junit-jupiter-api-5.11.0.jar
opentest4j-1.3.0.jar

Resolving artifacts

Instead of consuming the files directly from the implicit artifact selection process, we can consume
the artifacts, which contain both the files and the metadata.

This process is slightly more complicated, as in order to maintain Configuration Cache
compatibility, we need to split the fields of ResolvedArtifactResult into two task inputs:

build.gradle.kts

data class ArtifactDetails(
 val id: ComponentArtifactIdentifier,
 val variant: ResolvedVariantResult
)

abstract class ResolveArtifacts : DefaultTask() {

 @get:Input
 abstract val details: ListProperty<ArtifactDetails>

 @get:InputFiles
 abstract val files: ListProperty<File>

 fun from(artifacts: Provider<Set<ResolvedArtifactResult>>) {
 details.set(artifacts.map {
 it.map { artifact -> ArtifactDetails(artifact.id,
artifact.variant) }
 })
 files.set(artifacts.map {
 it.map { artifact -> artifact.file }
 })
 }

 @TaskAction
 fun print() {
 assert(details.get().size == files.get().size)
 details.get().zip(files.get()).forEach { (details, file) ->
 println("${details.variant.displayName}:${file.name}")
 }
 }
}

build.gradle

class ArtifactDetails {
 ComponentArtifactIdentifier id
 ResolvedVariantResult variant

 ArtifactDetails(ComponentArtifactIdentifier id, ResolvedVariantResult
variant) {
 this.id = id
 this.variant = variant
 }
}

abstract class ResolveArtifacts extends DefaultTask {

 @Input
 abstract ListProperty<ArtifactDetails> getDetails()

 @InputFiles
 abstract ListProperty<File> getFiles()

 void from(Provider<Set<ResolvedArtifactResult>> artifacts) {
 details.set(artifacts.map {
 it.collect { artifact -> new ArtifactDetails(artifact.id,
artifact.variant) }
 })
 files.set(artifacts.map {

 it.collect { artifact -> artifact.file }
 })
 }

 @TaskAction
 void print() {
 List<ArtifactDetails> allDetails = details.get()
 List<File> allFiles = files.get()

 assert allDetails.size() == allFiles.size()
 for (int i = 0; i < allDetails.size(); i++) {
 def details = allDetails.get(i)
 def file = allFiles.get(i)
 println("${details.variant.displayName}:${file.name}")
 }
 }
}

This task is initialized similarly to the file resolution task:

build.gradle.kts

tasks.register<ResolveArtifacts>("resolveIncomingArtifacts") {
 from(configurations.runtimeClasspath.flatMap {
it.incoming.artifacts.resolvedArtifacts })
}

build.gradle

tasks.register("resolveIncomingArtifacts", ResolveArtifacts) {
 from(configurations.runtimeClasspath.incoming.artifacts.
resolvedArtifacts)
}

Running this task, we can see that file metadata is included in the output:

org.junit.platform:junit-platform-commons:1.11.0 variant runtimeElements:junit-
platform-commons-1.11.0.jar
org.junit.jupiter:junit-jupiter-api:5.11.0 variant runtimeElements:junit-jupiter-api-
5.11.0.jar
org.opentest4j:opentest4j:1.3.0 variant runtimeElements:opentest4j-1.3.0.jar

Customizing artifact selection

In some cases, it is desirable to customize the selection process. The ArtifactView API is the primary
mechanism for influencing artifact selection in Gradle.

An ArtifactView can:

• Trigger artifact transforms

• Select alternative variants, such as sources or javadoc, for an entire resolution

• Perform lenient artifact selection and resolution

• Filter selected artifacts

NOTE
The ArtifactView can produce results as both a FileCollection and an
ArtifactCollection. The below examples will only demonstrate using a
FileCollection as the output.

Triggering artifact transforms

An ArtifactView can be used to trigger artifact selection using attributes different from those used
to resolve the graph.

For each node in the graph, artifact selection is performed for that node. Most commonly, this API is
used to request attributes that are not present on any artifact set from the variant that artifacts are
being selected from. When Gradle cannot find a matching artifact set from the node in question, it
will attempt to satisfy the request by transforming the available artifact sets using the artifact
transforms registered on the project.

Below, we use the unzip example from the artifact transforms chapter to demonstrate how to use
the ArtifactView API to request attributes that trigger a transform:

build.gradle.kts

tasks.register<ResolveFiles>("resolveTransformedFiles") {
 files.from(configurations.runtimeClasspath.map {
 it.incoming.artifactView {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
objects.named(LibraryElements.CLASSES_AND_RESOURCES))
 attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
ArtifactTypeDefinition.DIRECTORY_TYPE)
 }
 }.files
 })
}

build.gradle

tasks.register("resolveTransformedFiles", ResolveFiles) {
 files.from(configurations.runtimeClasspath.incoming.artifactView {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE, objects
.named(LibraryElements, LibraryElements.CLASSES_AND_RESOURCES))
 attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
ArtifactTypeDefinition.DIRECTORY_TYPE)
 }
 }.files)
}

Gradle performs artifact selection using the graph resolution attributes specified on the
configuration, concatenated with the attributes specified in the attributes block of the
ArtifactView.

The task output shows that the artifacts have been transformed:

junit-platform-commons-1.11.0.jar-unzipped
junit-jupiter-api-5.11.0.jar-unzipped
opentest4j-1.3.0.jar-unzipped

Performing variant reselection

Standard artifact selection can only select between and transform artifact sets exposed by the node
under selection. However, in some cases, it may be desirable to select artifacts from a variant
parallel to the graph node being selected.

Consider the example component structure below, describing a typical local Java library with
sources and javadoc:

variant 'apiElements'
 artifact set 'jar'
 artifact set 'classes'
 artifact set 'resources'
variant 'runtimeElements'
 artifact set 'jar'
 artifact set 'classes'
 artifact set 'resources'
variant 'javadocElements'
 artifact set 'jar'
variant 'sourcesElements'
 artifact set 'jar'

Resolving a Java runtime classpath will select the runtimeElements variant from the above example
component. During standard artifact selection, Gradle will select solely from the artifact sets under
runtimeElements.

However, it is common to want to select all sources or all javadoc for every node in the graph.
Consider the following example which selects all sources for a given runtime classpath:

NOTE This example uses incubating APIs.

build.gradle.kts

tasks.register<ResolveFiles>("resolveSources") {
 files.from(configurations.runtimeClasspath.map {
 it.incoming.artifactView {
 withVariantReselection()
 attributes {
 attribute(Usage.USAGE_ATTRIBUTE,
objects.named(Usage.JAVA_RUNTIME));
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.DOCUMENTATION));
 attribute(Bundling.BUNDLING_ATTRIBUTE,
objects.named(Bundling.EXTERNAL));
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE,
objects.named(DocsType.SOURCES));
 }
 }.files
 })
}

build.gradle

tasks.register("resolveSources", ResolveFiles) {
 files.from(configurations.runtimeClasspath.incoming.artifactView {
 withVariantReselection()
 attributes {
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_RUNTIME));
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.DOCUMENTATION));
 attribute(Bundling.BUNDLING_ATTRIBUTE, objects.named(Bundling,
Bundling.EXTERNAL));
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named(DocsType,
DocsType.SOURCES));
 }
 }.files)
}

Using the ArtifactView#withVariantReselection() API, Gradle will optionally perform graph variant
selection again before performing artifact selection on the new selected variant. When Gradle
selects artifacts for the runtimeElements node, it will use the attributes specified on the ArtifactView
to reselect the graph variant, thus selecting the sourcesElements variant instead. Then, traditional
artifact selection will be performed on the sourcesElements variant to select the jar artifact set.

As a result, the sources jar is resolved for each node:

junit-platform-commons-1.11.0-sources.jar
junit-jupiter-api-5.11.0-sources.jar
opentest4j-1.3.0-sources.jar

When this API is used, the attributes used for variant reselection are specified solely by the
ArtifactView#getAttributes() method. The graph resolution attributes specified on the
configuration are completely ignored during variant reselection.

Performing lenient artifact resolution

The ArtifactView API can also be used to perform lenient artifact resolution. This allows artifact
resolution to be performed on a graph that contains failures — for example when a requested
module was not found, the requested module version did not exist, or a conflict was not resolved.
Furthermore, lenient artifact resolution can be used to resolve artifacts when the graph was
successfully resolved, but the corresponding artifacts could not be downloaded.

Consider the following example, where some dependencies may not exist:

build.gradle.kts

dependencies {
 implementation("does:not:exist")
 implementation("org.junit.jupiter:junit-jupiter-api:5.11.0")
}

build.gradle

dependencies {
 implementation("does:not:exist")
 implementation("org.junit.jupiter:junit-jupiter-api:5.11.0")
}

Lenient resolution is performed by using the ArtifactView#lenient() method:

build.gradle.kts

tasks.register<ResolveFiles>("resolveLenient") {
 files.from(configurations.runtimeClasspath.map {
 it.incoming.artifactView {
 isLenient = true
 }.files
 })
}

build.gradle

tasks.register("resolveLenient", ResolveFiles) {
 files.from(configurations.runtimeClasspath.incoming.artifactView {
 lenient = true
 }.files)
}

We can see that the task succeeds with the failing artifact omitted:

> Task :resolveLenient
junit-platform-commons-1.11.0.jar
junit-jupiter-api-5.11.0.jar
opentest4j-1.3.0.jar

BUILD SUCCESSFUL in 0s

Filtering artifacts

The ArtifactView API can be used to filter specific artifacts from the resulting FileCollection or
ArtifactCollection.

ArtifactViews allow results to be filtered on a per-component basis. Using the
ArtifactView#componentFilter(Action) method, artifacts from certain components may be filtered
from the result. The action is passed the ComponentIdentifier of the component that owns the
variant that artifacts are being selected for.

Consider the following example, where we have one project dependency and one external
dependency:

build.gradle.kts

dependencies {
 implementation(project(":other"))
 implementation("org.junit.jupiter:junit-jupiter-api:5.11.0")
}

build.gradle

dependencies {
 implementation(project(":other"))
 implementation("org.junit.jupiter:junit-jupiter-api:5.11.0")
}

Using the componentFilter method, we can specify filters that select only artifacts of a certain type:

build.gradle.kts

tasks.register<ResolveFiles>("resolveProjects") {
 files.from(configurations.runtimeClasspath.map {
 it.incoming.artifactView {
 componentFilter {
 it is ProjectComponentIdentifier
 }
 }.files
 })
}
tasks.register<ResolveFiles>("resolveModules") {
 files.from(configurations.runtimeClasspath.map {
 it.incoming.artifactView {
 componentFilter {
 it is ModuleComponentIdentifier
 }
 }.files
 })
}

build.gradle

tasks.register("resolveProjects", ResolveFiles) {
 files.from(configurations.runtimeClasspath.incoming.artifactView {

 componentFilter {
 it instanceof ProjectComponentIdentifier
 }
 }.files)
}
tasks.register("resolveModules", ResolveFiles) {
 files.from(configurations.runtimeClasspath.incoming.artifactView {
 componentFilter {
 it instanceof ModuleComponentIdentifier
 }
 }.files)
}

Notice how we resolve project dependencies and module dependencies separately:

> Task :resolveProjects
other.jar

> Task :resolveModules
junit-platform-commons-1.11.0.jar
junit-jupiter-api-5.11.0.jar
opentest4j-1.3.0.jar

Artifact Transforms
What if you want to makes changes to the files contained in one of your dependencies before you
use it?

For example, you might want to unzip a compressed file, adjust the contents of a JAR, or delete
unnecessary files from a dependency that contains multiple files prior to using the result in a task.

Gradle has a built-in feature for this called Artifact Transforms. With Artifact Transforms, you can
modify, add to, remove from the set files (or artifacts) - like JAR files - contained in a dependency.
This is done as the last step when resolving artifacts, before tasks or tools like the IDE can consume
the artifacts.

Artifact Transforms Overview

Each component exposes a set of variants, where each variant is identified by a set of attributes
(i.e., key-value pairs such as debug=true).

When Gradle resolves a configuration, it looks at each dependency, resolves it to a component, and
selects the corresponding variant from that component that matches the requested attributes. If the
component does not have a matching variant, resolution fails unless Gradle can construct a
sequence of transformations that will modify an existing artifact to create a valid match (without
changing its transitive dependencies).

Artifact Transforms are a mechanism for converting one type of artifact into another during the
build process. They provide the consumer an efficient and flexible mechanism for transforming the
artifacts of a given producer to the required format without needing the producer to expose
variants in that format.

Artifact Transforms are a lot like tasks. They are units of work with some inputs and outputs.
Mechanisms like UP-TO-DATE and caching work for transforms as well.

The primary difference between tasks and transforms is how they are scheduled and put into the
chain of actions Gradle executes when a build configures and runs. At a high level, transforms
always run before tasks because they are executed during dependency resolution. Transforms
modify artifacts BEFORE they become an input to a task.

Here’s a brief overview of how to create and use Artifact Transforms:

1. Implement a Transform: You define an artifact transform by creating a class that implements
the TransformAction interface. This class specifies how the input artifact should be transformed
into the output artifact.

2. Declare request Attributes: Attributes (key-value pairs used to describe different variants of a
component) like org.gradle.usage=java-api and org.gradle.usage=java-runtime are used to
specify the desired artifact format or type.

3. Register a Transform: You register the transform by using the registerTransform() method of
the dependencies block. This method tells Gradle that a transform can be used to modify the
artifacts of any variant that possesses the given "from" attributes. It also tells Gradle what new
set of "to" attributes will describe the format or type of the resulting artifacts.

4. Use the Transform: When a resolution requires an artifact that isn’t already present in the
selected component (because none of the actual artifact possess compatible attributes to the
requested attributes), Gradle doesn’t just give up! Instead, Gradle first automatically searches
all registered transforms to see if it can construct a chain of transformations that will ultimately
produce a match. If Gradle finds such a chain, it then runs each transform in sequence, and

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/TransformAction.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/dsl/DependencyHandler.html#registerTransform(java.lang.Class,org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#dependencies(groovy.lang.Closure)

delivers the transformed artifacts as a result.

1. Implement a Transform

A transform is typically written as an abstract class that implements the TransformAction interface.
It can optionally have parameters defined in a separate interface.

Each transform has exactly one input artifact. It must be annotated with the @InputArtifact
annotation.

Then, you implement the transform(TransformOutputs) method from the TransformAction interface.
This method’s implementation defines what the transform should do when triggered. The method
has a TransformOutputs parameter that you use to tell Gradle what artifacts the transform produces.

Here, MyTransform is the custom transform action that converts a jar artifact to a transformed-jar
artifact:

build.gradle.kts

abstract class MyTransform : TransformAction<TransformParameters.None> {
 @get:InputArtifact
 abstract val inputArtifact: Provider<FileSystemLocation>

 override fun transform(outputs: TransformOutputs) {
 val inputFile = inputArtifact.get().asFile
 val outputFile = outputs.file(inputFile.name.replace(".jar", "-
transformed.jar"))
 // Perform transformation logic here
 inputFile.copyTo(outputFile, overwrite = true)
 }
}

build.gradle

abstract class MyTransform implements TransformAction<TransformParameters
.None> {
 @InputArtifact
 abstract Provider<FileSystemLocation> getInputArtifact()

 @Override
 void transform(TransformOutputs outputs) {
 def inputFile = inputArtifact.get().asFile
 def outputFile = outputs.file(inputFile.name.replace(".jar", "
-transformed.jar"))
 // Perform transformation logic here
 inputFile.withInputStream { input ->
 outputFile.withOutputStream { output ->

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/TransformAction.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/InputArtifact.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/TransformAction.html#transform(org.gradle.api.artifacts.transform.TransformOutputs)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/TransformAction.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/TransformOutputs.html

 output << input
 }
 }
 }
}

2. Declare request Attributes

Attributes specify the required properties of a dependency.

Here we specify that we need the transformed-jar format for the runtimeClasspath configuration:

build.gradle.kts

configurations.named("runtimeClasspath") {
 attributes {
 attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
"transformed-jar")
 }
}

build.gradle

configurations.named("runtimeClasspath") {
 attributes {
 attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
"transformed-jar")
 }
}

3. Register a Transform

A transform must be registered using the dependencies.registerTransform() method.

Here, our transform is registered with the dependencies block:

build.gradle.kts

dependencies {
 registerTransform(MyTransform::class) {
 from.attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE, "jar")

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/dsl/DependencyHandler.html#registerTransform(java.lang.Class,org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Project.html#dependencies(groovy.lang.Closure)

 to.attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
"transformed-jar")
 }
}

build.gradle

dependencies {
 registerTransform(MyTransform) {
 from.attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE, "jar")
 to.attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
"transformed-jar")
 }
}

"To" attributes are used to describe the format or type of the artifacts that this transform can use as
an input, and "from" attributes to describe the format or type of the artifacts that it produces as an
output.

4. Use the Transform

During a build, Gradle automatically runs registered transforms to satisfy a resolution request if a
match is not directly available.

Since no variants exist supplying artifacts of requested format (as none contain the artifactType
attribute with a value of "transformed-jar"), Gradle attempts to construct a chain of
transformations that will supply it.

Gradle’s search finds MyTransform, which is registered as producing the requested format, so it will
automatically be run. Running this transform action modifies the artifacts of an existing source
variant to produce new artifacts that are delivered to the consumer, in the requested format.

Gradle produces a "virtual artifact set" of the component as part of this process.

Understanding Artifact Transforms

Dependencies can have different variants, essentially different versions or forms of the same
dependency. These variants can each provide a different artifact set, meant to satisfy different use
cases, such as compiling code, browsing documentation or running applications.

Each variant is identified by a set of attributes. Attributes are key-value pairs that describe specific
characteristics of the variant.

Let’s use the following example where an external Maven dependency has two variants:

Table 5. Maven Dependencies

Variant Description

org.gradle.usage=java-api Used for compiling against the dependency.

org.gradle.usage=java-runtime Used for running an application that uses the
dependency.

And a project dependency has even more variants:

Table 6. Project Dependencies

Variant Description

org.gradle.usage=java-api
org.gradle.libraryelements=classes

Represents classes directories.

org.gradle.usage=java-api
org.gradle.libraryelements=jar

Represents a packaged JAR file, containing
classes and resources.

The variants of a dependency may differ in their transitive dependencies or in the set of artifacts
they contain, or both.

For example, the java-api and java-runtime variants of the Maven dependency only differ in their
transitive dependencies, and both use the same artifact — the JAR file. For the project dependency,
the java-api,classes and the java-api,jars variants have the same transitive dependencies but
different artifacts — the classes directories and the JAR files respectively.

When Gradle resolves a configuration, it uses the attributes defined to select the appropriate
variant of each dependency. The attributes that Gradle uses to determine which variant to select
are called the requested attributes.

For example, if a configuration requests org.gradle.usage=java-api and
org.gradle.libraryelements=classes, Gradle will select the variant of each dependency that matches
these attributes (in this case, classes directories intended for use as an API during compilation).
Matches do not have to exact, as some attribute values can be identified to Gradle as compatible
with other values and used interchangeably during matching.

Sometimes, a dependency might not have a variant with attributes that match the requested
attributes. In such cases, Gradle can transform one variant’s artifacts into another "virtual artifact
set" by modifying its artifacts without changing its transitive dependencies.

IMPORTANT
Gradle will not attempt to select or run Artifact Transforms when a variant
of the dependency matching the requested attributes already exists.

For example, if the requested variant is java-api,classes, but the dependency only has java-
api,jar, Gradle can potentially transform the JAR file into a classes directory by unzipping it using
an Artifact Transform that is registered with these attributes.

Understanding Artifact Transforms Chains

When Gradle resolves a configuration and a dependency does not have a variant with the
requested attributes, it attempts to find a chain of one or more Artifact Transforms that can be run
sequentially to create the desired variant. This process is called Artifact Transform selection:

The Artifact Transform Selection Process:

1. Start with requested Attributes:

◦ Gradle starts with the attributes specified on the configuration being resolved, appends any
attributes specified on an ArtifactView, and finally appends any attributes declared directly
on the dependency.

◦ It considers all registered transforms that modify these attributes.

2. Find a path to existing Variants:

◦ Gradle works backwards, trying to find a path from the requested attributes to an existing
variant.

For example, if the minified attribute has values true and false, and a transform can change
minified=false to minified=true, Gradle will use this transform if only minified=false variants are
available but minified=true is requested.

Gradle selects a chain of transforms using the following process:

• If there is only one possible chain that produces the requested attributes, it is selected.

• If there are multiple such chains, then only the shortest chains are considered.

• If there are still multiple chains remaining that are equally suitable but produce different
results, the selection fails, and an error is reported.

• If all the remaining chains produce the same set of resulting attributes, Gradle arbitrarily
selects one.

How can multiple chains produce different suitable results? Transforms can alter multiple
attributes at a time. A suitable result of a transformation chain is one possessing attributes
compatible with the requested attributes. But a result may contain other attributes as well, that
were not requested, and are irrelevant to the result.

For example: if attributes A=a and B=b are requested, and variant V1 contains attributes A=a, B=b, and
C=c, and variant V2 contains attributes A=a, B=b, and D=d, then since all the values of A and B are
identical (or compatible) either V1 or V2 would satisfy the request.

A Full Example

Let’s continue exploring the minified example begun above: a configuration requests
org.gradle.usage=java-runtime, org.gradle.libraryelements=jar, minified=true. The dependencies
are:

• External guava dependency with variants:

◦ org.gradle.usage=java-runtime, org.gradle.libraryelements=jar, minified=false

◦ org.gradle.usage=java-api, org.gradle.libraryelements=jar, minified=false

• Project producer dependency with variants:

◦ org.gradle.usage=java-runtime, org.gradle.libraryelements=jar, minified=false

◦ org.gradle.usage=java-runtime, org.gradle.libraryelements=classes, minified=false

◦ org.gradle.usage=java-api, org.gradle.libraryelements=jar, minified=false

◦ org.gradle.usage=java-api, org.gradle.libraryelements=classes, minified=false

Gradle uses the minify transform to convert minified=false variants to minified=true.

• For guava, Gradle converts

◦ org.gradle.usage=java-runtime, org.gradle.libraryelements=jar, minified=false to

◦ org.gradle.usage=java-runtime, org.gradle.libraryelements=jar, minified=true.

• For producer, Gradle converts

◦ org.gradle.usage=java-runtime, org.gradle.libraryelements=jar, minified=false to

◦ org.gradle.usage=java-runtime, org.gradle.libraryelements=jar, minified=true.

Then, during execution:

• Gradle downloads the guava JAR and runs the transform to minify it.

• Gradle executes the producer:jar task to produce the JAR and then runs the transform to minify
it.

• These tasks and transforms are executed in parallel where possible.

To set up the minified attribute so that the above works you must add the attribute to all JAR
variants being produced, and also add it to all resolvable configurations being requested. You
should also register the attribute in the attributes schema.

build.gradle.kts

val artifactType = Attribute.of("artifactType", String::class.java)
val minified = Attribute.of("minified", Boolean::class.javaObjectType)

dependencies {
 attributesSchema {
 attribute(minified) ①
 }
 artifactTypes.getByName("jar") {
 attributes.attribute(minified, false) ②
 }
}

configurations.runtimeClasspath.configure {
 attributes {
 attribute(minified, true) ③
 }
}

dependencies {
 registerTransform(Minify::class) {
 from.attribute(minified, false).attribute(artifactType, "jar")
 to.attribute(minified, true).attribute(artifactType, "jar")
 }
}

dependencies { ④
 implementation("com.google.guava:guava:27.1-jre")
 implementation(project(":producer"))
}

tasks.register<Copy>("resolveRuntimeClasspath") { ⑤
 from(configurations.runtimeClasspath)
 into(layout.buildDirectory.dir("runtimeClasspath"))
}

build.gradle

def artifactType = Attribute.of('artifactType', String)
def minified = Attribute.of('minified', Boolean)
dependencies {
 attributesSchema {
 attribute(minified) ①
 }
 artifactTypes.getByName("jar") {
 attributes.attribute(minified, false) ②
 }
}

configurations.runtimeClasspath {
 attributes {
 attribute(minified, true) ③
 }

}

dependencies {
 registerTransform(Minify) {
 from.attribute(minified, false).attribute(artifactType, "jar")
 to.attribute(minified, true).attribute(artifactType, "jar")
 }
}
dependencies { ④
 implementation('com.google.guava:guava:27.1-jre')
 implementation(project(':producer'))
}

tasks.register("resolveRuntimeClasspath", Copy) {⑤
 from(configurations.runtimeClasspath)
 into(layout.buildDirectory.dir("runtimeClasspath"))
}

① Add the attribute to the schema

② All JAR files are not minified

③ Request that the runtime classpath is minified

④ Add the dependencies which will be transformed

⑤ Add task that requires the transformed artifacts

You can now see what happens when we run the resolveRuntimeClasspath task, which resolves the
runtimeClasspath configuration. Gradle transforms the project dependency before the
resolveRuntimeClasspath task starts. Gradle transforms the binary dependencies when it executes
the resolveRuntimeClasspath task:

$ gradle resolveRuntimeClasspath
> Task :producer:compileJava
> Task :producer:processResources NO-SOURCE
> Task :producer:classes
> Task :producer:jar

> Transform producer.jar (project :producer) with Minify
Nothing to minify - using producer.jar unchanged

> Task :resolveRuntimeClasspath
Minifying guava-27.1-jre.jar
Nothing to minify - using listenablefuture-9999.0-empty-to-avoid-conflict-with-
guava.jar unchanged
Nothing to minify - using jsr305-3.0.2.jar unchanged
Nothing to minify - using checker-qual-2.5.2.jar unchanged
Nothing to minify - using error_prone_annotations-2.2.0.jar unchanged
Nothing to minify - using j2objc-annotations-1.1.jar unchanged

Nothing to minify - using animal-sniffer-annotations-1.17.jar unchanged
Nothing to minify - using failureaccess-1.0.1.jar unchanged

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 executed

Implementing Artifact Transforms

Similar to task types, an artifact transform consists of an action and some optional parameters. The
major difference from custom task types is that the action and the parameters are implemented as
two separate classes.

Artifact Transforms without Parameters

An artifact transform action is provided by a class implementing TransformAction. Such a class
implements the transform() method, which converts the input artifacts into zero, one, or multiple
output artifacts.

Most Artifact Transforms are one-to-one, so the transform method will be used to transform each
input artifact contained in the from variant into exactly one output artifact.

The implementation of the artifact transform action needs to register each output artifact by calling
TransformOutputs.dir() or TransformOutputs.file().

You can supply two types of paths to the dir or file methods:

• An absolute path to the input artifact or within the input artifact (for an input directory).

• A relative path.

Gradle uses the absolute path as the location of the output artifact. For example, if the input artifact
is an exploded WAR, the transform action can call TransformOutputs.file() for all JAR files in the
WEB-INF/lib directory. The output of the transform would then be the library JARs of the web
application.

For a relative path, the dir() or file() method returns a workspace to the transform action. The
transform action needs to create the transformed artifact(s) at the location of the provided
workspace.

The output artifact(s) replace the input artifact(s) in the transformed variant in the order they were
registered. For example, if the selected input variant contains the artifacts lib1.jar, lib2.jar,
lib3.jar, and the transform action registers a minified output artifact <artifact-name>-min.jar for
each input artifact, then the transformed configuration will consist of the artifacts lib1-min.jar,
lib2-min.jar, and lib3-min.jar.

Here is the implementation of an Unzip transform, which unzips a JAR file into a classes directory.
The Unzip transform does not require any parameters:

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.transform.TransformAction.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.transform.TransformOutputs.html#org.gradle.api.artifacts.transform.TransformOutputs:dir(java.lang.Object)
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.transform.TransformOutputs.html#org.gradle.api.artifacts.transform.TransformOutputs:file(java.lang.Object)

build.gradle.kts

abstract class Unzip : TransformAction<TransformParameters.None> {
①
 @get:InputArtifact
②
 abstract val inputArtifact: Provider<FileSystemLocation>

 override
 fun transform(outputs: TransformOutputs) {
 val input = inputArtifact.get().asFile
 val unzipDir = outputs.dir(input.name + "-unzipped")
③
 unzipTo(input, unzipDir)
④
 }

 private fun unzipTo(zipFile: File, unzipDir: File) {
 // implementation...
 }
}

build.gradle

abstract class Unzip implements TransformAction<TransformParameters.None> {
①
 @InputArtifact
②
 abstract Provider<FileSystemLocation> getInputArtifact()

 @Override
 void transform(TransformOutputs outputs) {
 def input = inputArtifact.get().asFile
 def unzipDir = outputs.dir(input.name + "-unzipped")
③
 unzipTo(input, unzipDir)
④
 }

 private static void unzipTo(File zipFile, File unzipDir) {
 // implementation...
 }
}

① Use TransformParameters.None if the transform does not use parameters

② Inject the input artifact

③ Request an output location for the unzipped files

④ Do the actual work of the transform

Note how the implementation uses @InputArtifact to inject an artifact to transform into the action
class, so that it can be accessed within the transform method. This method requests a directory for
the unzipped classes by using TransformOutputs.dir() and then unzips the JAR file into this
directory.

Artifact Transforms with Parameters

An artifact transform may require parameters, such as a String for filtering or a file collection used
to support the transformation of the input artifact. To pass these parameters to the transform
action, you must define a new type with the desired parameters. This type must implement the
marker interface TransformParameters.

The parameters must be represented using managed properties and the parameter type must be a
managed type. You can use an interface or abstract class to declare the getters, and Gradle will
generate the implementation. All getters need to have proper input annotations, as described in the
incremental build annotations table.

Here is the implementation of a Minify transform that makes JARs smaller by only keeping certain
classes in them. The Minify transform requires knowledge of the classes to keep within each JAR,
which is provided as an Map property within its parameters:

build.gradle.kts

abstract class Minify : TransformAction<Minify.Parameters> { ①
 interface Parameters : TransformParameters { ②
 @get:Input
 var keepClassesByArtifact: Map<String, Set<String>>

 }

 @get:PathSensitive(PathSensitivity.NAME_ONLY)
 @get:InputArtifact
 abstract val inputArtifact: Provider<FileSystemLocation>

 override
 fun transform(outputs: TransformOutputs) {
 val fileName = inputArtifact.get().asFile.name
 for (entry in parameters.keepClassesByArtifact) { ③
 if (fileName.startsWith(entry.key)) {
 val nameWithoutExtension = fileName.substring(0,
fileName.length - 4)
 minify(inputArtifact.get().asFile, entry.value,
outputs.file("${nameWithoutExtension}-min.jar"))

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/TransformParameters.html
incremental_build.pdf#table:incremental_build_annotations

 return
 }
 }
 println("Nothing to minify - using ${fileName} unchanged")
 outputs.file(inputArtifact) ④
 }

 private fun minify(artifact: File, keepClasses: Set<String>, jarFile:
File) {
 println("Minifying ${artifact.name}")
 // Implementation ...
 }
}

build.gradle

abstract class Minify implements TransformAction<Parameters> { ①
 interface Parameters extends TransformParameters { ②
 @Input
 Map<String, Set<String>> getKeepClassesByArtifact()
 void setKeepClassesByArtifact(Map<String, Set<String>> keepClasses)
 }

 @PathSensitive(PathSensitivity.NAME_ONLY)
 @InputArtifact
 abstract Provider<FileSystemLocation> getInputArtifact()

 @Override
 void transform(TransformOutputs outputs) {
 def fileName = inputArtifact.get().asFile.name
 for (entry in parameters.keepClassesByArtifact) { ③
 if (fileName.startsWith(entry.key)) {
 def nameWithoutExtension = fileName.substring(0, fileName
.length() - 4)
 minify(inputArtifact.get().asFile, entry.value, outputs.file
("${nameWithoutExtension}-min.jar"))
 return
 }
 }
 println "Nothing to minify - using ${fileName} unchanged"
 outputs.file(inputArtifact) ④
 }

 private void minify(File artifact, Set<String> keepClasses, File jarFile)
{
 println "Minifying ${artifact.name}"
 // Implementation ...
 }

}

① Declare the parameter type

② Interface for the transform parameters

③ Use the parameters

④ Use the unchanged input artifact when no minification is required

Observe how you can obtain the parameters by TransformAction.getParameters() in the transform()
method. The implementation of the transform() method requests a location for the minified JAR by
using TransformOutputs.file() and then creates the minified JAR at this location.

Remember that the input artifact is a dependency, which may have its own dependencies. Suppose
your artifact transform needs access to those transitive dependencies. In that case, it can declare an
abstract getter returning a FileCollection and annotate it with @InputArtifactDependencies. When
your transform runs, Gradle will inject the transitive dependencies into the FileCollection property
by implementing the getter.

Note that using input artifact dependencies in a transform has performance implications; only
inject them when needed.

Artifact Transforms with Caching

Artifact Transforms can make use of the build cache to store their outputs and avoid rerunning
their transform actions when the result is known.

To enable the build cache to store the results of an artifact transform, add the @CacheableTransform
annotation on the action class.

For cacheable transforms, you must annotate its @InputArtifact property — and any property
marked with @InputArtifactDependencies — with normalization annotations such as
@PathSensitive.

The following example demonstrates a more complex transform that relocates specific classes
within a JAR to a different package. This process involves rewriting the bytecode of both the
relocated classes and any classes that reference them (class relocation):

build.gradle.kts

@CacheableTransform
①
abstract class ClassRelocator : TransformAction<ClassRelocator.Parameters> {
 interface Parameters : TransformParameters {
②
 @get:CompileClasspath
③
 val externalClasspath: ConfigurableFileCollection

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/InputArtifactDependencies.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/CacheableTransform.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/InputArtifact.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/transform/InputArtifactDependencies.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/PathSensitive.html

 @get:Input
 val excludedPackage: Property<String>
 }

 @get:Classpath
④
 @get:InputArtifact
 abstract val primaryInput: Provider<FileSystemLocation>

 @get:CompileClasspath
 @get:InputArtifactDependencies
⑤
 abstract val dependencies: FileCollection

 override
 fun transform(outputs: TransformOutputs) {
 val primaryInputFile = primaryInput.get().asFile
 if (parameters.externalClasspath.contains(primaryInputFile)) {
⑥
 outputs.file(primaryInput)
 } else {
 val baseName = primaryInputFile.name.substring(0,
primaryInputFile.name.length - 4)
 relocateJar(outputs.file("$baseName-relocated.jar"))
 }
 }

 private fun relocateJar(output: File) {
 // implementation...
 val relocatedPackages = (dependencies.flatMap { it.readPackages() } +
primaryInput.get().asFile.readPackages()).toSet()
 val nonRelocatedPackages = parameters.externalClasspath.flatMap {
it.readPackages() }
 val relocations = (relocatedPackages - nonRelocatedPackages).map {
packageName ->
 val toPackage = "relocated.$packageName"
 println("$packageName -> $toPackage")
 Relocation(packageName, toPackage)
 }
 JarRelocator(primaryInput.get().asFile, output, relocations).run()
 }
}

build.gradle

@CacheableTransform
①
abstract class ClassRelocator implements TransformAction<Parameters> {
 interface Parameters extends TransformParameters {

②
 @CompileClasspath
③
 ConfigurableFileCollection getExternalClasspath()
 @Input
 Property<String> getExcludedPackage()
 }

 @Classpath
④
 @InputArtifact
 abstract Provider<FileSystemLocation> getPrimaryInput()

 @CompileClasspath
 @InputArtifactDependencies
⑤
 abstract FileCollection getDependencies()

 @Override
 void transform(TransformOutputs outputs) {
 def primaryInputFile = primaryInput.get().asFile
 if (parameters.externalClasspath.contains(primaryInput)) {
⑥
 outputs.file(primaryInput)
 } else {
 def baseName = primaryInputFile.name.substring(0,
primaryInputFile.name.length - 4)
 relocateJar(outputs.file("$baseName-relocated.jar"))
 }
 }

 private relocateJar(File output) {
 // implementation...
 def relocatedPackages = (dependencies.collectMany { readPackages(it)
} + readPackages(primaryInput.get().asFile)) as Set
 def nonRelocatedPackages = parameters.externalClasspath.collectMany {
readPackages(it) }
 def relocations = (relocatedPackages - nonRelocatedPackages).collect
{ packageName ->
 def toPackage = "relocated.$packageName"
 println("$packageName -> $toPackage")
 new Relocation(packageName, toPackage)
 }
 new JarRelocator(primaryInput.get().asFile, output, relocations).run
()
 }
}

① Declare the transform cacheable

② Interface for the transform parameters

③ Declare input type for each parameter

④ Declare a normalization for the input artifact

⑤ Inject the input artifact dependencies

⑥ Use the parameters

Note the classes to be relocated are determined by examining the packages of the input artifact and
its dependencies. Additionally, the transform ensures that packages contained in JAR files on an
external classpath are not relocated.

Incremental Artifact Transforms

Similar to incremental tasks, Artifact Transforms can avoid some work by only processing files that
have changed since the last execution. This is done by using the InputChanges interface.

For Artifact Transforms, only the input artifact is an incremental input; therefore, the transform
can only query for changes there. To use InputChanges in the transform action, inject it into the
action.

For more information on how to use InputChanges, see the corresponding documentation for
incremental tasks.

Here is an example of an incremental transform that counts the lines of code in Java source files:

build.gradle.kts

abstract class CountLoc : TransformAction<TransformParameters.None> {

 @get:Inject ①
 abstract val inputChanges: InputChanges

 @get:PathSensitive(PathSensitivity.RELATIVE)
 @get:InputArtifact
 abstract val input: Provider<FileSystemLocation>

 override
 fun transform(outputs: TransformOutputs) {
 val outputDir = outputs.dir("${input.get().asFile.name}.loc")
 println("Running transform on ${input.get().asFile.name},
incremental: ${inputChanges.isIncremental}")
 inputChanges.getFileChanges(input).forEach { change -> ②
 val changedFile = change.file
 if (change.fileType != FileType.FILE) {
 return@forEach
 }
 val outputLocation =

https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html
https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html
https://docs.gradle.org/8.12/dsl/org.gradle.work.InputChanges.html

outputDir.resolve("${change.normalizedPath}.loc")
 when (change.changeType) {
 ChangeType.ADDED, ChangeType.MODIFIED -> {

 println("Processing file ${changedFile.name}")
 outputLocation.parentFile.mkdirs()

outputLocation.writeText(changedFile.readLines().size.toString())
 }
 ChangeType.REMOVED -> {
 println("Removing leftover output file
${outputLocation.name}")
 outputLocation.delete()
 }
 }
 }
 }
}

build.gradle

abstract class CountLoc implements TransformAction<TransformParameters.None>
{

 @Inject ①
 abstract InputChanges getInputChanges()

 @PathSensitive(PathSensitivity.RELATIVE)
 @InputArtifact
 abstract Provider<FileSystemLocation> getInput()

 @Override
 void transform(TransformOutputs outputs) {
 def outputDir = outputs.dir("${input.get().asFile.name}.loc")
 println("Running transform on ${input.get().asFile.name},
incremental: ${inputChanges.incremental}")
 inputChanges.getFileChanges(input).forEach { change -> ②
 def changedFile = change.file
 if (change.fileType != FileType.FILE) {
 return
 }
 def outputLocation = new File(outputDir, "${change.
normalizedPath}.loc")
 switch (change.changeType) {
 case ADDED:
 case MODIFIED:
 println("Processing file ${changedFile.name}")
 outputLocation.parentFile.mkdirs()

 outputLocation.text = changedFile.readLines().size()

 case REMOVED:
 println("Removing leftover output file ${outputLocation
.name}")
 outputLocation.delete()

 }
 }
 }
}

① Inject InputChanges

② Query for changes in the input artifact

This transform will only run on source files that have changed since the last run, as otherwise the
line count would not need to be recalculated.

Registering Artifact Transforms

You need to register the artifact transform actions, providing parameters if necessary so that they
can be selected when resolving dependencies.

To register an artifact transform, you must use registerTransform() within the dependencies {}
block.

There are a few points to consider when using registerTransform():

• At least one from and to attributes are required.

• Each to attribute must have a corresponding from attribute.

• Additional from attributes can be included which do not have corresponding to attributes.

• The transform action itself can have configuration options. You can configure them with the
parameters {} block.

• You must register the transform on the project that has the configuration that will be resolved.

• You can supply any type implementing TransformAction to the registerTransform() method.

For example, imagine you want to unpack some dependencies and put the unpacked directories
and files on the classpath. You can do so by registering an artifact transform action of type Unzip, as
shown here:

build.gradle.kts

dependencies {

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:registerTransform(java.lang.Class,%20org.gradle.api.Action)
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.transform.TransformAction.html

 registerTransform(Unzip::class.java) {
 from.attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
objects.named<LibraryElements>(LibraryElements.JAR))
 from.attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
ArtifactTypeDefinition.JAR_TYPE)
 to.attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
objects.named<LibraryElements>(LibraryElements.CLASSES_AND_RESOURCES))
 to.attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
ArtifactTypeDefinition.DIRECTORY_TYPE)
 }
}

build.gradle

dependencies {
 registerTransform(Unzip) {
 from.attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE, objects
.named(LibraryElements, LibraryElements.JAR))
 from.attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
ArtifactTypeDefinition.JAR_TYPE)
 to.attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE, objects
.named(LibraryElements, LibraryElements.CLASSES_AND_RESOURCES))
 to.attribute(ArtifactTypeDefinition.ARTIFACT_TYPE_ATTRIBUTE,
ArtifactTypeDefinition.DIRECTORY_TYPE)
 }
}

Another example is that you want to minify JARs by only keeping some class files from them. Note
the use of the parameters {} block to provide the classes to keep in the minified JARs to the Minify
transform:

build.gradle.kts

val artifactType = Attribute.of("artifactType", String::class.java)
val minified = Attribute.of("minified", Boolean::class.javaObjectType)
val keepPatterns = mapOf(
 "guava" to setOf(
 "com.google.common.base.Optional",
 "com.google.common.base.AbstractIterator"
)
)

dependencies {
 registerTransform(Minify::class) {

 from.attribute(minified, false).attribute(artifactType, "jar")
 to.attribute(minified, true).attribute(artifactType, "jar")

 parameters {
 keepClassesByArtifact = keepPatterns
 }
 }
}

build.gradle

def artifactType = Attribute.of('artifactType', String)
def minified = Attribute.of('minified', Boolean)
def keepPatterns = [
 "guava": [
 "com.google.common.base.Optional",
 "com.google.common.base.AbstractIterator"
] as Set
]

dependencies {
 registerTransform(Minify) {
 from.attribute(minified, false).attribute(artifactType, "jar")
 to.attribute(minified, true).attribute(artifactType, "jar")

 parameters {
 keepClassesByArtifact = keepPatterns
 }
 }
}

Executing Artifact Transforms

On the command line, Gradle runs tasks; not Artifact Transforms: ./gradlew build. So how and
when does it run transforms?

There are two ways Gradle executes a transform:

1. Artifact Transforms execution for project dependencies can be discovered ahead of task
execution and therefore can be scheduled before the task execution.

2. Artifact Transforms execution for external module dependencies cannot be discovered ahead of
task execution and, therefore are scheduled inside the task execution.

In well-declared builds, project dependencies can be fully discovered during task configuration
ahead of task execution scheduling. If the project dependency is badly declared (e.g., missing a task

input), the transform execution will happen inside the task.

It’s important to remember that Artifact Transforms:

• will only ever be run if no matching variants exist to satisfy a request

• can be run in parallel

• will not be rerun if possible (if multiple resolution requests require the same transform to be
executed on the same artifacts, and the transform is cacheable, the transform will only be run
once and the results fetched from the cache on each subsequent request)

IMPORTANT

`TransformAction`s are only instantiated and run if input artifacts exist. If
there are no artifacts present in an input variant to a transform, that
transform will be skipped. This can happen in the middle of a chain of
actions, resulting in all subsequent transforms being skipped.

PUBLISHING LIBRARIES

Publishing a project as module
The vast majority of software projects build something that aims to be consumed in some way. It
could be a library that other software projects use or it could be an application for end users.
Publishing is the process by which the thing being built is made available to consumers.

In Gradle, that process looks like this:

1. Define what to publish

2. Define where to publish it to

3. Do the publishing

Each of the these steps is dependent on the type of repository to which you want to publish
artifacts. The two most common types are Maven-compatible and Ivy-compatible repositories, or
Maven and Ivy repositories for short.

As of Gradle 6.0, the Gradle Module Metadata will always be published alongside the Ivy XML or
Maven POM metadata file.

Gradle makes it easy to publish to these types of repository by providing some prepackaged
infrastructure in the form of the Maven Publish Plugin and the Ivy Publish Plugin. These plugins
allow you to configure what to publish and perform the publishing with a minimum of effort.

Figure 17. The publishing process

Let’s take a look at those steps in more detail:

What to publish

Gradle needs to know what files and information to publish so that consumers can use your
project. This is typically a combination of artifacts and metadata that Gradle calls a publication.
Exactly what a publication contains depends on the type of repository it’s being published to.

For example, a publication destined for a Maven repository includes:

• One or more artifacts — typically built by the project,

• The Gradle Module Metadata file which will describe the variants of the published

glossary.pdf#sub:terminology_artifact
glossary.pdf#sub:terminology_publication

component,

• The Maven POM file will identify the primary artifact and its dependencies. The primary
artifact is typically the project’s production JAR and secondary artifacts might consist of "-
sources" and "-javadoc" JARs.

In addition, Gradle will publish checksums for all of the above, and signatures when configured
to do so. From Gradle 6.0 onwards, this includes SHA256 and SHA512 checksums.

Where to publish

Gradle needs to know where to publish artifacts so that consumers can get hold of them. This is
done via repositories, which store and make available all sorts of artifact. Gradle also needs to
interact with the repository, which is why you must provide the type of the repository and its
location.

How to publish

Gradle automatically generates publishing tasks for all possible combinations of publication and
repository, allowing you to publish any artifact to any repository. If you’re publishing to a Maven
repository, the tasks are of type PublishToMavenRepository, while for Ivy repositories the tasks
are of type PublishToIvyRepository.

What follows is a practical example that demonstrates the entire publishing process.

Setting up basic publishing

The first step in publishing, irrespective of your project type, is to apply the appropriate publishing
plugin. As mentioned in the introduction, Gradle supports both Maven and Ivy repositories via the
following plugins:

• Maven Publish Plugin

• Ivy Publish Plugin

These provide the specific publication and repository classes needed to configure publishing for the
corresponding repository type. Since Maven repositories are the most commonly used ones, they
will be the basis for this example and for the other samples in the chapter. Don’t worry, we will
explain how to adjust individual samples for Ivy repositories.

Let’s assume we’re working with a simple Java library project, so only the following plugins are
applied:

Example 22. Applying the necessary plugins

build.gradle.kts

plugins {
 `java-library`
 `maven-publish`
}

glossary.pdf#sub:terminology_repository
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
#ex-applying-the-necessary-plugins

build.gradle

plugins {
 id 'java-library'
 id 'maven-publish'
}

Once the appropriate plugin has been applied, you can configure the publications and repositories.
For this example, we want to publish the project’s production JAR file — the one produced by the
jar task — to a custom Maven repository. We do that with the following publishing {} block, which
is backed by PublishingExtension:

Example 23. Configuring a Java library for publishing

build.gradle.kts

group = "org.example"
version = "1.0"

publishing {
 publications {
 create<MavenPublication>("myLibrary") {
 from(components["java"])
 }
 }

 repositories {
 maven {
 name = "myRepo"
 url = uri(layout.buildDirectory.dir("repo"))
 }
 }
}

build.gradle

group = 'org.example'
version = '1.0'

publishing {
 publications {
 myLibrary(MavenPublication) {
 from components.java
 }
 }

https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.PublishingExtension.html
#ex-configuring-a-java-library-for-publishing

 repositories {
 maven {
 name = 'myRepo'
 url = layout.buildDirectory.dir("repo")
 }
 }
}

This defines a publication called "myLibrary" that can be published to a Maven repository by virtue
of its type: MavenPublication. This publication consists of just the production JAR artifact and its
metadata, which combined are represented by the java component of the project.

NOTE

Components are the standard way of defining a publication. They are provided by
plugins, usually of the language or platform variety. For example, the Java Plugin
defines the components.java SoftwareComponent, while the War Plugin defines
components.web.

The example also defines a file-based Maven repository with the name "myRepo". Such a file-based
repository is convenient for a sample, but real-world builds typically work with HTTPS-based
repository servers, such as Maven Central or an internal company server.

NOTE
You may define one, and only one, repository without a name. This translates to an
implicit name of "Maven" for Maven repositories and "Ivy" for Ivy repositories. All
other repository definitions must be given an explicit name.

In combination with the project’s group and version, the publication and repository definitions
provide everything that Gradle needs to publish the project’s production JAR. Gradle will then
create a dedicated publishMyLibraryPublicationToMyRepoRepository task that does just that. Its name
is based on the template publishPubNamePublicationToRepoNameRepository. See the appropriate
publishing plugin’s documentation for more details on the nature of this task and any other tasks
that may be available to you.

You can either execute the individual publishing tasks directly, or you can execute publish, which
will run all the available publishing tasks. In this example, publish will just run
publishMyLibraryPublicationToMavenRepository.

NOTE

Basic publishing to an Ivy repository is very similar: you simply use the Ivy Publish
Plugin, replace MavenPublication with IvyPublication, and use ivy instead of maven in
the repository definition.

There are differences between the two types of repository, particularly around the
extra metadata that each support — for example, Maven repositories require a POM
file while Ivy ones have their own metadata format — so see the plugin chapters for
comprehensive information on how to configure both publications and repositories
for whichever repository type you’re working with.

https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPublication.html
glossary.pdf#sub:terminology_component
https://docs.gradle.org/8.12/javadoc/org/gradle/api/component/SoftwareComponent.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyPublication.html

That’s everything for the basic use case. However, many projects need more control over what gets
published, so we look at several common scenarios in the following sections.

Suppressing validation errors

Gradle performs validation of generated module metadata. In some cases, validation can fail,
indicating that you most likely have an error to fix, but you may have done something intentionally.
If this is the case, Gradle will indicate the name of the validation error you can disable on the
GenerateModuleMetadata tasks:

Example 24. Disabling some validation errors

build.gradle.kts

tasks.withType<GenerateModuleMetadata> {
 // The value 'enforced-platform' is provided in the validation
 // error message you got
 suppressedValidationErrors.add("enforced-platform")
}

build.gradle

tasks.withType(GenerateModuleMetadata).configureEach {
 // The value 'enforced-platform' is provided in the validation
 // error message you got
 suppressedValidationErrors.add('enforced-platform')
}

Understanding Gradle Module Metadata
Gradle Module Metadata is a format used to serialize the Gradle component model. It is similar to
Apache Maven™'s POM file or Apache Ivy™ ivy.xml files. The goal of metadata files is to provide to
consumers a reasonable model of what is published on a repository.

Gradle Module Metadata is a unique format aimed at improving dependency resolution by making
it multi-platform and variant-aware.

In particular, Gradle Module Metadata supports:

• rich version constraints

• dependency constraints

• component capabilities

• variant-aware resolution

#ex-disabling-some-validation-errors
https://maven.apache.org/pom.html
https://ant.apache.org/ivy/

Publication of Gradle Module Metadata will enable better dependency management for your
consumers:

• early discovery of problems by detecting incompatible modules

• consistent selection of platform-specific dependencies

• native dependency version alignment

• automatically getting dependencies for specific features of your library

Gradle Module Metadata is automatically published when using the Maven Publish plugin or the
Ivy Publish plugin.

The specification for Gradle Module Metadata can be found here.

Mapping with other formats

Gradle Module Metadata is automatically published on Maven or Ivy repositories. However, it
doesn’t replace the pom.xml or ivy.xml files: it is published alongside those files. This is done to
maximize compatibility with third-party build tools.

Gradle does its best to map Gradle-specific concepts to Maven or Ivy. When a build file uses features
that can only be represented in Gradle Module Metadata, Gradle will warn you at publication time.
The table below summarizes how some Gradle specific features are mapped to Maven and Ivy:

Table 7. Mapping of Gradle specific concepts to Maven and Ivy

Gradle Maven Ivy Description

dependency constraints <dependencyManagement>
dependencies

Not published Gradle dependency
constraints are
transitive, while
Maven’s dependency
management block isn’t

rich version constraints Publishes the requires
version

Published the requires
version

component capabilities Not published Not published Component capabilities
are unique to Gradle

Feature variants Variant artifacts are
uploaded,
dependencies are
published as optional
dependencies

Variant artifacts are
uploaded,
dependencies are not
published

Feature variants are a
good replacement for
optional dependencies

https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-latest-specification.md

Gradle Maven Ivy Description

Custom component
types

Artifacts are uploaded,
dependencies are those
described by the
mapping

Artifacts are uploaded,
dependencies are
ignored

Custom component
types are probably not
consumable from
Maven or Ivy in any
case. They usually exist
in the context of a
custom ecosystem.

Disabling metadata compatibility publication warnings

If you want to suppress warnings, you can use the following APIs to do so:

• For Maven, see the suppress* methods in MavenPublication

• For Ivy, see the suppress* methods in IvyPublication

Example 25. Disabling publication warnings

build.gradle.kts

publications {
 register<MavenPublication>("maven") {
 from(components["java"])
 suppressPomMetadataWarningsFor("runtimeElements")
 }
}

build.gradle

publications {
 maven(MavenPublication) {
 from components.java
 suppressPomMetadataWarningsFor('runtimeElements')
 }
}

Interactions with other build tools

Because Gradle Module Metadata is not widely spread and because it aims at maximizing
compatibility with other tools, Gradle does a couple of things:

• Gradle Module Metadata is systematically published alongside the normal descriptor for a given
repository (Maven or Ivy)

https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:suppressAllPomMetadataWarnings()
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:suppressAllIvyMetadataWarnings()
#ex-disabling-publication-warnings

• the pom.xml or ivy.xml file will contain a marker comment which tells Gradle that Gradle Module
Metadata exists for this module

The goal of the marker is not for other tools to parse module metadata: it’s for Gradle users only. It
explains to Gradle that a better module metadata file exists and that it should use it instead. It
doesn’t mean that consumption from Maven or Ivy would be broken either, only that it works in
degraded mode.

NOTE

This must be seen as a performance optimization: instead of having to do 2 network
requests, one to get Gradle Module Metadata, then one to get the POM/Ivy file in
case of a miss, Gradle will first look at the file which is most likely to be present,
then only perform a 2nd request if the module was actually published with Gradle
Module Metadata.

If you know that the modules you depend on are always published with Gradle Module Metadata,
you can optimize the network calls by configuring the metadata sources for a repository:

Example 26. Resolving Gradle Module Metadata only

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/repo")
 metadataSources {
 gradleMetadata()
 }
 }
}

build.gradle

repositories {
 maven {
 url = "http://repo.mycompany.com/repo"
 metadataSources {
 gradleMetadata()
 }
 }
}

Gradle Module Metadata validation

Gradle Module Metadata is validated before being published.

#ex-resolving-gradle-module-metadata-only

The following rules are enforced:

• Variant names must be unique,

• Each variant must have at least one attribute,

• Two variants cannot have the exact same attributes and capabilities,

• If there are dependencies, at least one, across all variants, must carry version information.

These rules ensure the quality of the metadata produced, and help confirm that consumption will
not be problematic.

Gradle Module Metadata reproducibility

The task generating the module metadata files is currently never marked UP-TO-DATE by Gradle due
to the way it is implemented. However, if neither build inputs nor build scripts changed, the task
result is effectively up-to-date: it always produces the same output.

If users desire to have a unique module file per build invocation, it is possible to link an identifier in
the produced metadata to the build that created it. Users can choose to enable this unique identifier
in their publication:

Example 27. Configuring the build identifier of a publication

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("myLibrary") {
 from(components["java"])
 withBuildIdentifier()
 }
 }
}

build.gradle

publishing {
 publications {
 myLibrary(MavenPublication) {
 from components.java
 withBuildIdentifier()
 }
 }
}

#ex-configuring-the-build-identifier-of-a-publication

With the changes above, the generated Gradle Module Metadata file will always be different,
forcing downstream tasks to consider it out-of-date.

Disabling Gradle Module Metadata publication

There are situations where you might want to disable publication of Gradle Module Metadata:

• the repository you are uploading to rejects the metadata file (unknown format)

• you are using Maven or Ivy specific concepts which are not properly mapped to Gradle Module
Metadata

In this case, disabling the publication of Gradle Module Metadata is done simply by disabling the
task which generates the metadata file:

Example 28. Disabling publication of Gradle Module Metadata

build.gradle.kts

tasks.withType<GenerateModuleMetadata> {
 enabled = false
}

build.gradle

tasks.withType(GenerateModuleMetadata) {
 enabled = false
}

Signing artifacts
The Signing Plugin can be used to sign all artifacts and metadata files that make up a publication,
including Maven POM files and Ivy module descriptors. In order to use it:

1. Apply the Signing Plugin

2. Configure the signatory credentials — follow the link to see how

3. Specify the publications you want signed

Here’s an example that configures the plugin to sign the mavenJava publication:

#ex-disabling-publication-of-gradle-module-metadata
signing_plugin.pdf#signing_plugin
signing_plugin.pdf#sec:signatory_credentials

Example 29. Signing a publication

build.gradle.kts

signing {
 sign(publishing.publications["mavenJava"])
}

build.gradle

signing {
 sign publishing.publications.mavenJava
}

This will create a Sign task for each publication you specify and wire all publish
PubNamePublicationToRepoNameRepository tasks to depend on it. Thus, publishing any publication will
automatically create and publish the signatures for its artifacts and metadata, as you can see from
this output:

Example: Sign and publish a project

Output of gradle publish

> gradle publish
> Task :compileJava
> Task :processResources
> Task :classes
> Task :jar
> Task :javadoc
> Task :javadocJar
> Task :sourcesJar
> Task :generateMetadataFileForMavenJavaPublication
> Task :generatePomFileForMavenJavaPublication
> Task :signMavenJavaPublication
> Task :publishMavenJavaPublicationToMavenRepository
> Task :publish

BUILD SUCCESSFUL in 0s
10 actionable tasks: 10 executed

Customizing publishing

#ex-signing-a-publication

Modifying and adding variants to existing components for publishing

Gradle’s publication model is based on the notion of components, which are defined by plugins. For
example, the Java Library plugin defines a java component which corresponds to a library, but the
Java Platform plugin defines another kind of component, named javaPlatform, which is effectively a
different kind of software component (a platform).

Sometimes we want to add more variants to or modify existing variants of an existing component.
For example, if you added a variant of a Java library for a different platform, you may just want to
declare this additional variant on the java component itself. In general, declaring additional
variants is often the best solution to publish additional artifacts.

To perform such additions or modifications, the AdhocComponentWithVariants interface declares two
methods called addVariantsFromConfiguration and withVariantsFromConfiguration which accept two
parameters:

• the outgoing configuration that is used as a variant source

• a customization action which allows you to filter which variants are going to be published

To utilise these methods, you must make sure that the SoftwareComponent you work with is itself an
AdhocComponentWithVariants, which is the case for the components created by the Java plugins (Java,
Java Library, Java Platform). Adding a variant is then very simple:

Example 30. Adding a variant to an existing software component

InstrumentedJarsPlugin.kt

val javaComponent = components.findByName("java") as
AdhocComponentWithVariants
javaComponent.addVariantsFromConfiguration(outgoing) {
 // dependencies for this variant are considered runtime dependencies
 mapToMavenScope("runtime")
 // and also optional dependencies, because we don't want them to leak
 mapToOptional()
}

InstrumentedJarsPlugin.groovy

AdhocComponentWithVariants javaComponent = (AdhocComponentWithVariants)
project.components.findByName("java")
javaComponent.addVariantsFromConfiguration(outgoing) {
 // dependencies for this variant are considered runtime dependencies
 it.mapToMavenScope("runtime")
 // and also optional dependencies, because we don't want them to leak
 it.mapToOptional()
}

#ex-adding-a-variant-to-an-existing-software-component

In other cases, you might want to modify a variant that was added by one of the Java plugins
already. For example, if you activate publishing of Javadoc and sources, these become additional
variants of the java component. If you only want to publish one of them, e.g. only Javadoc but no
sources, you can modify the sources variant to not being published:

Example 31. Publish a java library with Javadoc but without sources

build.gradle.kts

java {
 withJavadocJar()
 withSourcesJar()
}

val javaComponent = components["java"] as AdhocComponentWithVariants
javaComponent.withVariantsFromConfiguration(configurations["sourcesElements"]
) {
 skip()
}

publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 from(components["java"])
 }
 }
}

build.gradle

java {
 withJavadocJar()
 withSourcesJar()
}

components.java.withVariantsFromConfiguration(configurations.sourcesElements)
{
 skip()
}

publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java
 }
 }
}

#ex-publish-a-java-library-with-javadoc-but-without-sources

Creating and publishing custom components

In the previous example, we have demonstrated how to extend or modify an existing component,
like the components provided by the Java plugins. But Gradle also allows you to build a custom
component (not a Java Library, not a Java Platform, not something supported natively by Gradle).

To create a custom component, you first need to create an empty adhoc component. At the moment,
this is only possible via a plugin because you need to get a handle on the
SoftwareComponentFactory :

Example 32. Injecting the software component factory

InstrumentedJarsPlugin.kt

class InstrumentedJarsPlugin @Inject constructor(
 private val softwareComponentFactory: SoftwareComponentFactory) :
Plugin<Project> {

InstrumentedJarsPlugin.groovy

private final SoftwareComponentFactory softwareComponentFactory

@Inject
InstrumentedJarsPlugin(SoftwareComponentFactory softwareComponentFactory) {
 this.softwareComponentFactory = softwareComponentFactory
}

Declaring what a custom component publishes is still done via the AdhocComponentWithVariants
API. For a custom component, the first step is to create custom outgoing variants, following the
instructions in this chapter. At this stage, what you should have is variants which can be used in
cross-project dependencies, but that we are now going to publish to external repositories.

Example 33. Creating a custom, adhoc component

InstrumentedJarsPlugin.kt

// create an adhoc component
val adhocComponent = softwareComponentFactory.adhoc("myAdhocComponent")
// add it to the list of components that this project declares
components.add(adhocComponent)
// and register a variant for publication
adhocComponent.addVariantsFromConfiguration(outgoing) {
 mapToMavenScope("runtime")
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/component/SoftwareComponentFactory.html
#ex-injecting-the-software-component-factory
https://docs.gradle.org/8.12/javadoc/org/gradle/api/component/AdhocComponentWithVariants.html
#ex-creating-a-custom-adhoc-component

InstrumentedJarsPlugin.groovy

// create an adhoc component
def adhocComponent = softwareComponentFactory.adhoc("myAdhocComponent")
// add it to the list of components that this project declares
project.components.add(adhocComponent)
// and register a variant for publication
adhocComponent.addVariantsFromConfiguration(outgoing) {
 it.mapToMavenScope("runtime")
}

First we use the factory to create a new adhoc component. Then we add a variant through the
addVariantsFromConfiguration method, which is described in more detail in the previous section.

In simple cases, there’s a one-to-one mapping between a Configuration and a variant, in which case
you can publish all variants issued from a single Configuration because they are effectively the
same thing. However, there are cases where a Configuration is associated with additional
configuration publications that we also call secondary variants. Such configurations make sense in a
multi-project build, but not when publishing externally. This is for example the case when between
projects you share a directory of files, but there’s no way you can publish a directory directly on a
Maven repository (only packaged things like jars or zips). Look at the ConfigurationVariantDetails
class for details about how to skip publication of a particular variant. If
addVariantsFromConfiguration has already been called for a configuration, further modification of
the resulting variants can be performed using withVariantsFromConfiguration.

When publishing an adhoc component like this:

• Gradle Module Metadata will exactly represent the published variants. In particular, all
outgoing variants will inherit dependencies, artifacts and attributes of the published
configuration.

• Maven and Ivy metadata files will be generated, but you need to declare how the dependencies
are mapped to Maven scopes via the ConfigurationVariantDetails class.

In practice, it means that components created this way can be consumed by Gradle the same way as
if they were "local components".

Adding custom artifacts to a publication

Instead of thinking in terms of artifacts, you should embrace the variant aware model of Gradle. It
is expected that a single module may need multiple artifacts. However this rarely stops there, if the
additional artifacts represent an optional feature, they might also have different dependencies and
more.

Gradle, via Gradle Module Metadata, supports the publication of additional variants which make
those artifacts known to the dependency resolution engine. Please refer to the variant-aware
sharing section of the documentation to see how to declare such variants and check out how to

https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/ConfigurationPublications.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/component/ConfigurationVariantDetails.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/component/ConfigurationVariantDetails.html

publish custom components.

If you attach extra artifacts to a publication directly, they are published "out of context". That
means, they are not referenced in the metadata at all and can then only be addressed directly
through a classifier on a dependency. In contrast to Gradle Module Metadata, Maven pom metadata
will not contain information on additional artifacts regardless of whether they are added through a
variant or directly, as variants cannot be represented in the pom format.

The following section describes how you publish artifacts directly if you are sure that metadata, for
example Gradle or POM metadata, is irrelevant for your use case. For example, if your project
doesn’t need to be consumed by other projects and the only thing required as result of the
publishing are the artifacts themselves.

In general, there are two options:

• Create a publication only with artifacts

• Add artifacts to a publication based on a component with metadata (not recommended, instead
adjust a component or use a adhoc component publication which will both also produce
metadata fitting your artifacts)

To create a publication based on artifacts, start by defining a custom artifact and attaching it to a
Gradle configuration of your choice. The following sample defines an RPM artifact that is produced
by an rpm task (not shown) and attaches that artifact to the conf configuration:

Example 34. Defining a custom artifact for a configuration

build.gradle.kts

configurations {
 create("conf")
}
val rpmFile = layout.buildDirectory.file("rpms/my-package.rpm")
val rpmArtifact = artifacts.add("conf", rpmFile.get().asFile) {
 type = "rpm"
 builtBy("rpm")
}

build.gradle

configurations {
 conf
}
def rpmFile = layout.buildDirectory.file('rpms/my-package.rpm')
def rpmArtifact = artifacts.add('conf', rpmFile.get().asFile) {
 type = 'rpm'
 builtBy 'rpm'
}

glossary.pdf#sub:terminology_configuration
#ex-defining-a-custom-artifact-for-a-configuration

The artifacts.add() method — from ArtifactHandler — returns an artifact object of type
PublishArtifact that can then be used in defining a publication, as shown in the following sample:

Example 35. Attaching a custom PublishArtifact to a publication

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("maven") {
 artifact(rpmArtifact)
 }
 }
}

build.gradle

publishing {
 publications {
 maven(MavenPublication) {
 artifact rpmArtifact
 }
 }
}

• The artifact() method accepts publish artifacts as argument — like rpmArtifact in the sample —
as well as any type of argument accepted by Project.file(java.lang.Object), such as a File
instance, a string file path or a archive task.

• Publishing plugins support different artifact configuration properties, so always check the
plugin documentation for more details. The classifier and extension properties are supported
by both the Maven Publish Plugin and the Ivy Publish Plugin.

• Custom artifacts need to be distinct within a publication, typically via a unique combination of
classifier and extension. See the documentation for the plugin you’re using for the precise
requirements.

• If you use artifact() with an archive task, Gradle automatically populates the artifact’s
metadata with the classifier and extension properties from that task.

Now you can publish the RPM.

If you really want to add an artifact to a publication based on a component, instead of adjusting the
component itself, you can combine the from components.someComponent and artifact someArtifact
notations.

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.dsl.ArtifactHandler.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/artifacts/PublishArtifact.html
#ex-attaching-a-custom-publishartifact-to-a-publication
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Restricting publications to specific repositories

When you have defined multiple publications or repositories, you often want to control which
publications are published to which repositories. For instance, consider the following sample that
defines two publications — one that consists of just a binary and another that contains the binary
and associated sources — and two repositories — one for internal use and one for external
consumers:

Example 36. Adding multiple publications and repositories

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("binary") {
 from(components["java"])
 }
 create<MavenPublication>("binaryAndSources") {
 from(components["java"])
 artifact(tasks["sourcesJar"])
 }
 }
 repositories {
 // change URLs to point to your repos, e.g. http://my.org/repo
 maven {
 name = "external"
 url = uri(layout.buildDirectory.dir("repos/external"))
 }
 maven {
 name = "internal"
 url = uri(layout.buildDirectory.dir("repos/internal"))
 }
 }
}

build.gradle

publishing {
 publications {
 binary(MavenPublication) {
 from components.java
 }
 binaryAndSources(MavenPublication) {
 from components.java
 artifact sourcesJar
 }
 }
 repositories {

#ex-adding-multiple-publications-and-repositories

 // change URLs to point to your repos, e.g. http://my.org/repo
 maven {
 name = 'external'
 url = layout.buildDirectory.dir('repos/external')
 }
 maven {
 name = 'internal'
 url = layout.buildDirectory.dir('repos/internal')
 }
 }
}

The publishing plugins will create tasks that allow you to publish either of the publications to either
repository. They also attach those tasks to the publish aggregate task. But let’s say you want to
restrict the binary-only publication to the external repository and the binary-with-sources
publication to the internal one. To do that, you need to make the publishing conditional.

Gradle allows you to skip any task you want based on a condition via the Task.onlyIf(String,
org.gradle.api.specs.Spec) method. The following sample demonstrates how to implement the
constraints we just mentioned:

Example 37. Configuring which artifacts should be published to which repositories

build.gradle.kts

tasks.withType<PublishToMavenRepository>().configureEach {
 val predicate = provider {
 (repository == publishing.repositories["external"] &&
 publication == publishing.publications["binary"]) ||
 (repository == publishing.repositories["internal"] &&
 publication == publishing.publications["binaryAndSources"])
 }
 onlyIf("publishing binary to the external repository, or binary and
sources to the internal one") {
 predicate.get()
 }
}
tasks.withType<PublishToMavenLocal>().configureEach {
 val predicate = provider {
 publication == publishing.publications["binaryAndSources"]
 }
 onlyIf("publishing binary and sources") {
 predicate.get()
 }
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(java.lang.String,org.gradle.api.specs.Spec)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(java.lang.String,org.gradle.api.specs.Spec)
#ex-configuring-which-artifacts-should-be-published-to-which-repositories

build.gradle

tasks.withType(PublishToMavenRepository) {
 def predicate = provider {
 (repository == publishing.repositories.external &&
 publication == publishing.publications.binary) ||
 (repository == publishing.repositories.internal &&
 publication == publishing.publications.binaryAndSources)
 }
 onlyIf("publishing binary to the external repository, or binary and
sources to the internal one") {
 predicate.get()
 }
}
tasks.withType(PublishToMavenLocal) {
 def predicate = provider {
 publication == publishing.publications.binaryAndSources
 }
 onlyIf("publishing binary and sources") {
 predicate.get()
 }
}

Output of gradle publish

> gradle publish
> Task :compileJava
> Task :processResources
> Task :classes
> Task :jar
> Task :generateMetadataFileForBinaryAndSourcesPublication
> Task :generatePomFileForBinaryAndSourcesPublication
> Task :sourcesJar
> Task :publishBinaryAndSourcesPublicationToExternalRepository SKIPPED
> Task :publishBinaryAndSourcesPublicationToInternalRepository
> Task :generateMetadataFileForBinaryPublication
> Task :generatePomFileForBinaryPublication
> Task :publishBinaryPublicationToExternalRepository
> Task :publishBinaryPublicationToInternalRepository SKIPPED
> Task :publish

BUILD SUCCESSFUL in 0s
10 actionable tasks: 10 executed

You may also want to define your own aggregate tasks to help with your workflow. For example,
imagine that you have several publications that should be published to the external repository. It
could be very useful to publish all of them in one go without publishing the internal ones.

The following sample demonstrates how you can do this by defining an aggregate task
— publishToExternalRepository — that depends on all the relevant publish tasks:

Example 38. Defining your own shorthand tasks for publishing

build.gradle.kts

tasks.register("publishToExternalRepository") {
 group = "publishing"
 description = "Publishes all Maven publications to the external Maven
repository."
 dependsOn(tasks.withType<PublishToMavenRepository>().matching {
 it.repository == publishing.repositories["external"]
 })
}

build.gradle

tasks.register('publishToExternalRepository') {
 group = 'publishing'
 description = 'Publishes all Maven publications to the external Maven
repository.'
 dependsOn tasks.withType(PublishToMavenRepository).matching {
 it.repository == publishing.repositories.external
 }
}

This particular sample automatically handles the introduction or removal of the relevant
publishing tasks by using TaskCollection.withType(java.lang.Class) with the
PublishToMavenRepository task type. You can do the same with PublishToIvyRepository if you’re
publishing to Ivy-compatible repositories.

Configuring publishing tasks

The publishing plugins create their non-aggregate tasks after the project has been evaluated, which
means you cannot directly reference them from your build script. If you would like to configure
any of these tasks, you should use deferred task configuration. This can be done in a number of
ways via the project’s tasks collection.

For example, imagine you want to change where the generatePomFileForPubNamePublication tasks
write their POM files. You can do this by using the TaskCollection.withType(java.lang.Class) method,
as demonstrated by this sample:

#ex-defining-your-own-shorthand-tasks-for-publishing
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-

Example 39. Configuring a dynamically named task created by the publishing plugins

build.gradle.kts

tasks.withType<GenerateMavenPom>().configureEach {
 val matcher =
Regex("""generatePomFileFor(\w+)Publication""").matchEntire(name)
 val publicationName = matcher?.let { it.groupValues[1] }
 destination = layout.buildDirectory.file("poms/${publicationName}-
pom.xml").get().asFile
}

build.gradle

tasks.withType(GenerateMavenPom).all {
 def matcher = name =~ /generatePomFileFor(\w+)Publication/
 def publicationName = matcher[0][1]
 destination = layout.buildDirectory.file("poms/${publicationName}-
pom.xml").get().asFile
}

The above sample uses a regular expression to extract the name of the publication from the name
of the task. This is so that there is no conflict between the file paths of all the POM files that might
be generated. If you only have one publication, then you don’t have to worry about such conflicts
since there will only be one POM file.

The Maven Publish Plugin
The Maven Publish Plugin provides the ability to publish build artifacts to an Apache Maven
repository. A module published to a Maven repository can be consumed by Maven, Gradle (see
Declaring Dependencies) and other tools that understand the Maven repository format. You can
learn about the fundamentals of publishing in Publishing Overview.

Usage

To use the Maven Publish Plugin, include the following in your build script:

Example 40. Applying the Maven Publish Plugin

build.gradle.kts

plugins {
 `maven-publish`

#ex-configuring-a-dynamically-named-task-created-by-the-publishing-plugins
https://maven.apache.org/
#ex-applying-the-maven-publish-plugin

}

build.gradle

plugins {
 id 'maven-publish'
}

The Maven Publish Plugin uses an extension on the project named publishing of type
PublishingExtension. This extension provides a container of named publications and a container of
named repositories. The Maven Publish Plugin works with MavenPublication publications and
MavenArtifactRepository repositories.

Tasks

generatePomFileForPubNamePublication — GenerateMavenPom

Creates a POM file for the publication named PubName, populating the known metadata such as
project name, project version, and the dependencies. The default location for the POM file is
build/publications/$pubName/pom-default.xml.

publishPubNamePublicationToRepoNameRepository — PublishToMavenRepository

Publishes the PubName publication to the repository named RepoName. If you have a repository
definition without an explicit name, RepoName will be "Maven".

publishPubNamePublicationToMavenLocal — PublishToMavenLocal

Copies the PubName publication to the local Maven cache — typically <home directory of the
current user>/.m2/repository — along with the publication’s POM file and other metadata.

publish

Depends on: All publishPubNamePublicationToRepoNameRepository tasks

An aggregate task that publishes all defined publications to all defined repositories. It does not
include copying publications to the local Maven cache.

publishToMavenLocal

Depends on: All publishPubNamePublicationToMavenLocal tasks

Copies all defined publications to the local Maven cache, including their metadata (POM files,
etc.).

Publications

This plugin provides publications of type MavenPublication. To learn how to define and use
publications, see the section on basic publishing.

https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.PublishingExtension.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPublication.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
glossary.pdf#sub:terminology_publication
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPublication.html

There are four main things you can configure in a Maven publication:

• A component — via MavenPublication.from(org.gradle.api.component.SoftwareComponent).

• Custom artifacts — via the MavenPublication.artifact(java.lang.Object) method. See
MavenArtifact for the available configuration options for custom Maven artifacts.

• Standard metadata like artifactId, groupId and version.

• Other contents of the POM file — via MavenPublication.pom(org.gradle.api.Action).

You can see all of these in action in the complete publishing example. The API documentation for
MavenPublication has additional code samples.

Identity values in the generated POM

The attributes of the generated POM file will contain identity values derived from the following
project properties:

• groupId - Project.getGroup()

• artifactId - Project.getName()

• version - Project.getVersion()

Overriding the default identity values is easy: simply specify the groupId, artifactId or version
attributes when configuring the MavenPublication.

Example 41. Customizing the publication identity

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("maven") {
 groupId = "org.gradle.sample"
 artifactId = "library"
 version = "1.1"

 from(components["java"])
 }
 }
}

build.gradle

publishing {
 publications {
 maven(MavenPublication) {
 groupId = 'org.gradle.sample'
 artifactId = 'library'

glossary.pdf#sub:terminology_component
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:from(org.gradle.api.component.SoftwareComponent)
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:artifact(java.lang.Object)
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenArtifact.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:pom(org.gradle.api.Action)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPublication.html
#ex-customizing-the-publication-identity

 version = '1.1'

 from components.java
 }
 }
}

TIP
Certain repositories will not be able to handle all supported characters. For example,
the : character cannot be used as an identifier when publishing to a filesystem-backed
repository on Windows.

Maven restricts groupId and artifactId to a limited character set ([A-Za-z0-9_\\-.]+) and Gradle
enforces this restriction. For version (as well as the artifact extension and classifier properties),
Gradle will handle any valid Unicode character.

The only Unicode values that are explicitly prohibited are \, / and any ISO control character.
Supplied values are validated early in publication.

Customizing the generated POM

The generated POM file can be customized before publishing. For example, when publishing a
library to Maven Central you will need to set certain metadata. The Maven Publish Plugin provides
a DSL for that purpose. Please see MavenPom in the DSL Reference for the complete documentation
of available properties and methods. The following sample shows how to use the most common
ones:

Example 42. Customizing the POM file

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 pom {
 name = "My Library"
 description = "A concise description of my library"
 url = "http://www.example.com/library"
 properties = mapOf(
 "myProp" to "value",
 "prop.with.dots" to "anotherValue"
)
 licenses {
 license {
 name = "The Apache License, Version 2.0"
 url = "http://www.apache.org/licenses/LICENSE-
2.0.txt"
 }

https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPom.html
#ex-customizing-the-pom-file

 }
 developers {
 developer {
 id = "johnd"
 name = "John Doe"
 email = "john.doe@example.com"
 }
 }
 scm {
 connection = "scm:git:git://example.com/my-library.git"
 developerConnection = "scm:git:ssh://example.com/my-
library.git"
 url = "http://example.com/my-library/"
 }
 }
 }
 }
}

build.gradle

publishing {
 publications {
 mavenJava(MavenPublication) {
 pom {
 name = 'My Library'
 description = 'A concise description of my library'
 url = 'http://www.example.com/library'
 properties = [
 myProp: "value",
 "prop.with.dots": "anotherValue"
]
 licenses {
 license {
 name = 'The Apache License, Version 2.0'
 url = 'http://www.apache.org/licenses/LICENSE-
2.0.txt'
 }
 }
 developers {
 developer {
 id = 'johnd'
 name = 'John Doe'
 email = 'john.doe@example.com'
 }
 }
 scm {
 connection = 'scm:git:git://example.com/my-library.git'
 developerConnection = 'scm:git:ssh://example.com/my-

library.git'
 url = 'http://example.com/my-library/'
 }
 }
 }
 }
}

Customizing dependencies versions

Two strategies are supported for publishing dependencies:

Declared versions (default)

This strategy publishes the versions that are defined by the build script author with the
dependency declarations in the dependencies block. Any other kind of processing, for example
through a rule changing the resolved version, will not be taken into account for the publication.

Resolved versions

This strategy publishes the versions that were resolved during the build, possibly by applying
resolution rules and automatic conflict resolution. This has the advantage that the published
versions correspond to the ones the published artifact was tested against.

Example use cases for resolved versions:

• A project uses dynamic versions for dependencies but prefers exposing the resolved version for
a given release to its consumers.

• In combination with dependency locking, you want to publish the locked versions.

• A project leverages the rich versions constraints of Gradle, which have a lossy conversion to
Maven. Instead of relying on the conversion, it publishes the resolved versions.

This is done by using the versionMapping DSL method which allows to configure the
VersionMappingStrategy:

Example 43. Using resolved versions

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 versionMapping {
 usage("java-api") {
 fromResolutionOf("runtimeClasspath")
 }
 usage("java-runtime") {
 fromResolutionResult()
 }

https://docs.gradle.org/8.12/javadoc/org/gradle/api/publish/VersionMappingStrategy.html
#ex-using-resolved-versions

 }
 }
 }
}

build.gradle

publishing {
 publications {
 mavenJava(MavenPublication) {
 versionMapping {
 usage('java-api') {
 fromResolutionOf('runtimeClasspath')
 }
 usage('java-runtime') {
 fromResolutionResult()
 }
 }
 }
 }
}

In the example above, Gradle will use the versions resolved on the runtimeClasspath for
dependencies declared in api, which are mapped to the compile scope of Maven. Gradle will also use
the versions resolved on the runtimeClasspath for dependencies declared in implementation, which
are mapped to the runtime scope of Maven. fromResolutionResult() indicates that Gradle should use
the default classpath of a variant and runtimeClasspath is the default classpath of java-runtime.

Repositories

This plugin provides repositories of type MavenArtifactRepository. To learn how to define and use
repositories for publishing, see the section on basic publishing.

Here’s a simple example of defining a publishing repository:

Example 44. Declaring repositories to publish to

build.gradle.kts

publishing {
 repositories {
 maven {
 // change to point to your repo, e.g. http://my.org/repo
 url = uri(layout.buildDirectory.dir("repo"))
 }

glossary.pdf#sub:terminology_repository
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
#ex-declaring-repositories-to-publish-to

 }
}

build.gradle

publishing {
 repositories {
 maven {
 // change to point to your repo, e.g. http://my.org/repo
 url = layout.buildDirectory.dir('repo')
 }
 }
}

The two main things you will want to configure are the repository’s:

• URL (required)

• Name (optional)

You can define multiple repositories as long as they have unique names within the build script. You
may also declare one (and only one) repository without a name. That repository will take on an
implicit name of "Maven".

You can also configure any authentication details that are required to connect to the repository. See
MavenArtifactRepository for more details.

Snapshot and release repositories

It is a common practice to publish snapshots and releases to different Maven repositories. A simple
way to accomplish this is to configure the repository URL based on the project version. The
following sample uses one URL for versions that end with "SNAPSHOT" and a different URL for the
rest:

Example 45. Configuring repository URL based on project version

build.gradle.kts

publishing {
 repositories {
 maven {
 val releasesRepoUrl = layout.buildDirectory.dir("repos/releases")
 val snapshotsRepoUrl =
layout.buildDirectory.dir("repos/snapshots")
 url = uri(if (version.toString().endsWith("SNAPSHOT"))
snapshotsRepoUrl else releasesRepoUrl)

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
#ex-configuring-repository-url-based-on-project-version

 }
 }
}

build.gradle

publishing {
 repositories {
 maven {
 def releasesRepoUrl = layout.buildDirectory.dir('repos/releases')
 def snapshotsRepoUrl = layout.buildDirectory.dir('
repos/snapshots')
 url = version.endsWith('SNAPSHOT') ? snapshotsRepoUrl :
releasesRepoUrl
 }
 }
}

Similarly, you can use a project or system property to decide which repository to publish to. The
following example uses the release repository if the project property release is set, such as when a
user runs gradle -Prelease publish:

Example 46. Configuring repository URL based on project property

build.gradle.kts

publishing {
 repositories {
 maven {
 val releasesRepoUrl = layout.buildDirectory.dir("repos/releases")
 val snapshotsRepoUrl =
layout.buildDirectory.dir("repos/snapshots")
 url = uri(if (project.hasProperty("release")) releasesRepoUrl
else snapshotsRepoUrl)
 }
 }
}

build.gradle

publishing {
 repositories {
 maven {

#ex-configuring-repository-url-based-on-project-property

 def releasesRepoUrl = layout.buildDirectory.dir('repos/releases')
 def snapshotsRepoUrl = layout.buildDirectory.dir('
repos/snapshots')
 url = project.hasProperty('release') ? releasesRepoUrl :
snapshotsRepoUrl
 }
 }
}

Publishing to Maven Local

For integration with a local Maven installation, it is sometimes useful to publish the module into the
Maven local repository (typically at <home directory of the current user>/.m2/repository), along with
its POM file and other metadata. In Maven parlance, this is referred to as 'installing' the module.

The Maven Publish Plugin makes this easy to do by automatically creating a PublishToMavenLocal
task for each MavenPublication in the publishing.publications container. The task name follows
the pattern of publishPubNamePublicationToMavenLocal. Each of these tasks is wired into the
publishToMavenLocal aggregate task. You do not need to have mavenLocal() in your
publishing.repositories section.

Publishing Maven relocation information

When a project changes the groupId or artifactId (the coordinates) of an artifact it publishes, it is
important to let users know where the new artifact can be found. Maven can help with that
through the relocation feature. The way this works is that a project publishes an additional artifact
under the old coordinates consisting only of a minimal relocation POM; that POM file specifies
where the new artifact can be found. Maven repository browsers and build tools can then inform
the user that the coordinates of an artifact have changed.

For this, a project adds an additional MavenPublication specifying a MavenPomRelocation:

Example 47. Specifying a relocation POM

build.gradle.kts

publishing {
 publications {
 // ... artifact publications

 // Specify relocation POM
 create<MavenPublication>("relocation") {
 pom {
 // Old artifact coordinates
 groupId = "com.example"
 artifactId = "lib"
 version = "2.0.0"

https://docs.gradle.org/8.12/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPublication.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.maven.MavenPomRelocation.html
#ex-specifying-a-relocation-pom

 distributionManagement {
 relocation {
 // New artifact coordinates
 groupId = "com.new-example"
 artifactId = "lib"
 version = "2.0.0"
 message = "groupId has been changed"
 }
 }
 }
 }
 }
}

build.gradle

publishing {
 publications {
 // ... artifact publications

 // Specify relocation POM
 relocation(MavenPublication) {
 pom {
 // Old artifact coordinates
 groupId = "com.example"
 artifactId = "lib"
 version = "2.0.0"

 distributionManagement {
 relocation {
 // New artifact coordinates
 groupId = "com.new-example"
 artifactId = "lib"
 version = "2.0.0"
 message = "groupId has been changed"
 }
 }
 }
 }
 }
}

Only the property which has changed needs to be specified under relocation, that is artifactId and
/ or groupId. All other properties are optional.

TIP

Specifying the version can be useful when the new artifact has a different version, for
example because version numbering has started at 1.0.0 again.

A custom message allows explaining why the artifact coordinates have changed.

The relocation POM should be created for what would be the next version of the old artifact. For
example when the artifact coordinates of com.example:lib:1.0.0 are changed and the artifact with
the new coordinates continues version numbering and is published as com.new-example:lib:2.0.0,
then the relocation POM should specify a relocation from com.example:lib:2.0.0 to com.new-
example:lib:2.0.0.

A relocation POM only has to be published once, the build file configuration for it should be
removed again once it has been published.

Note that a relocation POM is not suitable for all situations; when an artifact has been split into two
or more separate artifacts then a relocation POM might not be helpful.

Retroactively publishing relocation information

It is possible to publish relocation information retroactively after the coordinates of an artifact
have changed in the past, and no relocation information was published back then.

The same recommendations as described above apply. To ease migration for users, it is important
to pay attention to the version specified in the relocation POM. The relocation POM should allow the
user to move to the new artifact in one step, and then allow them to update to the latest version in a
separate step. For example when for the coordinates of com.new-example:lib:5.0.0 were changed in
version 2.0.0, then ideally the relocation POM should be published for the old coordinates
com.example:lib:2.0.0 relocating to com.new-example:lib:2.0.0. The user can then switch from
com.example:lib to com.new-example and then separately update from version 2.0.0 to 5.0.0, handling
breaking changes (if any) step by step.

When relocation information is published retroactively, it is not necessary to wait for next regular
release of the project, it can be published in the meantime. As mentioned above, the relocation
information should then be removed again from the build file once the relocation POM has been
published.

Avoiding duplicate dependencies

When only the coordinates of the artifact have changed, but package names of the classes inside the
artifact have remained the same, dependency conflicts can occur. A project might (transitively)
depend on the old artifact but at the same time also have a dependency on the new artifact which
both contain the same classes, potentially with incompatible changes.

To detect such conflicting duplicate dependencies, capabilities can be published as part of the
Gradle Module Metadata. For an example using a Java Library project, see declaring additional
capabilities for a local component.

Performing a dry run

To verify that relocation information works as expected before publishing it to a remote repository,

it can first be published to the local Maven repository. Then a local test Gradle or Maven project can
be created which has the relocation artifact as dependency.

Complete example

The following example demonstrates how to sign and publish a Java library including sources,
Javadoc, and a customized POM:

Example 48. Publishing a Java library

build.gradle.kts

plugins {
 `java-library`
 `maven-publish`
 signing
}

group = "com.example"
version = "1.0"

java {
 withJavadocJar()
 withSourcesJar()
}

publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 artifactId = "my-library"
 from(components["java"])
 versionMapping {
 usage("java-api") {
 fromResolutionOf("runtimeClasspath")
 }
 usage("java-runtime") {
 fromResolutionResult()
 }
 }
 pom {
 name = "My Library"
 description = "A concise description of my library"
 url = "http://www.example.com/library"
 properties = mapOf(
 "myProp" to "value",
 "prop.with.dots" to "anotherValue"
)
 licenses {
 license {
 name = "The Apache License, Version 2.0"

#ex-publishing-a-java-library

 url = "http://www.apache.org/licenses/LICENSE-
2.0.txt"
 }
 }
 developers {
 developer {
 id = "johnd"
 name = "John Doe"
 email = "john.doe@example.com"
 }
 }
 scm {
 connection = "scm:git:git://example.com/my-library.git"
 developerConnection = "scm:git:ssh://example.com/my-
library.git"
 url = "http://example.com/my-library/"
 }
 }
 }
 }
 repositories {
 maven {
 // change URLs to point to your repos, e.g. http://my.org/repo
 val releasesRepoUrl =
uri(layout.buildDirectory.dir("repos/releases"))
 val snapshotsRepoUrl =
uri(layout.buildDirectory.dir("repos/snapshots"))
 url = if (version.toString().endsWith("SNAPSHOT"))
snapshotsRepoUrl else releasesRepoUrl
 }
 }
}

signing {
 sign(publishing.publications["mavenJava"])
}

tasks.javadoc {
 if (JavaVersion.current().isJava9Compatible) {
 (options as StandardJavadocDocletOptions).addBooleanOption("html5",
true)
 }
}

build.gradle

plugins {
 id 'java-library'
 id 'maven-publish'

 id 'signing'
}

group = 'com.example'
version = '1.0'

java {
 withJavadocJar()
 withSourcesJar()
}

publishing {
 publications {
 mavenJava(MavenPublication) {
 artifactId = 'my-library'
 from components.java
 versionMapping {
 usage('java-api') {
 fromResolutionOf('runtimeClasspath')
 }
 usage('java-runtime') {
 fromResolutionResult()
 }
 }
 pom {
 name = 'My Library'
 description = 'A concise description of my library'
 url = 'http://www.example.com/library'
 properties = [
 myProp: "value",
 "prop.with.dots": "anotherValue"
]
 licenses {
 license {
 name = 'The Apache License, Version 2.0'
 url = 'http://www.apache.org/licenses/LICENSE-
2.0.txt'
 }
 }
 developers {
 developer {
 id = 'johnd'
 name = 'John Doe'
 email = 'john.doe@example.com'
 }
 }
 scm {
 connection = 'scm:git:git://example.com/my-library.git'
 developerConnection = 'scm:git:ssh://example.com/my-
library.git'
 url = 'http://example.com/my-library/'

 }
 }
 }
 }
 repositories {
 maven {
 // change URLs to point to your repos, e.g. http://my.org/repo
 def releasesRepoUrl = layout.buildDirectory.dir('repos/releases')
 def snapshotsRepoUrl = layout.buildDirectory.dir('
repos/snapshots')
 url = version.endsWith('SNAPSHOT') ? snapshotsRepoUrl :
releasesRepoUrl
 }
 }
}

signing {
 sign publishing.publications.mavenJava
}

javadoc {
 if(JavaVersion.current().isJava9Compatible()) {
 options.addBooleanOption('html5', true)
 }
}

The result is that the following artifacts will be published:

• The POM: my-library-1.0.pom

• The primary JAR artifact for the Java component: my-library-1.0.jar

• The sources JAR artifact that has been explicitly configured: my-library-1.0-sources.jar

• The Javadoc JAR artifact that has been explicitly configured: my-library-1.0-javadoc.jar

The Signing Plugin is used to generate a signature file for each artifact. In addition, checksum files
will be generated for all artifacts and signature files.

TIP

publishToMavenLocal` does not create checksum files in $USER_HOME/.m2/repository. If
you want to verify that the checksum files are created correctly, or use them for later
publishing, consider configuring a custom Maven repository with a file:// URL and
using that as the publishing target instead.

Removal of deferred configuration behavior

Prior to Gradle 5.0, the publishing {} block was (by default) implicitly treated as if all the logic
inside it was executed after the project is evaluated. This behavior caused quite a bit of confusion

signing_plugin.pdf#signing_plugin

and was deprecated in Gradle 4.8, because it was the only block that behaved that way.

You may have some logic inside your publishing block or in a plugin that is depending on the
deferred configuration behavior. For instance, the following logic assumes that the subprojects will
be evaluated when the artifactId is set:

build.gradle.kts

subprojects {
 publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 from(components["java"])
 artifactId = tasks.jar.get().archiveBaseName.get()
 }
 }
 }
}

build.gradle

subprojects {
 publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java
 artifactId = jar.archiveBaseName
 }
 }
 }
}

This kind of logic must now be wrapped in an afterEvaluate {} block.

build.gradle.kts

subprojects {
 publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 from(components["java"])
 afterEvaluate {
 artifactId = tasks.jar.get().archiveBaseName.get()

 }
 }
 }
 }
}

build.gradle

subprojects {
 publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java
 afterEvaluate {
 artifactId = jar.archiveBaseName
 }
 }
 }
 }
}

The Ivy Publish Plugin
The Ivy Publish Plugin provides the ability to publish build artifacts in the Apache Ivy format,
usually to a repository for consumption by other builds or projects. What is published is one or
more artifacts created by the build, and an Ivy module descriptor (normally ivy.xml) that describes
the artifacts and the dependencies of the artifacts, if any.

A published Ivy module can be consumed by Gradle (see Declaring Dependencies) and other tools
that understand the Ivy format. You can learn about the fundamentals of publishing in Publishing
Overview.

Usage

To use the Ivy Publish Plugin, include the following in your build script:

Example 49. Applying the Ivy Publish Plugin

build.gradle.kts

plugins {
 `ivy-publish`
}

http://ant.apache.org/ivy/
#ex-applying-the-ivy-publish-plugin

build.gradle

plugins {
 id 'ivy-publish'
}

The Ivy Publish Plugin uses an extension on the project named publishing of type
PublishingExtension. This extension provides a container of named publications and a container of
named repositories. The Ivy Publish Plugin works with IvyPublication publications and
IvyArtifactRepository repositories.

Tasks

generateDescriptorFileForPubNamePublication — GenerateIvyDescriptor

Creates an Ivy descriptor file for the publication named PubName, populating the known
metadata such as project name, project version, and the dependencies. The default location for
the descriptor file is build/publications/$pubName/ivy.xml.

publishPubNamePublicationToRepoNameRepository — PublishToIvyRepository

Publishes the PubName publication to the repository named RepoName. If you have a repository
definition without an explicit name, RepoName will be "Ivy".

publish

Depends on: All publishPubNamePublicationToRepoNameRepository tasks

An aggregate task that publishes all defined publications to all defined repositories.

Publications

This plugin provides publications of type IvyPublication. To learn how to define and use
publications, see the section on basic publishing.

There are four main things you can configure in an Ivy publication:

• A component — via IvyPublication.from(org.gradle.api.component.SoftwareComponent).

• Custom artifacts — via the IvyPublication.artifact(java.lang.Object) method. See IvyArtifact for
the available configuration options for custom Ivy artifacts.

• Standard metadata like module, organisation and revision.

• Other contents of the module descriptor — via IvyPublication.descriptor(org.gradle.api.Action).

You can see all of these in action in the complete publishing example. The API documentation for
IvyPublication has additional code samples.

https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.PublishingExtension.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyPublication.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
glossary.pdf#sub:terminology_publication
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyPublication.html
glossary.pdf#sub:terminology_component
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:from(org.gradle.api.component.SoftwareComponent)
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:artifact(java.lang.Object)
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyArtifact.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:descriptor(org.gradle.api.Action)

Identity values for the published project

The generated Ivy module descriptor file contains an <info> element that identifies the module. The
default identity values are derived from the following:

• organisation - Project.getGroup()

• module - Project.getName()

• revision - Project.getVersion()

• status - Project.getStatus()

• branch - (not set)

Overriding the default identity values is easy: simply specify the organisation, module or revision
properties when configuring the IvyPublication. status and branch can be set via the descriptor
property — see IvyModuleDescriptorSpec.

The descriptor property can also be used to add additional custom elements as children of the
<info> element, like so:

Example 50. customizing the publication identity

build.gradle.kts

publishing {
 publications {
 create<IvyPublication>("ivy") {
 organisation = "org.gradle.sample"
 module = "project1-sample"
 revision = "1.1"
 descriptor.status = "milestone"
 descriptor.branch = "testing"
 descriptor.extraInfo("http://my.namespace", "myElement", "Some
value")

 from(components["java"])
 }
 }
}

build.gradle

publishing {
 publications {
 ivy(IvyPublication) {
 organisation = 'org.gradle.sample'
 module = 'project1-sample'
 revision = '1.1'

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyPublication.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html
#ex-customizing-the-publication-identity

 descriptor.status = 'milestone'
 descriptor.branch = 'testing'
 descriptor.extraInfo 'http://my.namespace', 'myElement', 'Some
value'

 from components.java
 }
 }
}

TIP
Certain repositories are not able to handle all supported characters. For example, the :
character cannot be used as an identifier when publishing to a filesystem-backed
repository on Windows.

Gradle will handle any valid Unicode character for organisation, module and revision (as well as the
artifact’s name, extension and classifier). The only values that are explicitly prohibited are \, / and
any ISO control character. The supplied values are validated early during publication.

Customizing the generated module descriptor

At times, the module descriptor file generated from the project information will need to be tweaked
before publishing. The Ivy Publish Plugin provides a DSL for that purpose. Please see
IvyModuleDescriptorSpec in the DSL Reference for the complete documentation of available
properties and methods.

The following sample shows how to use the most common aspects of the DSL:

Example 51. Customizing the module descriptor file

build.gradle.kts

publications {
 create<IvyPublication>("ivyCustom") {
 descriptor {
 license {
 name = "The Apache License, Version 2.0"
 url = "http://www.apache.org/licenses/LICENSE-2.0.txt"
 }
 author {
 name = "Jane Doe"
 url = "http://example.com/users/jane"
 }
 description {
 text = "A concise description of my library"
 homepage = "http://www.example.com/library"
 }
 }

https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html
#ex-customizing-the-module-descriptor-file

 versionMapping {
 usage("java-api") {
 fromResolutionOf("runtimeClasspath")
 }
 usage("java-runtime") {
 fromResolutionResult()
 }
 }
 }
}

build.gradle

publications {
 ivyCustom(IvyPublication) {
 descriptor {
 license {
 name = 'The Apache License, Version 2.0'
 url = 'http://www.apache.org/licenses/LICENSE-2.0.txt'
 }
 author {
 name = 'Jane Doe'
 url = 'http://example.com/users/jane'
 }
 description {
 text = 'A concise description of my library'
 homepage = 'http://www.example.com/library'
 }
 }
 versionMapping {
 usage('java-api') {
 fromResolutionOf('runtimeClasspath')
 }
 usage('java-runtime') {
 fromResolutionResult()
 }
 }
 }
}

In this example we are simply adding a 'description' element to the generated Ivy dependency
descriptor, but this hook allows you to modify any aspect of the generated descriptor. For example,
you could replace the version range for a dependency with the actual version used to produce the
build.

You can also add arbitrary XML to the descriptor file via

IvyModuleDescriptorSpec.withXml(org.gradle.api.Action), but you cannot use it to modify any part
of the module identifier (organisation, module, revision).

CAUTION
It is possible to modify the descriptor in such a way that it is no longer a valid
Ivy module descriptor, so care must be taken when using this feature.

Customizing dependencies versions

Two strategies are supported for publishing dependencies:

Declared versions (default)

This strategy publishes the versions that are defined by the build script author with the
dependency declarations in the dependencies block. Any other kind of processing, for example
through a rule changing the resolved version, will not be taken into account for the publication.

Resolved versions

This strategy publishes the versions that were resolved during the build, possibly by applying
resolution rules and automatic conflict resolution. This has the advantage that the published
versions correspond to the ones the published artifact was tested against.

Example use cases for resolved versions:

• A project uses dynamic versions for dependencies but prefers exposing the resolved version for
a given release to its consumers.

• In combination with dependency locking, you want to publish the locked versions.

• A project leverages the rich versions constraints of Gradle, which have a lossy conversion to Ivy.
Instead of relying on the conversion, it publishes the resolved versions.

This is done by using the versionMapping DSL method which allows to configure the
VersionMappingStrategy:

Example 52. Using resolved versions

build.gradle.kts

publications {
 create<IvyPublication>("ivyCustom") {
 versionMapping {
 usage("java-api") {
 fromResolutionOf("runtimeClasspath")
 }
 usage("java-runtime") {
 fromResolutionResult()
 }
 }
 }
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/publish/VersionMappingStrategy.html
#ex-using-resolved-versions

build.gradle

publications {
 ivyCustom(IvyPublication) {
 versionMapping {
 usage('java-api') {
 fromResolutionOf('runtimeClasspath')
 }
 usage('java-runtime') {
 fromResolutionResult()
 }
 }
 }
}

In the example above, Gradle will use the versions resolved on the runtimeClasspath for
dependencies declared in api, which are mapped to the compile configuration of Ivy. Gradle will
also use the versions resolved on the runtimeClasspath for dependencies declared in implementation,
which are mapped to the runtime configuration of Ivy. fromResolutionResult() indicates that Gradle
should use the default classpath of a variant and runtimeClasspath is the default classpath of java-
runtime.

Repositories

This plugin provides repositories of type IvyArtifactRepository. To learn how to define and use
repositories for publishing, see the section on basic publishing.

Here’s a simple example of defining a publishing repository:

Example 53. Declaring repositories to publish to

build.gradle.kts

publishing {
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url = uri(layout.buildDirectory.dir("repo"))
 }
 }
}

glossary.pdf#sub:terminology_repository
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
#ex-declaring-repositories-to-publish-to

build.gradle

publishing {
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url = layout.buildDirectory.dir("repo")
 }
 }
}

The two main things you will want to configure are the repository’s:

• URL (required)

• Name (optional)

You can define multiple repositories as long as they have unique names within the build script. You
may also declare one (and only one) repository without a name. That repository will take on an
implicit name of "Ivy".

You can also configure any authentication details that are required to connect to the repository. See
IvyArtifactRepository for more details.

Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a
Java component configured to also build and publish Javadoc and source code artifacts. The
descriptor file is customized to include the project description for each project.

Example 54. Publishing a Java module

settings.gradle.kts

rootProject.name = "ivy-publish-java"
include("project1", "project2")

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

repositories {
 gradlePluginPortal()
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
#ex-publishing-a-java-module

buildSrc/src/main/kotlin/myproject.publishing-conventions.gradle.kts

plugins {
 id("java-library")
 id("ivy-publish")
}

version = "1.0"
group = "org.gradle.sample"

repositories {
 mavenCentral()
}

java {
 withJavadocJar()
 withSourcesJar()
}

publishing {
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url = uri(rootProject.layout.buildDirectory.dir("repo"))
 }
 }
 publications {
 create<IvyPublication>("ivy") {
 from(components["java"])
 descriptor.description {
 text = providers.provider({ description })
 }
 }
 }
}

project1/build.gradle.kts

plugins {
 id("myproject.publishing-conventions")
}

description = "The first project"

dependencies {
 implementation("junit:junit:4.13")
 implementation(project(":project2"))
}

project2/build.gradle.kts

plugins {
 id("myproject.publishing-conventions")
}

description = "The second project"

dependencies {
 implementation("commons-collections:commons-collections:3.2.2")
}

settings.gradle

rootProject.name = 'ivy-publish-java'
include 'project1', 'project2'

buildSrc/build.gradle

plugins {
 id 'groovy-gradle-plugin'
}

buildSrc/src/main/groovy/myproject.publishing-conventions.gradle

plugins {
 id 'java-library'
 id 'ivy-publish'
}

version = '1.0'
group = 'org.gradle.sample'

repositories {
 mavenCentral()
}

java {
 withJavadocJar()
 withSourcesJar()
}

publishing {
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url = rootProject.layout.buildDirectory.dir('repo')
 }

 }
 publications {
 ivy(IvyPublication) {
 from components.java
 descriptor.description {
 text = providers.provider({ description })
 }
 }
 }
}

project1/build.gradle

plugins {
 id 'myproject.publishing-conventions'
}

description = 'The first project'

dependencies {
 implementation 'junit:junit:4.13'
 implementation project(':project2')
}

project2/build.gradle

plugins {
 id 'myproject.publishing-conventions'
}

description = 'The second project'

dependencies {
 implementation 'commons-collections:commons-collections:3.2.2'
}

The result is that the following artifacts will be published for each project:

• The Gradle Module Metadata file: project1-1.0.module.

• The Ivy module metadata file: ivy-1.0.xml.

• The primary JAR artifact for the Java component: project1-1.0.jar.

• The Javadoc and sources JAR artifacts of the Java component (because we configured
withJavadocJar() and withSourcesJar()): project1-1.0-javadoc.jar, project1-1.0-source.jar.

OTHER TOPICS

Verifying dependencies
Working with external dependencies and plugins published on third-party repositories puts your
build at risk. In particular, you need to be aware of what binaries are brought in transitively and if
they are legit. To mitigate the security risks and avoid integrating compromised dependencies in
your project, Gradle supports dependency verification.

Dependency verification is, by nature, an inconvenient feature to use. It means that whenever
you’re going to update a dependency, builds are likely to fail. It means that merging branches are
going to be harder because each branch can have different dependencies. It means that you will be
tempted to switch it off.

So why should you bother?

Dependency verification is about trust in what you get and what you ship.

Without dependency verification it’s easy for an attacker to compromise your supply chain. There
are many real world examples of tools compromised by adding a malicious dependency.
Dependency verification is meant to protect yourself from those attacks, by forcing you to ensure
that the artifacts you include in your build are the ones that you expect. It is not meant, however, to
prevent you from including vulnerable dependencies.

Finding the right balance between security and convenience is hard but Gradle will try to let you
choose the "right level" for you.

Dependency verification consists of two different and complementary operations:

• checksum verification, which allows asserting the integrity of a dependency

• signature verification, which allows asserting the provenance of a dependency

Gradle supports both checksum and signature verification out of the box but performs no
dependency verification by default. This section will guide you into configuring dependency
verification properly for your needs.

This feature can be used for:

• detecting compromised dependencies

• detecting compromised plugins

• detecting tampered dependencies in the local dependency caches

Enabling dependency verification

The verification metadata file

NOTE
Currently the only source of dependency verification metadata is this XML
configuration file. Future versions of Gradle may include other sources (for

example via external services).

Dependency verification is automatically enabled once the configuration file for dependency
verification is discovered. This configuration file is located at $PROJECT_ROOT/gradle/verification-
metadata.xml. This file minimally consists of the following:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>false</verify-signatures>
 </configuration>
</verification-metadata>

Doing so, Gradle will verify all artifacts using checksums, but will not verify signatures. Gradle will
verify any artifact downloaded using its dependency management engine, which includes, but is
not limited to:

• artifact files (e.g jar files, zips, …) used during a build

• metadata artifacts (POM files, Ivy descriptors, Gradle Module Metadata)

• plugins (both project and settings plugins)

• artifacts resolved using the advanced dependency resolution APIs

Gradle will not verify changing dependencies (in particular SNAPSHOT dependencies) nor locally
produced artifacts (typically jars produced during the build itself) as by nature their checksums
and signatures would always change.

With such a minimal configuration file, a project using any external dependency or plugin would
immediately start failing because it doesn’t contain any checksum to verify.

Scope of the dependency verification

A dependency verification configuration is global: a single file is used to configure verification of
the whole build. In particular, the same file is used for both the (sub)projects and buildSrc.

If an included build is used:

• the configuration file of the current build is used for verification

• so if the included build itself uses verification, its configuration is ignored in favor of the
current one

• which means that including a build works similarly to upgrading a dependency: it may require
you to update your current verification metadata

An easy way to get started is therefore to generate the minimal configuration for an existing build.

Configuring the console output

By default, if dependency verification fails, Gradle will generate a small summary about the
verification failure as well as an HTML report containing the full information about the failures. If
your environment prevents you from reading this HTML report file (for example if you run a build
on CI and that it’s not easy to fetch the remote artifacts), Gradle provides a way to opt-in a verbose
console report. For this, you need to add this Gradle property to your gradle.properties file:

org.gradle.dependency.verification.console=verbose

Bootstrapping dependency verification

It’s worth mentioning that while Gradle can generate a dependency verification file for you, you
should always check whatever Gradle generated for you because your build may already contain
compromised dependencies without you knowing about it. Please refer to the appropriate
checksum verification or signature verification section for more information.

If you plan on using signature verification, please also read the corresponding section of the docs.

Bootstrapping can either be used to create a file from the beginning, or also to update an existing
file with new information. Therefore, it’s recommended to always use the same parameters once
you started bootstrapping.

The dependency verification file can be generated with the following CLI instructions:

gradle --write-verification-metadata sha256 help

The write-verification-metadata flag requires the list of checksums that you want to generate or
pgp for signatures.

Executing this command line will cause Gradle to:

• resolve all resolvable configurations, which includes:

◦ configurations from the root project

◦ configurations from all subprojects

◦ configurations from buildSrc

◦ included builds configurations

◦ configurations used by plugins

• download all artifacts discovered during resolution

• compute the requested checksums and possibly verify signatures depending on what you asked

• At the end of the build, generate the configuration file which will contain the inferred
verification metadata

As a consequence, the verification-metadata.xml file will be used in subsequent builds to verify
dependencies.

There are dependencies that Gradle cannot discover this way. In particular, you will notice that the
CLI above uses the help task. If you don’t specify any task, Gradle will automatically run the default
task and generate a configuration file at the end of the build too.

The difference is that Gradle may discover more dependencies and artifacts depending on the tasks
you execute. As a matter of fact, Gradle cannot automatically discover detached configurations,
which are basically dependency graphs resolved as an internal implementation detail of the
execution of a task: they are not, in particular, declared as an input of the task because they
effectively depend on the configuration of the task at execution time.

A good way to start is just to use the simplest task, help, which will discover as much as possible,
and if subsequent builds fail with a verification error, you can re-execute generation with the
appropriate tasks to "discover" more dependencies.

Gradle won’t verify either checksums or signatures of plugins which use their own HTTP clients.
Only plugins which use the infrastructure provided by Gradle for performing requests will see their
requests verified.

Using generation for incremental updates

The verification file generated by Gradle has a strict ordering for all its content. It also uses the
information from the existing state to limit changes to the strict minimum.

This means that generation is actually a convenient tool for updating a verification file:

• Checksum entries generated by Gradle will have a clear origin that starts with "Generated by
Gradle", which is a good indicator that an entry needs to be reviewed,

• Entries added by hand will immediately be accounted for, and appear at the right location after
writing the file,

• The header comments of the file will be preserved, i.e. comments before the root XML node.
This allows you to have a license header or instructions on which tasks and which parameters
to use for generating that file.

With the above benefits, it is really easy to account for new dependencies or dependency versions
by simply generating the file again and reviewing the changes.

Using dry mode

By default, bootstrapping is incremental, which means that if you run it multiple times, information
is added to the file and in particular you can rely on your VCS to check the diffs. There are
situations where you would just want to see what the generated verification metadata file would
look like without actually changing the existing one or overwriting it.

For this purpose, you can just add --dry-run:

gradle --write-verification-metadata sha256 help --dry-run

Then instead of generating the verification-metadata.xml file, a new file will be generated, called

verification-metadata.dryrun.xml.

NOTE
Because --dry-run doesn’t execute tasks, this would be much faster, but it will miss
any resolution happening at task execution time.

Disabling metadata verification

By default, Gradle will not only verify artifacts (jars, …) but also the metadata associated with those
artifacts (typically POM files). Verifying this ensures the maximum level of security: metadata files
typically tell what transitive dependencies will be included, so a compromised metadata file may
cause the introduction of undesired dependencies in the graph. However, because all artifacts are
verified, such artifacts would in general easily be discovered by you, because they would cause a
checksum verification failure (checksums would be missing from verification metadata). Because
metadata verification can significantly increase the size of your configuration file, you may
therefore want to disable verification of metadata. If you understand the risks of doing so, set the
<verify-metadata> flag to false in the configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <verify-metadata>false</verify-metadata>
 <verify-signatures>false</verify-signatures>
 </configuration>
 <!-- the rest of this file doesn't need to declare anything about metadata files
-->
</verification-metadata>

Verifying dependency checksums

Checksum verification allows you to ensure the integrity of an artifact. This is the simplest thing
that Gradle can do for you to make sure that the artifacts you use are un-tampered.

Gradle supports MD5, SHA1, SHA-256 and SHA-512 checksums. However, only SHA-256 and SHA-
512 checksums are considered secure nowadays.

Adding the checksum for an artifact

External components are identified by GAV coordinates, then each of the artifacts by their file
names. To declare the checksums of an artifact, you need to add the corresponding section in the
verification metadata file. For example, to declare the checksum for Apache PDFBox. The GAV
coordinates are:

• group org.apache.pdfbox

• name pdfbox

https://pdfbox.apache.org

• version 2.0.17

Using this dependency will trigger the download of 2 different files:

• pdfbox-2.0.17.jar which is the main artifact

• pdfbox-2.0.17.pom which is the metadata file associated with this artifact

As a consequence, you need to declare the checksums for both of them (unless you disabled
metadata verification):

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>false</verify-signatures>
 </configuration>
 <components>
 <component group="org.apache.pdfbox" name="pdfbox" version="2.0.17">
 <artifact name="pdfbox-2.0.17.jar">
 <sha512 value=
"7e11e54a21c395d461e59552e88b0de0ebaf1bf9d9bcacadf17b240d9bbc29bf6beb8e36896c186fe405d
287f5d517b02c89381aa0fcc5e0aa5814e44f0ab331" origin="PDFBox Official site
(https://pdfbox.apache.org/download.cgi)"/>
 </artifact>
 <artifact name="pdfbox-2.0.17.pom">
 <sha512 value=
"82de436b38faf6121d8d2e71dda06e79296fc0f7bc7aba0766728c8d306fd1b0684b5379c18808ca724bf
91707277eba81eb4fe19518e99e8f2a56459b79742f" origin="Generated by Gradle"/>
 </artifact>
 </component>
 </components>
</verification-metadata>

Where to get checksums from?

In general, checksums are published alongside artifacts on public repositories. However, if a
dependency is compromised in a repository, it’s likely its checksum will be too, so it’s a good
practice to get the checksum from a different place, usually the website of the library itself.

In fact, it’s a good security practice to publish the checksums of artifacts on a different server than
the server where the artifacts themselves are hosted: it’s harder to compromise a library both on
the repository and the official website.

In the example above, the checksum was published on the website for the JAR, but not the POM file.
This is why it’s usually easier to let Gradle generate the checksums and verify by reviewing the
generated file carefully.

In this example, not only could we check that the checksum was correct, but we could also find it
on the official website, which is why we changed the value of the of origin attribute on the sha512
element from Generated by Gradle to PDFBox Official site. Changing the origin gives users a sense
of how trustworthy your build it.

Interestingly, using pdfbox will require much more than those 2 artifacts, because it will also bring
in transitive dependencies. If the dependency verification file only included the checksums for the
main artifacts you used, the build would fail with an error like this one:

Execution failed for task ':compileJava'.
> Dependency verification failed for configuration ':compileClasspath':
 - On artifact commons-logging-1.2.jar (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': checksum is missing from verification metadata.
 - On artifact commons-logging-1.2.pom (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': checksum is missing from verification metadata.

What this indicates is that your build requires commons-logging when executing compileJava,
however the verification file doesn’t contain enough information for Gradle to verify the integrity
of the dependencies, meaning you need to add the required information to the verification
metadata file.

See troubleshooting dependency verification for more insights on what to do in this situation.

What checksums are verified?

If a dependency verification metadata file declares more than one checksum for a dependency,
Gradle will verify all of them and fail if any of them fails. For example, the following configuration
would check both the md5 and sha1 checksums:

<component group="org.apache.pdfbox" name="pdfbox" version="2.0.17">
 <artifact name="pdfbox-2.0.17.jar">
 <md5 value="c713a8e252d0add65e9282b151adf6b4" origin="official site"/>
 <sha1 value="b5c8dff799bd967c70ccae75e6972327ae640d35" origin="official site"
reason="Additional check for this artifact"/>
 </artifact>
</component>

There are multiple reasons why you’d like to do so:

1. an official site doesn’t publish secure checksums (SHA-256, SHA-512) but publishes multiple
insecure ones (MD5, SHA1). While it’s easy to fake a MD5 checksum and hard but possible to
fake a SHA1 checksum, it’s harder to fake both of them for the same artifact.

2. you might want to add generated checksums to the list above

3. when updating dependency verification file with more secure checksums, you don’t want to
accidentally erase checksums

Verifying dependency signatures

In addition to checksums, Gradle supports verification of signatures. Signatures are used to assess
the provenance of a dependency (it tells who signed the artifacts, which usually corresponds to who
produced it).

As enabling signature verification usually means a higher level of security, you might want to
replace checksum verification with signature verification.

WARNING

Signatures can also be used to assess the integrity of a dependency similarly to
checksums. Signatures are signatures of the hash of artifacts, not artifacts
themselves. This means that if the signature is done on an unsafe hash (even
SHA1), then you’re not correctly assessing the integrity of a file. For this reason,
if you care about both, you need to add both signatures and checksums to your
verification metadata.

However:

• Gradle only supports verification of signatures published on remote repositories as ASCII-
armored PGP files

• Not all artifacts are published with signatures

• A good signature doesn’t mean that the signatory was legit

As a consequence, signature verification will often be used alongside checksum verification.

About expired keys

It’s very common to find artifacts which are signed with an expired key. This is not a problem for
verification: key expiry is mostly used to avoid signing with a stolen key. If an artifact was signed
before expiry, it’s still valid.

Enabling signature verification

Because verifying signatures is more expensive (both I/O and CPU wise) and harder to check
manually, it’s not enabled by default.

Enabling it requires you to change the configuration option in the verification-metadata.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <verify-signatures>true</verify-signatures>
 </configuration>
</verification-metadata>

Understanding signature verification

Once signature verification is enabled, for each artifact, Gradle will:

• try to download the corresponding .asc file

• if it’s present

◦ automatically download the keys required to perform verification of the signature

◦ verify the artifact using the downloaded public keys

◦ if signature verification passes, perform additional requested checksum verification

• if it’s absent, fallback to checksum verification

That is to say that Gradle’s verification mechanism is much stronger if signature verification is
enabled than just with checksum verification. In particular:

• if an artifact is signed with multiple keys, all of them must pass validation or the build will fail

• if an artifact passes verification, any additional checksum configured for the artifact will also be
checked

However, it’s not because an artifact passes signature verification that you can trust it: you need to
trust the keys.

In practice, it means you need to list the keys that you trust for each artifact, which is done by
adding a pgp entry instead of a sha1 for example:

<component group="com.github.javaparser" name="javaparser-core" version="3.6.11">
 <artifact name="javaparser-core-3.6.11.jar">
 <pgp value="8756c4f765c9ac3cb6b85d62379ce192d401ab61"/>
 </artifact>
</component>

WARNING

For the pgp and trusted-key elements, Gradle requires full fingerprint IDs (e.g.
b801e2f8ef035068ec1139cc29579f18fa8fd93b instead of a long ID
29579f18fa8fd93b). This minimizes the chance of a collision attack.

At the time, V4 key fingerprints are of 160-bit (40 characters) length. We accept
longer keys to be future-proof in case a longer key fingerprint is introduced.

In ignore-key elements, either fingerprints or long (64-bit) IDs can be used. A
shorter ID can only result in a bigger range of exclusion, therefore, it’s safe to
use.

This effectively means that you trust com.github.javaparser:javaparser-core:3.6.11 if it’s signed
with the key 8756c4f765c9ac3cb6b85d62379ce192d401ab61.

Without this, the build would fail with this error:

https://en.wikipedia.org/wiki/Collision_attack
https://www.rfc-editor.org/rfc/rfc4880#section-12.2

> Dependency verification failed for configuration ':compileClasspath':
 - On artifact javaparser-core-3.6.11.jar (com.github.javaparser:javaparser-
core:3.6.11) in repository 'MavenRepo': Artifact was signed with key
'8756c4f765c9ac3cb6b85d62379ce192d401ab61' (Bintray (by JFrog) <****>) and passed
verification but the key isn't in your trusted keys list.

NOTE

The key IDs that Gradle shows in error messages are the key IDs found in the
signature file it tries to verify. It doesn’t mean that it’s necessarily the keys that you
should trust. In particular, if the signature is correct but done by a malicious entity,
Gradle wouldn’t tell you.

Trusting keys globally

Signature verification has the advantage that it can make the configuration of dependency
verification easier by not having to explicitly list all artifacts like for checksum verification only. In
fact, it’s common that the same key can be used to sign several artifacts. If this is the case, you can
move the trusted key from the artifact level to the global configuration block:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>true</verify-signatures>
 <trusted-keys>
 <trusted-key id="8756c4f765c9ac3cb6b85d62379ce192d401ab61" group=
"com.github.javaparser"/>
 </trusted-keys>
 </configuration>
 <components/>
</verification-metadata>

The configuration above means that for any artifact belonging to the group com.github.javaparser,
we trust it if it’s signed with the 8756c4f765c9ac3cb6b85d62379ce192d401ab61 fingerprint.

The trusted-key element works similarly to the trusted-artifact element:

• group, the group of the artifact to trust

• name, the name of the artifact to trust

• version, the version of the artifact to trust

• file, the name of the artifact file to trust

• regex, a boolean saying if the group, name, version and file attributes need to be interpreted as
regular expressions (defaults to false)

You should be careful when trusting a key globally.

Try to limit it to the appropriate groups or artifacts:

• a valid key may have been used to sign artifact A which you trust

• later on, the key is stolen and used to sign artifact B

It means you can trust the key A for the first artifact, probably only up to the released version
before the key was stolen, but not for B.

Remember that anybody can put an arbitrary name when generating a PGP key, so never trust the
key solely based on the key name. Verify if the key is listed at the official site. For example, Apache
projects typically provide a KEYS.txt file that you can trust.

Specifying key servers and ignoring keys

Gradle will automatically download the public keys required to verify a signature. For this it uses a
list of well known and trusted key servers (the list may change between Gradle versions, please
refer to the implementation to figure out what servers are used by default).

You can explicitly set the list of key servers that you want to use by adding them to the
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>true</verify-signatures>
 <key-servers>
 <key-server uri="hkp://my-key-server.org"/>
 <key-server uri="https://my-other-key-server.org"/>
 </key-servers>
 </configuration>
</verification-metadata>

Despite this, it’s possible that a key is not available:

• because it wasn’t published to a public key server

• because it was lost

In this case, you can ignore a key in the configuration block:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification

https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>true</verify-signatures>
 <ignored-keys>
 <ignored-key id="abcdef1234567890" reason="Key is not available in any key
server"/>
 </ignored-keys>
 </configuration>
</verification-metadata>

As soon as a key is ignored, it will not be used for verification, even if the signature file mentions it.
However, if the signature cannot be verified with at least one other key, Gradle will mandate that
you provide a checksum.

NOTE
If Gradle cannot download a key while bootstrapping, it will mark it as ignored. If
you can find the key but Gradle does not, you can manually add it to the keyring
file.

Exporting keys for faster verification

Gradle automatically downloads the required keys but this operation can be quite slow and
requires everyone to download the keys. To avoid this, Gradle offers the ability to use a local
keyring file containing the required public keys. Note that only public key packets and a single
userId per key are stored and used. All other information (user attributes, signatures, etc.) is
stripped from downloaded or exported keys.

Gradle supports 2 different file formats for keyrings: a binary format (.gpg file) and a plain text
format (.keys), also known as ASCII-armored format.

There are pros and cons for each of the formats: the binary format is more compact and can be
updated directly via GPG commands, but is completely opaque (binary). On the opposite, the ASCII-
armored format is human-readable, can be easily updated by hand and makes it easier to do code
reviews thanks to readable diffs.

You can configure which file type would be used by adding the keyring-format configuration option:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>true</verify-signatures>
 <keyring-format>armored</keyring-format>
 </configuration>
</verification-metadata>

Available options for keyring format are armored and binary.

Without keyring-format, if the gradle/verification-keyring.gpg or gradle/verification-keyring.keys
file is present, Gradle will search for keys there in priority. The plain text file will be ignored if
there’s already a .gpg file (the binary version takes precedence).

You can ask Gradle to export all keys it used for verification of this build to the keyring during
bootstrapping:

./gradlew --write-verification-metadata pgp,sha256 --export-keys

Unless keyring-format is specified, this command will generate both the binary version and the
ASCII-armored file. Use this option to choose the preferred format. You should only pick one for
your project.

It’s a good idea to commit this file to VCS (as long as you trust your VCS). If you use git and use the
binary version, make sure to make it treat this file as binary, by adding this to your .gitattributes
file:

*.gpg binary

You can also ask Gradle to export all trusted keys without updating the verification metadata file:

./gradlew --export-keys

NOTE This command will not report verification errors, only export keys.

Bootstrapping and signature verification

WARNING

Signature verification bootstrapping takes an optimistic point of view that
signature verification is enough. Therefore, if you also care about integrity, you
must first bootstrap using checksum verification, then with signature
verification.

Similarly to bootstrapping for checksums, Gradle provides a convenience for bootstrapping a
configuration file with signature verification enabled. For this, just add the pgp option to the list of
verifications to generate. However, because there might be verification failures, missing keys or
missing signature files, you must provide a fallback checksum verification algorithm:

./gradlew --write-verification-metadata pgp,sha256

this means that Gradle will verify the signatures and fallback to SHA-256 checksums when there’s a
problem.

When bootstrapping, Gradle performs optimistic verification and therefore assumes a sane build

environment. It will therefore:

• automatically add the trusted keys as soon as verification passes

• automatically add ignored keys for keys which couldn’t be downloaded from public key servers.
See here how to manually add keys if needed

• automatically generate checksums for artifacts without signatures or ignored keys

If, for some reason, verification fails during the generation, Gradle will automatically generate an
ignored key entry but warn you that you must absolutely check what happens.

This situation is common as explained for this section: a typical case is when the POM file for a
dependency differs from one repository to the other (often in a non-meaningful way).

In addition, Gradle will try to group keys automatically and generate the trusted-keys block which
reduced the configuration file size as much as possible.

Forcing use of local keyrings only

The local keyring files (.gpg or .keys) can be used to avoid reaching out to key servers whenever a
key is required to verify an artifact. However, it may be that the local keyring doesn’t contain a key,
in which case Gradle would use the key servers to fetch the missing key. If the local keyring file isn’t
regularly updated, using key export, then it may be that your CI builds, for example, would reach
out to key servers too often (especially if you use disposable containers for builds).

To avoid this, Gradle offers the ability to disallow use of key servers altogether: only the local
keyring file would be used, and if a key is missing from this file, the build will fail.

To enable this mode, you need to disable key servers in the configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <key-servers enabled="false"/>
 ...
 </configuration>
 ...
</verification-metadata>

NOTE
If you are asking Gradle to generate a verification metadata file and that an existing
verification metadata file sets enabled to false, then this flag will be ignored, so that
potentially missing keys are downloaded.

Disabling verification or making it lenient

Dependency verification can be expensive, or sometimes verification could get in the way of day to

day development (because of frequent dependency upgrades, for example).

Alternatively, you might want to enable verification on CI servers but not on local machines.

Gradle actually provides 3 different verification modes:

• strict, which is the default. Verification fails as early as possible, in order to avoid the use of
compromised dependencies during the build.

• lenient, which will run the build even if there are verification failures. The verification errors
will be displayed during the build without causing a build failure.

• off when verification is totally ignored.

All those modes can be activated on the CLI using the --dependency-verification flag, for example:

./gradlew --dependency-verification lenient build

Alternatively, you can set the org.gradle.dependency.verification system property, either on the
CLI:

./gradlew -Dorg.gradle.dependency.verification=lenient build

or in a gradle.properties file:

org.gradle.dependency.verification=lenient

Disabling dependency verification for some configurations only

In order to provide the strongest security level possible, dependency verification is enabled
globally. This will ensure, for example, that you trust all the plugins you use. However, the plugins
themselves may need to resolve additional dependencies that it doesn’t make sense to ask the user
to accept. For this purpose, Gradle provides an API which allows disabling dependency verification
on some specific configurations.

WARNING

Disabling dependency verification, if you care about security, is not a good
idea. This API mostly exist for cases where it doesn’t make sense to check
dependencies. However, in order to be on the safe side, Gradle will
systematically print a warning whenever verification has been disabled for a
specific configuration.

As an example, a plugin may want to check if there are newer versions of a library available and list
those versions. It doesn’t make sense, in this context, to ask the user to put the checksums of the
POM files of the newer releases because by definition, they don’t know about them. So the plugin
might need to run its code independently of the dependency verification configuration.

To do this, you need to call the ResolutionStrategy#disableDependencyVerification method:

Example 55. Disabling dependency verification

build.gradle.kts

configurations {
 "myPluginClasspath" {
 resolutionStrategy {
 disableDependencyVerification()
 }
 }
}

build.gradle

configurations {
 myPluginClasspath {
 resolutionStrategy {
 disableDependencyVerification()
 }
 }
}

It’s also possible to disable verification on detached configurations like in the following example:

Example 56. Disabling dependency verification

build.gradle.kts

tasks.register("checkDetachedDependencies") {
 val detachedConf: FileCollection =
configurations.detachedConfiguration(dependencies.create("org.apache.commons:
commons-lang3:3.3.1")).apply {
 resolutionStrategy.disableDependencyVerification()
 }
 doLast {
 println(detachedConf.files)
 }
}

build.gradle

tasks.register("checkDetachedDependencies") {
 def detachedConf = configurations.detachedConfiguration(dependencies

#ex-disabling-dependency-verification
#ex-disabling-dependency-verification

.create("org.apache.commons:commons-lang3:3.3.1"))
 detachedConf.resolutionStrategy.disableDependencyVerification()
 doLast {
 println(detachedConf.files)
 }
}

Trusting some particular artifacts

You might want to trust some artifacts more than others. For example, it’s legitimate to think that
artifacts produced in your company and found in your internal repository only are safe, but you
want to check every external component.

NOTE
This is a typical company policy. In practice, nothing prevents your internal
repository from being compromised, so it’s a good idea to check your internal
artifacts too!

For this purpose, Gradle offers a way to automatically trust some artifacts. You can trust all artifacts
in a group by adding this to your configuration:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <trusted-artifacts>
 <trust group="com.mycompany" reason="We trust mycompany artifacts"/>
 </trusted-artifacts>
 </configuration>
</verification-metadata>

This means that all components which group is com.mycompany will automatically be trusted. Trusted
means that Gradle will not perform any verification whatsoever.

The trust element accepts those attributes:

• group, the group of the artifact to trust

• name, the name of the artifact to trust

• version, the version of the artifact to trust

• file, the name of the artifact file to trust

• regex, a boolean saying if the group, name, version and file attributes need to be interpreted as
regular expressions (defaults to false)

• reason, an optional reason, why matched artifacts are trusted

In the example above it means that the trusted artifacts would be artifacts in com.mycompany but not
com.mycompany.other. To trust all artifacts in com.mycompany and all subgroups, you can use:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata xmlns="https://schema.gradle.org/dependency-verification"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://schema.gradle.org/dependency-verification
https://schema.gradle.org/dependency-verification/dependency-verification-1.3.xsd">
 <configuration>
 <trusted-artifacts>
 <trust group="^com[.]mycompany($|([.].*))" regex="true" reason="We trust all
mycompany artifacts"/>
 </trusted-artifacts>
 </configuration>
</verification-metadata>

Trusting multiple checksums for an artifact

It’s quite common to have different checksums for the same artifact in the wild. How is that
possible? Despite progress, it’s often the case that developers publish, for example, to Maven
Central and another repository separately, using different builds. In general, this is not a problem
but sometimes it means that the metadata files would be different (different timestamps, additional
whitespaces, …). Add to this that your build may use several repositories or repository mirrors and
it makes it quite likely that a single build can "see" different metadata files for the same component!
In general, it’s not malicious (but you must verify that the artifact is actually correct), so Gradle lets
you declare the additional artifact checksums. For example:

 <component group="org.apache" name="apache" version="13">
 <artifact name="apache-13.pom">
 <sha256 value=
"2fafa38abefe1b40283016f506ba9e844bfcf18713497284264166a5dbf4b95e">
 <also-trust value=
"ff513db0361fd41237bef4784968bc15aae478d4ec0a9496f811072ccaf3841d"/>
 </sha256>
 </artifact>
 </component>

You can have as many also-trust entries as needed, but in general you shouldn’t have more than 2.

Skipping Javadocs and sources

By default Gradle will verify all downloaded artifacts, which includes Javadocs and sources. In
general this is not a problem but you might face an issue with IDEs which automatically try to
download them during import: if you didn’t set the checksums for those too, importing would fail.

To avoid this, you can configure Gradle to trust automatically all javadocs/sources:

<trusted-artifacts>
 <trust file=".*-javadoc[.]jar" regex="true"/>
 <trust file=".*-sources[.]jar" regex="true"/>
</trusted-artifacts>

Adding keys manually to the keyring

Adding keys to the ASCII-armored keyring

The added key must be ASCII-armored formatted and can be simply added at the end of the file. If
you already downloaded the key in the right format, you can simply append it to the file.

Or you can amend an existing KEYS file by issuing the following commands:

$ gpg --no-default-keyring --keyring /tmp/keyring.gpg --recv-keys
8756c4f765c9ac3cb6b85d62379ce192d401ab61

gpg: keybox '/tmp/keyring.gpg' created
gpg: key 379CE192D401AB61: public key "Bintray (by JFrog) <****>" imported
gpg: Total number processed: 1
gpg: imported: 1

Write its ASCII-armored version
$ gpg --keyring /tmp/keyring.gpg --export --armor
8756c4f765c9ac3cb6b85d62379ce192d401ab61 > gradle/verification-keyring.keys

Once done, make sure to run the generation command again so that the key is processed by Gradle.
This will do the following:

• Add a standard header to the key

• Rewrite the key using Gradle’s own format, which trims the key to the bare minimum

• Move the key to its sorted location, keeping the file reproducible

Adding keys to the binary keyring

You can add keys to the binary version using GPG, for example issuing the following commands
(syntax may depend on the tool you use):

$ gpg --no-default-keyring --keyring gradle/verification-keyring.gpg --recv-keys
8756c4f765c9ac3cb6b85d62379ce192d401ab61

gpg: keybox 'gradle/verification-keyring.gpg' created
gpg: key 379CE192D401AB61: public key "Bintray (by JFrog) <****>" imported
gpg: Total number processed: 1
gpg: imported: 1

$ gpg --no-default-keyring --keyring gradle/verification-keyring.gpg --recv-keys

6f538074ccebf35f28af9b066a0975f8b1127b83

gpg: key 0729A0AFF8999A87: public key "Kotlin Release <****>" imported
gpg: Total number processed: 1
gpg: imported: 1

Dealing with a verification failure

Dependency verification can fail in different ways, this section explains how you should deal with
the various cases.

Missing verification metadata

The simplest failure you can have is when verification metadata is missing from the dependency
verification file. This is the case for example if you use checksum verification, then you update a
dependency and new versions of the dependency (and potentially its transitive dependencies) are
brought in.

Gradle will tell you what metadata is missing:

Execution failed for task ':compileJava'.
> Dependency verification failed for configuration ':compileClasspath':
 - On artifact commons-logging-1.2.jar (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': checksum is missing from verification metadata.

• the missing module group is commons-logging, it’s artifact name is commons-logging and its
version is 1.2. The corresponding artifact is commons-logging-1.2.jar so you need to add the
following entry to the verification file:

<component group="commons-logging" name="commons-logging" version="1.2">
 <artifact name="commons-logging-1.2.jar">
 <sha256 value="daddea1ea0be0f56978ab3006b8ac92834afeefbd9b7e4e6316fca57df0fa636"
origin="official distribution"/>
 </artifact>
</component>

Alternatively, you can ask Gradle to generate the missing information by using the bootstrapping
mechanism: existing information in the metadata file will be preserved, Gradle will only add the
missing verification metadata.

Incorrect checksums

A more problematic issue is when the actual checksum verification fails:

Execution failed for task ':compileJava'.
> Dependency verification failed for configuration ':compileClasspath':
 - On artifact commons-logging-1.2.jar (commons-logging:commons-logging:1.2) in

repository 'MavenRepo': expected a 'sha256' checksum of
'91f7a33096ea69bac2cbaf6d01feb934cac002c48d8c8cfa9c240b40f1ec21df' but was
'daddea1ea0be0f56978ab3006b8ac92834afeefbd9b7e4e6316fca57df0fa636'

This time, Gradle tells you what dependency is at fault, what was the expected checksum (the one
you declared in the verification metadata file) and the one which was actually computed during
verification.

Such a failure indicates that a dependency may have been compromised. At this stage, you must
perform manual verification and check what happens. Several things can happen:

• a dependency was tampered in the local dependency cache of Gradle. This is usually harmless:
erase the file from the cache and Gradle would redownload the dependency.

• a dependency is available in multiple sources with slightly different binaries (additional
whitespace, …)

◦ please inform the maintainers of the library that they have such an issue

◦ you can use also-trust to accept the additional checksums

• the dependency was compromised

◦ immediately inform the maintainers of the library

◦ notify the repository maintainers of the compromised library

Note that a variation of a compromised library is often name squatting, when a hacker would use
GAV coordinates which look legit but are actually different by one character, or repository
shadowing, when a dependency with the official GAV coordinates is published in a malicious
repository which comes first in your build.

Untrusted signatures

If you have signature verification enabled, Gradle will perform verification of the signatures but
will not trust them automatically:

> Dependency verification failed for configuration ':compileClasspath':
 - On artifact javaparser-core-3.6.11.jar (com.github.javaparser:javaparser-
core:3.6.11) in repository 'MavenRepo': Artifact was signed with key
'379ce192d401ab61' (Bintray (by JFrog) <****>) and passed verification but the key
isn't in your trusted keys list.

In this case it means you need to check yourself if the key that was used for verification (and
therefore the signature) can be trusted, in which case refer to this section of the documentation to
figure out how to declare trusted keys.

Failed signature verification

If Gradle fails to verify a signature, you will need to take action and verify artifacts manually
because this may indicate a compromised dependency.

If such a thing happens, Gradle will fail with:

> Dependency verification failed for configuration ':compileClasspath':
 - On artifact javaparser-core-3.6.11.jar (com.github.javaparser:javaparser-
core:3.6.11) in repository 'MavenRepo': Artifact was signed with key
'379ce192d401ab61' (Bintray (by JFrog) <****>) but signature didn't match

There are several options:

1. signature was wrong in the first place, which happens frequently with dependencies published
on different repositories.

2. the signature is correct but the artifact has been compromised (either in the local dependency
cache or remotely)

The right approach here is to go to the official site of the dependency and see if they publish
signatures for their artifacts. If they do, verify that the signature that Gradle downloaded matches
the one published.

If you have checked that the dependency is not compromised and that it’s "only" the signature
which is wrong, you should declare an artifact level key exclusion:

 <components>
 <component group="com.github.javaparser" name="javaparser-core" version="
3.6.11">
 <artifact name="javaparser-core-3.6.11.pom">
 <ignored-keys>
 <ignored-key id="379ce192d401ab61" reason="internal repo has corrupted
POM"/>
 </ignored-keys>
 </artifact>
 </component>
 </components>

However, if you only do so, Gradle will still fail because all keys for this artifact will be ignored and
you didn’t provide a checksum:

 <components>
 <component group="com.github.javaparser" name="javaparser-core" version="
3.6.11">
 <artifact name="javaparser-core-3.6.11.pom">
 <ignored-keys>
 <ignored-key id="379ce192d401ab61" reason="internal repo has corrupted
POM"/>
 </ignored-keys>
 <sha256 value=
"a2023504cfd611332177f96358b6f6db26e43d96e8ef4cff59b0f5a2bee3c1e1"/>
 </artifact>

 </component>
 </components>

Manual verification of a dependency

You will likely face a dependency verification failure (either checksum verification or signature
verification) and will need to figure out if the dependency has been compromised or not.

In this section we give an example how you can manually check if a dependency was compromised.

For this we will take this example failure:

> Dependency verification failed for configuration ':compileClasspath':
- On artifact j2objc-annotations-1.1.jar (com.google.j2objc:j2objc-annotations:1.1) in
repository 'MyCompany Mirror': Artifact was signed with key '29579f18fa8fd93b' but
signature didn't match

This error message gives us the GAV coordinates of the problematic dependency, as well as an
indication of where the dependency was fetched from. Here, the dependency comes from MyCompany
Mirror, which is a repository declared in our build.

The first thing to do is therefore to download the artifact and its signature manually from the
mirror:

$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1.1/j2objc-annotations-1.1.jar --output j2objc-annotations-1.1.jar
$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1.1/j2objc-annotations-1.1.jar.asc --output j2objc-annotations-1.1.jar.asc

Then we can use the key information provided in the error message to import the key locally:

$ gpg --recv-keys B801E2F8EF035068EC1139CC29579F18FA8FD93B

And perform verification:

$ gpg --verify j2objc-annotations-1.1.jar.asc
gpg: assuming signed data in 'j2objc-annotations-1.1.jar'
gpg: Signature made Thu 19 Jan 2017 12:06:51 AM CET
gpg: using RSA key 29579F18FA8FD93B
gpg: BAD signature from "Tom Ball <****>" [unknown]

What this tells us is that the problem is not on the local machine: the repository already contains a
bad signature.

The next step is to do the same by downloading what is actually on Maven Central:

$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1.1/j2objc-annotations-1.1.jar --output central-j2objc-annotations-
1.1.jar
$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1/1/j2objc-annotations-1.1.jar.asc --output central-j2objc-annotations-
1.1.jar.asc

And we can now check the signature again:

$ gpg --verify central-j2objc-annotations-1.1.jar.asc

gpg: assuming signed data in 'central-j2objc-annotations-1.1.jar'
gpg: Signature made Thu 19 Jan 2017 12:06:51 AM CET
gpg: using RSA key 29579F18FA8FD93B
gpg: Good signature from "Tom Ball <****>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: B801 E2F8 EF03 5068 EC11 39CC 2957 9F18 FA8F D93B

This indicates that the dependency is valid on Maven Central. At this stage, we already know that
the problem lives in the mirror, it may have been compromised, but we need to verify.

A good idea is to compare the 2 artifacts, which you can do with a tool like diffoscope.

We then figure out that the intent wasn’t malicious but that somehow a build has been overwritten
with a newer version (the version in Central is newer than the one in our repository).

In this case, you can decide to:

• ignore the signature for this artifact and trust the different possible checksums (both for the old
artifact and the new version)

• or cleanup your mirror so that it contains the same version as in Maven Central

It’s worth noting that if you choose to delete the version from your repository, you will also need to
remove it from the local Gradle cache.

This is facilitated by the fact the error message tells you were the file is located:

> Dependency verification failed for configuration ':compileClasspath':
 - On artifact j2objc-annotations-1.1.jar (com.google.j2objc:j2objc-
annotations:1.1) in repository 'MyCompany Mirror': Artifact was signed with key
'29579f18fa8fd93b' but signature didn't match

 This can indicate that a dependency has been compromised. Please carefully verify
the signatures and checksums.

 For your information here are the path to the files which failed verification:
 - $<<directory_layout.adoc#dir:gradle_user_home,GRADLE_USER_HOME>>/caches/modules-

https://try.diffoscope.org/

2/files-2.1/com.google.j2objc/j2objc-
annotations/1.1/976d8d30bebc251db406f2bdb3eb01962b5685b3/j2objc-annotations-1.1.jar
(signature: GRADLE_USER_HOME/caches/modules-2/files-2.1/com.google.j2objc/j2objc-
annotations/1.1/82e922e14f57d522de465fd144ec26eb7da44501/j2objc-annotations-
1.1.jar.asc)

 GRADLE_USER_HOME = /home/jiraya/.gradle

You can safely delete the artifact file as Gradle would automatically re-download it:

rm -rf ~/.gradle/caches/modules-2/files-2.1/com.google.j2objc/j2objc-annotations/1.1

Cleaning up the verification file

If you do nothing, the dependency verification metadata will grow over time as you add new
dependencies or change versions: Gradle will not automatically remove unused entries from this
file. The reason is that there’s no way for Gradle to know upfront if a dependency will effectively be
used during the build or not.

As a consequence, adding dependencies or changing dependency version can easily lead to more
entries in the file, while leaving unnecessary entries out there.

One option to cleanup the file is to move the existing verification-metadata.xml file to a different
location and call Gradle with the --dry-run mode: while not perfect (it will not notice dependencies
only resolved at configuration time), it generates a new file that you can compare with the existing
one.

We need to move the existing file because both the bootstrapping mode and the dry-run mode are
incremental: they copy information from the existing metadata verification file (in particular,
trusted keys).

Refreshing missing keys

Gradle caches missing keys for 24 hours, meaning it will not attempt to re-download the missing
keys for 24 hours after failing.

If you want to retry immediately, you can run with the --refresh-keys CLI flag:

./gradlew build --refresh-keys

See here how to manually add keys if Gradle keeps failing to download them.

Aligning dependency versions
Dependency version alignment allows different modules belonging to the same logical group (a
platform) to have identical versions in a dependency graph.

Handling inconsistent module versions

Gradle supports aligning versions of modules which belong to the same "platform". It is often
preferable, for example, that the API and implementation modules of a component are using the
same version. However, because of the game of transitive dependency resolution, it is possible that
different modules belonging to the same platform end up using different versions. For example,
your project may depend on the jackson-databind and vert.x libraries, as illustrated below:

Example 57. Declaring dependencies

build.gradle.kts

dependencies {
 // a dependency on Jackson Databind
 implementation("com.fasterxml.jackson.core:jackson-databind:2.8.9")

 // and a dependency on vert.x
 implementation("io.vertx:vertx-core:3.5.3")
}

build.gradle

dependencies {
 // a dependency on Jackson Databind
 implementation 'com.fasterxml.jackson.core:jackson-databind:2.8.9'

 // and a dependency on vert.x
 implementation 'io.vertx:vertx-core:3.5.3'
}

Because vert.x depends on jackson-core, we would actually resolve the following dependency
versions:

• jackson-core version 2.9.5 (brought by vertx-core)

• jackson-databind version 2.9.5 (by conflict resolution)

• jackson-annotation version 2.9.0 (dependency of jackson-databind:2.9.5)

It’s easy to end up with a set of versions which do not work well together. To fix this, Gradle
supports dependency version alignment, which is supported by the concept of platforms. A
platform represents a set of modules which "work well together". Either because they are actually
published as a whole (when one of the members of the platform is published, all other modules are
also published with the same version), or because someone tested the modules and indicates that
they work well together (typically, the Spring Platform).

#ex-declaring-dependencies

Aligning versions natively with Gradle

Gradle natively supports alignment of modules produced by Gradle. This is a direct consequence of
the transitivity of dependency constraints. So if you have a multi-project build, and you wish that
consumers get the same version of all your modules, Gradle provides a simple way to do this using
the Java Platform Plugin.

For example, if you have a project that consists of 3 modules:

• lib

• utils

• core, depending on lib and utils

And a consumer that declares the following dependencies:

• core version 1.0

• lib version 1.1

Then by default resolution would select core:1.0 and lib:1.1, because lib has no dependency on
core. We can fix this by adding a new module in our project, a platform, that will add constraints on
all the modules of your project:

Example 58. The platform module

build.gradle.kts

plugins {
 `java-platform`
}

dependencies {
 // The platform declares constraints on all components that
 // require alignment
 constraints {
 api(project(":core"))
 api(project(":lib"))
 api(project(":utils"))
 }
}

build.gradle

plugins {
 id 'java-platform'
}

dependencies {

#ex-the-platform-module

 // The platform declares constraints on all components that
 // require alignment
 constraints {
 api(project(":core"))
 api(project(":lib"))
 api(project(":utils"))
 }
}

Once this is done, we need to make sure that all modules now depend on the platform, like this:

Example 59. Declaring a dependency on the platform

build.gradle.kts

dependencies {
 // Each project has a dependency on the platform
 api(platform(project(":platform")))

 // And any additional dependency required
 implementation(project(":lib"))
 implementation(project(":utils"))
}

build.gradle

dependencies {
 // Each project has a dependency on the platform
 api(platform(project(":platform")))

 // And any additional dependency required
 implementation(project(":lib"))
 implementation(project(":utils"))
}

It is important that the platform contains a constraint on all the components, but also that each
component has a dependency on the platform. By doing this, whenever Gradle will add a
dependency to a module of the platform on the graph, it will also include constraints on the other
modules of the platform. This means that if we see another module belonging to the same platform,
we will automatically upgrade to the same version.

In our example, it means that we first see core:1.0, which brings a platform 1.0 with constraints on
lib:1.0 and lib:1.0. Then we add lib:1.1 which has a dependency on platform:1.1. By conflict

#ex-declaring-a-dependency-on-the-platform

resolution, we select the 1.1 platform, which has a constraint on core:1.1. Then we conflict resolve
between core:1.0 and core:1.1, which means that core and lib are now aligned properly.

NOTE
This behavior is enforced for published components only if you use Gradle Module
Metadata.

Aligning versions of modules not published with Gradle

Whenever the publisher doesn’t use Gradle, like in our Jackson example, we can explain to Gradle
that all Jackson modules "belong to" the same platform and benefit from the same behavior as with
native alignment. There are two options to express that a set of modules belong to a platform:

1. A platform is published as a BOM and can be used: For example,
com.fasterxml.jackson:jackson-bom can be used as platform. The information missing to Gradle
in that case is that the platform should be added to the dependencies if one of its members is
used.

2. No existing platform can be used. Instead, a virtual platform should be created by Gradle: In
this case, Gradle builds up the platform itself based on all the members that are used.

To provide the missing information to Gradle, you can define component metadata rules as
explained in the following.

Align versions of modules using a published BOM

Example 60. A dependency version alignment rule

build.gradle.kts

abstract class JacksonBomAlignmentRule: ComponentMetadataRule {
 override fun execute(ctx: ComponentMetadataContext) {
 ctx.details.run {
 if (id.group.startsWith("com.fasterxml.jackson")) {
 // declare that Jackson modules belong to the platform
defined by the Jackson BOM
 belongsTo("com.fasterxml.jackson:jackson-bom:${id.version}",
false)
 }
 }
 }
}

build.gradle

abstract class JacksonBomAlignmentRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext ctx) {
 ctx.details.with {

#ex-a-dependency-version-alignment-rule

 if (id.group.startsWith("com.fasterxml.jackson")) {
 // declare that Jackson modules belong to the platform
defined by the Jackson BOM
 belongsTo("com.fasterxml.jackson:jackson-bom:${id.version}",
false)
 }
 }
 }
}

By using the belongsTo with false (not virtual), we declare that all modules belong to the same
published platform. In this case, the platform is com.fasterxml.jackson:jackson-bom and Gradle will
look for it, as for any other module, in the declared repositories.

Example 61. Making use of a dependency version alignment rule

build.gradle.kts

dependencies {
 components.all<JacksonBomAlignmentRule>()
}

build.gradle

dependencies {
 components.all(JacksonBomAlignmentRule)
}

Using the rule, the versions in the example above align to whatever the selected version of
com.fasterxml.jackson:jackson-bom defines. In this case, com.fasterxml.jackson:jackson-bom:2.9.5
will be selected as 2.9.5 is the highest version of a module selected. In that BOM, the following
versions are defined and will be used: jackson-core:2.9.5, jackson-databind:2.9.5 and jackson-
annotation:2.9.0. The lower versions of jackson-annotation here might be the desired result as it is
what the BOM recommends.

NOTE
This behavior is working reliable since Gradle 6.1. Effectively, it is similar to a
component metadata rule that adds a platform dependency to all members of the
platform using withDependencies.

Align versions of modules without a published platform

#ex-making-use-of-a-dependency-version-alignment-rule

Example 62. A dependency version alignment rule

build.gradle.kts

abstract class JacksonAlignmentRule: ComponentMetadataRule {
 override fun execute(ctx: ComponentMetadataContext) {
 ctx.details.run {
 if (id.group.startsWith("com.fasterxml.jackson")) {
 // declare that Jackson modules all belong to the Jackson
virtual platform
 belongsTo("com.fasterxml.jackson:jackson-virtual-
platform:${id.version}")
 }
 }
 }
}

build.gradle

abstract class JacksonAlignmentRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext ctx) {
 ctx.details.with {
 if (id.group.startsWith("com.fasterxml.jackson")) {
 // declare that Jackson modules all belong to the Jackson
virtual platform
 belongsTo("com.fasterxml.jackson:jackson-virtual-platform:
${id.version}")
 }
 }
 }
}

By using the belongsTo keyword without further parameter (platform is virtual), we declare that all
modules belong to the same virtual platform, which is treated specially by the engine. A virtual
platform will not be retrieved from a repository. The identifier, in this case
com.fasterxml.jackson:jackson-virtual-platform, is something you as the build author define
yourself. The "content" of the platform is then created by Gradle on the fly by collecting all
belongsTo statements pointing at the same virtual platform.

Example 63. Making use of a dependency version alignment rule

build.gradle.kts

dependencies {

#ex-a-dependency-version-alignment-rule
#ex-making-use-of-a-dependency-version-alignment-rule

 components.all<JacksonAlignmentRule>()
}

build.gradle

dependencies {
 components.all(JacksonAlignmentRule)
}

Using the rule, all versions in the example above would align to 2.9.5. In this case, also jackson-
annotation:2.9.5 will be taken, as that is how we defined our local virtual platform.

For both published and virtual platforms, Gradle lets you override the version choice of the
platform itself by specifying an enforced dependency on the platform:

Example 64. Forceful platform downgrade

build.gradle.kts

dependencies {
 // Forcefully downgrade the virtual Jackson platform to 2.8.9
 implementation(enforcedPlatform("com.fasterxml.jackson:jackson-virtual-
platform:2.8.9"))
}

build.gradle

dependencies {
 // Forcefully downgrade the virtual Jackson platform to 2.8.9
 implementation enforcedPlatform('com.fasterxml.jackson:jackson-virtual-
platform:2.8.9')
}

Modeling library features
Gradle supports the concept of features: it’s often the case that a single library can be split up into
multiple related yet distinct libraries, where each feature can be used alongside the main library.

Features allow a component to expose multiple related libraries, each of which can declare its own
dependencies. These libraries are exposed as variants, similar to how the main library exposes

#ex-forceful-platform-downgrade

variants for its API and runtime.

This allows for a number of different scenarios (list is non-exhaustive):

• a (better) substitute for Maven optional dependencies

• a main library is built with support for different mutually-exclusive implementations of
runtime features; the user must choose one, and only one, implementation of each such feature

• a main library is built with support for optional runtime features, each of which requires a
different set of dependencies

• a main library comes with supplementary features like test fixtures

• a main library comes with a main artifact, and enabling an additional feature requires
additional artifacts

Selection of features via capabilities

Declaring a dependency on a component is usually done by providing a set of coordinates (group,
artifact, version also known as GAV coordinates). This allows the engine to determine the
component we’re looking for, but such a component may provide different variants. A variant is
typically chosen based on the usage. For example, we might choose a different variant for
compiling against a component (in which case we need the API of the component) or when
executing code (in which case we need the runtime of the component). All variants of a component
provide a number of capabilities, which are denoted similarly using GAV coordinates.

A capability is denoted by GAV coordinates, but you must think of it as feature description:

• "I provide an SLF4J binding"

• "I provide runtime support for MySQL"

• "I provide a Groovy runtime"

And in general, having two components that provide the same thing in the graph is a problem (they
conflict).

This is an important concept because:

• By default, a variant provides a capability corresponding to the GAV coordinates of its
component

• No two variants in a dependency graph can provide the same capability

• Multiple variants of a single component may be selected as long as they provide different
capabilities

A typical component will only provide variants with the default capability. A Java library, for
example, exposes two variants (API and runtime) which provide the same capability. As a
consequence, it is an error to have both the API and runtime of a single component in a dependency
graph.

However, imagine that you need the runtime and the test fixtures runtime of a component. Then it is
allowed as long as the runtime and test fixtures runtime variant of the library declare different

https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html

capabilities.

If we do so, a consumer would then have to declare two dependencies:

• one on the "main" feature, the library

• one on the "test fixtures" feature, by requiring its capability

NOTE
While the resolution engine supports multi-variant components independently of
the ecosystem, features are currently only available using the Java plugins.

Registering features

Features can be declared by applying the java-library plugin. The following code illustrates how to
declare a feature named mongodbSupport:

Example 65. Registering a feature

build.gradle.kts

sourceSets {
 create("mongodbSupport") {
 java {
 srcDir("src/mongodb/java")
 }
 }
}

java {
 registerFeature("mongodbSupport") {
 usingSourceSet(sourceSets["mongodbSupport"])
 }
}

build.gradle

sourceSets {
 mongodbSupport {
 java {
 srcDir 'src/mongodb/java'
 }
 }
}

java {
 registerFeature('mongodbSupport') {
 usingSourceSet(sourceSets.mongodbSupport)
 }

#ex-registering-a-feature

}

Gradle will automatically set up a number of things for you, in a very similar way to how the Java
Library Plugin sets up configurations.

Dependency scope configurations are created in the same manner as for the main feature:

• the configuration mongodbSupportApi, used to declare API dependencies for this feature

• the configuration mongodbSupportImplementation, used to declare implementation dependencies
for this feature

• the configuration mongodbSupportRuntimeOnly, used to declare runtime-only dependencies for this
feature

• the configuration mongodbSupportCompileOnly, used to declare compile-only dependencies for this
feature

• the configuration mongodbSupportCompileOnlyApi, used to declare compile-only API dependencies
for this feature

Furthermore, consumable configurations are created in the same manner as for the main feature:

• the configuration mongodbSupportApiElements, used by consumers to fetch the artifacts and API
dependencies of this feature

• the configuration mongodbSupportRuntimeElements, used by consumers to fetch the artifacts and
runtime dependencies of this feature

A feature should have a source set with the same name. Gradle will create a Jar task to bundle the
classes built from the feature source set, using a classifier corresponding to the kebab-case name of
the feature.

WARNING
Do not use the main source set when registering a feature. This behavior will
be deprecated in a future version of Gradle.

Most users will only need to care about the dependency scope configurations, to declare the specific
dependencies of this feature:

Example 66. Declaring dependencies of a feature

build.gradle.kts

dependencies {
 "mongodbSupportImplementation"("org.mongodb:mongodb-driver-sync:3.9.1")
}

#ex-declaring-dependencies-of-a-feature

build.gradle

dependencies {
 mongodbSupportImplementation 'org.mongodb:mongodb-driver-sync:3.9.1'
}

By convention, Gradle maps the feature name to a capability whose group and version are the same
as the group and version of the main component, respectively, but whose name is the main
component name followed by a - followed by the kebab-cased feature name.

For example, if the component’s group is org.gradle.demo, its name is provider, its version is 1.0,
and the feature is named mongodbSupport, the feature’s variants will have the
org.gradle.demo:provider-mongodb-support:1.0 capability.

If you choose the capability name yourself or add more capabilities to a variant, it is recommended
to follow the same convention.

Publishing features

Depending on the metadata file format, publishing features may be lossy:

• using Gradle Module Metadata, everything is published and consumers will get the full benefit
of features

• using POM metadata (Maven), features are published as optional dependencies and artifacts of
features are published with different classifiers

• using Ivy metadata, features are published as extra configurations, which are not extended by
the default configuration

Publishing features is supported using the maven-publish and ivy-publish plugins only. The Java
Library Plugin will take care of registering the additional variants for you, so there’s no additional
configuration required, only the regular publications:

Example 67. Publishing a component with features

build.gradle.kts

plugins {
 `java-library`
 `maven-publish`
}
// ...
publishing {
 publications {
 create("myLibrary", MavenPublication::class.java) {
 from(components["java"])
 }

https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-latest-specification.md
#ex-publishing-a-component-with-features

 }
}

build.gradle

plugins {
 id 'java-library'
 id 'maven-publish'
}
// ...
publishing {
 publications {
 myLibrary(MavenPublication) {
 from components.java
 }
 }
}

Adding javadoc and sources JARs

Similar to the main Javadoc and sources JARs, you can configure the added feature so that it
produces JARs for the Javadoc and sources.

Example 68. Producing javadoc and sources JARs for features

build.gradle.kts

java {
 registerFeature("mongodbSupport") {
 usingSourceSet(sourceSets["mongodbSupport"])
 withJavadocJar()
 withSourcesJar()
 }
}

build.gradle

java {
 registerFeature('mongodbSupport') {
 usingSourceSet(sourceSets.mongodbSupport)
 withJavadocJar()
 withSourcesJar()
 }

#ex-producing-javadoc-and-sources-jars-for-features

}

Dependencies on features

As mentioned earlier, features can be lossy when published. As a consequence, a consumer can
depend on a feature only in these cases:

• with a project dependency (in a multi-project build)

• with Gradle Module Metadata available, that is the publisher MUST have published it

• within the Ivy world, by declaring a dependency on the configuration matching the feature

A consumer can specify that it needs a specific feature of a producer by declaring required
capabilities. For example, if a producer declares a "MySQL support" feature like this:

Example 69. A library declaring a feature to support MySQL

build.gradle.kts

group = "org.gradle.demo"

sourceSets {
 create("mysqlSupport") {
 java {
 srcDir("src/mysql/java")
 }
 }
}

java {
 registerFeature("mysqlSupport") {
 usingSourceSet(sourceSets["mysqlSupport"])
 }
}

dependencies {
 "mysqlSupportImplementation"("mysql:mysql-connector-java:8.0.14")
}

build.gradle

group = 'org.gradle.demo'

sourceSets {
 mysqlSupport {
 java {

#ex-a-library-declaring-a-feature-to-support-mysql

 srcDir 'src/mysql/java'
 }
 }
}

java {
 registerFeature('mysqlSupport') {
 usingSourceSet(sourceSets.mysqlSupport)
 }
}

dependencies {
 mysqlSupportImplementation 'mysql:mysql-connector-java:8.0.14'
}

Then the consumer can declare a dependency on the MySQL support feature by doing this:

Example 70. Consuming specific features in a multi-project build

build.gradle.kts

dependencies {
 // This project requires the main producer component
 implementation(project(":producer"))

 // But we also want to use its MySQL support
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-mysql-support")
 }
 }
}

build.gradle

dependencies {
 // This project requires the main producer component
 implementation(project(":producer"))

 // But we also want to use its MySQL support
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-mysql-support")
 }
 }

#ex-consuming-specific-features-in-a-multi-project-build

}

This will automatically bring the mysql-connector-java dependency on the runtime classpath. If
there were more than one dependency, all of them would be brought, meaning that a feature can
be used to group dependencies which contribute to a feature together.

Similarly, if an external library with features was published with Gradle Module Metadata, it is
possible to depend on a feature provided by that library:

Example 71. Consuming specific features from an external repository

build.gradle.kts

dependencies {
 // This project requires the main producer component
 implementation("org.gradle.demo:producer:1.0")

 // But we also want to use its MongoDB support
 runtimeOnly("org.gradle.demo:producer:1.0") {
 capabilities {
 requireCapability("org.gradle.demo:producer-mongodb-support")
 }
 }
}

build.gradle

dependencies {
 // This project requires the main producer component
 implementation('org.gradle.demo:producer:1.0')

 // But we also want to use its MongoDB support
 runtimeOnly('org.gradle.demo:producer:1.0') {
 capabilities {
 requireCapability("org.gradle.demo:producer-mongodb-support")
 }
 }
}

Handling mutually exclusive variants

The main advantage of using capabilities as a way to handle features is that you can precisely
handle compatibility of variants. The rule is simple:

https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-latest-specification.md
#ex-consuming-specific-features-from-an-external-repository

No two variants in a dependency graph can provide the same capability

We can leverage this to ensure that Gradle fails whenever the user mis-configures dependencies.
Consider a situation where your library supports MySQL, Postgres and MongoDB, but that it’s only
allowed to choose one of those at the same time. We can model this restriction by ensuring each
feature also provides the same capability, thus making it impossible for these features to be used
together in the same graph.

Example 72. A producer of multiple features that are mutually exclusive

build.gradle.kts

java {
 registerFeature("mysqlSupport") {
 usingSourceSet(sourceSets["mysqlSupport"])
 capability("org.gradle.demo", "producer-db-support", "1.0")
 capability("org.gradle.demo", "producer-mysql-support", "1.0")
 }
 registerFeature("postgresSupport") {
 usingSourceSet(sourceSets["postgresSupport"])
 capability("org.gradle.demo", "producer-db-support", "1.0")
 capability("org.gradle.demo", "producer-postgres-support", "1.0")
 }
 registerFeature("mongoSupport") {
 usingSourceSet(sourceSets["mongoSupport"])
 capability("org.gradle.demo", "producer-db-support", "1.0")
 capability("org.gradle.demo", "producer-mongo-support", "1.0")
 }
}

dependencies {
 "mysqlSupportImplementation"("mysql:mysql-connector-java:8.0.14")
 "postgresSupportImplementation"("org.postgresql:postgresql:42.2.5")
 "mongoSupportImplementation"("org.mongodb:mongodb-driver-sync:3.9.1")
}

build.gradle

java {
 registerFeature('mysqlSupport') {
 usingSourceSet(sourceSets.mysqlSupport)
 capability('org.gradle.demo', 'producer-db-support', '1.0')
 capability('org.gradle.demo', 'producer-mysql-support', '1.0')
 }
 registerFeature('postgresSupport') {
 usingSourceSet(sourceSets.postgresSupport)
 capability('org.gradle.demo', 'producer-db-support', '1.0')

#ex-a-producer-of-multiple-features-that-are-mutually-exclusive

 capability('org.gradle.demo', 'producer-postgres-support', '1.0')
 }
 registerFeature('mongoSupport') {
 usingSourceSet(sourceSets.mongoSupport)
 capability('org.gradle.demo', 'producer-db-support', '1.0')
 capability('org.gradle.demo', 'producer-mongo-support', '1.0')
 }
}

dependencies {
 mysqlSupportImplementation 'mysql:mysql-connector-java:8.0.14'
 postgresSupportImplementation 'org.postgresql:postgresql:42.2.5'
 mongoSupportImplementation 'org.mongodb:mongodb-driver-sync:3.9.1'
}

Here, the producer declares 3 features, one for each database runtime support:

• mysql-support provides both the db-support and mysql-support capabilities

• postgres-support provides both the db-support and postgres-support capabilities

• mongo-support provides both the db-support and mongo-support capabilities

Then if the consumer tries to get both the postgres-support and mysql-support features (this also
works transitively):

Example 73. A consumer trying to use 2 incompatible variants at the same time

build.gradle.kts

dependencies {
 // This project requires the main producer component
 implementation(project(":producer"))

 // Let's try to ask for both MySQL and Postgres support
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-mysql-support")
 }
 }
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-postgres-support")
 }
 }
}

#ex-a-consumer-trying-to-use-2-incompatible-variants-at-the-same-time

build.gradle

dependencies {
 implementation(project(":producer"))

 // Let's try to ask for both MySQL and Postgres support
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-mysql-support")
 }
 }
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-postgres-support")
 }
 }
}

Dependency resolution would fail with the following error:

Cannot choose between
 org.gradle.demo:producer:1.0 variant mysqlSupportRuntimeElements and
 org.gradle.demo:producer:1.0 variant postgresSupportRuntimeElements
 because they provide the same capability: org.gradle.demo:producer-db-support:1.0

PLATFORMS

JVM BUILDS

Building Java & JVM projects
Gradle uses a convention-over-configuration approach to building JVM-based projects that borrows
several conventions from Apache Maven. In particular, it uses the same default directory structure
for source files and resources, and it works with Maven-compatible repositories.

We will look at Java projects in detail in this chapter, but most of the topics apply to other
supported JVM languages as well, such as Kotlin, Groovy and Scala. If you don’t have much
experience with building JVM-based projects with Gradle, take a look at the Java samples for step-
by-step instructions on how to build various types of basic Java projects.

NOTE
The example in this section use the Java Library Plugin. However the described
features are shared by all JVM plugins. Specifics of the different plugins are
available in their dedicated documentation.

TIP
There are a number of hands-on samples that you can explore for Java, Groovy, Scala
and Kotlin.

Introduction

The simplest build script for a Java project applies the Java Library Plugin and optionally sets the
project version and selects the Java toolchain to use:

Example 74. Applying the Java Library Plugin

build.gradle.kts

plugins {
 `java-library`
}

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

version = "1.2.1"

build.gradle

plugins {
 id 'java-library'

https://kotlinlang.org/docs/reference/using-gradle.html#targeting-the-jvm
../samples/index.html#java
../samples/index.html#java
../samples/index.html#groovy
../samples/index.html#scala
../samples/index.html#kotlin
#ex-applying-the-java-library-plugin

}

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

version = '1.2.1'

By applying the Java Library Plugin, you get a whole host of features:

• A compileJava task that compiles all the Java source files under src/main/java

• A compileTestJava task for source files under src/test/java

• A test task that runs the tests from src/test/java

• A jar task that packages the main compiled classes and resources from src/main/resources into a
single JAR named <project>-<version>.jar

• A javadoc task that generates Javadoc for the main classes

This isn’t sufficient to build any non-trivial Java project — at the very least, you’ll probably have
some file dependencies. But it means that your build script only needs the information that is
specific to your project.

NOTE

Although the properties in the example are optional, we recommend that you
specify them in your projects. Configuring the toolchain protects against problems
with the project being built with different Java versions. The version string is
important for tracking the progression of the project. The project version is also
used in archive names by default.

The Java Library Plugin also integrates the above tasks into the standard Base Plugin lifecycle tasks:

• jar is attached to assemble

• test is attached to check

The rest of the chapter explains the different avenues for customizing the build to your
requirements. You will also see later how to adjust the build for libraries, applications, web apps
and enterprise apps.

Declaring your source files via source sets

Gradle’s Java support was the first to introduce a new concept for building source-based projects:
source sets. The main idea is that source files and resources are often logically grouped by type,
such as application code, unit tests and integration tests. Each logical group typically has its own
sets of file dependencies, classpaths, and more. Significantly, the files that form a source set don’t
have to be located in the same directory!

base_plugin.pdf#sec:base_tasks

Source sets are a powerful concept that tie together several aspects of compilation:

• the source files and where they’re located

• the compilation classpath, including any required dependencies (via Gradle configurations)

• where the compiled class files are placed

You can see how these relate to one another in this diagram:

Figure 18. Source sets and Java compilation

The shaded boxes represent properties of the source set itself. On top of that, the Java Library
Plugin automatically creates a compilation task for every source set you or a plugin defines —
named compileSourceSetJava — and several dependency configurations.

The main source set

Most language plugins, Java included, automatically create a source set called main, which is used
for the project’s production code. This source set is special in that its name is not included in the
names of the configurations and tasks, hence why you have just a compileJava task and compileOnly
and implementation configurations rather than compileMainJava, mainCompileOnly and
mainImplementation respectively.

Java projects typically include resources other than source files, such as properties files, that may
need processing — for example by replacing tokens within the files — and packaging within the
final JAR. The Java Library Plugin handles this by automatically creating a dedicated task for each
defined source set called processSourceSetResources (or processResources for the main source set).
The following diagram shows how the source set fits in with this task:

glossary.pdf#sub:terminology_configuration
java_plugin.pdf#java_source_set_configurations

Figure 19. Processing non-source files for a source set

As before, the shaded boxes represent properties of the source set, which in this case comprises the
locations of the resource files and where they are copied to.

In addition to the main source set, the Java Library Plugin defines a test source set that represents
the project’s tests. This source set is used by the test task, which runs the tests. You can learn more
about this task and related topics in the Java testing chapter.

Projects typically use this source set for unit tests, but you can also use it for integration, acceptance
and other types of test if you wish. The alternative approach is to define a new source set for each
of your other test types, which is typically done for one or both of the following reasons:

• You want to keep the tests separate from one another for aesthetics and manageability

• The different test types require different compilation or runtime classpaths or some other
difference in setup

You can see an example of this approach in the Java testing chapter, which shows you how to set up
integration tests in a project.

You’ll learn more about source sets and the features they provide in:

• Customizing file and directory locations

• Configuring Java integration tests

Source set configurations

When a source set is created, it also creates a number of configurations as described above. Build
logic should not attempt to create or access these configurations until they are first created by the
source set.

When creating a source set, if one of these automatically created configurations already exists,
Gradle will emit a deprecation warning. If the existing configuration’s role is different than the role
that the source set would have assigned, its role will be mutated to the correct value and another
deprecation warning will be emitted.

The build below demonstrates this unwanted behavior.

Example 75. Configurations created prior to their associated source sets

build.gradle.kts

configurations {
 val myCodeCompileClasspath: Configuration by creating
}

#ex-configurations-created-prior-to-their-associated-source-sets

sourceSets {
 val myCode: SourceSet by creating
}

build.gradle

configurations {
 myCodeCompileClasspath
}

sourceSets {
 myCode
}

In this case, the following deprecation warning is emitted:

When creating configurations during sourceSet custom setup, Gradle found that
configuration customCompileClasspath already exists with permitted usage(s):
 Consumable - this configuration can be selected by another project as a dependency
 Resolvable - this configuration can be resolved by this project to a set of files
 Declarable - this configuration can have dependencies added to it
Yet Gradle expected to create it with the usage(s):
 Resolvable - this configuration can be resolved by this project to a set of files

Following two simple best practices will avoid this problem:

1. Don’t create configurations with names that will be used by source sets, such as names ending
in Api, Implementation, ApiElements, CompileOnly, CompileOnlyApi, RuntimeOnly, RuntimeClasspath or
RuntimeElements. (This list is not exhaustive.)

2. Create any custom source sets prior to any custom configurations.

Remember that any time you reference a configuration within the configurations container - with
or without supplying an initialization action - Gradle will create the configuration. Sometimes when
using the Groovy DSL this creation is not obvious, as in the example below, where
myCustomConfiguration is created prior to the call to extendsFrom.

Example 76. Custom Configuration creation in Groovy

build.gradle

configurations {
 myCustomConfiguration.extendsFrom(implementation)

#ex-custom-configuration-creation-in-groovy

}

Managing your dependencies

The vast majority of Java projects rely on libraries, so managing a project’s dependencies is an
important part of building a Java project. Dependency management is a big topic, so we will focus
on the basics for Java projects here. If you’d like to dive into the detail, check out the introduction to
dependency management.

Specifying the dependencies for your Java project requires just three pieces of information:

• Which dependency you need, such as a name and version

• What it’s needed for, e.g. compilation or running

• Where to look for it

The first two are specified in a dependencies {} block and the third in a repositories {} block. For
example, to tell Gradle that your project requires version 3.6.7 of Hibernate Core to compile and
run your production code, and that you want to download the library from the Maven Central
repository, you can use the following fragment:

Example 77. Declaring dependencies

build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.hibernate:hibernate-core:3.6.7.Final")
}

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.hibernate:hibernate-core:3.6.7.Final'
}

getting_started_dep_man.pdf#dependency-management-in-gradle
getting_started_dep_man.pdf#dependency-management-in-gradle
http://hibernate.org/
#ex-declaring-dependencies

The Gradle terminology for the three elements is as follows:

• Repository (ex: mavenCentral()) — where to look for the modules you declare as dependencies

• Configuration (ex: implementation) — a named collection of dependencies, grouped together for
a specific goal such as compiling or running a module — a more flexible form of Maven scopes

• Module coordinate (ex: org.hibernate:hibernate-core-3.6.7.Final) — the ID of the dependency,
usually in the form '<group>:<module>:<version>' (or '<groupId>:<artifactId>:<version>' in
Maven terminology)

You can find a more comprehensive glossary of dependency management terms here.

As far as configurations go, the main ones of interest are:

• compileOnly — for dependencies that are necessary to compile your production code but
shouldn’t be part of the runtime classpath

• implementation (supersedes compile) — used for compilation and runtime

• runtimeOnly (supersedes runtime) — only used at runtime, not for compilation

• testCompileOnly — same as compileOnly except it’s for the tests

• testImplementation — test equivalent of implementation

• testRuntimeOnly — test equivalent of runtimeOnly

You can learn more about these and how they relate to one another in the plugin reference chapter.

Be aware that the Java Library Plugin offers two additional configurations — api and
compileOnlyApi — for dependencies that are required for compiling both the module and any
modules that depend on it.

Why no compile configuration?

The Java Library Plugin has historically used the compile configuration for dependencies that are
required to both compile and run a project’s production code. It is now deprecated, and will issue
warnings when used, because it doesn’t distinguish between dependencies that impact the public
API of a Java library project and those that don’t. You can learn more about the importance of this
distinction in Building Java libraries.

We have only scratched the surface here, so we recommend that you read the dedicated
dependency management chapters once you’re comfortable with the basics of building Java
projects with Gradle. Some common scenarios that require further reading include:

• Defining a custom Maven- or Ivy-compatible repository

• Using dependencies from a local filesystem directory

• Declaring dependencies with changing (e.g. SNAPSHOT) and dynamic (range) versions

• Declaring a sibling project as a dependency

• Controlling transitive dependencies and their versions

• Testing your fixes to a 3rd-party dependency via composite builds (a better alternative to
publishing to and consuming from Maven Local)

glossary.pdf#dependency_management_terminology
java_plugin.pdf#sec:java_plugin_and_dependency_management

You’ll discover that Gradle has a rich API for working with dependencies — one that takes time to
master, but is straightforward to use for common scenarios.

Compiling your code

Compiling both your production and test code can be trivially easy if you follow the conventions:

1. Put your production source code under the src/main/java directory

2. Put your test source code under src/test/java

3. Declare your production compile dependencies in the compileOnly or implementation
configurations (see previous section)

4. Declare your test compile dependencies in the testCompileOnly or testImplementation
configurations

5. Run the compileJava task for the production code and compileTestJava for the tests

Other JVM language plugins, such as the one for Groovy, follow the same pattern of conventions.
We recommend that you follow these conventions wherever possible, but you don’t have to. There
are several options for customization, as you’ll see next.

Customizing file and directory locations

Imagine you have a legacy project that uses an src directory for the production code and test for the
test code. The conventional directory structure won’t work, so you need to tell Gradle where to find
the source files. You do that via source set configuration.

Each source set defines where its source code resides, along with the resources and the output
directory for the class files. You can override the convention values by using the following syntax:

Example 78. Declaring custom source directories

build.gradle.kts

sourceSets {
 main {
 java {
 setSrcDirs(listOf("src"))
 }
 }

 test {
 java {
 setSrcDirs(listOf("test"))
 }
 }
}

#ex-declaring-custom-source-directories

build.gradle

sourceSets {
 main {
 java {
 srcDirs = ['src']
 }
 }

 test {
 java {
 srcDirs = ['test']
 }
 }
}

Now Gradle will only search directly in src and test for the respective source code. What if you
don’t want to override the convention, but simply want to add an extra source directory, perhaps
one that contains some third-party source code you want to keep separate? The syntax is similar:

Example 79. Declaring custom source directories additively

build.gradle.kts

sourceSets {
 main {
 java {
 srcDir("thirdParty/src/main/java")
 }
 }
}

build.gradle

sourceSets {
 main {
 java {
 srcDir 'thirdParty/src/main/java'
 }
 }
}

#ex-declaring-custom-source-directories-additively

Crucially, we’re using the method srcDir() here to append a directory path, whereas setting the
srcDirs property replaces any existing values. This is a common convention in Gradle: setting a
property replaces values, while the corresponding method appends values.

You can see all the properties and methods available on source sets in the DSL reference for
SourceSet and SourceDirectorySet. Note that srcDirs and srcDir() are both on SourceDirectorySet.

Changing compiler options

Most of the compiler options are accessible through the corresponding task, such as compileJava
and compileTestJava. These tasks are of type JavaCompile, so read the task reference for an up-to-
date and comprehensive list of the options.

For example, if you want to use a separate JVM process for the compiler and prevent compilation
failures from failing the build, you can use this configuration:

Example 80. Setting Java compiler options

build.gradle.kts

tasks.compileJava {
 options.isIncremental = true
 options.isFork = true
 options.isFailOnError = false
}

build.gradle

compileJava {
 options.incremental = true
 options.fork = true
 options.failOnError = false
}

That’s also how you can change the verbosity of the compiler, disable debug output in the byte code
and configure where the compiler can find annotation processors.

Targeting a specific Java version

By default, Gradle will compile Java code to the language level of the JVM running Gradle. If you
need to target a specific version of Java when compiling, Gradle provides multiple options:

1. Using Java toolchains is a preferred way to target a language version.
A toolchain uniformly handles compilation, execution and Javadoc generation, and it can be
configured on the project level.

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.SourceSet.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.file.SourceDirectorySet.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.JavaCompile.html
#ex-setting-java-compiler-options

2. Using release property is possible starting from Java 10.
Selecting a Java release makes sure that compilation is done with the configured language level
and against the JDK APIs from that Java version.

3. Using sourceCompatibility and targetCompatibility properties.
Although not generally advised, these options were historically used to configure the Java
version during compilation.

Using toolchains

When Java code is compiled using a specific toolchain, the actual compilation is carried out by a
compiler of the specified Java version. The compiler provides access to the language features and
JDK APIs for the requested Java language version.

In the simplest case, the toolchain can be configured for a project using the java extension. This
way, not only compilation benefits from it, but also other tasks such as test and javadoc will also
consistently use the same toolchain.

build.gradle.kts

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

You can learn more about this in the Java toolchains guide.

Using Java release version

Setting the release flag ensures the specified language level is used regardless of which compiler
actually performs the compilation. To use this feature, the compiler must support the requested
release version. It is possible to specify an earlier release version while compiling with a more
recent toolchain.

Gradle supports using the release flag from Java 10. It can be configured on the compilation task as
follows.

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:release
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:release

Example 81. Setting Java release flag

build.gradle.kts

tasks.compileJava {
 options.release = 7
}

build.gradle

compileJava {
 options.release = 7
}

The release flag provides guarantees similar to toolchains. It validates that the Java sources are not
using language features introduced in later Java versions, and also that the code does not access
APIs from more recent JDKs. The bytecode produced by the compiler also corresponds to the
requested Java version, meaning that the compiled code cannot be executed on older JVMs.

The release option of the Java compiler was introduced in Java 9. However, using this option with
Gradle is only possible starting with Java 10, due to a bug in Java 9.

Using Java compatibility options

WARNING
Using compatibility properties can lead to runtime failures when executing
compiled code due to weaker guarantees they provide. Instead, consider using
toolchains or the release flag.

The sourceCompatibility and targetCompatibility options correspond to the Java compiler options
-source and -target. They are considered a legacy mechanism for targeting a specific Java version.
However, these options do not protect against the use of APIs introduced in later Java versions.

sourceCompatibility

Defines the language version of Java used in your source files.

targetCompatibility

Defines the minimum JVM version your code should run on, i.e. it determines the version of the
bytecode generated by the compiler.

These options can be set per JavaCompile task, or on the java { } extension for all compile tasks,
using properties with the same names.

Targeting Java 6 and Java 7

Gradle itself can only run on a JVM with Java version 8 or higher. However, Gradle still supports

#ex-setting-java-release-flag
https://bugs.openjdk.org/browse/JDK-8139607
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.JavaCompile.html

compiling, testing, generating Javadocs and executing applications for Java 6 and Java 7. Java 5 and
below are not supported.

NOTE If using Java 10+, leveraging the release flag might be an easier solution, see above.

To use Java 6 or Java 7, the following tasks need to be configured:

• JavaCompile task to fork and use the correct Java home

• Javadoc task to use the correct javadoc executable

• Test and the JavaExec task to use the correct java executable.

With the usage of Java toolchains, this can be done as follows:

Example 82. Configuring Java 7 build

build.gradle.kts

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(7)
 }
}

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(7)
 }
}

The only requirement is that Java 7 is installed and has to be either in a location Gradle can detect
automatically or explicitly configured.

Compiling independent sources separately

Most projects have at least two independent sets of sources: the production code and the test code.
Gradle already makes this scenario part of its Java convention, but what if you have other sets of
sources? One of the most common scenarios is when you have separate integration tests of some
form or other. In that case, a custom source set may be just what you need.

You can see a complete example for setting up integration tests in the Java testing chapter. You can
set up other source sets that fulfil different roles in the same way. The question then becomes:
when should you define a custom source set?

#ex-configuring-java-7-build

To answer that question, consider whether the sources:

1. Need to be compiled with a unique classpath

2. Generate classes that are handled differently from the main and test ones

3. Form a natural part of the project

If your answer to both 3 and either one of the others is yes, then a custom source set is probably the
right approach. For example, integration tests are typically part of the project because they test the
code in main. In addition, they often have either their own dependencies independent of the test
source set or they need to be run with a custom Test task.

Other common scenarios are less clear cut and may have better solutions. For example:

• Separate API and implementation JARs — it may make sense to have these as separate projects,
particularly if you already have a multi-project build

• Generated sources — if the resulting sources should be compiled with the production code, add
their path(s) to the main source set and make sure that the compileJava task depends on the task
that generates the sources

If you’re unsure whether to create a custom source set or not, then go ahead and do so. It should be
straightforward and if it’s not, then it’s probably not the right tool for the job.

Debugging compiling errors

Gradle provides detailed reporting for compilation failures.

If a compilation task fails, the summary of errors is displayed in the following locations:

• The task’s output, providing immediate context for the error.

• The "What went wrong" summary at the bottom of the build output, consolidated with all other
failures for easy reference.

* What went wrong:
Execution failed for task ':project1:compileJava'.
> Compilation failed; see the compiler output below.
Java compilation warning
 sample-project/src/main/java/Problem1.java:6: warning: [cast] redundant cast to
String
 var warning = (String)"warning";
 ^
Java compilation error
 sample-project/src/main/java/Problem2.java:6: error: incompatible types: int cannot
be converted to String
 String a = 1;
 ^

This reporting feature works with the —continue flag.

Managing resources

Many Java projects make use of resources beyond source files, such as images, configuration files
and localization data. Sometimes these files simply need to be packaged unchanged and sometimes
they need to be processed as template files or in some other way. Either way, the Java Library
Plugin adds a specific Copy task for each source set that handles the processing of its associated
resources.

The task’s name follows the convention of processSourceSetResources — or processResources for the
main source set — and it will automatically copy any files in src/[sourceSet]/resources to a directory
that will be included in the production JAR. This target directory will also be included in the
runtime classpath of the tests.

Since processResources is an instance of the ProcessResources task, you can perform any of the
processing described in the Working With Files chapter.

Java properties files and reproducible builds

You can easily create Java properties files via the WriteProperties task, which fixes a well-known
problem with Properties.store() that can reduce the usefulness of incremental builds.

The standard Java API for writing properties files produces a unique file every time, even when the
same properties and values are used, because it includes a timestamp in the comments. Gradle’s
WriteProperties task generates exactly the same output byte-for-byte if none of the properties have
changed. This is achieved by a few tweaks to how a properties file is generated:

• no timestamp comment is added to the output

• the line separator is system independent, but can be configured explicitly (it defaults to '\n')

• the properties are sorted alphabetically

Sometimes it can be desirable to recreate archives in a byte for byte way on different machines. You
want to be sure that building an artifact from source code produces the same result, byte for byte,
no matter when and where it is built. This is necessary for projects like reproducible-builds.org.

These tweaks not only lead to better incremental build integration, but they also help with
reproducible builds. In essence, reproducible builds guarantee that you will see the same results
from a build execution — including test results and production binaries — no matter when or on
what system you run it.

Running tests

Alongside providing automatic compilation of unit tests in src/test/java, the Java Library Plugin has
native support for running tests that use JUnit 3, 4 & 5 (JUnit 5 support came in Gradle 4.6) and
TestNG. You get:

• An automatic test task of type Test, using the test source set

• An HTML test report that includes the results from all Test tasks that run

• Easy filtering of which tests to run

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.WriteProperties.html
incremental_build.pdf#incremental_build
https://reproducible-builds.org
https://docs.gradle.org/4.6/release-notes.html#junit-5-support
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html

• Fine-grained control over how the tests are run

• The opportunity to create your own test execution and test reporting tasks

You do not get a Test task for every source set you declare, since not every source set represents
tests! That’s why you typically need to create your own Test tasks for things like integration and
acceptance tests if they can’t be included with the test source set.

As there is a lot to cover when it comes to testing, the topic has its own chapter in which we look at:

• How tests are run

• How to run a subset of tests via filtering

• How Gradle discovers tests

• How to configure test reporting and add your own reporting tasks

• How to make use of specific JUnit and TestNG features

You can also learn more about configuring tests in the DSL reference for Test.

Packaging and publishing

How you package and potentially publish your Java project depends on what type of project it is.
Libraries, applications, web applications and enterprise applications all have differing
requirements. In this section, we will focus on the bare bones provided by the Java Library Plugin.

By default, the Java Library Plugin provides the jar task that packages all the compiled production
classes and resources into a single JAR. This JAR is also automatically built by the assemble task.
Furthermore, the plugin can be configured to provide the javadocJar and sourcesJar tasks to
package Javadoc and source code if so desired. If a publishing plugin is used, these tasks will
automatically run during publishing or can be called directly.

build.gradle.kts

java {
 withJavadocJar()
 withSourcesJar()
}

build.gradle

java {
 withJavadocJar()
 withSourcesJar()
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html

If you want to create an 'uber' (AKA 'fat') JAR, then you can use a task definition like this:

build.gradle.kts

plugins {
 java
}

version = "1.0.0"

repositories {
 mavenCentral()
}

dependencies {
 implementation("commons-io:commons-io:2.6")
}

tasks.register<Jar>("uberJar") {
 archiveClassifier = "uber"

 from(sourceSets.main.get().output)

 dependsOn(configurations.runtimeClasspath)
 from({
 configurations.runtimeClasspath.get().filter {
it.name.endsWith("jar") }.map { zipTree(it) }
 })
}

build.gradle

plugins {
 id 'java'
}

version = '1.0.0'

repositories {
 mavenCentral()
}

dependencies {
 implementation 'commons-io:commons-io:2.6'
}

tasks.register('uberJar', Jar) {

 archiveClassifier = 'uber'

 from sourceSets.main.output

 dependsOn configurations.runtimeClasspath
 from {
 configurations.runtimeClasspath.findAll { it.name.endsWith('jar') }
.collect { zipTree(it) }
 }
}

See Jar for more details on the configuration options available to you. And note that you need to use
archiveClassifier rather than archiveAppendix here for correct publication of the JAR.

You can use one of the publishing plugins to publish the JARs created by a Java project:

• Maven Publish Plugin

• Ivy Publish Plugin

Modifying the JAR manifest

Each instance of the Jar, War and Ear tasks has a manifest property that allows you to customize the
MANIFEST.MF file that goes into the corresponding archive. The following example demonstrates
how to set attributes in the JAR’s manifest:

build.gradle.kts

tasks.jar {
 manifest {
 attributes(
 "Implementation-Title" to "Gradle",
 "Implementation-Version" to archiveVersion
)
 }
}

build.gradle

jar {
 manifest {
 attributes("Implementation-Title": "Gradle",
 "Implementation-Version": archiveVersion)
 }
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Jar.html

See Manifest for the configuration options it provides.

You can also create standalone instances of Manifest. One reason for doing so is to share manifest
information between JARs. The following example demonstrates how to share common attributes
between JARs:

build.gradle.kts

val sharedManifest = java.manifest {
 attributes (
 "Implementation-Title" to "Gradle",
 "Implementation-Version" to version
)
}

tasks.register<Jar>("fooJar") {
 manifest = java.manifest {
 from(sharedManifest)
 }
}

build.gradle

def sharedManifest = java.manifest {
 attributes("Implementation-Title": "Gradle",
 "Implementation-Version": version)
}
tasks.register('fooJar', Jar) {
 manifest = java.manifest {
 from sharedManifest
 }
}

Another option available to you is to merge manifests into a single Manifest object. Those source
manifests can take the form of a text for or another Manifest object. In the following example, the
source manifests are all text files except for sharedManifest, which is the Manifest object from the
previous example:

build.gradle.kts

tasks.register<Jar>("barJar") {
 manifest {
 attributes("key1" to "value1")

https://docs.gradle.org/8.12/javadoc/org/gradle/api/java/archives/Manifest.html

 from(sharedManifest, "src/config/basemanifest.txt")
 from(listOf("src/config/javabasemanifest.txt",
"src/config/libbasemanifest.txt")) {
 eachEntry(Action<ManifestMergeDetails> {
 if (baseValue != mergeValue) {
 value = baseValue
 }
 if (key == "foo") {
 exclude()
 }
 })
 }
 }
}

build.gradle

tasks.register('barJar', Jar) {
 manifest {
 attributes key1: 'value1'
 from sharedManifest, 'src/config/basemanifest.txt'
 from(['src/config/javabasemanifest.txt',
'src/config/libbasemanifest.txt']) {
 eachEntry { details ->
 if (details.baseValue != details.mergeValue) {
 details.value = baseValue
 }
 if (details.key == 'foo') {
 details.exclude()
 }
 }
 }
 }
}

Manifests are merged in the order they are declared in the from statement. If the base manifest and
the merged manifest both define values for the same key, the merged manifest wins by default. You
can fully customize the merge behavior by adding eachEntry actions in which you have access to a
ManifestMergeDetails instance for each entry of the resulting manifest. Note that the merge is done
lazily, either when generating the JAR or when Manifest.writeTo() or
Manifest.getEffectiveManifest() are called.

Speaking of writeTo(), you can use that to easily write a manifest to disk at any time, like so:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

build.gradle.kts

tasks.jar { manifest.writeTo(layout.buildDirectory.file("mymanifest.mf")) }

build.gradle

tasks.named('jar') { manifest.writeTo(layout.buildDirectory.file(
'mymanifest.mf')) }

Generating API documentation

The Java Library Plugin provides a javadoc task of type Javadoc, that will generate standard
Javadocs for all your production code, i.e. whatever source is in the main source set. The task
supports the core Javadoc and standard doclet options described in the Javadoc reference
documentation. See CoreJavadocOptions and StandardJavadocDocletOptions for a complete list of
those options.

As an example of what you can do, imagine you want to use Asciidoc syntax in your Javadoc
comments. To do this, you need to add Asciidoclet to Javadoc’s doclet path. Here’s an example that
does just that:

build.gradle.kts

val asciidoclet by configurations.creating

dependencies {
 asciidoclet("org.asciidoctor:asciidoclet:1.+")
}

tasks.register("configureJavadoc") {
 doLast {
 tasks.javadoc {
 options.doclet = "org.asciidoctor.Asciidoclet"
 options.docletpath = asciidoclet.files.toList()
 }
 }
}

tasks.javadoc {
 dependsOn("configureJavadoc")
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#options
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#options
https://docs.gradle.org/8.12/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
https://docs.gradle.org/8.12/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html

build.gradle

configurations {
 asciidoclet
}

dependencies {
 asciidoclet 'org.asciidoctor:asciidoclet:1.+'
}

tasks.register('configureJavadoc') {
 doLast {
 javadoc {
 options.doclet = 'org.asciidoctor.Asciidoclet'
 options.docletpath = configurations.asciidoclet.files.toList()
 }
 }
}

javadoc {
 dependsOn configureJavadoc
}

You don’t have to create a configuration for this, but it’s an elegant way to handle dependencies
that are required for a unique purpose.

You might also want to create your own Javadoc tasks, for example to generate API docs for the
tests:

build.gradle.kts

tasks.register<Javadoc>("testJavadoc") {
 source = sourceSets.test.get().allJava
}

build.gradle

tasks.register('testJavadoc', Javadoc) {
 source = sourceSets.test.allJava
}

These are just two non-trivial but common customizations that you might come across.

Cleaning the build

The Java Library Plugin adds a clean task to your project by virtue of applying the Base Plugin. This
task simply deletes everything in the layout.buildDirectory directory, hence why you should always
put files generated by the build in there. The task is an instance of Delete and you can change what
directory it deletes by setting its dir property.

Building JVM components

All of the specific JVM plugins are built on top of the Java Plugin. The examples above only
illustrated concepts provided by this base plugin and shared with all JVM plugins.

Read on to understand which plugins fits which project type, as it is recommended to pick a specific
plugin instead of applying the Java Plugin directly.

Building Java libraries

The unique aspect of library projects is that they are used (or "consumed") by other Java projects.
That means the dependency metadata published with the JAR file — usually in the form of a Maven
POM — is crucial. In particular, consumers of your library should be able to distinguish between
two different types of dependencies: those that are only required to compile your library and those
that are also required to compile the consumer.

Gradle manages this distinction via the Java Library Plugin, which introduces an api configuration
in addition to the implementation one covered in this chapter. If the types from a dependency
appear in public fields or methods of your library’s public classes, then that dependency is exposed
via your library’s public API and should therefore be added to the api configuration. Otherwise, the
dependency is an internal implementation detail and should be added to implementation.

If you’re unsure of the difference between an API and implementation dependency, the Java
Library Plugin chapter has a detailed explanation. In addition, you can explore a basic, practical
sample of building a Java library.

Building Java applications

Java applications packaged as a JAR aren’t set up for easy launching from the command line or a
desktop environment. The Application Plugin solves the command line aspect by creating a
distribution that includes the production JAR, its dependencies and launch scripts Unix-like and
Windows systems.

See the plugin’s chapter for more details, but here’s a quick summary of what you get:

• assemble creates ZIP and TAR distributions of the application containing everything needed to
run it

• A run task that starts the application from the build (for easy testing)

• Shell and Windows Batch scripts to start the application

You can see a basic example of building a Java application in the corresponding sample.

base_plugin.pdf#base_plugin
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Delete.html
java_plugin.pdf#java_plugin
../samples/sample_building_java_libraries.html
../samples/sample_building_java_applications.html

Building Java web applications

Java web applications can be packaged and deployed in a number of ways depending on the
technology you use. For example, you might use Spring Boot with a fat JAR or a Reactive-based
system running on Netty. Whatever technology you use, Gradle and its large community of plugins
will satisfy your needs. Core Gradle, though, only directly supports traditional Servlet-based web
applications deployed as WAR files.

That support comes via the War Plugin, which automatically applies the Java Plugin and adds an
extra packaging step that does the following:

• Copies static resources from src/main/webapp into the root of the WAR

• Copies the compiled production classes into a WEB-INF/classes subdirectory of the WAR

• Copies the library dependencies into a WEB-INF/lib subdirectory of the WAR

This is done by the war task, which effectively replaces the jar task — although that task remains
— and is attached to the assemble lifecycle task. See the plugin’s chapter for more details and
configuration options.

There is no core support for running your web application directly from the build, but we do
recommend that you try the Gretty community plugin, which provides an embedded Servlet
container.

Building Java EE applications

Java enterprise systems have changed a lot over the years, but if you’re still deploying to JEE
application servers, you can make use of the Ear Plugin. This adds conventions and a task for
building EAR files. The plugin’s chapter has more details.

Building Java Platforms

A Java platform represents a set of dependency declarations and constraints that form a cohesive
unit to be applied on consuming projects. The platform has no source and no artifact of its own. It
maps in the Maven world to a BOM.

The support comes via the Java Platform plugin, which sets up the different configurations and
publication components.

NOTE This plugin is the exception as it does not apply the Java Plugin.

Enabling Java preview features

WARNING

Using a Java preview feature is very likely to make your code incompatible
with that compiled without a feature preview. As a consequence, we strongly
recommend you not to publish libraries compiled with preview features and
restrict the use of feature previews to toy projects.

To enable Java preview features for compilation, test execution and runtime, you can use the

https://projects.spring.io/spring-boot/
https://www.reactivemanifesto.org/
https://netty.io/
war_plugin.pdf#war_plugin
https://plugins.gradle.org/plugin/org.gretty
ear_plugin.pdf#ear_plugin
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management
https://openjdk.java.net/jeps/12

following DSL snippet:

build.gradle.kts

tasks.withType<JavaCompile>().configureEach {
 options.compilerArgs.add("--enable-preview")
}

tasks.withType<Test>().configureEach {
 jvmArgs("--enable-preview")
}

tasks.withType<JavaExec>().configureEach {
 jvmArgs("--enable-preview")
}

build.gradle

tasks.withType(JavaCompile).configureEach {
 options.compilerArgs += "--enable-preview"
}

tasks.withType(Test).configureEach {
 jvmArgs += "--enable-preview"
}

tasks.withType(JavaExec).configureEach {
 jvmArgs += "--enable-preview"
}

Building other JVM language projects

If you want to leverage the multi language aspect of the JVM, most of what was described here will
still apply.

Gradle itself provides Groovy and Scala plugins. The plugins automatically apply support for
compiling Java code and can be further enhanced by combining them with the java-library plugin.

Compilation dependency between languages

These plugins create a dependency between Groovy/Scala compilation and Java compilation (of
source code in the java folder of a source set). You can change this default behavior by adjusting the
classpath of the involved compile tasks as shown in the following example:

build.gradle.kts

tasks.named<AbstractCompile>("compileGroovy") {
 // Groovy only needs the declared dependencies
 // (and not longer the output of compileJava)
 classpath = sourceSets.main.get().compileClasspath
}
tasks.named<AbstractCompile>("compileJava") {
 // Java also depends on the result of Groovy compilation
 // (which automatically makes it depend of compileGroovy)
 classpath += files(sourceSets.main.get().groovy.classesDirectory)
}

build.gradle

tasks.named('compileGroovy') {
 // Groovy only needs the declared dependencies
 // (and not longer the output of compileJava)
 classpath = sourceSets.main.compileClasspath
}
tasks.named('compileJava') {
 // Java also depends on the result of Groovy compilation
 // (which automatically makes it depend of compileGroovy)
 classpath += files(sourceSets.main.groovy.classesDirectory)
}

1. By setting the compileGroovy classpath to be only sourceSets.main.compileClasspath, we
effectively remove the previous dependency on compileJava that was declared by having the
classpath also take into consideration sourceSets.main.java.classesDirectory

2. By adding sourceSets.main.groovy.classesDirectory to the compileJava classpath, we effectively
declare a dependency on the compileGroovy task

All of this is possible through the use of directory properties.

Extra language support

Beyond core Gradle, there are other great plugins for more JVM languages!

Testing in Java & JVM projects
Testing on the JVM is a rich subject matter. There are many different testing libraries and
frameworks, as well as many different types of test. All need to be part of the build, whether they
are executed frequently or infrequently. This chapter is dedicated to explaining how Gradle
handles differing requirements between and within builds, with significant coverage of how it

https://plugins.gradle.org/search?term=jvm

integrates with the two most common testing frameworks: JUnit and TestNG.

It explains:

• Ways to control how the tests are run (Test execution)

• How to select specific tests to run (Test filtering)

• What test reports are generated and how to influence the process (Test reporting)

• How Gradle finds tests to run (Test detection)

• How to make use of the major frameworks' mechanisms for grouping tests together (Test
grouping)

But first, let’s look at the basics of JVM testing in Gradle.

NOTE
A new configuration DSL for modeling test execution phases is available via the
incubating JVM Test Suite plugin.

The basics

All JVM testing revolves around a single task type: Test. This runs a collection of test cases using any
supported test library — JUnit, JUnit Platform or TestNG — and collates the results. You can then
turn those results into a report via an instance of the TestReport task type.

In order to operate, the Test task type requires just two pieces of information:

• Where to find the compiled test classes (property: Test.getTestClassesDirs())

• The execution classpath, which should include the classes under test as well as the test library
that you’re using (property: Test.getClasspath())

When you’re using a JVM language plugin — such as the Java Plugin — you will automatically get
the following:

• A dedicated test source set for unit tests

• A test task of type Test that runs those unit tests

The JVM language plugins use the source set to configure the task with the appropriate execution
classpath and the directory containing the compiled test classes. In addition, they attach the test
task to the check lifecycle task.

It’s also worth bearing in mind that the test source set automatically creates corresponding
dependency configurations — of which the most useful are testImplementation and testRuntimeOnly
— that the plugins tie into the test task’s classpath.

All you need to do in most cases is configure the appropriate compilation and runtime
dependencies and add any necessary configuration to the test task. The following example shows a
simple setup that uses JUnit Platform and changes the maximum heap size for the tests' JVM to 1
gigabyte:

https://junit.org/
https://testng.org/
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.TestReport.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:testClassesDirs
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:classpath
java_plugin.pdf#java_plugin
java_plugin.pdf#java_source_set_configurations
java_plugin.pdf#java_source_set_configurations

Example 83. A basic configuration for the 'test' task

build.gradle.kts

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
}

tasks.named<Test>("test") {
 useJUnitPlatform()

 maxHeapSize = "1G"

 testLogging {
 events("passed")
 }
}

build.gradle

dependencies {
 testImplementation 'org.junit.jupiter:junit-jupiter:5.7.1'
 testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

tasks.named('test', Test) {
 useJUnitPlatform()

 maxHeapSize = '1G'

 testLogging {
 events "passed"
 }
}

The Test task has many generic configuration options as well as several framework-specific ones
that you can find described in JUnitOptions, JUnitPlatformOptions and TestNGOptions. We cover a
significant number of them in the rest of the chapter.

If you want to set up your own Test task with its own set of test classes, then the easiest approach is
to create your own source set and Test task instance, as shown in Configuring integration tests.

#ex-a-basic-configuration-for-the-test-task
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/junit/JUnitOptions.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/junitplatform/JUnitPlatformOptions.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html

Test execution

Gradle executes tests in a separate ('forked') JVM, isolated from the main build process. This
prevents classpath pollution and excessive memory consumption for the build process. It also
allows you to run the tests with different JVM arguments than the build is using.

You can control how the test process is launched via several properties on the Test task, including
the following:

maxParallelForks — default: 1

You can run your tests in parallel by setting this property to a value greater than 1. This may
make your test suites complete faster, particularly if you run them on a multi-core CPU. When
using parallel test execution, make sure your tests are properly isolated from one another. Tests
that interact with the filesystem are particularly prone to conflict, causing intermittent test
failures.

Your tests can distinguish between parallel test processes by using the value of the
org.gradle.test.worker property, which is unique for each process. You can use this for anything
you want, but it’s particularly useful for filenames and other resource identifiers to prevent the
kind of conflict we just mentioned.

forkEvery — default: 0 (no maximum)

This property specifies the maximum number of test classes that Gradle should run on a test
process before its disposed of and a fresh one created. This is mainly used as a way to manage
leaky tests or frameworks that have static state that can’t be cleared or reset between tests.

Warning: a low value (other than 0) can severely hurt the performance of the tests

ignoreFailures — default: false

If this property is true, Gradle will continue with the project’s build once the tests have
completed, even if some of them have failed. Note that, by default, the Test task always executes
every test that it detects, irrespective of this setting.

failFast — (since Gradle 4.6) default: false

Set this to true if you want the build to fail and finish as soon as one of your tests fails. This can
save a lot of time when you have a long-running test suite and is particularly useful when
running the build on continuous integration servers. When a build fails before all tests have run,
the test reports only include the results of the tests that have completed, successfully or not.

You can also enable this behavior by using the --fail-fast command line option, or disable it
respectively with --no-fail-fast.

testLogging — default: not set

This property represents a set of options that control which test events are logged and at what
level. You can also configure other logging behavior via this property. See TestLoggingContainer
for more detail.

dryRun — default: false

If this property is true, Gradle will simulate the execution of the tests without actually running

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLoggingContainer.html

them. This will still generate reports, allowing for inspection of what tests were selected. This
can be used to verify that your test filtering configuration is correct without actually running the
tests.

You can also enable this behavior by using the --test-dry-run command-line option, or disable it
respectively with --no-test-dry-run.

See Test for details on all the available configuration options.

The test process can exit unexpectedly if configured incorrectly. For instance, if the Java executable
does not exist or an invalid JVM argument is provided, the test process will fail to start. Similarly, if
a test makes programmatic changes to the test process, this can also cause unexpected failures.

For example, issues may occur if a SecurityManager is modified in a test because Gradle’s internal
messaging depends on reflection and socket communication, which may be disrupted if the
permissions on the security manager change. In this particular case, you should restore the original
SecurityManager after the test so that the gradle test worker process can continue to function.

Test filtering

It’s a common requirement to run subsets of a test suite, such as when you’re fixing a bug or
developing a new test case. Gradle provides two mechanisms to do this:

• Filtering (the preferred option)

• Test inclusion/exclusion

Filtering supersedes the inclusion/exclusion mechanism, but you may still come across the latter in
the wild.

With Gradle’s test filtering you can select tests to run based on:

• A fully-qualified class name or fully qualified method name, e.g. org.gradle.SomeTest,
org.gradle.SomeTest.someMethod

• A simple class name or method name if the pattern starts with an upper-case letter, e.g.
SomeTest, SomeTest.someMethod (since Gradle 4.7)

• '*' wildcard matching

You can enable filtering either in the build script or via the --tests command-line option. Here’s an
example of some filters that are applied every time the build runs:

Example 84. Filtering tests in the build script

build.gradle.kts

tasks.test {
 filter {
 //include specific method in any of the tests
 includeTestsMatching("*UiCheck")

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html
#ex-filtering-tests-in-the-build-script

 //include all tests from package
 includeTestsMatching("org.gradle.internal.*")

 //include all integration tests
 includeTestsMatching("*IntegTest")
 }
}

build.gradle

test {
 filter {
 //include specific method in any of the tests
 includeTestsMatching "*UiCheck"

 //include all tests from package
 includeTestsMatching "org.gradle.internal.*"

 //include all integration tests
 includeTestsMatching "*IntegTest"
 }
}

For more details and examples of declaring filters in the build script, please see the TestFilter
reference.

The command-line option is especially useful to execute a single test method. When you use --
tests, be aware that the inclusions declared in the build script are still honored. It is also possible to
supply multiple --tests options, all of whose patterns will take effect. The following sections have
several examples of using the command-line option.

NOTE
Not all test frameworks play well with filtering. Some advanced, synthetic tests may
not be fully compatible. However, the vast majority of tests and use cases work
perfectly well with Gradle’s filtering mechanism.

The following two sections look at the specific cases of simple class/method names and fully-
qualified names.

Simple name pattern

Since 4.7, Gradle has treated a pattern starting with an uppercase letter as a simple class name, or a
class name + method name. For example, the following command lines run either all or exactly one
of the tests in the SomeTestClass test case, regardless of what package it’s in:

Executes all tests in SomeTestClass

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/TestFilter.html

gradle test --tests SomeTestClass

Executes a single specified test in SomeTestClass
gradle test --tests SomeTestClass.someSpecificMethod

gradle test --tests SomeTestClass.*someMethod*

Fully-qualified name pattern

Prior to 4.7 or if the pattern doesn’t start with an uppercase letter, Gradle treats the pattern as fully-
qualified. So if you want to use the test class name irrespective of its package, you would use
--tests *.SomeTestClass. Here are some more examples:

specific class
gradle test --tests org.gradle.SomeTestClass

specific class and method
gradle test --tests org.gradle.SomeTestClass.someSpecificMethod

method name containing spaces
gradle test --tests "org.gradle.SomeTestClass.some method containing spaces"

all classes at specific package (recursively)
gradle test --tests 'all.in.specific.package*'

specific method at specific package (recursively)
gradle test --tests 'all.in.specific.package*.someSpecificMethod'

gradle test --tests '*IntegTest'

gradle test --tests '*IntegTest*ui*'

gradle test --tests '*ParameterizedTest.foo*'

the second iteration of a parameterized test
gradle test --tests '*ParameterizedTest.*[2]'

Note that the wildcard '*' has no special understanding of the '.' package separator. It’s purely text
based. So --tests *.SomeTestClass will match any package, regardless of its 'depth'.

You can also combine filters defined at the command line with continuous build to re-execute a
subset of tests immediately after every change to a production or test source file. The following
executes all tests in the 'com.mypackage.foo' package or subpackages whenever a change triggers
the tests to run:

gradle test --continuous --tests "com.mypackage.foo.*"

Test reporting

The Test task generates the following results by default:

• An HTML test report

• XML test results in a format compatible with the Ant JUnit report task — one that is supported
by many other tools, such as CI servers

• An efficient binary format of the results used by the Test task to generate the other formats

In most cases, you’ll work with the standard HTML report, which automatically includes the results
from all your Test tasks, even the ones you explicitly add to the build yourself. For example, if you
add a Test task for integration tests, the report will include the results of both the unit tests and the
integration tests if both tasks are run.

NOTE
To aggregate test results across multiple subprojects, see the Test Report
Aggregation Plugin.

Unlike with many of the testing configuration options, there are several project-level convention
properties that affect the test reports. For example, you can change the destination of the test
results and reports like so:

Example 85. Changing the default test report and results directories

build.gradle.kts

reporting.baseDirectory = file("my-reports")
java.testResultsDir = layout.buildDirectory.dir("my-test-results")

tasks.register("showDirs") {
 val rootDir = project.rootDir
 val reportsDir = project.reporting.baseDirectory
 val testResultsDir = project.java.testResultsDir

 doLast {

logger.quiet(rootDir.toPath().relativize(reportsDir.get().asFile.toPath()).to
String())

logger.quiet(rootDir.toPath().relativize(testResultsDir.get().asFile.toPath()
).toString())
 }
}

build.gradle

reporting.baseDirectory = file("my-reports")

test_report_aggregation_plugin.pdf#test_report_aggregation_plugin
test_report_aggregation_plugin.pdf#test_report_aggregation_plugin
java_plugin.pdf#sec:java_convention_properties
java_plugin.pdf#sec:java_convention_properties
#ex-changing-the-default-test-report-and-results-directories

java.testResultsDir = layout.buildDirectory.dir("my-test-results")

tasks.register('showDirs') {
 def rootDir = project.rootDir
 def reportsDir = project.reporting.baseDirectory
 def testResultsDir = project.java.testResultsDir

 doLast {
 logger.quiet(rootDir.toPath().relativize(reportsDir.get().asFile
.toPath()).toString())
 logger.quiet(rootDir.toPath().relativize(testResultsDir.get().asFile
.toPath()).toString())
 }
}

Output of gradle -q showDirs

> gradle -q showDirs
my-reports
build/my-test-results

Follow the link to the convention properties for more details.

There is also a standalone TestReport task type that you can use to generate a custom HTML test
report. All it requires are a value for destinationDir and the test results you want included in the
report. Here is a sample which generates a combined report for the unit tests from all subprojects:

Example 86. Creating a unit test report for subprojects

buildSrc/src/main/kotlin/myproject.java-conventions.gradle.kts

plugins {
 id("java")
}

// Disable the test report for the individual test task
tasks.named<Test>("test") {
 reports.html.required = false
}

// Share the test report data to be aggregated for the whole project
configurations.create("binaryTestResultsElements") {
 isCanBeResolved = false
 isCanBeConsumed = true
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.DOCUMENTATION))

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.TestReport.html
#ex-creating-a-unit-test-report-for-subprojects

 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named("test-report-
data"))
 }
 outgoing.artifact(tasks.test.map { task ->
task.getBinaryResultsDirectory().get() })
}

build.gradle.kts

val testReportData by configurations.creating {
 isCanBeConsumed = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named("test-report-
data"))
 }
}

dependencies {
 testReportData(project(":core"))
 testReportData(project(":util"))
}

tasks.register<TestReport>("testReport") {
 destinationDirectory = reporting.baseDirectory.dir("allTests")
 // Use test results from testReportData configuration
 testResults.from(testReportData)
}

buildSrc/src/main/groovy/myproject.java-conventions.gradle

plugins {
 id 'java'
}

// Disable the test report for the individual test task
test {
 reports.html.required = false
}

// Share the test report data to be aggregated for the whole project
configurations {
 binaryTestResultsElements {
 canBeResolved = false
 canBeConsumed = true
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,

Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named(DocsType,
'test-report-data'))
 }
 outgoing.artifact(test.binaryResultsDirectory)
 }
}

build.gradle

// A resolvable configuration to collect test reports data
configurations {
 testReportData {
 canBeConsumed = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named(DocsType,
'test-report-data'))
 }
 }
}

dependencies {
 testReportData project(':core')
 testReportData project(':util')
}

tasks.register('testReport', TestReport) {
 destinationDirectory = reporting.baseDirectory.dir('allTests')
 // Use test results from testReportData configuration
 testResults.from(configurations.testReportData)
}

In this example, we use a convention plugin myproject.java-conventions to expose the test results
from a project to Gradle’s variant aware dependency management engine.

The plugin declares a consumable binaryTestResultsElements configuration that represents the
binary test results of the test task. In the aggregation project’s build file, we declare the
testReportData configuration and depend on all of the projects that we want to aggregate the results
from. Gradle will automatically select the binary test result variant from each of the subprojects
instead of the project’s jar file. Lastly, we add a testReport task that aggregates the test results from
the testResultsDirs property, which contains all of the binary test results resolved from the
testReportData configuration.

You should note that the TestReport type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that if a given test class is executed by
multiple test tasks, then the test report will include executions of that class, but it can be hard to

distinguish individual executions of that class and their output.

Communicating test results to CI servers and other tools via XML files

The Test tasks creates XML files describing the test results, in the “JUnit XML” pseudo standard. This
standard is used by the JUnit 4, JUnit Jupiter, and TestNG test frameworks, and is configured using
the same DSL block for each of these. It is common for CI servers and other tooling to observe test
results via these XML files.

By default, the files are written to layout.buildDirectory.dir("test-results/$testTaskName") with a
file per test class. The location can be changed for all test tasks of a project, or individually per test
task.

Example 87. Changing JUnit XML results location for all test tasks

build.gradle.kts

java.testResultsDir = layout.buildDirectory.dir("junit-xml")

build.gradle

java.testResultsDir = layout.buildDirectory.dir("junit-xml")

With the above configuration, the XML files will be written to layout.buildDirectory.dir("junit-
xml/$testTaskName").

Example 88. Changing JUnit XML results location for a particular test task

build.gradle.kts

tasks.test {
 reports {
 junitXml.outputLocation = layout.buildDirectory.dir("test-junit-xml")
 }
}

build.gradle

test {
 reports {
 junitXml.outputLocation = layout.buildDirectory.dir("test-junit-xml")
 }

#ex-changing-junit-xml-results-location-for-all-test-tasks
#ex-changing-junit-xml-results-location-for-a-particular-test-task

}

With the above configuration, the XML files for the test task will be written to
layout.buildDirectory.dir("test-results/test-junit-xml"). The location of the XML files for other
test tasks will be unchanged.

Configuration options

The content of the XML files can also be configured to convey the results differently, by configuring
the JUnitXmlReport options.

Example 89. Configuring how the results are conveyed

build.gradle.kts

tasks.test {
 reports {
 junitXml.apply {
 includeSystemOutLog = false // defaults to true
 includeSystemErrLog = false // defaults to true
 isOutputPerTestCase = true // defaults to false
 mergeReruns = true // defaults to false
 }
 }
}

build.gradle

test {
 reports {
 junitXml {
 includeSystemOutLog = false // defaults to true
 includeSystemErrLog = false // defaults to true
 outputPerTestCase = true // defaults to false
 mergeReruns = true // defaults to false
 }
 }
}

includeSystemOutLog & includeSystemErrLog

The includeSystemOutLog option allows configuring whether or not test output written to standard
out is exported to the XML report file. The includeSystemErrLog option allows configuring whether

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/JUnitXmlReport.html
#ex-configuring-how-the-results-are-conveyed

or not test error output written to standard error is exported to the XML report file.

These options affect both test-suite level output (such as @BeforeClass/@BeforeAll output) and test
class and method-specific output (@Before/@BeforeEach and @Test). If either option is disabled, the
element that normally contains that content will be excluded from the XML report file.

The default for each option is true.

outputPerTestCase

The outputPerTestCase option, when enabled, associates any output logging generated during a test
case to that test case in the results. When disabled (the default) output is associated with the test
class as whole and not the individual test cases (e.g. test methods) that produced the logging output.
Most modern tools that observe JUnit XML files support the “output per test case” format.

If you are using the XML files to communicate test results, it is recommended to enable this option
as it provides more useful reporting.

mergeReruns

When mergeReruns is enabled, if a test fails but is then retried and succeeds, its failures will be
recorded as <flakyFailure> instead of <failure>, within one <testcase>. This is effectively the
reporting produced by the surefire plugin of Apache Maven™ when enabling reruns. If your CI
server understands this format, it will indicate that the test was flaky. If it does not, it will indicate
that the test succeeded as it will ignore the <flakyFailure> information. If the test does not succeed
(i.e. it fails for every retry), it will be indicated as having failed whether your tool understands this
format or not.

When mergeReruns is disabled (the default), each execution of a test will be listed as a separate test
case.

If you are using build scans or Develocity, flaky tests will be detected regardless of this setting.

Enabling this option is especially useful when using a CI tool that uses the XML test results to
determine build failure instead of relying on Gradle’s determination of whether the build failed or
not, and you wish to not consider the build failed if all failed tests passed when retried. This is the
case for the Jenkins CI server and its JUnit plugin. With mergeReruns enabled, tests that pass-on-retry
will no longer cause this Jenkins plugin to consider the build to have failed. However, failed test
executions will be omitted from the Jenkins test result visualizations as it does not consider
<flakyFailure> information. The separate Flaky Test Handler Jenkins plugin can be used in addition
to the JUnit Jenkins plugin to have such “flaky failures” also be visualized.

Tests are grouped and merged based on their reported name. When using any kind of test
parameterization that affects the reported test name, or any other kind of mechanism that
produces a potentially dynamic test name, care should be taken to ensure that the test name is
stable and does not unnecessarily change.

Enabling the mergeReruns option does not add any retry/rerun functionality to test execution.
Rerunning can be enabled by the test execution framework (e.g. JUnit’s @RepeatedTest), or via the
separate Test Retry Gradle plugin.

https://maven.apache.org/components/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html
https://scans.gradle.com
https://gradle.com/gradle-enterprise-solution-overview/failure-analytics/
https://plugins.jenkins.io/junit/
https://plugins.jenkins.io/flaky-test-handler
https://junit.org/junit5/docs/current/user-guide/#writing-tests-repeated-tests
https://github.com/gradle/test-retry-gradle-plugin

Test detection

By default, Gradle will run all tests that it detects, which it does by inspecting the compiled test
classes. This detection uses different criteria depending on the test framework used.

For JUnit, Gradle scans for both JUnit 3 and 4 test classes. A class is considered to be a JUnit test if it:

• Ultimately inherits from TestCase or GroovyTestCase

• Is annotated with @RunWith

• Contains a method annotated with @Test or a super class does

For TestNG, Gradle scans for methods annotated with @Test.

Note that abstract classes are not executed. In addition, be aware that Gradle scans up the
inheritance tree into jar files on the test classpath. So if those JARs contain test classes, they will also
be run.

If you don’t want to use test class detection, you can disable it by setting the scanForTestClasses
property on Test to false. When you do that, the test task uses only the includes and excludes
properties to find test classes.

If scanForTestClasses is false and no include or exclude patterns are specified, Gradle defaults to
running any class that matches the patterns **/*Tests.class and **/*Test.class, excluding those
that match **/Abstract*.class.

NOTE
With JUnit Platform, only includes and excludes are used to filter test classes —
scanForTestClasses has no effect.

Test logging

Gradle allows fine-tuned control over events that are logged to the console. Logging is configurable
on a per-log-level basis and by default, the following events are logged:

When the log level is Events that are logged Additional configuration

ERROR, QUIET or WARNING None None

LIFECYCLE Test failures Exception format is SHORT

INFO Test failures, skipped tests, test
standard output and test
standard error

Stacktraces are truncated.

DEBUG All events Full stacktraces are logged.

Test logging can be modified on a per-log-level basis by adjusting the appropriate TestLogging
instances in the testLogging property of the test task. For example, to adjust the INFO level test
logging configuration, modify the TestLoggingContainer.getInfo() property.

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html
http://junit.org/junit5/docs/current/user-guide
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#FAILED
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestExceptionFormat.html#SHORT
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#FAILED
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#SKIPPED
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#STANDARD_OUT
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#STANDARD_OUT
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#STANDARD_ERROR
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#STANDARD_ERROR
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLogging.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/AbstractTestTask.html#getTestLogging--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/logging/TestLoggingContainer.html#getInfo--

Test grouping

JUnit, JUnit Platform and TestNG allow sophisticated groupings of test methods.

NOTE

This section applies to grouping individual test classes or methods within a
collection of tests that serve the same testing purpose (unit tests, integration tests,
acceptance tests, etc.). For dividing test classes based upon their purpose, see the
incubating JVM Test Suite plugin.

JUnit 4.8 introduced the concept of categories for grouping JUnit 4 tests classes and methods.[1]

Test.useJUnit(org.gradle.api.Action) allows you to specify the JUnit categories you want to include
and exclude. For example, the following configuration includes tests in CategoryA and excludes
those in CategoryB for the test task:

Example 90. JUnit Categories

build.gradle.kts

tasks.test {
 useJUnit {
 includeCategories("org.gradle.junit.CategoryA")
 excludeCategories("org.gradle.junit.CategoryB")
 }
}

build.gradle

test {
 useJUnit {
 includeCategories 'org.gradle.junit.CategoryA'
 excludeCategories 'org.gradle.junit.CategoryB'
 }
}

JUnit Platform introduced tagging to replace categories. You can specify the included/excluded tags
via Test.useJUnitPlatform(org.gradle.api.Action), as follows:

Example 91. JUnit Platform Tags

build.gradle.kts

tasks.withType<Test>().configureEach {
 useJUnitPlatform {
 includeTags("fast")

jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useJUnit(org.gradle.api.Action)
#ex-junit-categories
http://junit.org/junit5/docs/current/user-guide
http://junit.org/junit5/docs/current/user-guide/#writing-tests-tagging-and-filtering
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform-org.gradle.api.Action-
#ex-junit-platform-tags

 excludeTags("slow")
 }
}

build.gradle

tasks.withType(Test).configureEach {
 useJUnitPlatform {
 includeTags 'fast'
 excludeTags 'slow'
 }
}

The TestNG framework uses the concept of test groups for a similar effect.[2] You can configure
which test groups to include or exclude during the test execution via the
Test.useTestNG(org.gradle.api.Action) setting, as seen here:

Example 92. Grouping TestNG tests

build.gradle.kts

tasks.named<Test>("test") {
 useTestNG {
 val options = this as TestNGOptions
 options.excludeGroups("integrationTests")
 options.includeGroups("unitTests")
 }
}

build.gradle

test {
 useTestNG {
 excludeGroups 'integrationTests'
 includeGroups 'unitTests'
 }
}

Using JUnit 5

JUnit 5 is the latest version of the well-known JUnit test framework. Unlike its predecessor, JUnit 5 is

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useTestNG(org.gradle.api.Action)
#ex-grouping-testng-tests
http://junit.org/junit5

modularized and composed of several modules:

JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit Vintage

The JUnit Platform serves as a foundation for launching testing frameworks on the JVM. JUnit
Jupiter is the combination of the new programming model and extension model for writing tests
and extensions in JUnit 5. JUnit Vintage provides a TestEngine for running JUnit 3 and JUnit 4 based
tests on the platform.

The following code enables JUnit Platform support in build.gradle:

Example 93. Enabling JUnit Platform to run your tests

build.gradle.kts

tasks.named<Test>("test") {
 useJUnitPlatform()
}

build.gradle

tasks.named('test', Test) {
 useJUnitPlatform()
}

See Test.useJUnitPlatform() for more details.

Compiling and executing JUnit Jupiter tests

To enable JUnit Jupiter support in Gradle, all you need to do is add the following dependency:

Example 94. JUnit Jupiter dependencies

build.gradle.kts

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
}

http://junit.org/junit5/docs/current/user-guide/#writing-tests
http://junit.org/junit5/docs/current/user-guide/#extensions
#ex-enabling-junit-platform-to-run-your-tests
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform--
#ex-junit-jupiter-dependencies

build.gradle

dependencies {
 testImplementation 'org.junit.jupiter:junit-jupiter:5.7.1'
 testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

You can then put your test cases into src/test/java as normal and execute them with gradle test.

Executing legacy tests with JUnit Vintage

If you want to run JUnit 3/4 tests on JUnit Platform, or even mix them with Jupiter tests, you should
add extra JUnit Vintage Engine dependencies:

Example 95. JUnit Vintage dependencies

build.gradle.kts

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
 testCompileOnly("junit:junit:4.13")
 testRuntimeOnly("org.junit.vintage:junit-vintage-engine")
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")
}

build.gradle

dependencies {
 testImplementation 'org.junit.jupiter:junit-jupiter:5.7.1'
 testCompileOnly 'junit:junit:4.13'
 testRuntimeOnly 'org.junit.vintage:junit-vintage-engine'
 testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

In this way, you can use gradle test to test JUnit 3/4 tests on JUnit Platform, without the need to
rewrite them.

Filtering test engine

JUnit Platform allows you to use different test engines. JUnit currently provides two TestEngine
implementations out of the box: junit-jupiter-engine and junit-vintage-engine. You can also write
and plug in your own TestEngine implementation as documented here.

#ex-junit-vintage-dependencies
https://junit.org/junit5/docs/current/api/org.junit.jupiter.engine/module-summary.html
https://junit.org/junit5/docs/current/api/org.junit.vintage.engine/module-summary.html
https://junit.org/junit5/docs/current/user-guide/#launcher-api-engines-custom

By default, all test engines on the test runtime classpath will be used. To control specific test engine
implementations explicitly, you can add the following setting to your build script:

Example 96. Filter specific engines

build.gradle.kts

tasks.withType<Test>().configureEach {
 useJUnitPlatform {
 includeEngines("junit-vintage")
 // excludeEngines("junit-jupiter")
 }
}

build.gradle

tasks.withType(Test).configureEach {
 useJUnitPlatform {
 includeEngines 'junit-vintage'
 // excludeEngines 'junit-jupiter'
 }
}

Test execution order in TestNG

TestNG allows explicit control of the execution order of tests when you use a testng.xml file.
Without such a file — or an equivalent one configured by TestNGOptions.getSuiteXmlBuilder() —
you can’t specify the test execution order. However, what you can do is control whether all aspects
of a test — including its associated @BeforeXXX and @AfterXXX methods, such as those annotated with
@Before/AfterClass and @Before/AfterMethod — are executed before the next test starts. You do this
by setting the TestNGOptions.getPreserveOrder() property to true. If you set it to false, you may
encounter scenarios in which the execution order is something like: TestA.doBeforeClass() →
TestB.doBeforeClass() → TestA tests.

While preserving the order of tests is the default behavior when directly working with testng.xml
files, the TestNG API that is used by Gradle’s TestNG integration executes tests in unpredictable
order by default.[3] The ability to preserve test execution order was introduced with TestNG version
5.14.5. Setting the preserveOrder property to true for an older TestNG version will cause the build to
fail.

#ex-filter-specific-engines
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getSuiteXmlBuilder--
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getPreserveOrder--
https://jitpack.io/com/github/cbeust/testng/master/javadoc/org/testng/TestNG.html

Example 97. Preserving order of TestNG tests

build.gradle.kts

tasks.test {
 useTestNG {
 preserveOrder = true
 }
}

build.gradle

test {
 useTestNG {
 preserveOrder = true
 }
}

The groupByInstance property controls whether tests should be grouped by instance rather than by
class. The TestNG documentation explains the difference in more detail, but essentially, if you have
a test method A() that depends on B(), grouping by instance ensures that each A-B pairing, e.g. B(1)-
A(1), is executed before the next pairing. With group by class, all B() methods are run and then all
A() ones.

Note that you typically only have more than one instance of a test if you’re using a data provider to
parameterize it. Also, grouping tests by instances was introduced with TestNG version 6.1. Setting
the groupByInstances property to true for an older TestNG version will cause the build to fail.

Example 98. Grouping TestNG tests by instances

build.gradle.kts

tasks.test {
 useTestNG {
 groupByInstances = true
 }
}

build.gradle

test {
 useTestNG {

#ex-preserving-order-of-testng-tests
http://testng.org/doc/documentation-main.html#dependencies-with-annotations
#ex-grouping-testng-tests-by-instances

 groupByInstances = true
 }
}

TestNG parameterized methods and reporting

TestNG supports parameterizing test methods, allowing a particular test method to be executed
multiple times with different inputs. Gradle includes the parameter values in its reporting of the
test method execution.

Given a parameterized test method named aTestMethod that takes two parameters, it will be
reported with the name aTestMethod(toStringValueOfParam1, toStringValueOfParam2). This makes it
easy to identify the parameter values for a particular iteration.

Configuring integration tests

A common requirement for projects is to incorporate integration tests in one form or another. Their
aim is to verify that the various parts of the project are working together properly. This often
means that they require special execution setup and dependencies compared to unit tests.

The simplest way to add integration tests to your build is by leveraging the incubating JVM Test
Suite plugin. If an incubating solution is not something for you, here are the steps you need to take
in your build:

1. Create a new source set for them

2. Add the dependencies you need to the appropriate configurations for that source set

3. Configure the compilation and runtime classpaths for that source set

4. Create a task to run the integration tests

You may also need to perform some additional configuration depending on what form the
integration tests take. We will discuss those as we go.

Let’s start with a practical example that implements the first three steps in a build script, centered
around a new source set intTest:

Example 99. Setting up working integration tests

build.gradle.kts

sourceSets {
 create("intTest") {
 compileClasspath += sourceSets.main.get().output
 runtimeClasspath += sourceSets.main.get().output
 }
}

http://testng.org/doc/documentation-main.html#parameters
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
#ex-setting-up-working-integration-tests

val intTestImplementation by configurations.getting {
 extendsFrom(configurations.implementation.get())
}
val intTestRuntimeOnly by configurations.getting

configurations["intTestRuntimeOnly"].extendsFrom(configurations.runtimeOnly.g
et())

dependencies {
 intTestImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
 intTestRuntimeOnly("org.junit.platform:junit-platform-launcher")
}

build.gradle

sourceSets {
 intTest {
 compileClasspath += sourceSets.main.output
 runtimeClasspath += sourceSets.main.output
 }
}

configurations {
 intTestImplementation.extendsFrom implementation
 intTestRuntimeOnly.extendsFrom runtimeOnly
}

dependencies {
 intTestImplementation 'org.junit.jupiter:junit-jupiter:5.7.1'
 intTestRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

This will set up a new source set called intTest that automatically creates:

• intTestImplementation, intTestCompileOnly, intTestRuntimeOnly configurations (and a few others
that are less commonly needed)

• A compileIntTestJava task that will compile all the source files under src/intTest/java

NOTE
If you are working with the IntelliJ IDE, you may wish to flag the directories in these
additional source sets as containing test source rather than production source as
explained in the Idea Plugin documentation.

The example also does the following, not all of which you may need for your specific integration
tests:

• Adds the production classes from the main source set to the compilation and runtime classpaths

java_plugin.pdf#java_source_set_configurations
idea_plugin.pdf#sec:idea_identify_additional_source_sets

of the integration tests — sourceSets.main.output is a file collection of all the directories
containing compiled production classes and resources

• Makes the intTestImplementation configuration extend from implementation, which means that
all the declared dependencies of the production code also become dependencies of the
integration tests

• Does the same for the intTestRuntimeOnly configuration

In most cases, you want your integration tests to have access to the classes under test, which is why
we ensure that those are included on the compilation and runtime classpaths in this example. But
some types of test interact with the production code in a different way. For example, you may have
tests that run your application as an executable and verify the output. In the case of web
applications, the tests may interact with your application via HTTP. Since the tests don’t need direct
access to the classes under test in such cases, you don’t need to add the production classes to the
test classpath.

Another common step is to attach all the unit test dependencies to the integration tests as well —
via intTestImplementation.extendsFrom testImplementation — but that only makes sense if the
integration tests require all or nearly all the same dependencies that the unit tests have.

There are a couple of other facets of the example you should take note of:

• += allows you to append paths and collections of paths to compileClasspath and runtimeClasspath
instead of overwriting them

• If you want to use the convention-based configurations, such as intTestImplementation, you
must declare the dependencies after the new source set

Creating and configuring a source set automatically sets up the compilation stage, but it does
nothing with respect to running the integration tests. So the last piece of the puzzle is a custom test
task that uses the information from the new source set to configure its runtime classpath and the
test classes:

Example 100. Defining a working integration test task

build.gradle.kts

val integrationTest = task<Test>("integrationTest") {
 description = "Runs integration tests."
 group = "verification"

 testClassesDirs = sourceSets["intTest"].output.classesDirs
 classpath = sourceSets["intTest"].runtimeClasspath
 shouldRunAfter("test")

 useJUnitPlatform()

 testLogging {
 events("passed")
 }

#ex-defining-a-working-integration-test-task

}

tasks.check { dependsOn(integrationTest) }

build.gradle

tasks.register('integrationTest', Test) {
 description = 'Runs integration tests.'
 group = 'verification'

 testClassesDirs = sourceSets.intTest.output.classesDirs
 classpath = sourceSets.intTest.runtimeClasspath
 shouldRunAfter test

 useJUnitPlatform()

 testLogging {
 events "passed"
 }
}

check.dependsOn integrationTest

Again, we’re accessing a source set to get the relevant information, i.e. where the compiled test
classes are — the testClassesDirs property — and what needs to be on the classpath when running
them — classpath.

Users commonly want to run integration tests after the unit tests, because they are often slower to
run and you want the build to fail early on the unit tests rather than later on the integration tests.
That’s why the above example adds a shouldRunAfter() declaration. This is preferred over
mustRunAfter() so that Gradle has more flexibility in executing the build in parallel.

For information on how to determine code coverage for tests in additional source sets, see the
JaCoCo Plugin and the JaCoCo Report Aggregation Plugin chapters.

Testing Java Modules

If you are developing Java Modules, everything described in this chapter still applies and any of the
supported test frameworks can be used. However, there are some things to consider depending on
whether you need module information to be available, and module boundaries to be enforced,
during test execution. In this context, the terms whitebox testing (module boundaries are
deactivated or relaxed) and blackbox testing (module boundaries are in place) are often used.
Whitebox testing is used/needed for unit testing and blackbox testing fits functional or integration
test requirements.

Sample: Java Modules multi-project with integration tests

jacoco_plugin.pdf#jacoco_plugin
jacoco_report_aggregation_plugin.pdf#jacoco_report_aggregation_plugin
../samples/sample_java_modules_multi_project_with_integration_tests.html

Whitebox unit test execution on the classpath

The simplest setup to write unit tests for functions or classes in modules is to not use module
specifics during test execution. For this, you just need to write tests the same way you would write
them for normal libraries. If you don’t have a module-info.java file in your test source set
(src/test/java) this source set will be considered as traditional Java library during compilation and
test runtime. This means, all dependencies, including Jars with module information, are put on the
classpath. The advantage is that all internal classes of your (or other) modules are then accessible
directly in tests. This may be a totally valid setup for unit testing, where we do not care about the
larger module structure, but only about testing single functions.

NOTE

If you are using Eclipse: By default, Eclipse also runs unit tests as modules using
module patching (see below). In an imported Gradle project, unit testing a module
with the Eclipse test runner might fail. You then need to manually adjust the
classpath/module path in the test run configuration or delegate test execution to
Gradle.

This only concerns the test execution. Unit test compilation and development works
fine in Eclipse.

Blackbox integration testing

For integration tests, you have the option to define the test set itself as additional module. You do
this similar to how you turn your main sources into a module: by adding a module-info.java file to
the corresponding source set (e.g. integrationTests/java/module-info.java).

You can find a full example that includes blackbox integration tests here.

NOTE
In Eclipse, compiling multiple modules in one project is currently not support.
Therefore the integration test (blackbox) setup described here only works in Eclipse
if the tests are moved to a separate subproject.

Whitebox test execution with module patching

Another approach for whitebox testing is to stay in the module world by patching the tests into the
module under test. This way, module boundaries stay in place, but the tests themselves become part
of the module under test and can then access the module’s internals.

For which uses cases this is relevant and how this is best done is a topic of discussion. There is no
general best approach at the moment. Thus, there is no special support for this in Gradle right now.

You can however, setup module patching for tests like this:

• Add a module-info.java to your test source set that is a copy of the main module-info.java with
additional dependencies needed for testing (e.g. requires org.junit.jupiter.api).

• Configure both the testCompileJava and test tasks with arguments to patch the main classes
with the test classes as shown below.

../samples/sample_java_modules_multi_project_with_integration_tests.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=520667

Example 101. Patch module for testing using command line arguments

build.gradle.kts

val moduleName = "org.gradle.sample"
val patchArgs = listOf("--patch-module",
"$moduleName=${tasks.compileJava.get().destinationDirectory.asFile.get().path
}")
tasks.compileTestJava {
 options.compilerArgs.addAll(patchArgs)
}
tasks.test {
 jvmArgs(patchArgs)
}

build.gradle

def moduleName = "org.gradle.sample"
def patchArgs = ["--patch-module", "$moduleName=${tasks.compileJava
.destinationDirectory.asFile.get().path}"]
tasks.named('compileTestJava') {
 options.compilerArgs += patchArgs
}
tasks.named('test') {
 jvmArgs += patchArgs
}

NOTE
If custom arguments are used for patching, these are not picked up by Eclipse and
IDEA. You will most likely see invalid compilation errors in the IDE.

Skipping the tests

If you want to skip the tests when running a build, you have a few options. You can either do it via
command line arguments or in the build script. To do it on the command line, you can use the -x or
--exclude-task option like so:

gradle build -x test

This excludes the test task and any other task that it exclusively depends on, i.e. no other task
depends on the same task. Those tasks will not be marked "SKIPPED" by Gradle, but will simply not
appear in the list of tasks executed.

Skipping a test via the build script can be done a few ways. One common approach is to make test

#ex-patch-module-for-testing-using-command-line-arguments

execution conditional via the Task.onlyIf(String, org.gradle.api.specs.Spec) method. The following
sample skips the test task if the project has a property called mySkipTests:

Example 102. Skipping the unit tests based on a project property

build.gradle.kts

tasks.test {
 val skipTestsProvider = providers.gradleProperty("mySkipTests")
 onlyIf("mySkipTests property is not set") {
 !skipTestsProvider.isPresent()
 }
}

build.gradle

def skipTestsProvider = providers.gradleProperty('mySkipTests')
test.onlyIf("mySkipTests property is not set") {
 !skipTestsProvider.present
}

In this case, Gradle will mark the skipped tests as "SKIPPED" rather than exclude them from the
build.

Forcing tests to run

In well-defined builds, you can rely on Gradle to only run tests if the tests themselves or the
production code change. However, you may encounter situations where the tests rely on a third-
party service or something else that might change but can’t be modeled in the build.

You can always use the --rerun built-in task option to force a task to rerun.

gradle test --rerun

Alternatively, if build caching is not enabled, you can also force tests to run by cleaning the output
of the relevant Test task — say test — and running the tests again, like so:

gradle cleanTest test

cleanTest is based on a task rule provided by the Base Plugin. You can use it for any task.

https://docs.gradle.org/8.12/dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(java.lang.String,org.gradle.api.specs.Spec)
#ex-skipping-the-unit-tests-based-on-a-project-property
base_plugin.pdf#sec:base_tasks

Debugging when running tests

On the few occasions that you want to debug your code while the tests are running, it can be
helpful if you can attach a debugger at that point. You can either set the Test.getDebug() property to
true or use the --debug-jvm command line option, or use --no-debug-jvm to set it to false.

When debugging for tests is enabled, Gradle will start the test process suspended and listening on
port 5005.

You can also enable debugging in the DSL, where you can also configure other properties:

test {
 debugOptions {
 enabled = true
 host = 'localhost'
 port = 4455
 server = true
 suspend = true
 }
}

With this configuration the test JVM will behave just like when passing the --debug-jvm argument
but it will listen on port 4455.

To debug the test process remotely via network, the host needs to be set to the machine’s IP address
or "*" (listen on all interfaces).

Using test fixtures

Producing and using test fixtures within a single project

Test fixtures are commonly used to setup the code under test, or provide utilities aimed at
facilitating the tests of a component. Java projects can enable test fixtures support by applying the
java-test-fixtures plugin, in addition to the java or java-library plugins:

Example 103. Applying the Java test fixtures plugin

lib/build.gradle.kts

plugins {
 // A Java Library
 `java-library`
 // which produces test fixtures
 `java-test-fixtures`
 // and is published
 `maven-publish`
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug
#ex-applying-the-java-test-fixtures-plugin

lib/build.gradle

plugins {
 // A Java Library
 id 'java-library'
 // which produces test fixtures
 id 'java-test-fixtures'
 // and is published
 id 'maven-publish'
}

This will automatically create a testFixtures source set, in which you can write your test fixtures.
Test fixtures are configured so that:

• they can see the main source set classes

• test sources can see the test fixtures classes

For example for this main class:

src/main/java/com/acme/Person.java

public class Person {
 private final String firstName;
 private final String lastName;

 public Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 // ...

A test fixture can be written in src/testFixtures/java:

src/testFixtures/java/com/acme/Simpsons.java

public class Simpsons {
 private static final Person HOMER = new Person("Homer", "Simpson");
 private static final Person MARGE = new Person("Marjorie", "Simpson");

 private static final Person BART = new Person("Bartholomew", "Simpson");
 private static final Person LISA = new Person("Elisabeth Marie", "Simpson");
 private static final Person MAGGIE = new Person("Margaret Eve", "Simpson");
 private static final List<Person> FAMILY = new ArrayList<Person>() {{
 add(HOMER);
 add(MARGE);
 add(BART);
 add(LISA);
 add(MAGGIE);
 }};

 public static Person homer() { return HOMER; }

 public static Person marge() { return MARGE; }

 public static Person bart() { return BART; }

 public static Person lisa() { return LISA; }

 public static Person maggie() { return MAGGIE; }

 // ...

Declaring dependencies of test fixtures

Similarly to the Java Library Plugin, test fixtures expose an API and an implementation
configuration:

Example 104. Declaring test fixture dependencies

lib/build.gradle.kts

dependencies {
 testImplementation("junit:junit:4.13")

 // API dependencies are visible to consumers when building
 testFixturesApi("org.apache.commons:commons-lang3:3.9")

 // Implementation dependencies are not leaked to consumers when building
 testFixturesImplementation("org.apache.commons:commons-text:1.6")
}

lib/build.gradle

dependencies {
 testImplementation 'junit:junit:4.13'

java_library_plugin.html
#ex-declaring-test-fixture-dependencies

 // API dependencies are visible to consumers when building
 testFixturesApi 'org.apache.commons:commons-lang3:3.9'

 // Implementation dependencies are not leaked to consumers when building
 testFixturesImplementation 'org.apache.commons:commons-text:1.6'
}

It’s worth noticing that if a dependency is an implementation dependency of test fixtures, then when
compiling tests that depend on those test fixtures, the implementation dependencies will not leak
into the compile classpath. This results in improved separation of concerns and better compile
avoidance.

Consuming test fixtures of another project

Test fixtures are not limited to a single project. It is often the case that a dependent project tests also
needs the test fixtures of the dependency. This can be achieved very easily using the testFixtures
keyword:

Example 105. Adding a dependency on test fixtures of another project

build.gradle.kts

dependencies {
 implementation(project(":lib"))

 testImplementation("junit:junit:4.13")
 testImplementation(testFixtures(project(":lib")))
}

build.gradle

dependencies {
 implementation(project(":lib"))

 testImplementation 'junit:junit:4.13'
 testImplementation(testFixtures(project(":lib")))
}

Publishing test fixtures

One of the advantages of using the java-test-fixtures plugin is that test fixtures are published. By
convention, test fixtures will be published with an artifact having the test-fixtures classifier. For
both Maven and Ivy, an artifact with that classifier is simply published alongside the regular

#ex-adding-a-dependency-on-test-fixtures-of-another-project

artifacts. However, if you use the maven-publish or ivy-publish plugin, test fixtures are published as
additional variants in Gradle Module Metadata and you can directly depend on test fixtures of
external libraries in another Gradle project:

Example 106. Adding a dependency on test fixtures of an external library

build.gradle.kts

dependencies {
 // Adds a dependency on the test fixtures of Gson, however this
 // project doesn't publish such a thing
 functionalTest(testFixtures("com.google.code.gson:gson:2.8.5"))
}

build.gradle

dependencies {
 // Adds a dependency on the test fixtures of Gson, however this
 // project doesn't publish such a thing
 functionalTest testFixtures("com.google.code.gson:gson:2.8.5")
}

It’s worth noting that if the external project is not publishing Gradle Module Metadata, then
resolution will fail with an error indicating that such a variant cannot be found:

Output of gradle dependencyInsight --configuration functionalTestClasspath --dependency gson

> gradle dependencyInsight --configuration functionalTestClasspath --dependency gson

> Task :dependencyInsight
com.google.code.gson:gson:2.8.5 FAILED
 Failures:
 - Could not resolve com.google.code.gson:gson:2.8.5.
 - Unable to find a variant with the requested capability: feature 'test-
fixtures':
 - Variant 'compile' provides 'com.google.code.gson:gson:2.8.5'
 - Variant 'enforced-platform-compile' provides
'com.google.code.gson:gson-derived-enforced-platform:2.8.5'
 - Variant 'enforced-platform-runtime' provides
'com.google.code.gson:gson-derived-enforced-platform:2.8.5'
 - Variant 'javadoc' provides 'com.google.code.gson:gson:2.8.5'
 - Variant 'platform-compile' provides 'com.google.code.gson:gson-
derived-platform:2.8.5'
 - Variant 'platform-runtime' provides 'com.google.code.gson:gson-
derived-platform:2.8.5'
 - Variant 'runtime' provides 'com.google.code.gson:gson:2.8.5'

https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-1.0-specification.md
#ex-adding-a-dependency-on-test-fixtures-of-an-external-library

 - Variant 'sources' provides 'com.google.code.gson:gson:2.8.5'

com.google.code.gson:gson:2.8.5 FAILED
\--- functionalTestClasspath

A web-based, searchable dependency report is available by adding the --scan option.

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

The error message mentions the missing com.google.code.gson:gson-test-fixtures capability, which
is indeed not defined for this library. That’s because by convention, for projects that use the java-
test-fixtures plugin, Gradle automatically creates test fixtures variants with a capability whose
name is the name of the main component, with the appendix -test-fixtures.

NOTE
If you publish your library and use test fixtures, but do not want to publish the
fixtures, you can deactivate publishing of the test fixtures variants as shown below.

Example 107. Disable publishing of test fixtures variants

build.gradle.kts

val javaComponent = components["java"] as AdhocComponentWithVariants
javaComponent.withVariantsFromConfiguration(configurations["testFixturesApiEl
ements"]) { skip() }
javaComponent.withVariantsFromConfiguration(configurations["testFixturesRunti
meElements"]) { skip() }

build.gradle

components.java.withVariantsFromConfiguration(configurations.testFixturesApiE
lements) { skip() }
components.java.withVariantsFromConfiguration(configurations.testFixturesRunt
imeElements) { skip() }

Managing Dependencies of JVM Projects
This chapter explains how to apply basic dependency management concepts to JVM-based projects.
For a detailed introduction to dependency management, see dependency management in Gradle.

Dissecting a typical build script

Let’s have a look at a very simple build script for a JVM-based project. It applies the Java Library

#ex-disable-publishing-of-test-fixtures-variants
getting_started_dep_man.pdf#dependency-management-in-gradle

plugin which automatically introduces a standard project layout, provides tasks for performing
typical work and adequate support for dependency management.

Example 108. Dependency declarations for a JVM-based project

build.gradle.kts

plugins {
 `java-library`
}

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.hibernate:hibernate-core:3.6.7.Final")
 testImplementation("junit:junit:4.+")
 api("com.google.guava:guava:23.0")
}

build.gradle

plugins {
 id 'java-library'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.hibernate:hibernate-core:3.6.7.Final'
 testImplementation 'junit:junit:4.+'
 api 'com.google.guava:guava:23.0'
}

The Project.dependencies{} code block declares that Hibernate core 3.6.7.Final is required to
compile the project’s production source code. It also states that junit >= 4.0 is required to compile
the project’s tests. All dependencies are supposed to be looked up in the Maven Central repository
as defined by Project.repositories{}. The following sections explain each aspect in more detail.

Declaring module dependencies

There are various types of dependencies that you can declare. One such type is a module

#ex-dependency-declarations-for-a-jvm-based-project
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

dependency. A module dependency represents a dependency on a module with a specific version
built outside the current build. Modules are usually stored in a repository, such as Maven Central, a
corporate Maven or Ivy repository, or a directory in the local file system.

To define an module dependency, you add it to a dependency configuration:

Example 109. Definition of a module dependency

build.gradle.kts

dependencies {
 implementation("org.hibernate:hibernate-core:3.6.7.Final")
}

build.gradle

dependencies {
 implementation 'org.hibernate:hibernate-core:3.6.7.Final'
}

To find out more about defining dependencies, have a look at Declaring Dependencies.

Using dependency configurations

A Configuration is a named set of dependencies and artifacts. There are three main purposes for a
configuration:

Declaring dependencies

A plugin uses configurations to make it easy for build authors to declare what other subprojects
or external artifacts are needed for various purposes during the execution of tasks defined by
the plugin. For example a plugin may need the Spring web framework dependency to compile
the source code.

Resolving dependencies

A plugin uses configurations to find (and possibly download) inputs to the tasks it defines. For
example Gradle needs to download Spring web framework JAR files from Maven Central.

Exposing artifacts for consumption

A plugin uses configurations to define what artifacts it generates for other projects to consume.
For example the project would like to publish its compiled source code packaged in the JAR file
to an in-house Artifactory repository.

With those three purposes in mind, let’s take a look at a few of the standard configurations defined
by the Java Library Plugin.

#ex-definition-of-a-module-dependency
https://docs.gradle.org/8.12/dsl/org.gradle.api.artifacts.Configuration.html

implementation

The dependencies required to compile the production source of the project which are not part of
the API exposed by the project. For example the project uses Hibernate for its internal
persistence layer implementation.

api

The dependencies required to compile the production source of the project which are part of the
API exposed by the project. For example the project uses Guava and exposes public interfaces
with Guava classes in their method signatures.

testImplementation

The dependencies required to compile and run the test source of the project. For example the
project decided to write test code with the test framework JUnit.

Various plugins add further standard configurations. You can also define your own custom
configurations in your build via Project.configurations{}. See What are dependency configurations
for the details of defining and customizing dependency configurations.

Declaring common Java repositories

How does Gradle know where to find the files for external dependencies? Gradle looks for them in
a repository. A repository is a collection of modules, organized by group, name and version. Gradle
understands different repository types, such as Maven and Ivy, and supports various ways of
accessing the repository via HTTP or other protocols.

By default, Gradle does not define any repositories. You need to define at least one with the help of
Project.repositories{} before you can use module dependencies. One option is use the Maven
Central repository:

Example 110. Usage of Maven central repository

build.gradle.kts

repositories {
 mavenCentral()
}

build.gradle

repositories {
 mavenCentral()
}

You can also have repositories on the local file system. This works for both Maven and Ivy

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
#ex-usage-of-maven-central-repository

repositories.

Example 111. Usage of a local Ivy directory

build.gradle.kts

repositories {
 ivy {
 // URL can refer to a local directory
 url = uri("../local-repo")
 }
}

build.gradle

repositories {
 ivy {
 // URL can refer to a local directory
 url = file("../local-repo")
 }
}

A project can have multiple repositories. Gradle will look for a dependency in each repository in
the order they are specified, stopping at the first repository that contains the requested module.

To find out more about defining repositories, have a look at Declaring Repositories.

Publishing artifacts

To learn more about publishing artifacts, have a look at publishing plugins.

[1] The JUnit wiki contains a detailed description on how to work with JUnit categories: https://github.com/junit-team/junit/wiki/
Categories.

[2] The TestNG documentation contains more details about test groups: https://testng.org/#_test_groups.

[3] The TestNG documentation contains more details about test ordering when working with testng.xml files: http://testng.org/doc/
documentation-main.html#testng-xml.

#ex-usage-of-a-local-ivy-directory
https://github.com/junit-team/junit/wiki/Categories
https://github.com/junit-team/junit/wiki/Categories
https://testng.org/#_test_groups
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml

JAVA TOOLCHAINS

Toolchains for JVM projects
Working on multiple projects can require interacting with multiple versions of the Java language.
Even within a single project different parts of the codebase may be fixed to a particular language
level due to backward compatibility requirements. This means different versions of the same tools
(a toolchain) must be installed and managed on each machine that builds the project.

A Java toolchain is a set of tools to build and run Java projects, which is usually provided by the
environment via local JRE or JDK installations. Compile tasks may use javac as their compiler, test
and exec tasks may use the java command while javadoc will be used to generate documentation.

By default, Gradle uses the same Java toolchain for running Gradle itself and building JVM projects.
However, this may only sometimes be desirable. Building projects with different Java versions on
different developer machines and CI servers may lead to unexpected issues. Additionally, you may
want to build a project using a Java version that is not supported for running Gradle.

In order to improve reproducibility of the builds and make build requirements clearer, Gradle
allows configuring toolchains on both project and task levels. You can also control the JVM used to
run Gradle itself using the Daemon JVM criteria.

Toolchains for projects

You can define what toolchain to use for a project by stating the Java language version in the java
extension block:

build.gradle.kts

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

Executing the build (e.g. using gradle check) will now handle several things for you and others
running your build:

1. Gradle configures all compile, test and javadoc tasks to use the defined toolchain.

2. Gradle detects locally installed toolchains.

3. Gradle chooses a toolchain matching the requirements (any Java 17 toolchain for the example
above).

4. If no matching toolchain is found, Gradle can automatically download a matching one based on
the configured toolchain download repositories.

NOTE

Toolchain support is available in the Java plugins and for the tasks they define.

For the Groovy plugin, compilation is supported but not yet Groovydoc generation.
For the Scala plugin, compilation and Scaladoc generation are supported.

Selecting toolchains by vendor

In case your build has specific requirements from the used JRE/JDK, you may want to define the
vendor for the toolchain as well. JvmVendorSpec has a list of well-known JVM vendors recognized by
Gradle. The advantage is that Gradle can handle any inconsistencies across JDK versions in how
exactly the JVM encodes the vendor information.

build.gradle.kts

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 vendor = JvmVendorSpec.ADOPTIUM
 }
}

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 vendor = JvmVendorSpec.ADOPTIUM
 }
}

If the vendor you want to target is not a known vendor, you can still restrict the toolchain to those
matching the java.vendor system property of the available toolchains.

https://docs.gradle.org/8.12/javadoc/org/gradle/jvm/toolchain/JvmVendorSpec.html

The following snippet uses filtering to include a subset of available toolchains. This example only
includes toolchains whose java.vendor property contains the given match string. The matching is
done in a case-insensitive manner.

build.gradle.kts

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 vendor = JvmVendorSpec.matching("customString")
 }
}

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 vendor = JvmVendorSpec.matching("customString")
 }
}

Selecting toolchains by virtual machine implementation

If your project requires a specific implementation, you can filter based on the implementation as
well. Currently available implementations to choose from are:

VENDOR_SPECIFIC

Acts as a placeholder and matches any implementation from any vendor (e.g. hotspot, zulu, …)

J9

Matches only virtual machine implementations using the OpenJ9/IBM J9 runtime engine.

For example, to use an IBM JVM, distributed via AdoptOpenJDK, you can specify the filter as shown
in the example below.

build.gradle.kts

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 vendor = JvmVendorSpec.IBM
 implementation = JvmImplementation.J9

https://www.eclipse.org/openj9/
https://adoptopenjdk.net/

 }
}

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 vendor = JvmVendorSpec.IBM
 implementation = JvmImplementation.J9
 }
}

NOTE
The Java major version, the vendor (if specified) and implementation (if specified)
will be tracked as an input for compilation and test execution.

Configuring toolchain specifications

Gradle allows configuring multiple properties that affect the selection of a toolchain, such as
language version or vendor. Even though these properties can be configured independently, the
configuration must follow certain rules in order to form a valid specification.

A JavaToolchainSpec is considered valid in two cases:

1. when no properties have been set, i.e. the specification is empty;

2. when languageVersion has been set, optionally followed by setting any other property.

In other words, if a vendor or an implementation are specified, they must be accompanied by the
language version. Gradle distinguishes between toolchain specifications that configure the
language version and the ones that do not. A specification without a language version, in most
cases, would be treated as a one that selects the toolchain of the current build.

Usage of invalid instances of JavaToolchainSpec results in a build error since Gradle 8.0.

Toolchains for tasks

In case you want to tweak which toolchain is used for a specific task, you can specify the exact tool
a task is using. For example, the Test task exposes a JavaLauncher property that defines which java
executable to use for launching the tests.

In the example below, we configure all java compilation tasks to use Java 8. Additionally, we
introduce a new Test task that will run our unit tests using a JDK 17.

list/build.gradle.kts

tasks.withType<JavaCompile>().configureEach {
 javaCompiler = javaToolchains.compilerFor {
 languageVersion = JavaLanguageVersion.of(8)
 }
}

tasks.register<Test>("testsOn17") {
 javaLauncher = javaToolchains.launcherFor {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

list/build.gradle

tasks.withType(JavaCompile).configureEach {
 javaCompiler = javaToolchains.compilerFor {
 languageVersion = JavaLanguageVersion.of(8)
 }
}

task('testsOn17', type: Test) {
 javaLauncher = javaToolchains.launcherFor {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

In addition, in the application subproject, we add another Java execution task to run our
application with JDK 17.

application/build.gradle.kts

tasks.register<JavaExec>("runOn17") {
 javaLauncher = javaToolchains.launcherFor {
 languageVersion = JavaLanguageVersion.of(17)
 }

 classpath = sourceSets["main"].runtimeClasspath
 mainClass = application.mainClass
}

application/build.gradle

task('runOn17', type: JavaExec) {
 javaLauncher = javaToolchains.launcherFor {
 languageVersion = JavaLanguageVersion.of(17)
 }

 classpath = sourceSets.main.runtimeClasspath
 mainClass = application.mainClass
}

Depending on the task, a JRE might be enough while for other tasks (e.g. compilation), a JDK is
required. By default, Gradle prefers installed JDKs over JREs if they can satisfy the requirements.

Toolchains tool providers can be obtained from the javaToolchains extension.

Three tools are available:

• A JavaCompiler which is the tool used by the JavaCompile task

• A JavaLauncher which is the tool used by the JavaExec or Test tasks

• A JavadocTool which is the tool used by the Javadoc task

Integration with tasks relying on a Java executable or Java home

Any task that can be configured with a path to a Java executable, or a Java home location, can
benefit from toolchains.

While you will not be able to wire a toolchain tool directly, they all have the metadata that gives
access to their full path or to the path of the Java installation they belong to.

For example, you can configure the java executable for a task as follows:

build.gradle.kts

val launcher = javaToolchains.launcherFor {
 languageVersion = JavaLanguageVersion.of(11)
}

tasks.sampleTask {
 javaExecutable = launcher.map { it.executablePath }
}

https://docs.gradle.org/8.12/javadoc/org/gradle/jvm/toolchain/JavaToolchainService.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:javaCompiler
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:javaLauncher
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:javaLauncher
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:javadocTool

build.gradle

def launcher = javaToolchains.launcherFor {
 languageVersion = JavaLanguageVersion.of(11)
}

tasks.named('sampleTask') {
 javaExecutable = launcher.map { it.executablePath }
}

As another example, you can configure the Java Home for a task as follows:

build.gradle.kts

val launcher = javaToolchains.launcherFor {
 languageVersion = JavaLanguageVersion.of(11)
}

tasks.anotherSampleTask {
 javaHome = launcher.map { it.metadata.installationPath }
}

build.gradle

def launcher = javaToolchains.launcherFor {
 languageVersion = JavaLanguageVersion.of(11)
}

tasks.named('anotherSampleTask') {
 javaHome = launcher.map { it.metadata.installationPath }
}

If you require a path to a specific tool such as Java compiler, you can obtain it as follows:

build.gradle.kts

val compiler = javaToolchains.compilerFor {
 languageVersion = JavaLanguageVersion.of(11)
}

tasks.yetAnotherSampleTask {
 javaCompilerExecutable = compiler.map { it.executablePath }
}

build.gradle

def compiler = javaToolchains.compilerFor {
 languageVersion = JavaLanguageVersion.of(11)
}

tasks.named('yetAnotherSampleTask') {
 javaCompilerExecutable = compiler.map { it.executablePath }
}

WARNING

The examples above use tasks with RegularFileProperty and DirectoryProperty
properties which allow lazy configuration. Doing respectively
launcher.get().executablePath, launcher.get().metadata.installationPath or
compiler.get().executablePath instead will give you the full path for the given
toolchain but note that this may realize (and provision) a toolchain eagerly.

Auto-detection of installed toolchains

By default, Gradle automatically detects local JRE/JDK installations so no further configuration is
required by the user. The following is a list of common package managers, tools, and locations that
are supported by the JVM auto-detection.

JVM auto-detection knows how to work with:

• Operation-system specific locations: Linux, macOS, Windows

• Package Managers: Asdf-vm, Jabba, SDKMAN!

• Maven Toolchain specifications

• IntelliJ IDEA installations

Among the set of all detected JRE/JDK installations, one will be picked according to the Toolchain
Precedence Rules.

NOTE
Whether you are using toolchain auto-detection or you are configuring Custom
toolchain locations, installations that are non-existing or without a bin/java
executable will be ignored with a warning, but they won’t generate an error.

How to disable auto-detection

In order to disable auto-detection, you can use the org.gradle.java.installations.auto-detect
Gradle property:

https://asdf-vm.com/#/
https://github.com/shyiko/jabba
https://sdkman.io/
https://maven.apache.org/guides/mini/guide-using-toolchains.html
https://www.jetbrains.com/help/idea/sdk.html#jdk-from-ide

• Either start gradle using -Porg.gradle.java.installations.auto-detect=false

• Or put org.gradle.java.installations.auto-detect=false into your gradle.properties file.

Auto-provisioning

If Gradle can’t find a locally available toolchain that matches the requirements of the build, it can
automatically download one (as long as a toolchain download repository has been configured; for
detail, see relevant section). Gradle installs the downloaded JDKs in the Gradle User Home.

NOTE
Gradle only downloads JDK versions for GA releases. There is no support for
downloading early access versions.

Once installed in the Gradle User Home, a provisioned JDK becomes one of the JDKs visible to auto-
detection and can be used by any subsequent builds, just like any other JDK installed on the system.

Since auto-provisioning only kicks in when auto-detection fails to find a matching JDK, auto-
provisioning can only download new JDKs and is in no way involved in updating any of the already
installed ones. None of the auto-provisioned JDKs will ever be revisited and automatically updated
by auto-provisioning, even if there is a newer minor version available for them.

Toolchain Download Repositories

Toolchain download repository definitions are added to a build by applying specific settings
plugins. For details on writing such plugins, consult the Toolchain Resolver Plugins page.

One example of a toolchain resolver plugin is the Foojay Toolchains Plugin, based on the foojay
Disco API. It even has a convention variant, which automatically takes care of all the needed
configuration, just by being applied:

settings.gradle.kts

plugins {
 id("org.gradle.toolchains.foojay-resolver-convention") version("0.8.0")
}

settings.gradle

plugins {
 id 'org.gradle.toolchains.foojay-resolver-convention' version '0.8.0'
}

In general, when applying toolchain resolver plugins, the toolchain download resolvers provided
by them also need to be configured. Let’s illustrate with an example. Consider two toolchain

https://github.com/gradle/foojay-toolchains
https://github.com/foojayio/discoapi
https://github.com/foojayio/discoapi

resolver plugins applied by the build:

• One is the Foojay plugin mentioned above, which downloads toolchains via the
FoojayToolchainResolver it provides.

• The other contains a FICTITIOUS resolver named MadeUpResolver.

The following example uses these toolchain resolvers in a build via the toolchainManagement block in
the settings file:

settings.gradle.kts

toolchainManagement {
 jvm { ①
 javaRepositories {
 repository("foojay") { ②
 resolverClass =
org.gradle.toolchains.foojay.FoojayToolchainResolver::class.java
 }
 repository("made_up") { ③
 resolverClass = MadeUpResolver::class.java
 credentials {
 username = "user"
 password = "password"
 }
 authentication {
 create<DigestAuthentication>("digest")
 } ④
 }
 }
 }
}

settings.gradle

toolchainManagement {
 jvm { ①
 javaRepositories {
 repository('foojay') { ②
 resolverClass = org.gradle.toolchains.foojay
.FoojayToolchainResolver
 }
 repository('made_up') { ③
 resolverClass = MadeUpResolver
 credentials {
 username = "user"
 password = "password"
 }

 authentication {
 digest(BasicAuthentication)
 } ④
 }
 }
 }
}

① In the toolchainManagement block, the jvm block contains configuration for Java toolchains.

② The javaRepositories block defines named Java toolchain repository configurations. Use the
resolverClass property to link these configurations to plugins.

③ Toolchain declaration order matters. Gradle downloads from the first repository that provides a
match, starting with the first repository in the list.

④ You can configure toolchain repositories with the same set of authentication and authorization
options used for dependency management.

WARNING
The jvm block in toolchainManagement only resolves after applying a toolchain
resolver plugin.

Viewing and debugging toolchains

Gradle can display the list of all detected toolchains including their metadata.

For example, to show all toolchains of a project, run:

gradle -q javaToolchains

Output of gradle -q javaToolchains

> gradle -q javaToolchains

 + Options
 | Auto-detection: Enabled
 | Auto-download: Enabled

 + AdoptOpenJDK 1.8.0_242
 | Location: /Users/username/myJavaInstalls/8.0.242.hs-adpt/jre
 | Language Version: 8
 | Vendor: AdoptOpenJDK
 | Architecture: x86_64
 | Is JDK: false
 | Detected by: Gradle property 'org.gradle.java.installations.paths'

 + Microsoft JDK 16.0.2+7
 | Location: /Users/username/.sdkman/candidates/java/16.0.2.7.1-ms
 | Language Version: 16

 | Vendor: Microsoft
 | Architecture: aarch64
 | Is JDK: true
 | Detected by: SDKMAN!

 + OpenJDK 15-ea
 | Location: /Users/user/customJdks/15.ea.21-open
 | Language Version: 15
 | Vendor: AdoptOpenJDK
 | Architecture: x86_64
 | Is JDK: true
 | Detected by: environment variable 'JDK16'

 + Oracle JDK 1.7.0_80
 | Location:
/Library/Java/JavaVirtualMachines/jdk1.7.0_80.jdk/Contents/Home/jre
 | Language Version: 7
 | Vendor: Oracle
 | Architecture: x86_64
 | Is JDK: false
 | Detected by: MacOS java_home

This can help to debug which toolchains are available to the build, how they are detected and what
kind of metadata Gradle knows about those toolchains.

Disabling auto provisioning

In order to disable auto-provisioning, you can use the org.gradle.java.installations.auto-download
Gradle property:

• Either start gradle using -Porg.gradle.java.installations.auto-download=false

• Or put org.gradle.java.installations.auto-download=false into a gradle.properties file.

NOTE

After disabling the auto provisioning, ensure that the specified JRE/JDK version in
the build file is already installed locally. Then, stop the Gradle daemon so that it can
be reinitialized for the next build. You can use the ./gradlew --stop command to
stop the daemon process.

Removing an auto-provisioned toolchain

When removing an auto-provisioned toolchain is necessary, remove the relevant toolchain located
in the /jdks directory within the Gradle User Home.

NOTE

The Gradle Daemon caches information about your project, including configuration
details such as toolchain paths or versions. Changes to a project’s toolchain
configuration might only occur once the Gradle Daemon is restarted. It is
recommended to stop the Gradle Daemon to ensure that Gradle updates the
configuration for subsequent builds.

Custom toolchain locations

If auto-detecting local toolchains is not sufficient or disabled, there are additional ways you can let
Gradle know about installed toolchains.

If your setup already provides environment variables pointing to installed JVMs, you can also let
Gradle know about which environment variables to take into account. Assuming the environment
variables JDK8 and JRE17 point to valid java installations, the following instructs Gradle to resolve
those environment variables and consider those installations when looking for a matching
toolchain.

org.gradle.java.installations.fromEnv=JDK8,JRE17

Additionally, you can provide a comma-separated list of paths to specific installations using the
org.gradle.java.installations.paths property. For example, using the following in your
gradle.properties will let Gradle know which directories to look at when detecting toolchains.
Gradle will treat these directories as possible installations but will not descend into any nested
directories.

org.gradle.java.installations.paths=/custom/path/jdk1.8,/shared/jre11

NOTE
Gradle does not prioritize custom toolchains over auto-detected toolchains. If you
enable auto-detection in your build, custom toolchains extend the set of toolchain
locations. Gradle picks a toolchain according to the precedence rules.

Toolchain installations precedence

Gradle will sort all the JDK/JRE installations matching the toolchain specification of the build and
will pick the first one. Sorting is done based on the following rules:

1. the installation currently running Gradle is preferred over any other

2. JDK installations are preferred over JRE ones

3. certain vendors take precedence over others; their ordering (from the highest priority to
lowest):

a. ADOPTIUM

b. ADOPTOPENJDK

c. AMAZON

d. APPLE

e. AZUL

f. BELLSOFT

g. GRAAL_VM

h. HEWLETT_PACKARD

i. IBM

j. JETBRAINS

k. MICROSOFT

l. ORACLE

m. SAP

n. TENCENT

o. everything else

4. higher major versions take precedence over lower ones

5. higher minor versions take precedence over lower ones

6. installation paths take precedence according to their lexicographic ordering (last resort criteria
for deterministically deciding between installations of the same type, from the same vendor and
with the same version)

All these rules are applied as multilevel sorting criteria, in the order shown. Let’s illustrate with an
example. A toolchain specification requests Java version 17. Gradle detects the following matching
installations:

• Oracle JRE v17.0.1

• Oracle JDK v17.0.0

• Microsoft JDK 17.0.0

• Microsoft JRE 17.0.1

• Microsoft JDK 17.0.1

Assume that Gradle runs on a major Java version other than 17. Otherwise, that installation would
have priority.

When we apply the above rules to sort this set we will end up with following ordering:

1. Microsoft JDK 17.0.1

2. Microsoft JDK 17.0.0

3. Oracle JDK v17.0.0

4. Microsoft JRE v17.0.1

5. Oracle JRE v17.0.1

Gradle prefers JDKs over JREs, so the JREs come last. Gradle prefers the Microsoft vendor over
Oracle, so the Microsoft installations come first. Gradle prefers higher version numbers, so JDK
17.0.1 comes before JDK 17.0.0.

So Gradle picks the first match in this order: Microsoft JDK 17.0.1.

Toolchains for plugin authors

When creating a plugin or a task that uses toolchains, it is essential to provide sensible defaults and

allow users to override them.

For JVM projects, it is usually safe to assume that the java plugin has been applied to the project.
The java plugin is automatically applied for the core Groovy and Scala plugins, as well as for the
Kotlin plugin. In such a case, using the toolchain defined via the java extension as a default value
for the tool property is appropriate. This way, the users will need to configure the toolchain only
once on the project level.

The example below showcases how to use the default toolchain as convention while allowing users
to individually configure the toolchain per task.

build.gradle.kts

abstract class CustomTaskUsingToolchains : DefaultTask() {

 @get:Nested
 abstract val launcher: Property<JavaLauncher> ①

 init {
 val toolchain =
project.extensions.getByType<JavaPluginExtension>().toolchain ②
 val defaultLauncher = javaToolchainService.launcherFor(toolchain) ③
 launcher.convention(defaultLauncher) ④
 }

 @TaskAction
 fun showConfiguredToolchain() {
 println(launcher.get().executablePath)
 println(launcher.get().metadata.installationPath)
 }

 @get:Inject
 protected abstract val javaToolchainService: JavaToolchainService
}

build.gradle

abstract class CustomTaskUsingToolchains extends DefaultTask {

 @Nested
 abstract Property<JavaLauncher> getLauncher() ①

 CustomTaskUsingToolchains() {
 def toolchain = project.extensions.getByType(JavaPluginExtension
.class).toolchain ②
 Provider<JavaLauncher> defaultLauncher = getJavaToolchainService()
.launcherFor(toolchain) ③

 launcher.convention(defaultLauncher) ④
 }

 @TaskAction
 def showConfiguredToolchain() {
 println launcher.get().executablePath
 println launcher.get().metadata.installationPath
 }

 @Inject
 protected abstract JavaToolchainService getJavaToolchainService()
}

① We declare a JavaLauncher property on the task. The property must be marked as a @Nested input
to make sure the task is responsive to toolchain changes.

② We obtain the toolchain spec from the java extension to use it as a default.

③ Using the JavaToolchainService we get a provider of the JavaLauncher that matches the toolchain.

④ Finally, we wire the launcher provider as a convention for our property.

In a project where the java plugin was applied, we can use the task as follows:

build.gradle.kts

plugins {
 java
}

java {
 toolchain { ①
 languageVersion = JavaLanguageVersion.of(8)
 }
}

tasks.register<CustomTaskUsingToolchains>("showDefaultToolchain") ②

tasks.register<CustomTaskUsingToolchains>("showCustomToolchain") {
 launcher = javaToolchains.launcherFor { ③
 languageVersion = JavaLanguageVersion.of(17)
 }
}

build.gradle

plugins {

incremental_build.pdf#sec:task_input_nested_inputs
incremental_build.pdf#sec:task_input_nested_inputs

 id 'java'
}

java {
 toolchain { ①
 languageVersion = JavaLanguageVersion.of(8)
 }
}

tasks.register('showDefaultToolchain', CustomTaskUsingToolchains) ②

tasks.register('showCustomToolchain', CustomTaskUsingToolchains) {
 launcher = javaToolchains.launcherFor { ③
 languageVersion = JavaLanguageVersion.of(17)
 }
}

① The toolchain defined on the java extension is used by default to resolve the launcher.

② The custom task without additional configuration will use the default Java 8 toolchain.

③ The other task overrides the value of the launcher by selecting a different toolchain using
javaToolchains service.

When a task needs access to toolchains without the java plugin being applied the toolchain service
can be used directly. If an unconfigured toolchain spec is provided to the service, it will always
return a tool provider for the toolchain that is running Gradle. This can be achieved by passing an
empty lambda when requesting a tool: javaToolchainService.launcherFor({}).

You can find more details on defining custom tasks in the Authoring tasks documentation.

Toolchains limitations

Gradle may detect toolchains incorrectly when it’s running in a JVM compiled against musl, an
alternative implementation of the C standard library. JVMs compiled against musl can sometimes
override the LD_LIBRARY_PATH environment variable to control dynamic library resolution. This can
influence forked java processes launched by Gradle, resulting in unexpected behavior.

As a consequence, using multiple java toolchains is discouraged in environments with the musl
library. This is the case in most Alpine distributions — consider using another distribution, like
Ubuntu, instead. If you are using a single toolchain, the JVM running Gradle, to build and run your
application, you can safely ignore this limitation.

Toolchain Resolver Plugins
In Gradle version 7.6 and above, Gradle provides a way to define Java toolchain auto-provisioning
logic in plugins. This page explains how to author a toolchain resolver plugin. For details on how
toolchain auto-provisioning interacts with these plugins, see Toolchains.

https://musl.libc.org/

Provide a download URI

Toolchain resolver plugins provide logic to map a toolchain request to a download response. At the
moment the download response only contains a download URL, but may be extended in the future.

WARNING
For the download URL only secure protocols like https are accepted. This is
required to make sure no one can tamper with the download in flight.

The plugins provide the mapping logic via an implementation of JavaToolchainResolver:

JavaToolchainResolverImplementation.java

public abstract class JavaToolchainResolverImplementation
 implements JavaToolchainResolver { ①

 public Optional<JavaToolchainDownload> resolve(JavaToolchainRequest request) { ②
 return Optional.empty(); // custom mapping logic goes here instead
 }
}

① This class is abstract because JavaToolchainResolver is a build service. Gradle provides dynamic
implementations for certain abstract methods at runtime.

② The mapping method returns a download response wrapped in an Optional. If the resolver
implementation can’t provide a matching toolchain, the enclosing Optional contains an empty
value.

Register the resolver in a plugin

Use a settings plugin (Plugin<Settings>) to register the JavaToolchainResolver implementation:

JavaToolchainResolverPlugin.java

public abstract class JavaToolchainResolverPlugin implements Plugin<Settings> { ①
 @Inject
 protected abstract JavaToolchainResolverRegistry getToolchainResolverRegistry();
②

 public void apply(Settings settings) {
 settings.getPluginManager().apply("jvm-toolchain-management"); ③

 JavaToolchainResolverRegistry registry = getToolchainResolverRegistry();
 registry.register(JavaToolchainResolverImplementation.class);
 }
}

① The plugin uses property injection, so it must be abstract and a settings plugin.

② To register the resolver implementation, use property injection to access the
JavaToolchainResolverRegistry Gradle service.

https://docs.gradle.org/8.12/javadoc/org/gradle/jvm/toolchain/JavaToolchainRequest.html
https://docs.gradle.org/8.12/javadoc/org/gradle/jvm/toolchain/JavaToolchainDownload.html
https://docs.gradle.org/8.12/javadoc/org/gradle/jvm/toolchain/JavaToolchainResolver.html
https://docs.gradle.org/8.12/javadoc/org/gradle/jvm/toolchain/JavaToolchainResolverRegistry.html

③ Resolver plugins must apply the jvm-toolchain-management base plugin. This dynamically adds
the jvm block to toolchainManagement, which makes registered toolchain repositories usable from
the build.

JVM PLUGINS

The Java Library Plugin
The Java Library plugin expands the capabilities of the Java Plugin (java) by providing specific
knowledge about Java libraries. In particular, a Java library exposes an API to consumers (i.e., other
projects using the Java or the Java Library plugin). All the source sets, tasks and configurations
exposed by the Java plugin are implicitly available when using this plugin.

Usage

To use the Java Library plugin, include the following in your build script:

Example 112. Using the Java Library plugin

build.gradle.kts

plugins {
 `java-library`
}

build.gradle

plugins {
 id 'java-library'
}

API and implementation separation

The key difference between the standard Java plugin and the Java Library plugin is that the latter
introduces the concept of an API exposed to consumers. A library is a Java component meant to be
consumed by other components. It’s a very common use case in multi-project builds, but also as
soon as you have external dependencies.

The plugin exposes two configurations that can be used to declare dependencies: api and
implementation. The api configuration should be used to declare dependencies which are exported
by the library API, whereas the implementation configuration should be used to declare
dependencies which are internal to the component.

java_plugin.pdf#java_plugin
java_plugin.pdf#java_plugin
java_plugin.pdf#java_plugin
#ex-using-the-java-library-plugin

Example 113. Declaring API and implementation dependencies

build.gradle.kts

dependencies {
 api("org.apache.httpcomponents:httpclient:4.5.7")
 implementation("org.apache.commons:commons-lang3:3.5")
}

build.gradle

dependencies {
 api 'org.apache.httpcomponents:httpclient:4.5.7'
 implementation 'org.apache.commons:commons-lang3:3.5'
}

Dependencies appearing in the api configurations will be transitively exposed to consumers of the
library, and as such will appear on the compile classpath of consumers. Dependencies found in the
implementation configuration will, on the other hand, not be exposed to consumers, and therefore
not leak into the consumers' compile classpath. This comes with several benefits:

• dependencies do not leak into the compile classpath of consumers anymore, so you will never
accidentally depend on a transitive dependency

• faster compilation thanks to reduced classpath size

• less recompilations when implementation dependencies change: consumers would not need to
be recompiled

• cleaner publishing: when used in conjunction with the new maven-publish plugin, Java libraries
produce POM files that distinguish exactly between what is required to compile against the
library and what is required to use the library at runtime (in other words, don’t mix what is
needed to compile the library itself and what is needed to compile against the library).

NOTE
The compile and runtime configurations have been removed with Gradle 7.0. Please
refer to the upgrade guide how to migrate to implementation and api
configurations`.

If your build consumes a published module with POM metadata, the Java and Java Library plugins
both honor api and implementation separation through the scopes used in the POM. Meaning that
the compile classpath only includes Maven compile scoped dependencies, while the runtime
classpath adds the Maven runtime scoped dependencies as well.

This often does not have an effect on modules published with Maven, where the POM that defines
the project is directly published as metadata. There, the compile scope includes both dependencies
that were required to compile the project (i.e. implementation dependencies) and dependencies

#ex-declaring-api-and-implementation-dependencies
upgrading_version_6.pdf#sec:configuration_removal

required to compile against the published library (i.e. API dependencies). For most published
libraries, this means that all dependencies belong to the compile scope. If you encounter such an
issue with an existing library, you can consider a component metadata rule to fix the incorrect
metadata in your build. However, as mentioned above, if the library is published with Gradle, the
produced POM file only puts api dependencies into the compile scope and the remaining
implementation dependencies into the runtime scope.

If your build consumes modules with Ivy metadata, you might be able to activate api and
implementation separation as described here if all modules follow a certain structure.

NOTE
Separating compile and runtime scope of modules is active by default in Gradle
5.0+. In Gradle 4.6+, you need to activate it by adding
enableFeaturePreview('IMPROVED_POM_SUPPORT') in settings.gradle.

Recognizing API and implementation dependencies

This section will help you identify API and Implementation dependencies in your code using simple
rules of thumb. The first of these is:

• Prefer the implementation configuration over api when possible

This keeps the dependencies off of the consumer’s compilation classpath. In addition, the
consumers will immediately fail to compile if any implementation types accidentally leak into the
public API.

So when should you use the api configuration? An API dependency is one that contains at least one
type that is exposed in the library binary interface, often referred to as its ABI (Application Binary
Interface). This includes, but is not limited to:

• types used in super classes or interfaces

• types used in public method parameters, including generic parameter types (where public is
something that is visible to compilers. I.e. , public, protected and package private members in the
Java world)

• types used in public fields

• public annotation types

By contrast, any type that is used in the following list is irrelevant to the ABI, and therefore should
be declared as an implementation dependency:

• types exclusively used in method bodies

• types exclusively used in private members

• types exclusively found in internal classes (future versions of Gradle will let you declare which
packages belong to the public API)

The following class makes use of a couple of third-party libraries, one of which is exposed in the
class’s public API and the other is only used internally. The import statements don’t help us
determine which is which, so we have to look at the fields, constructors and methods instead:

Example: Making the difference between API and implementation

src/main/java/org/gradle/HttpClientWrapper.java

// The following types can appear anywhere in the code
// but say nothing about API or implementation usage
import org.apache.commons.lang3.exception.ExceptionUtils;
import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;

public class HttpClientWrapper {

 private final HttpClient client; // private member: implementation details

 // HttpClient is used as a parameter of a public method
 // so "leaks" into the public API of this component
 public HttpClientWrapper(HttpClient client) {
 this.client = client;
 }

 // public methods belongs to your API
 public byte[] doRawGet(String url) {
 HttpGet request = new HttpGet(url);
 try {
 HttpEntity entity = doGet(request);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 entity.writeTo(baos);
 return baos.toByteArray();
 } catch (Exception e) {
 ExceptionUtils.rethrow(e); // this dependency is internal only
 } finally {
 request.releaseConnection();
 }
 return null;
 }

 // HttpGet and HttpEntity are used in a private method, so they don't belong to
the API
 private HttpEntity doGet(HttpGet get) throws Exception {
 HttpResponse response = client.execute(get);
 if (response.getStatusLine().getStatusCode() != HttpStatus.SC_OK) {
 System.err.println("Method failed: " + response.getStatusLine());
 }
 return response.getEntity();

 }
}

The public constructor of HttpClientWrapper uses HttpClient as a parameter, so it is exposed to
consumers and therefore belongs to the API. Note that HttpGet and HttpEntity are used in the
signature of a private method, and so they don’t count towards making HttpClient an API
dependency.

On the other hand, the ExceptionUtils type, coming from the commons-lang library, is only used in a
method body (not in its signature), so it’s an implementation dependency.

Therefore, we can deduce that httpclient is an API dependency, whereas commons-lang is an
implementation dependency. This conclusion translates into the following declaration in the build
script:

Example 114. Declaring API and implementation dependencies

build.gradle.kts

dependencies {
 api("org.apache.httpcomponents:httpclient:4.5.7")
 implementation("org.apache.commons:commons-lang3:3.5")
}

build.gradle

dependencies {
 api 'org.apache.httpcomponents:httpclient:4.5.7'
 implementation 'org.apache.commons:commons-lang3:3.5'
}

The Java Library plugin configurations

The following graph describes how configurations are setup when the Java Library plugin is in use.

#ex-declaring-api-and-implementation-dependencies

• The configurations in green are the ones a user should use to declare dependencies

• The configurations in pink are the ones used when a component compiles, or runs against the
library

• The configurations in blue are internal to the component, for its own use

And the next graph describes the test configurations setup:

The role of each configuration is described in the following tables:

Table 8. Java Library plugin - configurations used to declare dependencies

Configura
tion name

Role Consu
mable?

Resolv
able?

Description

annotation
Processor

Declaring
annotation
processors

no yes This configuration is used to declare annotation
processors, ensuring they are available during
the compile phase for code generation.

Configura
tion name

Role Consu
mable?

Resolv
able?

Description

api Declaring API
dependencies

no no This is where you declare dependencies which
are transitively exported to consumers, for
compile time and runtime.

implementa
tion

Declaring
implementation
dependencies

no no This is where you declare dependencies which
are purely internal and not meant to be
exposed to consumers (they are still exposed to
consumers at runtime).

compileOnl
y

Declaring compile
only dependencies

no no This is where you declare dependencies which
are required at compile time, but not at
runtime. This typically includes dependencies
which are shaded when found at runtime.

compileOnl
yApi

Declaring compile
only API
dependencies

no no This is where you declare dependencies which
are required at compile time by your module
and consumers, but not at runtime. This
typically includes dependencies which are
shaded when found at runtime.

runtimeOnl
y

Declaring runtime
dependencies

no no This is where you declare dependencies which
are only required at runtime, and not at
compile time.

testImplem
entation

Test dependencies no no This is where you declare dependencies which
are used to compile tests.

testCompil
eOnly

Declaring test
compile only
dependencies

no no This is where you declare dependencies which
are only required at test compile time, but
should not leak into the runtime. This typically
includes dependencies which are shaded when
found at runtime.

testRuntim
eOnly

Declaring test
runtime
dependencies

no no This is where you declare dependencies which
are only required at test runtime, and not at
test compile time.

Table 9. Java Library plugin — configurations used by consumers

Configurat
ion name

Role Consu
mable?

Resolv
able?

Description

apiElements For compiling
against this
library

yes no This configuration is meant to be used by
consumers, to retrieve all the elements necessary
to compile against this library.

runtimeElem
ents

For executing
this library

yes no This configuration is meant to be used by
consumers, to retrieve all the elements necessary
to run against this library.

Table 10. Java Library plugin - configurations used by the library itself

Configurat
ion name

Role Consu
mable?

Resolv
able?

Description

compileCla
sspath

For compiling this
library

no yes This configuration contains the compile
classpath of this library, and is therefore used
when invoking the java compiler to compile it.

runtimeCla
sspath

For executing this
library

no yes This configuration contains the runtime
classpath of this library

testCompil
eClasspath

For compiling the
tests of this library

no yes This configuration contains the test compile
classpath of this library.

testRuntim
eClasspath

For executing tests
of this library

no yes This configuration contains the test runtime
classpath of this library

Building Modules for the Java Module System

Since Java 9, Java itself offers a module system that allows for strict encapsulation during compile
and runtime. You can turn a Java library into a Java Module by creating a module-info.java file in
the main/java source folder.

src
└── main
 └── java
 └── module-info.java

In the module info file, you declare a module name, which packages of your module you want to
export and which other modules you require.

module-info.java file

module org.gradle.sample {
 requires com.google.gson; // real module
 requires org.apache.commons.lang3; // automatic module
 // commons-cli-1.4.jar is not a module and cannot be required
}

To tell the Java compiler that a Jar is a module, as opposed to a traditional Java library, Gradle needs
to place it on the so called module path. It is an alternative to the classpath, which is the traditional
way to tell the compiler about compiled dependencies. Gradle will automatically put a Jar of your
dependencies on the module path, instead of the classpath, if these three things are true:

• java.modularity.inferModulePath is not turned off

• We are actually building a module (as opposed to a traditional library) which we expressed by
adding the module-info.java file. (Another option is to add the Automatic-Module-Name Jar
manifest attribute as described further down.)

• The Jar our module depends on is itself a module, which Gradles decides based on the presence
of a module-info.class — the compiled version of the module descriptor — in the Jar. (Or,

https://www.oracle.com/corporate/features/understanding-java-9-modules.html

alternatively, the presence of an Automatic-Module-Name attribute the Jar manifest)

In the following, some more details about defining Java modules and how that interacts with
Gradle’s dependency management are described. You can also look at a ready made example to try
out the Java Module support directly.

Declaring module dependencies

There is a direct relationship to the dependencies you declare in the build file and the module
dependencies you declare in the module-info.java file. Ideally the declarations should be in sync as
seen in the following table.

Table 11. Mapping between Java module directives and Gradle configurations to declare dependencies

Java Module Directive Gradle Configuration Purpose

requires implementation Declaring implementation dependencies

requires transitive api Declaring API dependencies

requires static compileOnly Declaring compile only dependencies

requires static transitive compileOnlyApi Declaring compile only API dependencies

Gradle currently does not automatically check if the dependency declarations are in sync. This may
be added in future versions.

For more details on declaring module dependencies, please refer to documentation on the Java
Module System.

Declaring package visibility and services

The Java module system supports additional more fine granular encapsulation concepts than
Gradle itself currently does. For example, you explicitly need to declare which packages are part of
your API and which are only visible inside your module. Some of these capabilities might be added
to Gradle itself in future versions. For now, please refer to documentation on the Java Module
System to learn how to use these features in Java Modules.

Declaring module versions

Java Modules also have a version that is encoded as part of the module identity in the module-
info.class file. This version can be inspected when a module is running.

Example 115. Declare the module version in the build script or directly as compile task option

build.gradle.kts

version = "1.2"

tasks.compileJava {
 // use the project's version or define one directly
 options.javaModuleVersion = provider { version as String }

../samples/sample_java_modules_multi_project.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
#ex-declare-the-module-version-in-the-build-script-or-directly-as-compile-task-option

}

build.gradle

version = '1.2'

tasks.named('compileJava') {
 // use the project's version or define one directly
 options.javaModuleVersion = provider { version }
}

Using libraries that are not modules

You probably want to use external libraries, like OSS libraries from Maven Central, in your modular
Java project. Some libraries, in their newer versions, are already full modules with a module
descriptor. For example, com.google.code.gson:gson:2.8.9 that has the module name
com.google.gson.

Others, like org.apache.commons:commons-lang3:3.10, may not offer a full module descriptor but will
at least contain an Automatic-Module-Name entry in their manifest file to define the module’s name
(org.apache.commons.lang3 in the example). Such modules, that only have a name as module
description, are called automatic module that export all their packages and can read all modules on
the module path.

A third case are traditional libraries that provide no module information at all — for example
commons-cli:commons-cli:1.4. Gradle puts such libraries on the classpath instead of the module path.
The classpath is then treated as one module (the so called unnamed module) by Java.

Example 116. Dependencies to modules and libraries declared in build file

build.gradle.kts

dependencies {
 implementation("com.google.code.gson:gson:2.8.9") // real module
 implementation("org.apache.commons:commons-lang3:3.10") // automatic
module
 implementation("commons-cli:commons-cli:1.4") // plain library
}

build.gradle

dependencies {
 implementation 'com.google.code.gson:gson:2.8.9' // real module

#ex-dependencies-to-modules-and-libraries-declared-in-build-file

 implementation 'org.apache.commons:commons-lang3:3.10' // automatic
module
 implementation 'commons-cli:commons-cli:1.4' // plain library
}

Module dependencies declared in module-info.java file

module org.gradle.sample.lib {
 requires com.google.gson; // real module
 requires org.apache.commons.lang3; // automatic module
 // commons-cli-1.4.jar is not a module and cannot be required
}

While a real module cannot directly depend on the unnamed module (only by adding command
line flags), automatic modules can also see the unnamed module. Thus, if you cannot avoid to rely
on a library without module information, you can wrap that library in an automatic module as part
of your project. How you do that is described in the next section.

Another way to deal with non-modules is to enrich existing Jars with module descriptors yourself
using artifact transforms. This sample contains a small buildSrc plugin registering such a transform
which you may use and adjust to your needs. This can be interesting if you want to build a fully
modular application and want the java runtime to treat everything as a real module.

Disabling Java Module support

In rare cases, you might want to disable the built-in Java Module support and define the module
path by other means. To achieve this, you can disable the functionality to automatically put any Jar
on the module path. Then Gradle puts Jars with module information on the classpath, even if you
have a module-info.java in your source set. This corresponds to the behaviour of Gradle versions
<7.0.

To make this work, you need to set modularity.inferModulePath = false on the Java extension (for
all tasks) or on individual tasks.

Example 117. Disable Gradle’s module path inference

build.gradle.kts

java {
 modularity.inferModulePath = false
}

tasks.compileJava {
 modularity.inferModulePath = false
}

../samples/sample_java_modules_with_transform.html
#ex-disable-gradles-module-path-inference

build.gradle

java {
 modularity.inferModulePath = false
}

tasks.named('compileJava') {
 modularity.inferModulePath = false
}

Building an automatic module

If you can, you should always write complete module-info.java descriptors for your modules. Still,
there are a few cases where you might consider to (initally) only provide a module name for an
automatic module:

• You are working on a library that is not a module but you want to make it usable as such in the
next release. Adding an Automatic-Module-Name is a good first step (most popular OSS libraries on
Maven central have done it by now).

• As discussed in the previous section, an automatic module can be used as an adapter between
your real modules and a traditional library on the classpath.

To turn a normal Java project into an automatic module, just add the manifest entry with the
module name:

Example 118. Declare an automatic module name as Jar manifest attribute

build.gradle.kts

tasks.jar {
 manifest {
 attributes("Automatic-Module-Name" to "org.gradle.sample")
 }
}

build.gradle

tasks.named('jar') {
 manifest {
 attributes('Automatic-Module-Name': 'org.gradle.sample')
 }
}

#ex-declare-an-automatic-module-name-as-jar-manifest-attribute

NOTE

=== You can define an automatic module as part of a multi-project that otherwise
defines real modules (e.g. as an adapter to another library). While this works fine in
the Gradle build, such automatic module projects are not correctly recognized by
IDEA/Eclipse at the moment. You can work around it by manually adding the Jar
built for the automatic module to the dependencies of the project that does not find
it in the IDE’s UI. ===

Using classes instead of jar for compilation

A feature of the java-library plugin is that projects which consume the library only require the
classes folder for compilation, instead of the full JAR. This enables lighter inter-project
dependencies as resources processing (processResources task) and archive construction (jar task)
are no longer executed when only Java code compilation is performed during development.

NOTE
The usage or not of the classes output instead of the JAR is a consumer decision. For
example, Groovy consumers will request classes and processed resources as these
may be needed for executing AST transformation as part of the compilation process.

Increased memory usage for consumers

An indirect consequence is that up-to-date checking will require more memory, because Gradle will
snapshot individual class files instead of a single jar. This may lead to increased memory
consumption for large projects, with the benefit of having the compileJava task up-to-date in more
cases (e.g. changing resources no longer changes the input for compileJava tasks of upstream
projects)

Significant build performance drop on Windows for huge multi-projects

Another side effect of the snapshotting of individual class files, only affecting Windows systems, is
that the performance can significantly drop when processing a very large amount of class files on
the compile classpath. This only concerns very large multi-projects where a lot of classes are
present on the classpath by using many api dependencies. To mitigate this, you can set the
org.gradle.java.compile-classpath-packaging system property to true to change the behavior of the
Java Library plugin to use jars instead of class folders for everything on the compile classpath. Note,
since this has other performance impacts and potentially side effects, by triggering all jar tasks at
compile time, it is only recommended to activate this if you suffer from the described performance
issue on Windows.

Distributing a library

Aside from publishing a library to a component repository, you may sometimes need to package a
library and its dependencies in a distribution deliverable. The Java Library Distribution Plugin is
there to help you do just that.

The Application Plugin
The Application plugin facilitates creating an executable JVM application. It makes it easy to start

java_library_distribution_plugin.pdf#java_library_distribution_plugin

the application locally during development, and to package the application as a TAR and/or ZIP
including operating system specific start scripts.

Applying the Application plugin also implicitly applies the Java plugin. The main source set is
effectively the “application”.

Applying the Application plugin also implicitly applies the Distribution plugin. A main distribution is
created that packages up the application, including code dependencies and generated start scripts.

Building JVM applications

To use the application plugin, include the following in your build script:

Example 119. Using the application plugin

build.gradle.kts

plugins {
 application
}

build.gradle

plugins {
 id 'application'
}

The only mandatory configuration for the plugin is the specification of the main class (i.e. entry
point) of the application.

Example 120. Configure the application main class

build.gradle.kts

application {
 mainClass = "org.gradle.sample.Main"
}

build.gradle

application {
 mainClass = 'org.gradle.sample.Main'

java_plugin.pdf#java_plugin
distribution_plugin.pdf#distribution_plugin
#ex-using-the-application-plugin
#ex-configure-the-application-main-class

}

You can run the application by executing the run task (type: JavaExec). This will compile the main
source set, and launch a new JVM with its classes (along with all runtime dependencies) as the
classpath and using the specified main class. You can launch the application in debug mode with
gradle run --debug-jvm (see JavaExec.setDebug(boolean)).

Since Gradle 4.9, the command line arguments can be passed with --args. For example, if you want
to launch the application with command line arguments foo --bar, you can use gradle run
--args="foo --bar" (see JavaExec.setArgsString(java.lang.String).

If your application requires a specific set of JVM settings or system properties, you can configure
the applicationDefaultJvmArgs property. These JVM arguments are applied to the run task and also
considered in the generated start scripts of your distribution.

Example 121. Configure default JVM settings

build.gradle.kts

application {
 applicationDefaultJvmArgs = listOf("-Dgreeting.language=en")
}

build.gradle

application {
 applicationDefaultJvmArgs = ['-Dgreeting.language=en']
}

If your application’s start scripts should be in a different directory than bin, you can configure the
executableDir property.

Example 122. Configure custom directory for start scripts

build.gradle.kts

application {
 executableDir = "custom_bin_dir"
}

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/JavaExec.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug-boolean-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/JavaExec.html#setArgsString-java.lang.String-
#ex-configure-default-jvm-settings
#ex-configure-custom-directory-for-start-scripts

build.gradle

application {
 executableDir = 'custom_bin_dir'
}

Building applications using the Java Module System

Gradle supports the building of Java Modules as described in the corresponding section of the Java
Library plugin documentation. Java modules can also be runnable and you can use the application
plugin to run and package such a modular application. For this, you need to do two things in
addition to what you do for a non-modular application.

First, you need to add a module-info.java file to describe your application module. Please refer to
the Java Library plugin documentation for more details on this topic.

Second, you need to tell Gradle the name of the module you want to run in addition to the main
class name like this:

Example 123. Configure the modular application’s main module

build.gradle.kts

application {
 mainModule = "org.gradle.sample.app" // name defined in module-info.java
 mainClass = "org.gradle.sample.Main"
}

build.gradle

application {
 mainModule = 'org.gradle.sample.app' // name defined in module-info.java
 mainClass = 'org.gradle.sample.Main'
}

That’s all. If you run your application, by executing the run task or through a generated start script,
it will run as module and respect module boundaries at runtime. For example, reflective access to
an internal package from another module can fail.

The configured main class is also baked into the module-info.class file of your application Jar. If you
run the modular application directly using the java command, it is then sufficient to provide the
module name.

https://www.oracle.com/corporate/features/understanding-java-9-modules.html
#ex-configure-the-modular-applications-main-module

You can also look at a ready made example that includes a modular application as part of a multi-
project.

Building a distribution

A distribution of the application can be created, by way of the Distribution plugin (which is
automatically applied). A main distribution is created with the following content:

Table 12. Distribution content

Location Content

(root dir) src/dist

lib All runtime dependencies and main source set class files.

bin Start scripts (generated by startScripts task).

Static files to be added to the distribution can be simply added to src/dist. More advanced
customization can be done by configuring the CopySpec exposed by the main distribution.

Example 124. Include output from other tasks in the application distribution

build.gradle.kts

val createDocs by tasks.registering {
 val docs = layout.buildDirectory.dir("docs")
 outputs.dir(docs)
 doLast {
 docs.get().asFile.mkdirs()
 docs.get().file("readme.txt").asFile.writeText("Read me!")
 }
}

distributions {
 main {
 contents {
 from(createDocs) {
 into("docs")
 }
 }
 }
}

build.gradle

tasks.register('createDocs') {
 def docs = layout.buildDirectory.dir('docs')
 outputs.dir docs
 doLast {

../samples/sample_java_modules_multi_project.html
distribution_plugin.pdf#distribution_plugin
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html
#ex-include-output-from-other-tasks-in-the-application-distribution

 docs.get().asFile.mkdirs()
 docs.get().file('readme.txt').asFile.write('Read me!')
 }
}

distributions {
 main {
 contents {
 from(createDocs) {
 into 'docs'
 }
 }
 }
}

By specifying that the distribution should include the task’s output files (see incremental builds),
Gradle knows that the task that produces the files must be invoked before the distribution can be
assembled and will take care of this for you.

You can run gradle installDist to create an image of the application in build/install/projectName.
You can run gradle distZip to create a ZIP containing the distribution, gradle distTar to create an
application TAR or gradle assemble to build both.

Customizing start script generation

The application plugin can generate Unix (suitable for Linux, macOS etc.) and Windows start scripts
out of the box. The start scripts launch a JVM with the specified settings defined as part of the
original build and runtime environment (e.g. JAVA_OPTS env var). The default script templates are
based on the same scripts used to launch Gradle itself, that ship as part of a Gradle distribution.

The start scripts are completely customizable. Please refer to the documentation of
CreateStartScripts for more details and customization examples.

Tasks

The Application plugin adds the following tasks to the project.

run — JavaExec

Depends on: classes

Starts the application.

startScripts — CreateStartScripts

Depends on: jar

Creates OS specific scripts to run the project as a JVM application.

incremental_build.pdf#sec:task_inputs_outputs
https://docs.gradle.org/8.12/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/8.12/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html

installDist — Sync

Depends on: jar, startScripts

Installs the application into a specified directory.

distZip — Zip

Depends on: jar, startScripts

Creates a full distribution ZIP archive including runtime libraries and OS specific scripts.

distTar — Tar

Depends on: jar, startScripts

Creates a full distribution TAR archive including runtime libraries and OS specific scripts.

Application extension

The Application Plugin adds an extension to the project, which you can use to configure its
behavior. See the JavaApplication DSL documentation for more information on the properties
available on the extension.

You can configure the extension via the application {} block shown earlier, for example using the
following in your build script:

build.gradle.kts

application {
 executableDir = "custom_bin_dir"
}

build.gradle

application {
 executableDir = 'custom_bin_dir'
}

License of start scripts

The start scripts generated for the application are licensed under the Apache 2.0 Software License.

Convention properties (deprecated)

This plugin also adds some convention properties to the project, which you can use to configure its
behavior. These are deprecated and superseded by the extension described above. See the Project

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.Sync.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.JavaApplication.html
https://www.apache.org/licenses/LICENSE-2.0
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#N14FED

DSL documentation for information on them.

Unlike the extension properties, these properties appear as top-level project properties in the build
script. For example, to change the application name you can just add the following to your build
script:

build.gradle.kts

application.applicationName = "my-app"

build.gradle

application.applicationName = 'my-app'

The Java Platform Plugin
The Java Platform plugin brings the ability to declare platforms for the Java ecosystem. A platform
can be used for different purposes:

• a description of modules which are published together (and for example, share the same
version)

• a set of recommended versions for heterogeneous libraries. A typical example includes the
Spring Boot BOM

• sharing a set of dependency versions between subprojects

A platform is a special kind of software component which doesn’t contain any sources: it is only
used to reference other libraries, so that they play well together during dependency resolution.

Platforms can be published as Gradle Module Metadata and Maven BOMs.

NOTE
The java-platform plugin cannot be used in combination with the java or java-
library plugins in a given project. Conceptually a project is either a platform, with
no binaries, or produces binaries.

Usage

To use the Java Platform plugin, include the following in your build script:

https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-build-systems.html#using-boot-dependency-management
https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management

Example 125. Using the Java Platform plugin

build.gradle.kts

plugins {
 `java-platform`
}

build.gradle

plugins {
 id 'java-platform'
}

API and runtime separation

A major difference between a Maven BOM and a Java platform is that in Gradle dependencies and
constraints are declared and scoped to a configuration and the ones extending it. While many users
will only care about declaring constraints for compile time dependencies, thus inherited by runtime
and tests ones, it allows declaring dependencies or constraints that only apply to runtime or test.

For this purpose, the plugin exposes two configurations that can be used to declare dependencies:
api and runtime. The api configuration should be used to declare constraints and dependencies
which should be used when compiling against the platform, whereas the runtime configuration
should be used to declare constraints or dependencies which are visible at runtime.

Example 126. Declaring API and runtime constraints

build.gradle.kts

dependencies {
 constraints {
 api("commons-httpclient:commons-httpclient:3.1")
 runtime("org.postgresql:postgresql:42.2.5")
 }
}

build.gradle

dependencies {
 constraints {
 api 'commons-httpclient:commons-httpclient:3.1'

#ex-using-the-java-platform-plugin
glossary.pdf#sub:terminology_dependency_constraint
#ex-declaring-api-and-runtime-constraints

 runtime 'org.postgresql:postgresql:42.2.5'
 }
}

Note that this example makes use of constraints and not dependencies. In general, this is what you
would like to do: constraints will only apply if such a component is added to the dependency graph,
either directly or transitively. This means that all constraints listed in a platform would not add a
dependency unless another component brings it in: they can be seen as recommendations.

NOTE

For example, if a platform declares a constraint on org:foo:1.1, and that nothing
else brings in a dependency on foo, foo will not appear in the graph. However, if foo
appears, then usual conflict resolution would kick in. If a dependency brings in
org:foo:1.0, then we would select org:foo:1.1 to satisfy the platform constraint.

By default, in order to avoid the common mistake of adding a dependency in a platform instead of a
constraint, Gradle will fail if you try to do so. If, for some reason, you also want to add dependencies
in addition to constraints, you need to enable it explicitly:

Example 127. Allowing declaration of dependencies

build.gradle.kts

javaPlatform {
 allowDependencies()
}

build.gradle

javaPlatform {
 allowDependencies()
}

Local project constraints

If you have a multi-project build and want to publish a platform that links to subprojects, you can
do it by declaring constraints on the subprojects which belong to the platform, as in the example
below:

#ex-allowing-declaration-of-dependencies

Example 128. Declaring constraints on subprojects

build.gradle.kts

dependencies {
 constraints {
 api(project(":core"))
 api(project(":lib"))
 }
}

build.gradle

dependencies {
 constraints {
 api project(":core")
 api project(":lib")
 }
}

The project notation will become a classical group:name:version notation in the published metadata.

Sourcing constraints from another platform

Sometimes the platform you define is an extension of another existing platform.

In order to have your platform include the constraints from that third party platform, it needs to be
imported as a platform dependency:

Example 129. Importing a platform

build.gradle.kts

javaPlatform {
 allowDependencies()
}

dependencies {
 api(platform("com.fasterxml.jackson:jackson-bom:2.9.8"))
}

#ex-declaring-constraints-on-subprojects
#ex-importing-a-platform

build.gradle

javaPlatform {
 allowDependencies()
}

dependencies {
 api platform('com.fasterxml.jackson:jackson-bom:2.9.8')
}

Publishing platforms

Publishing Java platforms is done by applying the maven-publish plugin and configuring a Maven
publication that uses the javaPlatform component:

Example 130. Publishing as a BOM

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("myPlatform") {
 from(components["javaPlatform"])
 }
 }
}

build.gradle

publishing {
 publications {
 myPlatform(MavenPublication) {
 from components.javaPlatform
 }
 }
}

This will generate a BOM file for the platform, with a <dependencyManagement> block where its
<dependencies> correspond to the constraints defined in the platform module.

#ex-publishing-as-a-bom

Consuming platforms

Because a Java Platform is a special kind of component, a dependency on a Java platform has to be
declared using the platform or enforcedPlatform keyword, as explained in the managing transitive
dependencies section. For example, if you want to share dependency versions between subprojects,
you can define a platform module which would declare all versions:

Example 131. Recommend versions in a platform module

build.gradle.kts

dependencies {
 constraints {
 // Platform declares some versions of libraries used in subprojects
 api("commons-httpclient:commons-httpclient:3.1")
 api("org.apache.commons:commons-lang3:3.8.1")
 }
}

build.gradle

dependencies {
 constraints {
 // Platform declares some versions of libraries used in subprojects
 api 'commons-httpclient:commons-httpclient:3.1'
 api 'org.apache.commons:commons-lang3:3.8.1'
 }
}

And then have subprojects depend on the platform to get recommendations:

Example 132. Get recommendations from a platform

build.gradle.kts

dependencies {
 // get recommended versions from the platform project
 api(platform(project(":platform")))
 // no version required
 api("commons-httpclient:commons-httpclient")
}

#ex-recommend-versions-in-a-platform-module
#ex-get-recommendations-from-a-platform

build.gradle

dependencies {
 // get recommended versions from the platform project
 api platform(project(':platform'))
 // no version required
 api 'commons-httpclient:commons-httpclient'
}

The Groovy Plugin
The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with
Groovy code, mixed Groovy and Java code, and even pure Java code (although we don’t necessarily
recommend to use it for the latter). The plugin supports joint compilation, which allows you to
freely mix and match Groovy and Java code, with dependencies in both directions. For example, a
Groovy class can extend a Java class that in turn extends a Groovy class. This makes it possible to
use the best language for the job, and to rewrite any class in the other language if needed.

Note that if you want to benefit from the API / implementation separation, you can also apply the
java-library plugin to your Groovy project.

Usage

To use the Groovy plugin, include the following in your build script:

Example 133. Using the Groovy plugin

build.gradle.kts

plugins {
 groovy
}

build.gradle

plugins {
 id 'groovy'
}

java_plugin.pdf#java_plugin
https://groovy-lang.org/
#ex-using-the-groovy-plugin

Tasks

The Groovy plugin adds the following tasks to the project. Information about altering the
dependencies to Java compile tasks are found here.

compileGroovy — GroovyCompile

Depends on: compileJava

Compiles production Groovy source files.

compileTestGroovy — GroovyCompile

Depends on: compileTestJava

Compiles test Groovy source files.

compileSourceSetGroovy — GroovyCompile

Depends on: compileSourceSetJava

Compiles the given source set’s Groovy source files.

groovydoc — Groovydoc

Generates API documentation for the production Groovy source files.

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 13. Groovy plugin - additional task
dependencies

Task name Depends on

classes compileGroovy

testClasses compileTestGroovy

sourceSetClasses compileSourceSetGroovy

Figure 20. Groovy plugin - tasks

Project layout

The Groovy plugin assumes the project layout shown in Groovy Layout. All the Groovy source
directories can contain Groovy and Java code. The Java source directories may only contain Java
source code.[1] None of these directories need to exist or have anything in them; the Groovy plugin
will simply compile whatever it finds.

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

src/main/java

Production Java source.

src/main/resources

Production resources, such as XML and properties files.

src/main/groovy

Production Groovy source. May also contain Java source files for joint compilation.

src/test/java

Test Java source.

src/test/resources

Test resources.

src/test/groovy

Test Groovy source. May also contain Java source files for joint compilation.

src/sourceSet/java

Java source for the source set named sourceSet.

src/sourceSet/resources

Resources for the source set named sourceSet.

src/sourceSet/groovy

Groovy source files for the given source set. May also contain Java source files for joint
compilation.

Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy
production and test source files.

Example 134. Custom Groovy source layout

build.gradle.kts

sourceSets {
 main {
 groovy {
 setSrcDirs(listOf("src/groovy"))
 }
 }

 test {
 groovy {
 setSrcDirs(listOf("test/groovy"))
 }
 }

#ex-custom-groovy-source-layout

}

build.gradle

sourceSets {
 main {
 groovy {
 srcDirs = ['src/groovy']
 }
 }

 test {
 groovy {
 srcDirs = ['test/groovy']
 }
 }
}

Dependency management

Because Gradle’s build language is based on Groovy, and parts of Gradle are implemented in
Groovy, Gradle already ships with a Groovy library. Nevertheless, Groovy projects need to explicitly
declare a Groovy dependency. This dependency will then be used on compile and runtime class
paths. It will also be used to get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the
implementation configuration:

Example 135. Configuration of Groovy dependency

build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.codehaus.groovy:groovy-all:2.4.15")
}

build.gradle

repositories {

#ex-configuration-of-groovy-dependency

 mavenCentral()
}

dependencies {
 implementation 'org.codehaus.groovy:groovy-all:2.4.15'
}

If Groovy is only used for test code, the Groovy dependency should be added to the
testImplementation configuration:

Example 136. Configuration of Groovy test dependency

build.gradle.kts

dependencies {
 testImplementation("org.codehaus.groovy:groovy-all:2.4.15")
}

build.gradle

dependencies {
 testImplementation 'org.codehaus.groovy:groovy-all:2.4.15'
}

To use the Groovy library that ships with Gradle, declare a localGroovy() dependency. Note that
different Gradle versions ship with different Groovy versions; as such, using localGroovy() is less
safe then declaring a regular Groovy dependency.

Example 137. Configuration of bundled Groovy dependency

build.gradle.kts

dependencies {
 implementation(localGroovy())
}

build.gradle

dependencies {
 implementation localGroovy()

#ex-configuration-of-groovy-test-dependency
#ex-configuration-of-bundled-groovy-dependency

}

Automatic configuration of groovyClasspath

The GroovyCompile and Groovydoc tasks consume Groovy code in two ways: on their classpath, and
on their groovyClasspath. The former is used to locate classes referenced by the source code, and
will typically contain the Groovy library along with other libraries. The latter is used to load and
execute the Groovy compiler and Groovydoc tool, respectively, and should only contain the Groovy
library and its dependencies.

Unless a task’s groovyClasspath is configured explicitly, the Groovy (base) plugin will try to infer it
from the task’s classpath. This is done as follows:

• If a groovy-all(-indy) Jar is found on classpath, that jar will be added to groovyClasspath.

• If a groovy(-indy) jar is found on classpath, and the project has at least one repository declared,
a corresponding groovy(-indy) repository dependency will be added to groovyClasspath.

• Otherwise, execution of the task will fail with a message saying that groovyClasspath could not
be inferred.

Note that the “-indy” variation of each jar refers to the version with invokedynamic support.

Convention properties

The Groovy plugin does not add any convention properties to the project.

Source set properties

The Groovy plugin adds the following extensions to each source set in the project. You can use these
properties in your build script as though they were properties of the source set object.

Groovy Plugin — source set properties

groovy — GroovySourceDirectorySet (read-only)

Default value: Not null

The Groovy source files of this source set. Contains all .groovy and .java files found in the
Groovy source directories, and excludes all other types of files.

groovy.srcDirs — Set<File>

Default value: [projectDir/src/name/groovy]

The source directories containing the Groovy source files of this source set. May also contain
Java source files for joint compilation. Can set using anything described in Specifying Multiple
Files.

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.GroovySourceDirectorySet.html

allGroovy — FileTree (read-only)

Default value: Not null

All Groovy source files of this source set. Contains only the .groovy files found in the Groovy
source directories.

These properties are provided by a convention object of type GroovySourceSet.

The Groovy plugin also modifies some source set properties:

Groovy Plugin - modified source set properties

Property name Change

allJava Adds all .java files found in the Groovy source directories.

allSource Adds all source files found in the Groovy source directories.

GroovyCompile

The Groovy plugin adds a GroovyCompile task for each source set in the project. The task type
shares much with the JavaCompile task by extending AbstractCompile (see the relevant Java Plugin
section). The GroovyCompile task supports most configuration options of the official Groovy
compiler. The task can also leverage the Java toolchain support.

Table 14. Groovy plugin - GroovyCompile properties

Task
Property

Type Default Value

classpath FileCollection sourceSet.compileClasspath

source FileTree. Can set using anything
described in Specifying Multiple Files.

sourceSet.groovy

destination
Directory

File. sourceSet.groovy.destinationDirectory

groovyClass
path

FileCollection groovy configuration if non-empty; Groovy
library found on classpath otherwise

javaLaunche
r

Property<JavaLauncher>, see the
toolchain documentation.

None but will be configured if a toolchain is
defined on the java extension.

Compilation avoidance

Caveat: Groovy compilation avoidance is an incubating feature since Gradle 5.6. There are known
inaccuracies so please enable it at your own risk.

To enable the incubating support for Groovy compilation avoidance, add a enableFeaturePreview to
your settings file:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.SourceSet.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/initialization/Settings.html#enableFeaturePreview-java.lang.String-

settings.gradle

enableFeaturePreview('GROOVY_COMPILATION_AVOIDANCE')

settings.gradle.kts

enableFeaturePreview("GROOVY_COMPILATION_AVOIDANCE")

If a dependent project has changed in an ABI-compatible way (only its private API has changed),
then Groovy compilation tasks will be up-to-date. This means that if project A depends on project B
and a class in B is changed in an ABI-compatible way (typically, changing only the body of a
method), then Gradle won’t recompile A.

See Java compile avoidance for a detailed list of the types of changes that do not affect the ABI and
are ignored.

However, similar to Java’s annotation processing, there are various ways to customize the Groovy
compilation process, for which implementation details matter. Some well-known examples are
Groovy AST transformations. In these cases, these dependencies must be declared separately in a
classpath called astTransformationClasspath:

Example 138. Declaring AST transformations

build.gradle.kts

val astTransformation by configurations.creating
dependencies {
 astTransformation(project(":ast-transformation"))
}
tasks.withType<GroovyCompile>().configureEach {
 astTransformationClasspath.from(astTransformation)
}

build.gradle

configurations { astTransformation }
dependencies {
 astTransformation(project(":ast-transformation"))
}
tasks.withType(GroovyCompile).configureEach {
 astTransformationClasspath.from(configurations.astTransformation)

https://en.wikipedia.org/wiki/Application_binary_interface
java_plugin.pdf#sec:java_compile_avoidance
https://melix.github.io/blog/2011/05/12/customizing_groovy_compilation_process.html
https://melix.github.io/blog/2011/05/12/customizing_groovy_compilation_process.html
https://groovy-lang.org/metaprogramming.html#_code_generation_transformations
#ex-declaring-ast-transformations

}

Incremental Groovy compilation

Since 5.6, Gradle introduces an experimental incremental Groovy compiler. To enable incremental
compilation for Groovy, you need:

• Enable Groovy compilation avoidance.

• Explicitly enable incremental Groovy compilation in the build script:

Example 139. Enable incremental Groovy compilation

buildSrc/src/main/kotlin/myproject.groovy-conventions.gradle.kts

tasks.withType<GroovyCompile>().configureEach {
 options.isIncremental = true
 options.incrementalAfterFailure = true
}

buildSrc/src/main/groovy/myproject.groovy-conventions.gradle

tasks.withType(GroovyCompile).configureEach {
 options.incremental = true
 options.incrementalAfterFailure = true
}

This gives you the following benefits:

• Incremental builds are much faster.

• If only a small set of Groovy source files are changed, only the affected source files will be
recompiled. Classes that don’t need to be recompiled remain unchanged in the output directory.
For example, if you only change a few Groovy test classes, you don’t need to recompile all
Groovy test source files — only the changed ones need to be recompiled.

To understand how incremental compilation works, see Incremental Java compilation for a
detailed overview. Note that there’re several differences from Java incremental compilation:

The Groovy compiler doesn’t keep @Retention in generated annotation class bytecode (GROOVY-
9185), thus all annotations are RUNTIME. This means that changes to source-retention annotations
won’t trigger a full recompilation.

#ex-enable-incremental-groovy-compilation
java_plugin.pdf#sec:incremental_compile
https://issues.apache.org/jira/browse/GROOVY-9185
https://issues.apache.org/jira/browse/GROOVY-9185

Known issues

Also see Known issues for incremental Java compilation.

• Changes to resources won’t trigger a recompilation, this might result in some incorrectness —
for example Extension Modules.

Compiling and testing for Java 6 or Java 7

With toolchain support added to GroovyCompile, it is possible to compile Groovy code using a
different Java version than the one running Gradle. If you also have Java source files, this will also
configure JavaCompile to use the right Java compiler is used, as can be seen in the Java plugin
documentation.

Example: Configure Java 7 build for Groovy

build.gradle.kts

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(7)
 }
}

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(7)
 }
}

The Scala Plugin
The Scala plugin extends the Java plugin to add support for Scala projects. The plugin also supports
joint compilation, which allows you to freely mix and match Scala and Java code with dependencies
in both directions. For example, a Scala class can extend a Java class that in turn extends a Scala
class. This makes it possible to use the best language for the job, and to rewrite any class in the
other language if needed.

Note that if you want to benefit from the API / implementation separation, you can also apply the
java-library plugin to your Scala project.

java_plugin.pdf#sec:incremental_compilation_known_issues
https://mrhaki.blogspot.com/2013/01/groovy-goodness-adding-extra-methods.html
java_plugin.pdf#java_plugin
https://www.scala-lang.org/

Usage

To use the Scala plugin, include the following in your build script:

Example 140. Using the Scala plugin

build.gradle.kts

plugins {
 scala
}

build.gradle

plugins {
 id 'scala'
}

Tasks

The Scala plugin adds the following tasks to the project. Information about altering the
dependencies to Java compile tasks are found here.

compileScala — ScalaCompile

Depends on: compileJava

Compiles production Scala source files.

compileTestScala — ScalaCompile

Depends on: compileTestJava

Compiles test Scala source files.

compileSourceSetScala — ScalaCompile

Depends on: compileSourceSetJava

Compiles the given source set’s Scala source files.

scaladoc — ScalaDoc

Generates API documentation for the production Scala source files.

The ScalaCompile and ScalaDoc tasks support Java toolchains out of the box.

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

#ex-using-the-scala-plugin
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

Table 15. Scala plugin - additional task dependencies

Task name Depends on

classes compileScala

testClasses compileTestScala

sourceSetClasses compileSourceSetScala

Figure 21. Scala plugin - tasks

Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can
contain Scala and Java code. The Java source directories may only contain Java source code. None
of these directories need to exist or have anything in them; the Scala plugin will simply compile
whatever it finds.

src/main/java

Production Java source.

src/main/resources

Production resources, such as XML and properties files.

src/main/scala

Production Scala source. May also contain Java source files for joint compilation.

src/test/java

Test Java source.

src/test/resources

Test resources.

src/test/scala

Test Scala source. May also contain Java source files for joint compilation.

src/sourceSet/java

Java source for the source set named sourceSet.

src/sourceSet/resources

Resources for the source set named sourceSet.

src/sourceSet/scala

Scala source files for the given source set. May also contain Java source files for joint
compilation.

Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala
production and test source files.

Example 141. Custom Scala source layout

build.gradle.kts

sourceSets {
 main {
 scala {
 setSrcDirs(listOf("src/scala"))
 }
 }
 test {
 scala {
 setSrcDirs(listOf("test/scala"))
 }
 }
}

build.gradle

sourceSets {
 main {
 scala {
 srcDirs = ['src/scala']
 }
 }
 test {
 scala {
 srcDirs = ['test/scala']
 }
 }
}

Dependency management

Scala projects need to declare a scala-library dependency. This dependency will then be used on
compile and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc

#ex-custom-scala-source-layout

tool, respectively.[2]

If Scala is used for production code, the scala-library dependency should be added to the
implementation configuration:

Example 142. Declaring a Scala dependency for production code

build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.scala-lang:scala-library:2.13.12")
 testImplementation("junit:junit:4.13")
}

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.scala-lang:scala-library:2.13.12'
 testImplementation 'junit:junit:4.13'
}

If you want to use Scala 3 instead of the scala-library dependency you should add the scala3-
library_3 dependency:

Example 143. Declaring a Scala 3 dependency for production code

build.gradle.kts

plugins {
 scala
}

repositories {
 mavenCentral()
}

dependencies {

#ex-declaring-a-scala-dependency-for-production-code
#ex-declaring-a-scala-3-dependency-for-production-code

 implementation("org.scala-lang:scala3-library_3:3.0.1")
 testImplementation("org.scalatest:scalatest_3:3.2.9")
 testImplementation("junit:junit:4.13")
}

dependencies {
 implementation("commons-collections:commons-collections:3.2.2")
}

build.gradle

plugins {
 id 'scala'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.scala-lang:scala3-library_3:3.0.1'
 implementation 'commons-collections:commons-collections:3.2.2'
 testImplementation 'org.scalatest:scalatest_3:3.2.9'
 testImplementation 'junit:junit:4.13'
}

If Scala is only used for test code, the scala-library dependency should be added to the
testImplementation configuration:

Example 144. Declaring a Scala dependency for test code

build.gradle.kts

dependencies {
 testImplementation("org.scala-lang:scala-library:2.13.12")
}

build.gradle

dependencies {
 testImplementation 'org.scala-lang:scala-library:2.13.12'
}

#ex-declaring-a-scala-dependency-for-test-code

Automatic configuration of scalaClasspath

The ScalaCompile and ScalaDoc tasks consume Scala code in two ways: on their classpath, and on
their scalaClasspath. The former is used to locate classes referenced by the source code, and will
typically contain scala-library along with other libraries. The latter is used to load and execute the
Scala compiler and Scaladoc tool, respectively, and should only contain the scala-compiler library
and its dependencies.

Unless a task’s scalaClasspath is configured explicitly, the Scala (base) plugin will try to infer it from
the task’s classpath. This is done as follows:

• If a scala-library jar is found on classpath, and the project has at least one repository declared,
a corresponding scala-compiler repository dependency will be added to scalaClasspath.

• Otherwise, execution of the task will fail with a message saying that scalaClasspath could not be
inferred.

Configuring the Zinc compiler

The Scala plugin uses a configuration named zinc to resolve the Zinc compiler and its
dependencies. Gradle will provide a default version of Zinc, but if you need to use a particular Zinc
version, you can change it. Gradle supports version 1.6.0 of Zinc and above.

Example 145. Declaring a version of the Zinc compiler to use

build.gradle.kts

scala {
 zincVersion = "1.10.4"
}

build.gradle

scala {
 zincVersion = "1.10.4"
}

The Zinc compiler itself needs a compatible version of scala-library that may be different from the
version required by your application. Gradle takes care of specifying a compatible version of scala-
library for you.

You can diagnose problems with the version of the Zinc compiler selected by running
dependencyInsight for the zinc configuration.

Table 16. Zinc compatibility table

https://github.com/sbt/zinc
#ex-declaring-a-version-of-the-zinc-compiler-to-use

Gradle
versio
n

Supported Zinc versions Zinc
coordinat
es

Required Scala
version

Supported Scala
compilation
version

7.5 and
newer

SBT Zinc. Versions 1.6.0 and above. org.scala-
sbt:zinc_2
.13

Scala 2.13.x is
required for
running Zinc.

Scala 2.10.x
through 3.x can be
compiled.

6.0 to
7.5

SBT Zinc. Versions 1.2.0 and above. org.scala-
sbt:zinc_2
.12

Scala 2.12.x is
required for
running Zinc.

Scala 2.10.x
through 2.13.x can
be compiled.

1.x
throug
h 5.x

Deprecated Typesafe Zinc compiler.
Versions 0.3.0 and above, except for
0.3.2 through 0.3.5.2.

com.typesa
fe.zinc:zi
nc

Scala 2.10.x is
required for
running Zinc.

Scala 2.9.x
through 2.12.x can
be compiled.

Adding plugins to the Scala compiler

The Scala plugin adds a configuration named scalaCompilerPlugins which is used to declare and
resolve optional compiler plugins.

Example 146. Adding a dependency on a Scala compiler plugin

build.gradle.kts

dependencies {
 implementation("org.scala-lang:scala-library:2.13.12")
 scalaCompilerPlugins("org.typelevel:kind-projector_2.13.12:0.13.2")
}

build.gradle

dependencies {
 implementation "org.scala-lang:scala-library:2.13.12"
 scalaCompilerPlugins "org.typelevel:kind-projector_2.13.12:0.13.2"
}

Convention properties

The Scala plugin does not add any convention properties to the project.

Source set properties

The Scala plugin adds the following extensions to each source set in the project. You can use these
in your build script as though they were properties of the source set object.

https://github.com/sbt/zinc
https://github.com/sbt/zinc
https://github.com/typesafehub/zinc
https://github.com/typesafehub/zinc
#ex-adding-a-dependency-on-a-scala-compiler-plugin

scala — SourceDirectorySet (read-only)

The Scala source files of this source set. Contains all .scala and .java files found in the Scala
source directories, and excludes all other types of files. Default value: non-null.

scala.srcDirs — Set<File>

The source directories containing the Scala source files of this source set. May also contain Java
source files for joint compilation. Can set using anything described in Understanding implicit
conversion to file collections. Default value: [projectDir/src/name/scala].

allScala — FileTree (read-only)

All Scala source files of this source set. Contains only the .scala files found in the Scala source
directories. Default value: non-null.

These extensions are backed by an object of type ScalaSourceSet.

The Scala plugin also modifies some source set properties:

Table 17. Scala plugin - source set properties

Property name Change

allJava Adds all .java files found in the Scala source directories.

allSource Adds all source files found in the Scala source directories.

Target bytecode level and Java APIs version

When running the Scala compile task, Gradle will always add a parameter to configure the Java
target for the Scala compiler that is derived from the Gradle configuration:

• When using toolchains, the -release option, or target for older Scala versions, is selected, with a
version matching the Java language level of the toolchain configured.

• When not using toolchains, Gradle will always pass a target flag — with exact value dependent
on the Scala version — to compile to Java 8 bytecode.

NOTE

This means that using toolchains with a recent Java version and an old Scala
version can result in failures because Scala only supported Java 8 bytecode for some
time. The solution is then to either use the right Java version in the toolchain or
explicitly downgrade the target when needed.

The following table explains the values computed by Gradle:

Table 18. Scala target parameter based on project configuration

Scala version Toolchain in use Parameter value

version < 2.13.1 yes -target:jvm-1.<java_version>

no -target:jvm-1.8

2.13.1 <= version < 2.13.9 yes -target:<java_version>

no -target:8

https://docs.gradle.org/8.12/dsl/org.gradle.api.file.SourceDirectorySet.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/ScalaSourceSet.html

Scala version Toolchain in use Parameter value

2.13.9 <= version < 3.0 yes -release:<java_version>

no -target:8

3.0 <= version yes -release:<java_version>

no -Xtarget:8

Setting any of these flags explicitly, or using flags containing java-output-version, on
ScalaCompile.scalaCompileOptions.additionalParameters disables that logic in favor of the explicit
flag.

Compiling in external process

Scala compilation takes place in an external process.

Memory settings for the external process default to the defaults of the JVM. To adjust memory
settings, configure the scalaCompileOptions.forkOptions property as needed:

Example 147. Adjusting memory settings

build.gradle.kts

tasks.withType<ScalaCompile>().configureEach {
 scalaCompileOptions.forkOptions.apply {
 memoryMaximumSize = "1g"
 jvmArgs = listOf("-XX:MaxMetaspaceSize=512m")
 }
}

build.gradle

tasks.withType(ScalaCompile) {
 scalaCompileOptions.forkOptions.with {
 memoryMaximumSize = '1g'
 jvmArgs = ['-XX:MaxMetaspaceSize=512m']
 }
}

Incremental compilation

By compiling only classes whose source code has changed since the previous compilation, and
classes affected by these changes, incremental compilation can significantly reduce Scala
compilation time. It is particularly effective when frequently compiling small code increments, as is
often done at development time.

https://docs.gradle.org/8.12/dsl/org.gradle.language.scala.tasks.BaseScalaCompileOptions.html#org.gradle.language.scala.tasks.BaseScalaCompileOptions:additionalParameters
#ex-adjusting-memory-settings

The Scala plugin defaults to incremental compilation by integrating with Zinc, a standalone version
of sbt's incremental Scala compiler. If you want to disable the incremental compilation, set force =
true in your build file:

Example 148. Forcing all code to be compiled

build.gradle.kts

tasks.withType<ScalaCompile>().configureEach {
 scalaCompileOptions.apply {
 isForce = true
 }
}

build.gradle

tasks.withType(ScalaCompile) {
 scalaCompileOptions.with {
 force = true
 }
}

Note: This will only cause all classes to be recompiled if at least one input source file has changed. If
there are no changes to the source files, the compileScala task will still be considered UP-TO-DATE as
usual.

The Zinc-based Scala Compiler supports joint compilation of Java and Scala code. By default, all
Java and Scala code under src/main/scala will participate in joint compilation. Even Java code will
be compiled incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this
analysis are stored in the file designated by scalaCompileOptions.incrementalOptions.analysisFile
(which has a sensible default). In a multi-project build, analysis files are passed on to downstream
ScalaCompile tasks to enable incremental compilation across project boundaries. For ScalaCompile
tasks added by the Scala plugin, no configuration is necessary to make this work. For other
ScalaCompile tasks that you might add, the property
scalaCompileOptions.incrementalOptions.publishedCode needs to be configured to point to the
classes folder or Jar archive by which the code is passed on to compile class paths of downstream
ScalaCompile tasks. Note that if publishedCode is not set correctly, downstream tasks may not
recompile code affected by upstream changes, leading to incorrect compilation results.

Note that Zinc’s Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradle’s
own compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler.
This is expected to yield another significant speedup for Scala compilation.

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt
#ex-forcing-all-code-to-be-compiled

Eclipse Integration

When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the
project work with Scala IDE out of the box. Specifically, the plugin adds a Scala nature and
dependency container.

IntelliJ IDEA Integration

When the IDEA plugin encounters a Scala project, it adds additional configuration to make the
project work with IDEA out of the box. Specifically, the plugin adds a Scala SDK (IntelliJ IDEA 14+)
and a Scala compiler library that matches the Scala version on the project’s class path. The Scala
plugin is backwards compatible with earlier versions of IntelliJ IDEA and it is possible to add a
Scala facet instead of the default Scala SDK by configuring targetVersion on IdeaModel.

Example 149. Explicitly specify a target IntelliJ IDEA version

build.gradle.kts

idea {
 targetVersion = "13"
}

build.gradle

idea {
 targetVersion = '13'
}

[1] Gradle uses the same conventions as introduced by Russel Winder’s Gant tool.

[2] See Automatic configuration of Scala classpath.

https://docs.gradle.org/8.12/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
#ex-explicitly-specify-a-target-intellij-idea-version
https://github.com/Gant/Gant

INTEGRATION

Gradle & Third-party Tools
Gradle can be integrated with many different third-party tools such as IDEs and continuous
integration platforms. Here we look at some of the more common ones as well as how to integrate
your own tool with Gradle.

IDEs

Android Studio

As a variant of IntelliJ IDEA, Android Studio has built-in support for importing and building
Gradle projects. You can also use the IDEA Plugin for Gradle to fine-tune the import process if
that’s necessary.

This IDE also has an extensive user guide to help you get the most out of the IDE and Gradle.

Eclipse

If you want to work on a project within Eclipse that has a Gradle build, you should use the
Eclipse Buildship plugin. This will allow you to import and run Gradle builds. If you need to fine
tune the import process so that the project loads correctly, you can use the Eclipse Plugins for
Gradle. See the associated release announcement for details on what fine tuning you can do.

IntelliJ IDEA

IDEA has built-in support for importing Gradle projects. If you need to fine tune the import
process so that the project loads correctly, you can use the IDEA Plugin for Gradle.

NetBeans

Built-in support for Gradle in Apache NetBeans

Visual Studio

For developing C++ projects, Gradle comes with a Visual Studio plugin.

Xcode

For developing C++ projects, Gradle comes with a Xcode plugin.

CLion

JetBrains supports building C++ projects with Gradle.

Continuous integration

We have dedicated guides showing you how to integrate a Gradle project with several CI platforms.

How to integrate with Gradle

There are two main ways to integrate a tool with Gradle:

https://developer.android.com/studio/
idea_plugin.pdf#idea_plugin
https://developer.android.com/studio/intro/
https://projects.eclipse.org/projects/tools.buildship
eclipse_plugin.pdf#eclipse_plugin
eclipse_plugin.pdf#eclipse_plugin
https://discuss.gradle.org/t/buildship-1-0-18-is-now-available/19012
idea_plugin.pdf#idea_plugin
https://netbeans.apache.org/
visual_studio_plugin.pdf#visual_studio_plugin
xcode_plugin.pdf#xcode_plugin
https://blog.jetbrains.com/clion/2018/05/clion-starts-2018-2-eap-sanitizers-gradle-db-performance/
https://community.gradle.org/cookbook/ci/

• The Gradle build uses the tool

• The tool executes the Gradle build

The former case is typically implemented as a Gradle plugin. The latter can be accomplished by
embedding Gradle through the Tooling API as described below.

Embedding Gradle using the Tooling API

Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding
Gradle into your own software. This API allows you to execute and monitor builds and to query
Gradle about the details of a build. The main audience for this API is IDE, CI server, other UI
authors; however, the API is open for anyone who needs to embed Gradle in their application.

• Gradle TestKit uses the Tooling API for functional testing of your Gradle plugins.

• Eclipse Buildship uses the Tooling API for importing your Gradle project and running tasks.

• IntelliJ IDEA uses the Tooling API for importing your Gradle project and running tasks.

Tooling API Features

A fundamental characteristic of the Tooling API is that it operates in a version independent way.
This means that you can use the same API to work with builds that use different versions of Gradle,
including versions that are newer or older than the version of the Tooling API that you are using.
The Tooling API is Gradle wrapper aware and, by default, uses the same Gradle version as that used
by the wrapper-powered build.

Some features that the Tooling API provides:

• Query the details of a build, including the project hierarchy and the project dependencies,
external dependencies (including source and Javadoc jars), source directories and tasks of each
project.

• Execute a build and listen to stdout and stderr logging and progress messages (e.g. the messages
shown in the 'status bar' when you run on the command line).

• Execute a specific test class or test method.

• Receive interesting events as a build executes, such as project configuration, task execution or
test execution.

• Cancel a build that is running.

• Combine multiple separate Gradle builds into a single composite build.

• The Tooling API can download and install the appropriate Gradle version, similar to the
wrapper.

• The implementation is lightweight, with only a small number of dependencies. It is also a well-
behaved library, and makes no assumptions about your classloader structure or logging
configuration. This makes the API easy to embed in your application.

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

Tooling API and the Gradle Build Daemon

The Tooling API always uses the Gradle daemon. This means that subsequent calls to the Tooling
API, be it model building requests or task executing requests will be executed in the same long-
living process. Gradle Daemon contains more details about the daemon, specifically information on
situations when new daemons are forked.

Quickstart

As the Tooling API is an interface for developers, the Javadoc is the main documentation for it.

To use the Tooling API, add the following repository and dependency declarations to your build
script:

Example 150. Using the tooling API

build.gradle.kts

repositories {
 maven { url = uri("https://repo.gradle.org/gradle/libs-releases") }
}

dependencies {
 implementation("org.gradle:gradle-tooling-api:$toolingApiVersion")
 // The tooling API need an SLF4J implementation available at runtime,
replace this with any other implementation
 runtimeOnly("org.slf4j:slf4j-simple:1.7.10")
}

build.gradle

repositories {
 maven { url = 'https://repo.gradle.org/gradle/libs-releases' }
}

dependencies {
 implementation "org.gradle:gradle-tooling-api:$toolingApiVersion"
 // The tooling API need an SLF4J implementation available at runtime,
replace this with any other implementation
 runtimeOnly 'org.slf4j:slf4j-simple:1.7.10'
}

The main entry point to the Tooling API is the GradleConnector. You can navigate from there to find
code samples and explore the available Tooling API models. You can use GradleConnector.connect()
to create a ProjectConnection. A ProjectConnection connects to a single Gradle project. Using the
connection you can execute tasks, tests and retrieve models relative to this project.

#ex-using-the-tooling-api
https://docs.gradle.org/8.12/javadoc/org/gradle/tooling/GradleConnector.html
https://docs.gradle.org/8.12/javadoc/org/gradle/tooling/GradleConnector.html#connect--
https://docs.gradle.org/8.12/javadoc/org/gradle/tooling/ProjectConnection.html

Compatibility of Java and Gradle versions

The following components should be considered when implementing Gradle integration: the
Tooling API version, The JVM running the Tooling API client (i.e. the IDE process), the JVM running
the Gradle daemon, and the Gradle version.

The Tooling API itself is a Java library published as part of the Gradle release. Each Gradle release
has a corresponding Tooling API version with the same version number.

The Tooling API classes are loaded into the client’s JVM, so they should have a matching version.
The current version of the Tooling API library is compiled with Java 8 compatibility.

The JVM running the Tooling API client and the one running the daemon can be different. At the
same time, classes that are sent to the build via custom build actions need to be targeted to the
lowest supported Java version. The JVM versions supported by Gradle is version-specific. The upper
bound is defined in the compatibility matrix. The rule for the lower bound is the following:

• Gradle 3.x and 4.x require a minimum version of Java 7.

• Gradle 5 and above require a minimum version of Java 8.

The Tooling API version is guaranteed to support running builds with all Gradle versions for the
last five major releases. For example, the Tooling API 8.0 release is compatible with Gradle versions
>= 3.0. Besides, the Tooling API is guaranteed to be compatible with future Gradle releases for the
current and the next major. This means, for example, that the 8.1 version of the Tooling API will be
able to run Gradle 9.x builds and might break with Gradle 10.0.

REFERENCE

Gradle Wrapper Reference
The recommended way to execute any Gradle build is with the help of the Gradle Wrapper
(referred to as "Wrapper").

The Wrapper is a script that invokes a declared version of Gradle, downloading it beforehand if
necessary. As a result, developers can get up and running with a Gradle project quickly.

In a nutshell, you gain the following benefits:

• Standardizes a project on a given Gradle version for more reliable and robust builds.

• Provisioning the Gradle version for different users is done with a simple Wrapper definition
change.

• Provisioning the Gradle version for different execution environments (e.g., IDEs or Continuous
Integration servers) is done with a simple Wrapper definition change.

There are three ways to use the Wrapper:

1. You set up a new Gradle project and add the Wrapper to it.

2. You run a project with the Wrapper that already provides it.

3. You upgrade the Wrapper to a new version of Gradle.

The following sections explain each of these use cases in more detail.

Adding the Gradle Wrapper

Generating the Wrapper files requires an installed version of the Gradle runtime on your machine
as described in Installation. Thankfully, generating the initial Wrapper files is a one-time process.

Every vanilla Gradle build comes with a built-in task called wrapper. The task is listed under the

group "Build Setup tasks" when listing the tasks.

Executing the wrapper task generates the necessary Wrapper files in the project directory:

$ gradle wrapper

> Task :wrapper

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

TIP

To make the Wrapper files available to other developers and execution environments,
you need to check them into version control. Wrapper files, including the JAR file, are
small. Adding the JAR file to version control is expected. Some organizations do not
allow projects to submit binary files to version control, and there is no workaround
available.

The generated Wrapper properties file, gradle/wrapper/gradle-wrapper.properties, stores the
information about the Gradle distribution:

• The server hosting the Gradle distribution.

• The type of Gradle distribution. By default, the -bin distribution contains only the runtime but
no sample code and documentation.

• The Gradle version used for executing the build. By default, the wrapper task picks the same
Gradle version used to generate the Wrapper files.

• Optionally, a timeout in ms used when downloading the Gradle distribution.

• Optionally, a boolean to set the validation of the distribution URL.

The following is an example of the generated distribution URL in gradle/wrapper/gradle-
wrapper.properties:

distributionUrl=https\://services.gradle.org/distributions/gradle-8.12-bin.zip

All of those aspects are configurable at the time of generating the Wrapper files with the help of the
following command line options:

--gradle-version

The Gradle version used for downloading and executing the Wrapper. The resulting distribution
URL is validated before it is written to the properties file.

The following labels are allowed:

• latest

• release-candidate

https://gradle.org/releases
https://gradle.org/release-candidate

• nightly

• release-nightly

--distribution-type

The Gradle distribution type used for the Wrapper. Available options are bin and all. The default
value is bin.

--gradle-distribution-url

The full URL pointing to the Gradle distribution ZIP file. This option makes --gradle-version and
--distribution-type obsolete, as the URL already contains this information. This option is
valuable if you want to host the Gradle distribution inside your company’s network. The URL is
validated before it is written to the properties file.

--gradle-distribution-sha256-sum

The SHA256 hash sum used for verifying the downloaded Gradle distribution.

--network-timeout

The network timeout to use when downloading the Gradle distribution, in ms. The default value
is 10000.

--no-validate-url

Disables the validation of the configured distribution URL.

--validate-url

Enables the validation of the configured distribution URL. Enabled by default.

If the distribution URL is configured with --gradle-version or --gradle-distribution-url, the URL is
validated by sending a HEAD request in the case of the https scheme or by checking the existence of
the file in the case of the file scheme.

Let’s assume the following use-case to illustrate the use of the command line options. You would
like to generate the Wrapper with version 8.12 and use the -all distribution to enable your IDE to
enable code-completion and being able to navigate to the Gradle source code.

The following command-line execution captures those requirements:

$ gradle wrapper --gradle-version 8.12 --distribution-type all
> Task :wrapper

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

As a result, you can find the desired information (the generated distribution URL) in the Wrapper
properties file:

distributionUrl=https\://services.gradle.org/distributions/gradle-8.12-all.zip

https://gradle.org/nightly
https://gradle.org/release-nightly

Let’s have a look at the following project layout to illustrate the expected Wrapper files:

.
├── a-subproject
│ └── build.gradle.kts
├── settings.gradle.kts
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
└── gradlew.bat

.
├── a-subproject
│ └── build.gradle
├── settings.gradle
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
└── gradlew.bat

A Gradle project typically provides a settings.gradle(.kts) file and one build.gradle(.kts) file for
each subproject. The Wrapper files live alongside in the gradle directory and the root directory of
the project.

The following list explains their purpose:

gradle-wrapper.jar

The Wrapper JAR file containing code for downloading the Gradle distribution.

gradle-wrapper.properties

A properties file responsible for configuring the Wrapper runtime behavior e.g. the Gradle
version compatible with this version. Note that more generic settings, like configuring the
Wrapper to use a proxy, need to go into a different file.

gradlew, gradlew.bat

A shell script and a Windows batch script for executing the build with the Wrapper.

You can go ahead and execute the build with the Wrapper without installing the Gradle runtime. If
the project you are working on does not contain those Wrapper files, you will need to generate

networking.pdf#sec:accessing_the_web_via_a_proxy
networking.pdf#sec:accessing_the_web_via_a_proxy

them.

Using the Gradle Wrapper

It is always recommended to execute a build with the Wrapper to ensure a reliable, controlled, and
standardized execution of the build. Using the Wrapper looks like running the build with a Gradle
installation. Depending on the operating system you either run gradlew or gradlew.bat instead of the
gradle command.

The following console output demonstrates the use of the Wrapper on a Windows machine for a
Java-based project:

$ gradlew.bat build
Downloading https://services.gradle.org/distributions/gradle-5.0-all.zip
...
Unzipping C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac27o8rbd0ic8ih41or9l32mv\gradle-5.0-all.zip to C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-al\ac27o8rbd0ic8ih41or9l32mv
Set executable permissions for: C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac27o8rbd0ic8ih41or9l32mv\gradle-5.0\bin\gradle

BUILD SUCCESSFUL in 12s
1 actionable task: 1 executed

If the Gradle distribution is unavailable on the machine, the Wrapper will download it and store it
in the local file system. Any subsequent build invocation will reuse the existing local distribution as
long as the distribution URL in the Gradle properties doesn’t change.

NOTE

The Wrapper shell script and batch file reside in the root directory of a single or
multi-project Gradle build. You will need to reference the correct path to those files
in case you want to execute the build from a subproject directory e.g. ../../gradlew
tasks.

Upgrading the Gradle Wrapper

Projects typically want to keep up with the times and upgrade their Gradle version to benefit from
new features and improvements.

One way to upgrade the Gradle version is by manually changing the distributionUrl property in the
Wrapper’s gradle-wrapper.properties file.

The better and recommended option is to run the wrapper task and provide the target Gradle
version as described in Adding the Gradle Wrapper. Using the wrapper task ensures that any
optimizations made to the Wrapper shell script or batch file with that specific Gradle version are
applied to the project.

As usual, you should commit the changes to the Wrapper files to version control.

Note that running the wrapper task once will update gradle-wrapper.properties only, but leave the
wrapper itself in gradle-wrapper.jar untouched. This is usually fine as new versions of Gradle can
be run even with older wrapper files.

NOTE
If you want all the wrapper files to be completely up-to-date, you will need to run
the wrapper task a second time.

The following command upgrades the Wrapper to the latest version:

$./gradlew wrapper --gradle-version latest

BUILD SUCCESSFUL in 4s
1 actionable task: 1 executed

The following command upgrades the Wrapper to a specific version:

$./gradlew wrapper --gradle-version 8.12

BUILD SUCCESSFUL in 4s
1 actionable task: 1 executed

Once you have upgraded the wrapper, you can check that it’s the version you expected by executing
./gradlew --version.

Don’t forget to run the wrapper task again to download the Gradle distribution binaries (if needed)
and update the gradlew and gradlew.bat files.

Customizing the Gradle Wrapper

Most users of Gradle are happy with the default runtime behavior of the Wrapper. However,
organizational policies, security constraints or personal preferences might require you to dive
deeper into customizing the Wrapper.

Thankfully, the built-in wrapper task exposes numerous options to bend the runtime behavior to
your needs. Most configuration options are exposed by the underlying task type Wrapper.

Let’s assume you grew tired of defining the -all distribution type on the command line every time
you upgrade the Wrapper. You can save yourself some keyboard strokes by re-configuring the
wrapper task.

build.gradle.kts

tasks.wrapper {
 distributionType = Wrapper.DistributionType.ALL
}

https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

build.gradle

tasks.named('wrapper') {
 distributionType = Wrapper.DistributionType.ALL
}

With the configuration in place, running ./gradlew wrapper --gradle-version 8.12 is enough to
produce a distributionUrl value in the Wrapper properties file that will request the -all
distribution:

distributionUrl=https\://services.gradle.org/distributions/gradle-8.12-all.zip

Check out the API documentation for a more detailed description of the available configuration
options. You can also find various samples for configuring the Wrapper in the Gradle distribution.

Authenticated Gradle distribution download

The Gradle Wrapper can download Gradle distributions from servers using HTTP Basic
Authentication. This enables you to host the Gradle distribution on a private protected server.

You can specify a username and password in two different ways depending on your use case: as
system properties or directly embedded in the distributionUrl. Credentials in system properties
take precedence over the ones embedded in distributionUrl.

TIP
HTTP Basic Authentication should only be used with HTTPS URLs and not plain HTTP
ones. With Basic Authentication, the user credentials are sent in clear text.

System properties can be specified in the .gradle/gradle.properties file in the user’s home
directory or by other means.

To specify the HTTP Basic Authentication credentials, add the following lines to the system
properties file:

systemProp.gradle.wrapperUser=username
systemProp.gradle.wrapperPassword=password

Embedding credentials in the distributionUrl in the gradle/wrapper/gradle-wrapper.properties file
also works. Please note that this file is to be committed into your source control system.

TIP
Shared credentials embedded in distributionUrl should only be used in a controlled
environment.

To specify the HTTP Basic Authentication credentials in distributionUrl, add the following line:

https://docs.gradle.org/8.12/javadoc/org/gradle/api/tasks/wrapper/Wrapper.html

distributionUrl=https://username:password@somehost/path/to/gradle-distribution.zip

This can be used in conjunction with a proxy, authenticated or not. See Accessing the web via a
proxy for more information on how to configure the Wrapper to use a proxy.

Verification of downloaded Gradle distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256
hash sum comparison. This increases security against targeted attacks by preventing a man-in-the-
middle attacker from tampering with the downloaded Gradle distribution.

To enable this feature, download the .sha256 file associated with the Gradle distribution you want
to verify.

Downloading the SHA-256 file

You can download the .sha256 file from the stable releases or release candidate and nightly
releases. The format of the file is a single line of text that is the SHA-256 hash of the corresponding
zip file.

You can also reference the list of Gradle distribution checksums.

Configuring checksum verification

Add the downloaded (SHA-256 checksum) hash sum to gradle-wrapper.properties using the
distributionSha256Sum property or use --gradle-distribution-sha256-sum on the command-line:

distributionSha256Sum=371cb9fbebbe9880d147f59bab36d61eee122854ef8c9ee1ecf12b82368bcf10

Gradle will report a build failure if the configured checksum does not match the checksum found
on the server hosting the distribution. Checksum verification is only performed if the configured
Wrapper distribution hasn’t been downloaded yet.

NOTE

The Wrapper task fails if gradle-wrapper.properties contains distributionSha256Sum,
but the task configuration does not define a sum. Executing the Wrapper task
preserves the distributionSha256Sum configuration when the Gradle version does
not change.

Verifying the integrity of the Gradle Wrapper JAR

The Wrapper JAR is a binary file that will be executed on the computers of developers and build
servers. As with all such files, you should ensure it’s trustworthy before executing it.

Since the Wrapper JAR is usually checked into a project’s version control system, there is the
potential for a malicious actor to replace the original JAR with a modified one by submitting a pull
request that only upgrades the Gradle version.

To verify the integrity of the Wrapper JAR, Gradle has created a GitHub Action that automatically

networking.pdf#sec:accessing_the_web_via_a_proxy
networking.pdf#sec:accessing_the_web_via_a_proxy
https://services.gradle.org/distributions/
https://services.gradle.org/distributions-snapshots/
https://services.gradle.org/distributions-snapshots/
https://gradle.org/release-checksums/
https://github.com/marketplace/actions/gradle-wrapper-validation

checks Wrapper JARs in pull requests against a list of known good checksums.

Gradle also publishes the checksums of all releases (except for version 3.3 to 4.0.2, which did not
generate reproducible JARs), so you can manually verify the integrity of the Wrapper JAR.

Automatically verifying the Gradle Wrapper JAR on GitHub

The GitHub Action is released separately from Gradle, so please check its documentation for how to
apply it to your project.

Manually verifying the Gradle Wrapper JAR

You can manually verify the checksum of the Wrapper JAR to ensure that it has not been tampered
with by running the following commands on one of the major operating systems.

Manually verifying the checksum of the Wrapper JAR on Linux:

$ cd gradle/wrapper

$ curl --location --output gradle-wrapper.jar.sha256 \
 https://services.gradle.org/distributions/gradle-{gradleVersion}-
wrapper.jar.sha256

$ echo " gradle-wrapper.jar" >> gradle-wrapper.jar.sha256

$ sha256sum --check gradle-wrapper.jar.sha256

gradle-wrapper.jar: OK

Manually verifying the checksum of the Wrapper JAR on macOS:

$ cd gradle/wrapper

$ curl --location --output gradle-wrapper.jar.sha256 \
 https://services.gradle.org/distributions/gradle-{gradleVersion}-
wrapper.jar.sha256

$ echo " gradle-wrapper.jar" >> gradle-wrapper.jar.sha256

https://gradle.org/release-checksums/
https://github.com/marketplace/actions/gradle-wrapper-validation

$ shasum --check gradle-wrapper.jar.sha256

gradle-wrapper.jar: OK

Manually verifying the checksum of the Wrapper JAR on Windows (using PowerShell):

> $expected = Invoke-RestMethod -Uri https://services.gradle.org/distributions/gradle-
8.12-wrapper.jar.sha256

> $actual = (Get-FileHash gradle\wrapper\gradle-wrapper.jar -Algorithm
SHA256).Hash.ToLower()

> @{$true = 'OK: Checksum match'; $false = "ERROR: Checksum mismatch!`nExpected:
$expected`nActual: $actual"}[$actual -eq $expected]

OK: Checksum match

Troubleshooting a checksum mismatch

If the checksum does not match the one you expected, chances are the wrapper task wasn’t executed
with the upgraded Gradle distribution.

You should first check whether the actual checksum matches a different Gradle version.

Here are the commands you can run on the major operating systems to generate the actual
checksum of the Wrapper JAR.

Generating the checksum of the Wrapper JAR on Linux:

$ sha256sum gradle/wrapper/gradle-wrapper.jar
d81e0f23ade952b35e55333dd5f1821585e887c6d24305aeea2fbc8dad564b95
gradle/wrapper/gradle-wrapper.jar

Generating the actual checksum of the Wrapper JAR on macOS:

$ shasum --algorithm=256 gradle/wrapper/gradle-wrapper.jar
d81e0f23ade952b35e55333dd5f1821585e887c6d24305aeea2fbc8dad564b95
gradle/wrapper/gradle-wrapper.jar

Generating the actual checksum of the Wrapper JAR on Windows (using PowerShell):

> (Get-FileHash gradle\wrapper\gradle-wrapper.jar -Algorithm SHA256).Hash.ToLower()
d81e0f23ade952b35e55333dd5f1821585e887c6d24305aeea2fbc8dad564b95

Once you know the actual checksum, check whether it’s listed on https://gradle.org/release-
checksums/. If it is listed, you have verified the integrity of the Wrapper JAR. If the version of
Gradle that generated the Wrapper JAR doesn’t match the version in gradle/wrapper/gradle-
wrapper.properties, it’s safe to run the wrapper task again to update the Wrapper JAR.

If the checksum is not listed on the page, the Wrapper JAR might be from a milestone, release
candidate, or nightly build or may have been generated by Gradle 3.3 to 4.0.2. Try to find out how it
was generated but treat it as untrustworthy until proven otherwise. If you think the Wrapper JAR
was compromised, please let the Gradle team know by sending an email to security@gradle.com.

Gradle Daemon
A daemon is a computer program that runs as a background process rather than being under the
direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries with non-
trivial initialization time. Startups can be slow. The Gradle Daemon solves this problem.

The Gradle Daemon is a long-lived background process that reduces the time it takes to run a build.

The Gradle Daemon reduces build times by:

• Caching project information across builds

• Running in the background so every Gradle build doesn’t have to wait for JVM startup

• Benefiting from continuous runtime optimization in the JVM

• Watching the file system to calculate exactly what needs to be rebuilt before you run a build

Understanding the Daemon

The Gradle JVM client sends the Daemon build information such as command line arguments,
project directories, and environment variables so that it can run the build.

The Wrapper is responsible for resolving dependencies, executing build scripts, creating and
running tasks; when it is done, it sends the client the output. Communication between the client
and the Daemon happens via a local socket connection.

Daemons use the JVM’s default minimum heap size.

If the requested build environment does not specify a maximum heap size, the Daemon uses up to
512MB of heap. 512MB is adequate for most builds. Larger builds with hundreds of subprojects,
configuration, and source code may benefit from a larger heap size.

https://gradle.org/release-checksums/
https://gradle.org/release-checksums/
mailto:security@gradle.com

Check Daemon status

To get a list of running Daemons and their statuses, use the --status command:

$ gradle --status

 PID STATUS INFO
 28486 IDLE 7.5
 34247 BUSY 7.5

Currently, a given Gradle version can only connect to Daemons of the same version. This means the
status output only shows Daemons spawned running the same version of Gradle as the current
project.

Find Daemons

If you have installed the Java Development Kit (JDK), you can view live daemons with the jps
command.

$ jps

33920 Jps
27171 GradleDaemon
22792

Live Daemons appear under the name GradleDaemon. Because this command uses the JDK, you can
view Daemons running any version of Gradle.

Enable Daemon

Gradle enables the Daemon by default since Gradle 3.0. If your project doesn’t use the Daemon, you
can enable it for a single build with the --daemon flag when you run a build:

$ gradle <task> --daemon

This flag overrides any settings that disable the Daemon in your project or user gradle.properties
files.

To enable the Daemon by default in older Gradle versions, add the following setting to the
gradle.properties file in the project root or your Gradle User Home (GRADLE_USER_HOME:

gradle.properties

org.gradle.daemon=true

Disable Daemon

You can disable the Daemon in multiple ways but there are important considerations:

Single-use Daemon

If the JVM args of the client process don’t match what the build requires, a single-used Daemon
(disposable JVM) is created. This means the Daemon is required for the build, so it is created,
used, and then stopped at the end of the build.

No Daemon

If the JAVA_OPTS and GRADLE_OPTS match org.gradle.jvmargs, the Daemon will not be used at all
since the build happens in the client JVM.

Disable for a build

To disable the Daemon for a single build, pass the --no-daemon flag when you run a build:

$ gradle <task> --no-daemon

This flag overrides any settings that enable the Daemon in your project including the
gradle.properties files.

Disable for a project

To disable the Daemon for all builds of a project, add org.gradle.daemon=false to the
gradle.properties file in the project root.

Disable for a user

On Windows, this command disables the Daemon for the current user:

(if not exist "%USERPROFILE%/.gradle" mkdir "%USERPROFILE%/.gradle") && (echo. >>
"%USERPROFILE%/.gradle/gradle.properties" && echo org.gradle.daemon=false >>
"%USERPROFILE%/.gradle/gradle.properties")

On UNIX-like operating systems, the following Bash shell command disables the Daemon for the
current user:

mkdir -p ~/.gradle && echo "org.gradle.daemon=false" >> ~/.gradle/gradle.properties

Disable globally

There are two recommended ways to disable the Daemon globally across an environment:

• add org.gradle.daemon=false to the $GRADLE_USER_HOME/gradle.properties` file

• add the flag -Dorg.gradle.daemon=false to the GRADLE_OPTS environment variable

Don’t forget to make sure your JVM arguments and GRADLE_OPTS / JAVA_OPTS match if you want to
completely disable the Daemon and not simply invoke a single-use one.

Stop Daemon

It can be helpful to stop the Daemon when troubleshooting or debugging a failure.

Daemons automatically stop given any of the following conditions:

• Available system memory is low

• Daemon has been idle for 3 hours

To stop running Daemon processes, use the following command:

$ gradle --stop

This terminates all Daemon processes started with the same version of Gradle used to execute the
command.

You can also kill Daemons manually with your operating system. To find the PIDs for all Daemons
regardless of Gradle version, see Find Daemons.

Configuring the JVM to be used

NOTE
Daemon JVM discovery and criteria are incubating features and are subject to
change in a future release.

By default, the Gradle daemon runs with the same JVM installation that started the build. Gradle
defaults to the current shell path and JAVA_HOME environment variable to locate a usable JVM.

Alternatively, a different JVM installation can be specified for the build using the
org.gradle.java.home Gradle property or programmatically through the Tooling API.

If Daemon JVM criteria is available, it takes precedence over JAVA_HOME and org.gradle.java.home.

Building on the toolchain feature, you can now use declarative criteria to specify the JVM
requirements for the build.

Daemon JVM criteria

The daemon JVM criteria is controlled by a task, similarly to how wrapper task updates the wrapper
properties. When the task runs, it creates or updates the criteria in the gradle/gradle-daemon-

jvm.properties file. For more control, the task can be further configured in the build script or via
command-line arguments.

As with the wrapper, the generated file should be checked into version control. This will ensure any
developer or CI server that runs the build will use the same JVM version.

With the following configuration:

build.gradle.kts

tasks.updateDaemonJvm {
 jvmVersion = JavaLanguageVersion.of(17)
}

build.gradle

tasks.named('updateDaemonJvm') {
 jvmVersion = JavaLanguageVersion.of(17)
}

When running:

$./gradlew updateDaemonJvm

The following file will be generated:

gradle/gradle-daemon-jvm.properties

#This file is generated by updateDaemonJvm
toolchainVersion=17

The same properties file can be produced without configuring the task in the build script. Using just
a command-line argument:

$./gradlew updateDaemonJvm --jvm-version=17

If you run the task without any arguments, and the properties file does not exist, then the version
of the current JVM used by the daemon will be used.

NOTE Gradle only supports the major JVM version and JVM vendor as a criterion. Support

for other criteria may be added in a future release.

On the next execution of the build, the Gradle client will use this file to locate a compatible JVM
installation and start the daemon with it.

Specifying a JVM vendor

Like the JVM version, the JVM vendor can be used as criteria to select a compatible JVM installation
for the build. When no JVM vendor is specified, Gradle will consider all vendors compatible.

By default, running updateDaemonJvm to create the gradle-daemon-jvm.properties file will not
generate a JVM vendor criterion. You must either explicitly specify a JVM vendor for the
updateDaemonJvm task in the build script or pass a JVM vendor on the command-line with --jvm
-vendor=<value>.

Gradle recognizes a small number of JVM vendor strings as special and equivalent. For example,
"Adoptium" and "Temurin" are considered the same vendor. You can see the list of special vendors
by running gradle help --task updateDaemonJvm.

If the JVM vendor you specify is not treated as a special value, Gradle considers the value as an
exact match. For example, to match the vendor "My Custom JVM", the vendor criterion must be "My
Custom JVM".

Daemon JVM discovery

To locate a compatible JVM installation, Gradle re-uses the mechanism provided by the Java
Toolchains feature. This feature is used to locate a JVM installation that matches the criteria
specified in the gradle/gradle-daemon-jvm.properties file.

NOTE
The daemon JVM discovery process does not support auto-provisioning of new JVM
installations. This will be added in a future release.

Tools & IDEs

The Gradle Tooling API used by IDEs and other tools to integrate with Gradle always uses the Gradle
Daemon to execute builds. If you execute Gradle builds from within your IDE, you already use the
Gradle Daemon. There is no need to enable it for your environment.

Continuous Integration

We recommend using the Daemon for developer machines and Continuous Integration (CI) servers.

Compatibility

Gradle starts a new Daemon if no idle or compatible Daemons exist.

The following values determine compatibility:

• Requested build environment, including the following:

◦ Java version

◦ JVM attributes

◦ JVM properties

• Gradle version

Compatibility is based on exact matches of these values. For example:

• If a Daemon is available with a Java 8 runtime, but the requested build environment calls for
Java 10, then the Daemon is not compatible.

• If a Daemon is available running Gradle 7.0, but the current build uses Gradle 7.4, then the
Daemon is not compatible.

Certain properties of a Java runtime are immutable: they cannot be changed once the JVM has
started. The following JVM system properties are immutable:

• file.encoding

• user.language

• user.country

• user.variant

• java.io.tmpdir

• javax.net.ssl.keyStore

• javax.net.ssl.keyStorePassword

• javax.net.ssl.keyStoreType

• javax.net.ssl.trustStore

• javax.net.ssl.trustStorePassword

• javax.net.ssl.trustStoreType

• com.sun.management.jmxremote

The following JVM attributes controlled by startup arguments are also immutable:

• The maximum heap size (the -Xmx JVM argument)

• The minimum heap size (the -Xms JVM argument)

• The boot classpath (the -Xbootclasspath argument)

• The "assertion" status (the -ea argument)

If the requested build environment requirements for any of these properties and attributes differ
from the Daemon’s JVM requirements, the Daemon is not compatible.

NOTE
For more information about build environments, see the build environment
documentation.

Performance Impact

The Daemon can reduce build times by 15-75% when you build the same project repeatedly.

In between builds, the Daemon waits idly for the next build. As a result, your machine only loads
Gradle into memory once for multiple builds instead of once per build. This is a significant
performance optimization.

Runtime Code Optimizations

The JVM gains significant performance from runtime code optimization: optimizations applied to
code while it runs.

JVM implementations like OpenJDK’s Hotspot progressively optimize code during execution.
Consequently, subsequent builds can be faster purely due to this optimization process.

With the Daemon, perceived build times can drop dramatically between a project’s 1st and 10th

builds.

Memory Caching

The Daemon enables in-memory caching across builds. This includes classes for plugins and build
scripts.

Similarly, the Daemon maintains in-memory caches of build data, such as the hashes of task inputs
and outputs for incremental builds.

Performance Monitoring

Gradle actively monitors heap usage to detect memory leaks in the Daemon.

When a memory leak exhausts available heap space, the Daemon:

1. Finishes the currently running build.

2. Restarts before running the next build.

Gradle enables this monitoring by default.

To disable this monitoring, set the org.gradle.daemon.performance.enable-monitoring Daemon option
to false.

You can do this on the command line with the following command:

$ gradle <task> -Dorg.gradle.daemon.performance.enable-monitoring=false

Or you can configure the property in the gradle.properties file in the project root or your
GRADLE_USER_HOME (Gradle User Home):

gradle.properties

org.gradle.daemon.performance.enable-monitoring=false

Command-Line Interface Reference
The command-line interface is the primary method of interacting with Gradle.

The following is a reference for executing and customizing the Gradle command-line. It also serves
as a reference when writing scripts or configuring continuous integration.

Use of the Gradle Wrapper is highly encouraged. Substitute ./gradlew (in macOS / Linux) or
gradlew.bat (in Windows) for gradle in the following examples.

Executing Gradle on the command-line conforms to the following structure:

gradle [taskName...] [--option-name...]

Options are allowed before and after task names.

gradle [--option-name...] [taskName...]

If multiple tasks are specified, you should separate them with a space.

gradle [taskName1 taskName2...] [--option-name...]

Options that accept values can be specified with or without = between the option and argument.
The use of = is recommended.

gradle [...] --console=plain

Options that enable behavior have long-form options with inverses specified with --no-. The
following are opposites.

gradle [...] --build-cache
gradle [...] --no-build-cache

Many long-form options have short-option equivalents. The following are equivalent:

gradle --help
gradle -h

NOTE
Many command-line flags can be specified in gradle.properties to avoid needing to
be typed. See the Configuring build environment guide for details.

Command-line usage

The following sections describe the use of the Gradle command-line interface.

Some plugins also add their own command line options. For example, --tests, which is added by
Java test filtering. For more information on exposing command line options for your own tasks, see
Declaring command-line options.

Executing tasks

You can learn about what projects and tasks are available in the project reporting section.

Most builds support a common set of tasks known as lifecycle tasks. These include the build,
assemble, and check tasks.

To execute a task called myTask on the root project, type:

$ gradle :myTask

This will run the single myTask and all of its dependencies.

Specify options for tasks

To pass an option to a task, prefix the option name with -- after the task name:

$ gradle exampleTask --exampleOption=exampleValue

Disambiguate task options from built-in options

Gradle does not prevent tasks from registering options that conflict with Gradle’s built-in options,
like --profile or --help.

You can fix conflicting task options from Gradle’s built-in options with a -- delimiter before the task
name in the command:

$ gradle [--built-in-option-name...] -- [taskName...] [--task-option-name...]

Consider a task named mytask that accepts an option named profile:

• In gradle mytask --profile, Gradle accepts --profile as the built-in Gradle option.

• In gradle -- mytask --profile=value, Gradle passes --profile as a task option.

Executing tasks in multi-project builds

In a multi-project build, subproject tasks can be executed with : separating the subproject name
and task name. The following are equivalent when run from the root project:

$ gradle :subproject:taskName

$ gradle subproject:taskName

You can also run a task for all subprojects using a task selector that consists of only the task name.

The following command runs the test task for all subprojects when invoked from the root project
directory:

$ gradle test

NOTE
Some tasks selectors, like help or dependencies, will only run the task on the project
they are invoked on and not on all the subprojects.

When invoking Gradle from within a subproject, the project name should be omitted:

$ cd subproject

$ gradle taskName

TIP
When executing the Gradle Wrapper from a subproject directory, reference gradlew
relatively. For example: ../gradlew taskName.

Executing multiple tasks

You can also specify multiple tasks. The tasks' dependencies determine the precise order of
execution, and a task having no dependencies may execute earlier than it is listed on the command-
line.

For example, the following will execute the test and deploy tasks in the order that they are listed on
the command-line and will also execute the dependencies for each task.

$ gradle test deploy

Command line order safety

Although Gradle will always attempt to execute the build quickly, command line ordering safety
will also be honored.

For example, the following will execute clean and build along with their dependencies:

$ gradle clean build

However, the intention implied in the command line order is that clean should run first and then
build. It would be incorrect to execute clean after build, even if doing so would cause the build to
execute faster since clean would remove what build created.

Conversely, if the command line order was build followed by clean, it would not be correct to
execute clean before build. Although Gradle will execute the build as quickly as possible, it will also
respect the safety of the order of tasks specified on the command line and ensure that clean runs
before build when specified in that order.

Note that command line order safety relies on tasks properly declaring what they create, consume,
or remove.

Excluding tasks from execution

You can exclude a task from being executed using the -x or --exclude-task command-line option
and providing the name of the task to exclude:

$ gradle dist --exclude-task test

> Task :compile
compiling source

> Task :dist
building the distribution

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Figure 22. Simple Task Graph

You can see that the test task is not executed, even though the dist task depends on it. The test
task’s dependencies, such as compileTest, are not executed either. The dependencies of test that
other tasks depend on, such as compile, are still executed.

Forcing tasks to execute

You can force Gradle to execute all tasks ignoring up-to-date checks using the --rerun-tasks option:

incremental_build.pdf#incremental_build
incremental_build.pdf#incremental_build

$ gradle test --rerun-tasks

This will force test and all task dependencies of test to execute. It is similar to running gradle
clean test, but without the build’s generated output being deleted.

Alternatively, you can tell Gradle to rerun a specific task using the --rerun built-in task option.

Continue the build after a task failure

By default, Gradle aborts execution and fails the build when any task fails. This allows the build to
complete sooner and prevents cascading failures from obfuscating the root cause of an error.

You can use the --continue option to force Gradle to execute every task when a failure occurs:

$ gradle test --continue

When executed with --continue, Gradle executes every task in the build if all the dependencies for
that task are completed without failure.

For example, tests do not run if there is a compilation error in the code under test because the test
task depends on the compilation task. Gradle outputs each of the encountered failures at the end of
the build.

NOTE
If any tests fail, many test suites fail the entire test task. Code coverage and
reporting tools frequently run after the test task, so "fail fast" behavior may halt
execution before those tools run.

Name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task.
You can provide enough of the task name to identify the task uniquely. For example, it is likely
gradle che is enough for Gradle to identify the check task.

The same applies to project names. You can execute the check task in the library subproject with
the gradle lib:che command.

You can use camel case patterns for more complex abbreviations. These patterns are expanded to
match camel case and kebab case names. For example, the pattern foBa (or fB) matches fooBar and
foo-bar.

More concretely, you can run the compileTest task in the my-awesome-library subproject with the
command gradle mAL:cT.

$ gradle mAL:cT

> Task :my-awesome-library:compileTest

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Kebab_case

compiling unit tests

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Abbreviations can also be used with the -x command-line option.

Tracing name expansion

For complex projects, it might be ambiguous if the intended tasks were executed. When using
abbreviated names, a single typo can lead to the execution of unexpected tasks.

When INFO, or more verbose logging is enabled, the output will contain extra information about the
project and task name expansion.

For example, when executing the mAL:cT command on the previous example, the following log
messages will be visible:

No exact project with name ':mAL' has been found. Checking for abbreviated names.
Found exactly one project that matches the abbreviated name ':mAL': ':my-awesome-
library'.
No exact task with name ':cT' has been found. Checking for abbreviated names.
Found exactly one task name, that matches the abbreviated name ':cT': ':compileTest'.

Common tasks

The following are task conventions applied by built-in and most major Gradle plugins.

Computing all outputs

It is common in Gradle builds for the build task to designate assembling all outputs and running all
checks:

$ gradle build

Running applications

It is common for applications to run with the run task, which assembles the application and
executes some script or binary:

$ gradle run

Running all checks

It is common for all verification tasks, including tests and linting, to be executed using the check
task:

$ gradle check

Cleaning outputs

You can delete the contents of the build directory using the clean task. Doing so will cause pre-
computed outputs to be lost, causing significant additional build time for the subsequent task
execution:

$ gradle clean

Project reporting

Gradle provides several built-in tasks which show particular details of your build. This can be
useful for understanding your build’s structure and dependencies, as well as debugging problems.

Listing projects

Running the projects task gives you a list of the subprojects of the selected project, displayed in a
hierarchy:

$ gradle projects

You also get a project report within Build Scans.

Listing tasks

Running gradle tasks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task:

$ gradle tasks

By default, this report shows only those tasks assigned to a task group.

Groups (such as verification, publishing, help, build…) are available as the header of each section
when listing tasks:

> Task :tasks

Build tasks

assemble - Assembles the outputs of this project.

Build Setup tasks

init - Initializes a new Gradle build.

https://scans.gradle.com/

Distribution tasks

assembleDist - Assembles the main distributions

Documentation tasks

javadoc - Generates Javadoc API documentation for the main source code.

You can obtain more information in the task listing using the --all option:

$ gradle tasks --all

The option --no-all can limit the report to tasks assigned to a task group.

If you need to be more precise, you can display only the tasks from a specific group using the
--group option:

$ gradle tasks --group="build setup"

Show task usage details

Running gradle help --task someTask gives you detailed information about a specific task:

$ gradle -q help --task libs

Detailed task information for libs

Paths
 :api:libs
 :webapp:libs

Type
 Task (org.gradle.api.Task)

Options
 --rerun Causes the task to be re-run even if up-to-date.

Description
 Builds the JAR

Group
 build

This information includes the full task path, the task type, possible task-specific command line

options, and the description of the given task.

You can get detailed information about the task class types using the --types option or using --no
-types to hide this information.

Reporting dependencies

Build Scans give a full, visual report of what dependencies exist on which configurations, transitive
dependencies, and dependency version selection. They can be invoked using the --scan options:

$ gradle myTask --scan

This will give you a link to a web-based report, where you can find dependency information like
this:

Listing project dependencies

Running the dependencies task gives you a list of the dependencies of the selected project, broken
down by configuration. For each configuration, the direct and transitive dependencies of that
configuration are shown in a tree.

Below is an example of this report:

$ gradle dependencies

> Task :app:dependencies

--
Project ':app'

https://scans.gradle.com/

--

compileClasspath - Compile classpath for source set 'main'.
+--- project :model
| \--- org.json:json:20220924
+--- com.google.inject:guice:5.1.0
| +--- javax.inject:javax.inject:1
| +--- aopalliance:aopalliance:1.0
| \--- com.google.guava:guava:30.1-jre -> 28.2-jre
| +--- com.google.guava:failureaccess:1.0.1
| +--- com.google.guava:listenablefuture:9999.0-empty-to-avoid-conflict-with-
guava
| +--- com.google.code.findbugs:jsr305:3.0.2
| +--- org.checkerframework:checker-qual:2.10.0 -> 3.28.0
| +--- com.google.errorprone:error_prone_annotations:2.3.4
| \--- com.google.j2objc:j2objc-annotations:1.3
+--- com.google.inject:guice:{strictly 5.1.0} -> 5.1.0 (c)
+--- org.json:json:{strictly 20220924} -> 20220924 (c)
+--- javax.inject:javax.inject:{strictly 1} -> 1 (c)
+--- aopalliance:aopalliance:{strictly 1.0} -> 1.0 (c)
+--- com.google.guava:guava:{strictly [28.0-jre, 28.5-jre]} -> 28.2-jre (c)
+--- com.google.guava:guava:{strictly 28.2-jre} -> 28.2-jre (c)
+--- com.google.guava:failureaccess:{strictly 1.0.1} -> 1.0.1 (c)
+--- com.google.guava:listenablefuture:{strictly 9999.0-empty-to-avoid-conflict-with-
guava} -> 9999.0-empty-to-avoid-conflict-with-guava (c)
+--- com.google.code.findbugs:jsr305:{strictly 3.0.2} -> 3.0.2 (c)
+--- org.checkerframework:checker-qual:{strictly 3.28.0} -> 3.28.0 (c)
+--- com.google.errorprone:error_prone_annotations:{strictly 2.3.4} -> 2.3.4 (c)
\--- com.google.j2objc:j2objc-annotations:{strictly 1.3} -> 1.3 (c)

Concrete examples of build scripts and output available in Viewing and debugging dependencies.

Running the buildEnvironment task visualises the buildscript dependencies of the selected project,
similarly to how gradle dependencies visualizes the dependencies of the software being built:

$ gradle buildEnvironment

Running the dependencyInsight task gives you an insight into a particular dependency (or
dependencies) that match specified input:

$ gradle dependencyInsight --dependency [...] --configuration [...]

The --configuration parameter restricts the report to a particular configuration such as
compileClasspath.

Listing project properties

Running the properties task gives you a list of the properties of the selected project:

$ gradle -q api:properties

--
Project ':api' - The shared API for the application
--

allprojects: [project ':api']
ant: org.gradle.api.internal.project.DefaultAntBuilder@12345
antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFactory@12345
artifacts:
org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandler_Decorated@12345
asDynamicObject: DynamicObject for project ':api'
baseClassLoaderScope:
org.gradle.api.internal.initialization.DefaultClassLoaderScope@12345

You can also query a single property with the optional --property argument:

$ gradle -q api:properties --property allprojects

--
Project ':api' - The shared API for the application
--

allprojects: [project ':api']

Command-line completion

Gradle provides bash and zsh tab completion support for tasks, options, and Gradle properties
through gradle-completion (installed separately):

[gradle completion 4.0] | gradle-completion-4.0.gif

Debugging options

-?, -h, --help

Shows a help message with the built-in CLI options. To show project-contextual options,
including help on a specific task, see the help task.

-v, --version

Prints Gradle, Groovy, Ant, Launcher & Daemon JVM, and operating system version information
and exit without executing any tasks.

-V, --show-version

Prints Gradle, Groovy, Ant, Launcher & Daemon JVM, and operating system version information
and continue execution of specified tasks.

https://github.com/gradle/gradle-completion

-S, --full-stacktrace

Print out the full (very verbose) stacktrace for any exceptions. See also logging options.

-s, --stacktrace

Print out the stacktrace also for user exceptions (e.g. compile error). See also logging options.

--scan

Create a Build Scan with fine-grained information about all aspects of your Gradle build.

-Dorg.gradle.debug=true

A Gradle property that debugs the Gradle Daemon process. Gradle will wait for you to attach a
debugger at localhost:5005 by default.

-Dorg.gradle.debug.host=(host address)

A Gradle property that specifies the host address to listen on or connect to when debug is
enabled. In the server mode on Java 9 and above, passing * for the host will make the server
listen on all network interfaces. By default, no host address is passed to JDWP, so on Java 9 and
above, the loopback address is used, while earlier versions listen on all interfaces.

-Dorg.gradle.debug.port=(port number)

A Gradle property that specifies the port number to listen on when debug is enabled. Default is
5005.

-Dorg.gradle.debug.server=(true,false)

A Gradle property that if set to true and debugging is enabled, will cause Gradle to run the build
with the socket-attach mode of the debugger. Otherwise, the socket-listen mode is used. Default is
true.

-Dorg.gradle.debug.suspend=(true,false)

A Gradle property that if set to true and debugging is enabled, the JVM running Gradle will
suspend until a debugger is attached. Default is true.

-Dorg.gradle.daemon.debug=true

A Gradle property that debugs the Gradle Daemon process. (duplicate of -Dorg.gradle.debug)

Performance options

Try these options when optimizing and improving build performance.

Many of these options can be specified in the gradle.properties file, so command-line flags are
unnecessary.

--build-cache, --no-build-cache

Toggles the Gradle Build Cache. Gradle will try to reuse outputs from previous builds. Default is
off.

--configuration-cache, --no-configuration-cache

Toggles the Configuration Cache. Gradle will try to reuse the build configuration from previous

https://gradle.com/build-scans

builds. Default is off.

--configuration-cache-problems=(fail,warn)

Configures how the configuration cache handles problems. Default is fail.

Set to warn to report problems without failing the build.

Set to fail to report problems and fail the build if there are any problems.

--configure-on-demand, --no-configure-on-demand

Toggles configure-on-demand. Only relevant projects are configured in this build run. Default is
off.

--max-workers

Sets the maximum number of workers that Gradle may use. Default is number of processors.

--parallel, --no-parallel

Build projects in parallel. For limitations of this option, see Parallel Project Execution. Default is
off.

--priority

Specifies the scheduling priority for the Gradle daemon and all processes launched by it. Values
are normal or low. Default is normal.

--profile

Generates a high-level performance report in the layout.buildDirectory.dir("reports/profile")
directory. --scan is preferred.

--scan

Generate a build scan with detailed performance diagnostics.

--watch-fs, --no-watch-fs

Toggles watching the file system. When enabled, Gradle reuses information it collects about the
file system between builds. Enabled by default on operating systems where Gradle supports this
feature.

Gradle daemon options

You can manage the Gradle Daemon through the following command line options.

--daemon, --no-daemon

Use the Gradle Daemon to run the build. Starts the daemon if not running or the existing
daemon is busy. Default is on.

--foreground

Starts the Gradle Daemon in a foreground process.

--status (Standalone command)

Run gradle --status to list running and recently stopped Gradle daemons. It only displays
daemons of the same Gradle version.

--stop (Standalone command)

Run gradle --stop to stop all Gradle Daemons of the same version.

-Dorg.gradle.daemon.idletimeout=(number of milliseconds)

A Gradle property wherein the Gradle Daemon will stop itself after this number of milliseconds
of idle time. Default is 10800000 (3 hours).

Logging options

Setting log level

You can customize the verbosity of Gradle logging with the following options, ordered from least
verbose to most verbose.

-Dorg.gradle.logging.level=(quiet,warn,lifecycle,info,debug)

A Gradle property that sets the logging level.

-q, --quiet

Log errors only.

-w, --warn

Set log level to warn.

-i, --info

Set log level to info.

-d, --debug

Log in debug mode (includes normal stacktrace).

Lifecycle is the default log level.

Customizing log format

You can control the use of rich output (colors and font variants) by specifying the console mode in
the following ways:

-Dorg.gradle.console=(auto,plain,rich,verbose)

A Gradle property that specifies the console mode. Different modes are described immediately
below.

--console=(auto,plain,rich,verbose)

Specifies which type of console output to generate.

Set to plain to generate plain text only. This option disables all color and other rich output in the
console output. This is the default when Gradle is not attached to a terminal.

Set to auto (the default) to enable color and other rich output in the console output when the
build process is attached to a console or to generate plain text only when not attached to a
console. This is the default when Gradle is attached to a terminal.

Set to rich to enable color and other rich output in the console output, regardless of whether the
build process is not attached to a console. When not attached to a console, the build output will
use ANSI control characters to generate the rich output.

Set to verbose to enable color and other rich output like rich with output task names and
outcomes at the lifecycle log level, (as is done by default in Gradle 3.5 and earlier).

Reporting problems

--no-problems-report

Disable the generation of build/reports/problems-report.html, by default this report is generated
with problems provided to the Problems API.

--problems-report

Enable the generation of build/reports/problems-report.html. This is the default behaviour. The
report is generated with problems provided to the Problems API.

Showing or hiding warnings

By default, Gradle won’t display all warnings (e.g. deprecation warnings). Instead, Gradle will
collect them and render a summary at the end of the build like:

Deprecated Gradle features were used in this build, making it incompatible with Gradle
5.0.

You can control the verbosity of warnings on the console with the following options:

-Dorg.gradle.warning.mode=(all,fail,none,summary)

A Gradle property that specifies the warning mode. Different modes are described immediately
below.

--warning-mode=(all,fail,none,summary)

Specifies how to log warnings. Default is summary.

Set to all to log all warnings.

Set to fail to log all warnings and fail the build if there are any warnings.

Set to summary to suppress all warnings and log a summary at the end of the build.

Set to none to suppress all warnings, including the summary at the end of the build.

Rich console

Gradle’s rich console displays extra information while builds are running.

Features:

• Progress bar and timer visually describe the overall status

• Parallel work-in-progress lines below describe what is happening now

• Colors and fonts are used to highlight significant output and errors

Execution options

The following options affect how builds are executed by changing what is built or how
dependencies are resolved.

--include-build

Run the build as a composite, including the specified build.

--offline

Specifies that the build should operate without accessing network resources.

-U, --refresh-dependencies

Refresh the state of dependencies.

--continue

Continue task execution after a task failure.

-m, --dry-run

Run Gradle with all task actions disabled. Use this to show which task would have executed.

-t, --continuous

Enables continuous build. Gradle does not exit and will re-execute tasks when task file inputs
change.

--write-locks

Indicates that all resolved configurations that are lockable should have their lock state persisted.

--update-locks <group:name>[,<group:name>]*

Indicates that versions for the specified modules have to be updated in the lock file.

This flag also implies --write-locks.

-a, --no-rebuild

Do not rebuild project dependencies. Useful for debugging and fine-tuning buildSrc, but can lead
to wrong results. Use with caution!

Dependency verification options

Learn more about this in dependency verification.

-F=(strict,lenient,off), --dependency-verification=(strict,lenient,off)

Configures the dependency verification mode.

The default mode is strict.

-M, --write-verification-metadata

Generates checksums for dependencies used in the project (comma-separated list) for
dependency verification.

--refresh-keys

Refresh the public keys used for dependency verification.

--export-keys

Exports the public keys used for dependency verification.

Environment options

You can customize many aspects of build scripts, settings, caches, and so on through the options
below.

-b, --build-file (deprecated)

Specifies the build file. For example: gradle --build-file=foo.gradle. The default is build.gradle,
then build.gradle.kts.

-c, --settings-file (deprecated)

Specifies the settings file. For example: gradle --settings-file=somewhere/else/settings.gradle

-g, --gradle-user-home

Specifies the Gradle User Home directory. The default is the .gradle directory in the user’s home
directory.

-p, --project-dir

Specifies the start directory for Gradle. Defaults to current directory.

--project-cache-dir

Specifies the project-specific cache directory. Default value is .gradle in the root project
directory.

-D, --system-prop

Sets a system property of the JVM, for example -Dmyprop=myvalue.

-I, --init-script

Specifies an initialization script.

-P, --project-prop

Sets a project property of the root project, for example -Pmyprop=myvalue.

-Dorg.gradle.jvmargs

A Gradle property that sets JVM arguments.

-Dorg.gradle.java.home

A Gradle property that sets the JDK home dir.

Task options

Tasks may define task-specific options which are different from most of the global options
described in the sections above (which are interpreted by Gradle itself, can appear anywhere in the
command line, and can be listed using the --help option).

Task options:

1. Are consumed and interpreted by the tasks themselves;

2. Must be specified immediately after the task in the command-line;

3. May be listed using gradle help --task someTask (see Show task usage details).

To learn how to declare command-line options for your own tasks, see Declaring and Using
Command Line Options.

Built-in task options

Built-in task options are options available as task options for all tasks. At this time, the following
built-in task options exist:

--rerun

Causes the task to be rerun even if up-to-date. Similar to --rerun-tasks, but for a specific task.

Bootstrapping new projects

Creating new Gradle builds

Use the built-in gradle init task to create a new Gradle build, with new or existing projects.

$ gradle init

Most of the time, a project type is specified. Available types include basic (default), java-library,
java-application, and more. See init plugin documentation for details.

$ gradle init --type java-library

Standardize and provision Gradle

The built-in gradle wrapper task generates a script, gradlew, that invokes a declared version of
Gradle, downloading it beforehand if necessary.

$ gradle wrapper --gradle-version=8.1

You can also specify --distribution-type=(bin|all), --gradle-distribution-url, --gradle
-distribution-sha256-sum in addition to --gradle-version.
Full details on using these options are documented in the Gradle wrapper section.

Continuous build

Continuous Build allows you to automatically re-execute the requested tasks when file inputs
change. You can execute the build in this mode using the -t or --continuous command-line option.

Learn more in Continuous Builds.

build_init_plugin.pdf#build_init_plugin

GRADLE DSL/API

A Groovy Build Script Primer
Ideally, a Groovy build script looks mostly like configuration: setting some properties of the project,
configuring dependencies, declaring tasks, and so on. That configuration is based on Groovy
language constructs. This primer aims to explain what those constructs are and — most
importantly — how they relate to Gradle’s API documentation.

The Project object

As Groovy is an object-oriented language based on Java, its properties and methods apply to objects.
In some cases, the object is implicit — particularly at the top level of a build script, i.e. not nested
inside a {} block.

Consider this fragment of build script, which contains an unqualified property and block:

version = '1.0.0.GA'

configurations {
 ...
}

Both version and configurations {} are part of org.gradle.api.Project.

This example reflects how every Groovy build script is backed by an implicit instance of Project. If
you see an unqualified element and you don’t know where it’s defined, always check the Project
API documentation to see if that’s where it’s coming from.

CAUTION

Avoid using Groovy MetaClass programming techniques in your build scripts.
Gradle provides its own API for adding dynamic runtime properties.

Use of Groovy-specific metaprogramming can cause builds to retain large
amounts of memory between builds that will eventually cause the Gradle
daemon to run out-of-memory.

Properties

<obj>.<name> // Get a property value
<obj>.<name> = <value> // Set a property to a new value
"$<name>" // Embed a property value in a string
"${<obj>.<name>}" // Same as previous (embedded value)

Examples

version = '1.0.1'

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://groovy-lang.org/metaprogramming.html#_metaclasses

myCopyTask.description = 'Copies some files'

file("$projectDir/src")
println "Destination: ${myCopyTask.destinationDir}"

A property represents some state of an object. The presence of an = sign is a clear indicator that
you’re looking at a property. Otherwise, a qualified name — it begins with <obj>. — without any
other decoration is also a property.

If the name is unqualified, then it may be one of the following:

• A task instance with that name.

• A property on Project.

• An extra property defined elsewhere in the project.

• A property of an implicit object within a block.

• A local variable defined earlier in the build script.

Note that plugins can add their own properties to the Project object. The API documentation lists all
the properties added by core plugins. If you’re struggling to find where a property comes from,
check the documentation for the plugins that the build uses.

TIP
When referencing a project property in your build script that is added by a non-core
plugin, consider prefixing it with project. — it’s clear then that the property belongs
to the project object.

Properties in the API documentation

The Groovy DSL reference shows properties as they are used in your build scripts, but the Javadocs
only display methods. That’s because properties are implemented as methods behind the scenes:

• A property can be read if there is a method named get<PropertyName> with zero arguments that
returns the same type as the property.

• A property can be modified if there is a method named set<PropertyName> with one argument
that has the same type as the property and a return type of void.

Note that property names usually start with a lower-case letter, but that letter is upper case in the
method names. So the getter method getProjectVersion() corresponds to the property
projectVersion. This convention does not apply when the name begins with at least two upper-case
letters, in which case there is not change in case. For example, getRAM() corresponds to the property
RAM.

Examples

project.getVersion()
project.version

project.setVersion('1.0.1')

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/dsl/
https://docs.gradle.org/8.12/dsl/

project.version = '1.0.1'

Methods

<obj>.<name>() // Method call with no arguments
<obj>.<name>(<arg>, <arg>) // Method call with multiple arguments
<obj>.<name> <arg>, <arg> // Method call with multiple args (no parentheses)

Examples

myCopyTask.include '**/*.xml', '**/*.properties'

ext.resourceSpec = copySpec() // `copySpec()` comes from `Project`

file('src/main/java')
println 'Hello, World!'

A method represents some behavior of an object, although Gradle often uses methods to configure
the state of objects as well. Methods are identifiable by their arguments or empty parentheses. Note
that parentheses are sometimes required, such as when a method has zero arguments, so you may
find it simplest to always use parentheses.

NOTE
Gradle has a convention whereby if a method has the same name as a collection-
based property, then the method appends its values to that collection.

Blocks

Blocks are also methods, just with specific types for the last argument.

<obj>.<name> {
 ...
}

<obj>.<name>(<arg>, <arg>) {
 ...
}

Examples

plugins {
 id 'java-library'
}

configurations {
 assets
}

sourceSets {
 main {
 java {
 srcDirs = ['src']
 }
 }
}

dependencies {
 implementation project(':util')
}

Blocks are a mechanism for configuring multiple aspects of a build element in one go. They also
provide a way to nest configuration, leading to a form of structured data.

There are two important aspects of blocks that you should understand:

1. They are implemented as methods with specific signatures.

2. They can change the target ("delegate") of unqualified methods and properties.

Both are based on Groovy language features and we explain them in the following sections.

Block method signatures

You can easily identify a method as the implementation behind a block by its signature, or more
specifically, its argument types. If a method corresponds to a block:

• It must have at least one argument.

• The last argument must be of type groovy.lang.Closure or org.gradle.api.Action.

For example, Project.copy(Action) matches these requirements, so you can use the syntax:

copy {
 into layout.buildDirectory.dir("tmp")
 from 'custom-resources'
}

That leads to the question of how into() and from() work. They’re clearly methods, but where
would you find them in the API documentation? The answer comes from understanding object
delegation.

Delegation

The section on properties lists where unqualified properties might be found. One common place is
on the Project object. But there is an alternative source for those unqualified properties and
methods inside a block: the block’s delegate object.

To help explain this concept, consider the last example from the previous section:

https://docs.groovy-lang.org/latest/html/gapi/groovy/lang/Closure.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/Action.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

copy {
 into layout.buildDirectory.dir("tmp")
 from 'custom-resources'
}

All the methods and properties in this example are unqualified. You can easily find copy() and
layout in the Project API documentation, but what about into() and from()? These are resolved
against the delegate of the copy {} block. What is the type of that delegate? You’ll need to check the
API documentation for that.

There are two ways to determine the delegate type, depending on the signature of the block
method:

• For Action arguments, look at the type’s parameter.

In the example above, the method signature is copy(Action<? super CopySpec>) and it’s the bit
inside the angle brackets that tells you the delegate type — CopySpec in this case.

• For Closure arguments, the documentation will explicitly say in the description what type is
being configured or what type the delegate it (different terminology for the same thing).

Hence you can find both into() and from() on CopySpec. You might even notice that both of those
methods have variants that take an Action as their last argument, which means you can use block
syntax with them.

All new Gradle APIs declare an Action argument type rather than Closure, which makes it very easy
to pick out the delegate type. Even older APIs have an Action variant in addition to the old Closure
one.

Local variables

def <name> = <value> // Untyped variable
<type> <name> = <value> // Typed variable

Examples

def i = 1
String errorMsg = 'Failed, because reasons'

Local variables are a Groovy construct — unlike extra properties — that can be used to share values
within a build script.

CAUTION

Avoid using local variables in the root of the project, i.e. as pseudo project
properties. They cannot be read outside of the build script and Gradle has no
knowledge of them.

Within a narrower context — such as configuring a task — local variables can

https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-
https://docs.gradle.org/8.12/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object...-

occasionally be helpful.

Gradle Kotlin DSL Primer
Gradle’s Kotlin DSL provides an alternative syntax to the traditional Groovy DSL with an enhanced
editing experience in supported IDEs, with superior content assist, refactoring, documentation, and
more. This chapter provides details of the main Kotlin DSL constructs and how to use it to interact
with the Gradle API.

TIP
If you are interested in migrating an existing Gradle build to the Kotlin DSL, please
also check out the dedicated migration section.

Prerequisites

• The embedded Kotlin compiler is known to work on Linux, macOS, Windows, Cygwin, FreeBSD
and Solaris on x86-64 architectures.

• Knowledge of Kotlin syntax and basic language features is very helpful. The Kotlin reference
documentation and Kotlin Koans will help you to learn the basics.

• Use of the plugins {} block to declare Gradle plugins significantly improves the editing
experience and is highly recommended.

IDE support

The Kotlin DSL is fully supported by IntelliJ IDEA and Android Studio. Other IDEs do not yet provide
helpful tools for editing Kotlin DSL files, but you can still import Kotlin-DSL-based builds and work
with them as usual.

Table 19. IDE support matrix

Build import Syntax highlighting 1 Semantic editor 2

IntelliJ IDEA ✓ ✓ ✓

Android Studio ✓ ✓ ✓

Eclipse IDE ✓ ✓ ✖

CLion ✓ ✓ ✖

Apache NetBeans ✓ ✓ ✖

Visual Studio Code (LSP) ✓ ✓ ✖

Visual Studio ✓ ✖ ✖

1 Kotlin syntax highlighting in Gradle Kotlin DSL scripts

2 code completion, navigation to sources, documentation, refactorings etc… in Gradle Kotlin DSL scripts

As mentioned in the limitations, you must import your project from the Gradle model to get
content-assist and refactoring tools for Kotlin DSL scripts in IntelliJ IDEA.

Builds with slow configuration time might affect the IDE responsiveness, so please check out the

migrating_from_groovy_to_kotlin_dsl.pdf#migrating_groovy_kotlin
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/tutorials/koans.html
https://www.jetbrains.com/help/idea/gradle.html#gradle_import

performance section to help resolve such issues.

Automatic build import vs. automatic reloading of script dependencies

Both IntelliJ IDEA and Android Studio — which is derived from IntelliJ IDEA — will detect when
you make changes to your build logic and offer two suggestions:

1. Import the whole build again

2. Reload script dependencies when editing a build script

We recommend that you disable automatic build import, but enable automatic reloading of script
dependencies. That way you get early feedback while editing Gradle scripts and control over when
the whole build setup gets synchronized with your IDE.

Troubleshooting

The IDE support is provided by two components:

• The Kotlin Plugin used by IntelliJ IDEA/Android Studio

• Gradle

The level of support varies based on the versions of each.

If you run into trouble, the first thing you should try is running ./gradlew tasks from the command
line to see whether your issue is limited to the IDE. If you encounter the same problem from the
command line, then the issue is with the build rather than the IDE integration.

If you can run the build successfully from the command line but your script editor is complaining,
then you should try restarting your IDE and invalidating its caches.

If the above doesn’t work and you suspect an issue with the Kotlin DSL script editor, you can:

• Run ./gradle tasks to get more details

• Check the logs in one of these locations:

◦ $HOME/Library/Logs/gradle-kotlin-dsl on Mac OS X

◦ $HOME/.gradle-kotlin-dsl/log on Linux

◦ $HOME/AppData/Local/gradle-kotlin-dsl/log on Windows

• Open an issue on the Gradle issue tracker, including as much detail as you can.

From version 5.1 onwards, the log directory is cleaned up automatically. It is checked periodically

https://github.com/gradle/gradle/issues/

(at most every 24 hours) and log files are deleted if they haven’t been used for 7 days.

If the above isn’t enough to pinpoint the problem, you can enable the
org.gradle.kotlin.dsl.logging.tapi system property in your IDE. This will cause the Gradle
Daemon to log extra information in its log file located in $HOME/.gradle/daemon. In IntelliJ IDEA this
can be done by opening Help > Edit Custom VM Options… and adding
-Dorg.gradle.kotlin.dsl.logging.tapi=true.

For IDE problems outside of the Kotlin DSL script editor, please open issues in the corresponding
IDE’s issue tracker:

• JetBrains’s IDEA issue tracker,

• Google’s Android Studio issue tracker.

Lastly, if you face problems with Gradle itself or with the Kotlin DSL, please open issues on the
Gradle issue tracker.

Kotlin DSL scripts

Just like the Groovy-based equivalent, the Kotlin DSL is implemented on top of Gradle’s Java API.
Everything you can read in a Kotlin DSL script is Kotlin code compiled and executed by Gradle.
Many of the objects, functions and properties you use in your build scripts come from the Gradle
API and the APIs of the applied plugins.

TIP
You can use the Kotlin DSL reference search functionality to drill through the
available members.

Script file names

• Groovy DSL script files use the .gradle file name extension.

• Kotlin DSL script files use the .gradle.kts file name extension.

To activate the Kotlin DSL, simply use the .gradle.kts extension for your build scripts in place of
.gradle. That also applies to the settings file — for example settings.gradle.kts — and initialization
scripts.

Note that you can mix Groovy DSL build scripts with Kotlin DSL ones, i.e. a Kotlin DSL build script
can apply a Groovy DSL one and each project in a multi-project build can use either one.

We recommend that you apply the following conventions to get better IDE support:

• Name settings scripts (or any script that is backed by a Gradle Settings object) according to the
pattern *.settings.gradle.kts — this includes script plugins that are applied from settings
scripts

• Name initialization scripts according to the pattern *.init.gradle.kts or simply
init.gradle.kts.

This is so that the IDE knows what type of object "backs" the script, be it Project, Settings or Gradle.

https://github.com/gradle/gradle/issues/
https://docs.gradle.org/8.12/kotlin-dsl/
https://docs.gradle.org/8.12/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.invocation.Gradle.html

Implicit imports

All Kotlin DSL build scripts have implicit imports consisting of:

• The default Gradle API imports

• The Kotlin DSL API, which is all types within the following packages:

◦ org.gradle.kotlin.dsl

◦ org.gradle.kotlin.dsl.plugins.dsl

◦ org.gradle.kotlin.dsl.precompile

Avoid using internal Kotlin DSL APIs

Use of internal Kotlin DSL APIs in plugins and build scripts has the potential to break builds when
either Gradle or plugins change. The Kotlin DSL API extends the Gradle public API with the types
listed in the corresponding API docs that are in the packages listed above (but not subpackages of
those).

Compilation warnings

Gradle Kotlin DSL scripts are compiled by Gradle during the configuration phase of your build.
Deprecation warnings found by the Kotlin compiler are reported on the console when compiling
the scripts.

> Configure project :
w: build.gradle.kts:4:5: 'getter for uploadTaskName: String!' is deprecated.
Deprecated in Java

It is possible to configure your build to fail on any warning emitted during script compilation by
setting the org.gradle.kotlin.dsl.allWarningsAsErrors Gradle property to true:

gradle.properties
org.gradle.kotlin.dsl.allWarningsAsErrors=true

Type-safe model accessors

The Groovy DSL allows you to reference many elements of the build model by name, even when
they are defined at runtime. Think named configurations, named source sets, and so on. For
example, you can get hold of the implementation configuration via configurations.implementation.

The Kotlin DSL replaces such dynamic resolution with type-safe model accessors that work with
model elements contributed by plugins.

Understanding when type-safe model accessors are available

The Kotlin DSL currently provides various sets of type-safe model accessors, each tailored to
different scopes.

https://docs.gradle.org/8.12/kotlin-dsl/
https://docs.gradle.org/8.12/kotlin-dsl/

For the main project build scripts and precompiled project script plugins:

• Dependency and artifact configurations (such as implementation and runtimeOnly contributed by
the Java Plugin)

• Project extensions and conventions (such as sourceSets), and extensions on them

• Extensions on the dependencies and repositories containers, and extensions on them

• Elements in the tasks and configurations containers

• Elements in project-extension containers (for example the source sets contributed by the Java
Plugin that are added to the sourceSets container)

For the main project settings script:

• Project extensions and conventions, contributed by Settings plugins, and extensions on them

IMPORTANT
Initialization scripts and script plugins do not have type-safe model
accessors. These limitations will be removed in a future Gradle release.

The set of type-safe model accessors available is calculated right before evaluating the script body,
immediately after the plugins {} block. Any model elements contributed after that point do not
work with type-safe model accessors. For example, this includes any configurations you might
define in your own build script. However, this approach does mean that you can use type-safe
accessors for any model elements that are contributed by plugins that are applied by parent
projects.

The following project build script demonstrates how you can access various configurations,
extensions and other elements using type-safe accessors:

Example 151. Using type-safe model accessors

build.gradle.kts

plugins {
 `java-library`
}

dependencies { ①
 api("junit:junit:4.13")
 implementation("junit:junit:4.13")
 testImplementation("junit:junit:4.13")
}

configurations { ①
 implementation {
 resolutionStrategy.failOnVersionConflict()
 }
}

sourceSets { ②

#ex-using-type-safe-model-accessors

 main { ③
 java.srcDir("src/core/java")
 }
}

java { ④
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
}

tasks {
 test { ⑤
 testLogging.showExceptions = true
 useJUnit()
 }
}

① Uses type-safe accessors for the api, implementation and testImplementation dependency
configurations contributed by the Java Library Plugin

② Uses an accessor to configure the sourceSets project extension

③ Uses an accessor to configure the main source set

④ Uses an accessor to configure the java source for the main source set

⑤ Uses an accessor to configure the test task

TIP

Your IDE knows about the type-safe accessors, so it will include them in its
suggestions.

This will happen both at the top level of your build scripts — most plugin extensions
are added to the Project object — and within the blocks that configure an extension.

Note that accessors for elements of containers such as configurations, tasks and sourceSets
leverage Gradle’s configuration avoidance APIs. For example, on tasks they are of type
TaskProvider<T> and provide a lazy reference and lazy configuration of the underlying task. Here
are some examples that illustrate the situations in which configuration avoidance applies:

tasks.test {
 // lazy configuration
}

// Lazy reference
val testProvider: TaskProvider<Test> = tasks.test

testProvider {
 // lazy configuration
}

// Eagerly realized Test task, defeat configuration avoidance if done out of a lazy
context
val test: Test = tasks.test.get()

For all other containers than tasks, accessors for elements are of type NamedDomainObjectProvider<T>
and provide the same behavior.

Understanding what to do when type-safe model accessors are not available

Consider the sample build script shown above that demonstrates the use of type-safe accessors. The
following sample is exactly the same except that is uses the apply() method to apply the plugin. The
build script can not use type-safe accessors in this case because the apply() call happens in the body
of the build script. You have to use other techniques instead, as demonstrated here:

Example 152. Configuring plugins without type-safe accessors

build.gradle.kts

apply(plugin = "java-library")

dependencies {
 "api"("junit:junit:4.13")
 "implementation"("junit:junit:4.13")
 "testImplementation"("junit:junit:4.13")
}

configurations {
 "implementation" {
 resolutionStrategy.failOnVersionConflict()
 }
}

configure<SourceSetContainer> {
 named("main") {
 java.srcDir("src/core/java")
 }
}

configure<JavaPluginExtension> {
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
}

tasks {
 named<Test>("test") {
 testLogging.showExceptions = true
 }
}

#ex-configuring-plugins-without-type-safe-accessors

Type-safe accessors are unavailable for model elements contributed by the following:

• Plugins applied via the apply(plugin = "id") method

• The project build script

• Script plugins, via apply(from = "script-plugin.gradle.kts")

• Plugins applied via cross-project configuration

You also can not use type-safe accessors in Binary Gradle plugins implemented in Kotlin.

If you can’t find a type-safe accessor, fall back to using the normal API for the corresponding types.
To do that, you need to know the names and/or types of the configured model elements. We’ll now
show you how those can be discovered by looking at the above script in detail.

Artifact configurations

The following sample demonstrates how to reference and configure artifact configurations without
type accessors:

Example 153. Artifact configurations

build.gradle.kts

apply(plugin = "java-library")

dependencies {
 "api"("junit:junit:4.13")
 "implementation"("junit:junit:4.13")
 "testImplementation"("junit:junit:4.13")
}

configurations {
 "implementation" {
 resolutionStrategy.failOnVersionConflict()
 }
}

The code looks similar to that for the type-safe accessors, except that the configuration names are
string literals in this case. You can use string literals for configuration names in dependency
declarations and within the configurations {} block.

The IDE won’t be able to help you discover the available configurations in this situation, but you
can look them up either in the corresponding plugin’s documentation or by running gradle
dependencies.

Project extensions and conventions

Project extensions and conventions have both a name and a unique type, but the Kotlin DSL only

#ex-artifact-configurations

needs to know the type in order to configure them. As the following sample shows for the
sourceSets {} and java {} blocks from the original example build script, you can use the
configure<T>() function with the corresponding type to do that:

Example 154. Project extensions and conventions

build.gradle.kts

apply(plugin = "java-library")

configure<SourceSetContainer> {
 named("main") {
 java.srcDir("src/core/java")
 }
}

configure<JavaPluginExtension> {
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
}

Note that sourceSets is a Gradle extension on Project of type SourceSetContainer and java is an
extension on Project of type JavaPluginExtension.

You can discover what extensions and conventions are available either by looking at the
documentation for the applied plugins or by running gradle kotlinDslAccessorsReport, which prints
the Kotlin code necessary to access the model elements contributed by all the applied plugins. The
report provides both names and types. As a last resort, you can also check a plugin’s source code,
but that shouldn’t be necessary in the majority of cases.

Note that you can also use the the<T>() function if you only need a reference to the extension or
convention without configuring it, or if you want to perform a one-line configuration, like so:

the<SourceSetContainer>()["main"].srcDir("src/core/java")

The snippet above also demonstrates one way of configuring the elements of a project extension
that is a container.

Elements in project-extension containers

Container-based project extensions, such as SourceSetContainer, also allow you to configure the
elements held by them. In our sample build script, we want to configure a source set named main
within the source set container, which we can do by using the named() method in place of an
accessor, like so:

https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/configure.html
#ex-project-extensions-and-conventions
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/the.html
https://docs.gradle.org/8.12/javadoc/org/gradle/api/NamedDomainObjectCollection.html#named-java.lang.String-

Example 155. Elements of project extensions that are containers

build.gradle.kts

apply(plugin = "java-library")

configure<SourceSetContainer> {
 named("main") {
 java.srcDir("src/core/java")
 }
}

All elements within a container-based project extension have a name, so you can use this technique
in all such cases.

As for project extensions and conventions themselves, you can discover what elements are present
in any container by either looking at the documentation of the applied plugins or by running gradle
kotlinDslAccessorsReport. And as a last resort, you may be able to view the plugin’s source code to
find out what it does, but that shouldn’t be necessary in the majority of cases.

Tasks

Tasks are not managed through a container-based project extension, but they are part of a
container that behaves in a similar way. This means that you can configure tasks in the same way
as you do for source sets, as you can see in this example:

Example 156. Tasks

build.gradle.kts

apply(plugin = "java-library")

tasks {
 named<Test>("test") {
 testLogging.showExceptions = true
 }
}

We are using the Gradle API to refer to the tasks by name and type, rather than using accessors.
Note that it’s necessary to specify the type of the task explicitly, otherwise the script won’t compile
because the inferred type will be Task, not Test, and the testLogging property is specific to the Test
task type. You can, however, omit the type if you only need to configure properties or to call
methods that are common to all tasks, i.e. they are declared on the Task interface.

#ex-elements-of-project-extensions-that-are-containers
#ex-tasks

One can discover what tasks are available by running gradle tasks. You can then find out the type
of a given task by running gradle help --task <taskName>, as demonstrated here:

❯ ./gradlew help --task test
...
Type
 Test (org.gradle.api.tasks.testing.Test)

Note that the IDE can assist you with the required imports, so you only need the simple names of
the types, i.e. without the package name part. In this case, there’s no need to import the Test task
type as it is part of the Gradle API and is therefore imported implicitly.

About conventions

Some of the Gradle core plugins expose configurability with the help of a so-called convention
object. These serve a similar purpose to — and have now been superseded by — extensions.
Conventions are deprecated. Please avoid using convention objects when writing new plugins.

As seen above, the Kotlin DSL provides accessors only for convention objects on Project. There are
situations that require you to interact with a Gradle plugin that uses convention objects on other
types. The Kotlin DSL provides the withConvention(T::class) {} extension function to do this:

Example 157. Configuring source set conventions

build.gradle.kts

sourceSets {
 main {
 withConvention(CustomSourceSetConvention::class) {
 someOption = "some value"
 }
 }
}

This technique is primarily necessary for source sets added by language plugins that have yet to be
migrated to extensions.

Multi-project builds

As with single-project builds, you should try to use the plugins {} block in your multi-project builds
so that you can use the type-safe accessors. Another consideration with multi-project builds is that
you won’t be able to use type-safe accessors when configuring subprojects within the root build
script or with other forms of cross configuration between projects. We discuss both topics in more
detail in the following sections.

#ex-configuring-source-set-conventions

Applying plugins

You can declare your plugins within the subprojects to which they apply, but we recommend that
you also declare them within the root project build script. This makes it easier to keep plugin
versions consistent across projects within a build. The approach also improves the performance of
the build.

The Using Gradle plugins chapter explains how you can declare plugins in the root project build
script with a version and then apply them to the appropriate subprojects' build scripts. What
follows is an example of this approach using three subprojects and three plugins. Note how the root
build script only declares the community plugins as the Java Library Plugin is tied to the version of
Gradle you are using:

Example 158. Declare plugin dependencies in the root build script using the plugins {} block

settings.gradle.kts

rootProject.name = "multi-project-build"
include("domain", "infra", "http")

build.gradle.kts

plugins {
 id("com.gradleup.shadow") version "8.3.4" apply false
 id("io.ratpack.ratpack-java") version "1.8.2" apply false
}

domain/build.gradle.kts

plugins {
 `java-library`
}

dependencies {
 api("javax.measure:unit-api:1.0")
 implementation("tec.units:unit-ri:1.0.3")
}

infra/build.gradle.kts

plugins {
 `java-library`
 id("com.gradleup.shadow")
}

tasks.shadowJar {
 minimize()
}

#ex:multi_project_ratpack
#ex:multi_project_ratpack
#ex:multi_project_ratpack

http/build.gradle.kts

plugins {
 java
 id("io.ratpack.ratpack-java")
}

dependencies {
 implementation(project(":domain"))
 implementation(project(":infra"))
 implementation(ratpack.dependency("dropwizard-metrics"))
}

application {
 mainClass = "example.App"
}

ratpack.baseDir = file("src/ratpack/baseDir")

If your build requires additional plugin repositories on top of the Gradle Plugin Portal, you should
declare them in the pluginManagement {} block in your settings.gradle.kts file, like so:

Example 159. Declare additional plugin repositories

settings.gradle.kts

pluginManagement {
 repositories {
 mavenCentral()
 gradlePluginPortal()
 }
}

Plugins fetched from a source other than the Gradle Plugin Portal can only be declared via the
plugins {} block if they are published with their plugin marker artifacts.

NOTE
At the time of writing, all versions of the Android Plugin for Gradle up to 3.2.0
present in the google() repository lack plugin marker artifacts.

If those artifacts are missing, then you can’t use the plugins {} block. You must instead fall back to
declaring your plugin dependencies using the buildscript {} block in the root project build script.
Here’s an example of doing that for the Android Plugin:

#ex-declare-additional-plugin-repositories
https://plugins.gradle.org/

Example 160. Declare plugin dependencies in the root build script using the buildscript {} block

settings.gradle.kts

include("lib", "app")

build.gradle.kts

buildscript {
 repositories {
 google()
 gradlePluginPortal()
 }
 dependencies {
 classpath("com.android.tools.build:gradle:7.3.0")
 }
}

lib/build.gradle.kts

plugins {
 id("com.android.library")
}

android {
 // ...
}

app/build.gradle.kts

plugins {
 id("com.android.application")
}

android {
 // ...
}

This technique is not that different from what Android Studio produces when creating a new build.
The main difference is that the subprojects' build scripts in the above sample declare their plugins
using the plugins {} block. This means that you can use type-safe accessors for the model elements
that they contribute.

Note that you can’t use this technique if you want to apply such a plugin either to the root project
build script of a multi-project build (rather than solely to its subprojects) or to a single-project build.
You’ll need to use a different approach in those cases that we detail in another section.

#ex-declare-plugin-dependencies-in-the-root-build-script-using-the-buildscript-block
#ex-declare-plugin-dependencies-in-the-root-build-script-using-the-buildscript-block
#ex-declare-plugin-dependencies-in-the-root-build-script-using-the-buildscript-block

Cross-configuring projects

Cross project configuration is a mechanism by which you can configure a project from another
project’s build script. A common example is when you configure subprojects in the root project
build script.

Taking this approach means that you won’t be able to use type-safe accessors for model elements
contributed by the plugins. You will instead have to rely on string literals and the standard Gradle
APIs.

As an example, let’s modify the Java/Ratpack sample build to fully configure its subprojects from
the root project build script:

Example 161. Cross-configuring projects

settings.gradle.kts

rootProject.name = "multi-project-build"
include("domain", "infra", "http")

build.gradle.kts

import com.github.jengelman.gradle.plugins.shadow.tasks.ShadowJar
import ratpack.gradle.RatpackExtension

plugins {
 id("com.gradleup.shadow") version "8.3.4" apply false
 id("io.ratpack.ratpack-java") version "1.8.2" apply false
}

project(":domain") {
 apply(plugin = "java-library")
 repositories { mavenCentral() }
 dependencies {
 "api"("javax.measure:unit-api:1.0")
 "implementation"("tec.units:unit-ri:1.0.3")
 }
}

project(":infra") {
 apply(plugin = "java-library")
 apply(plugin = "com.gradleup.shadow")
 tasks.named<ShadowJar>("shadowJar") {
 minimize()
 }
}

project(":http") {
 apply(plugin = "java")
 apply(plugin = "io.ratpack.ratpack-java")

#ex-cross-configuring-projects

 repositories { mavenCentral() }
 val ratpack = the<RatpackExtension>()
 dependencies {
 "implementation"(project(":domain"))
 "implementation"(project(":infra"))
 "implementation"(ratpack.dependency("dropwizard-metrics"))
 "runtimeOnly"("org.slf4j:slf4j-simple:1.7.25")
 }
 configure<JavaApplication> {
 mainClass = "example.App"
 }
 ratpack.baseDir = file("src/ratpack/baseDir")
}

Note how we’re using the apply() method to apply the plugins since the plugins {} block doesn’t
work in this context. We are also using standard APIs instead of type-safe accessors to configure
tasks, extensions and conventions — an approach that we discussed in more detail elsewhere.

When you can’t use the plugins {} block

Plugins fetched from a source other than the Gradle Plugin Portal may or may not be usable with
the plugins {} block. It depends on how they have been published and, specifically, whether they
have been published with the necessary plugin marker artifacts.

For example, the Android Plugin for Gradle is not published to the Gradle Plugin Portal and — at
least up to version 3.2.0 of the plugin — the metadata required to resolve the artifacts for a given
plugin identifier is not published to the Google repository.

If your build is a multi-project build and you don’t need to apply such a plugin to your root project,
then you can get round this issue using the technique described above. For any other situation,
keep reading.

TIP

When publishing plugins, please use Gradle’s built-in Gradle Plugin Development
Plugin.

It automates the publication of the metadata necessary to make your plugins usable
with the plugins {} block.

We will show you in this section how to apply the Android Plugin to a single-project build or the
root project of a multi-project build. The goal is to instruct your build on how to map the
com.android.application plugin identifier to a resolvable artifact. This is done in two steps:

• Add a plugin repository to the build’s settings script

• Map the plugin ID to the corresponding artifact coordinates

You accomplish both steps by configuring a pluginManagement {} block in the build’s settings script.
To demonstrate, the following sample adds the google() repository — where the Android plugin is

https://plugins.gradle.org/
java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin

published — to the repository search list, and uses a resolutionStrategy {} block to map the
com.android.application plugin ID to the com.android.tools.build:gradle:<version> artifact
available in the google() repository:

Example 162. Mapping plugin IDs to dependency coordinates

settings.gradle.kts

pluginManagement {
 repositories {
 google()
 gradlePluginPortal()
 }
 resolutionStrategy {
 eachPlugin {
 if(requested.id.namespace == "com.android") {

useModule("com.android.tools.build:gradle:${requested.version}")
 }
 }
 }
}

build.gradle.kts

plugins {
 id("com.android.application") version "7.3.0"
}

android {
 // ...
}

In fact, the above sample will work for all com.android.* plugins that are provided by the specified
module. That’s because the packaged module contains the details of which plugin ID maps to which
plugin implementation class, using the properties-file mechanism described in the Writing Custom
Plugins chapter.

See the Plugin Management section of the Gradle user manual for more information on the
pluginManagement {} block and what it can be used for.

Working with container objects

The Gradle build model makes heavy use of container objects (or just "containers"). For example,
both configurations and tasks are container objects that contain Configuration and Task objects
respectively. Community plugins also contribute containers, like the android.buildTypes container
contributed by the Android Plugin.

#ex-mapping-plugin-ids-to-dependency-coordinates

The Kotlin DSL provides several ways for build authors to interact with containers. We look at each
of those ways next, using the tasks container as an example.

TIP
Note that you can leverage the type-safe accessors described in another section if you
are configuring existing elements on supported containers. That section also describes
which containers support type-safe accessors.

Using the container API

All containers in Gradle implement NamedDomainObjectContainer<DomainObjectType>. Some of
them can contain objects of different types and implement
PolymorphicDomainObjectContainer<BaseType>. The simplest way to interact with containers is
through these interfaces.

The following sample demonstrates how you can use the named() method to configure existing
tasks and the register() method to create new ones.

Example 163. Using the container API

build.gradle.kts

tasks.named("check") ①
tasks.register("myTask1") ②

tasks.named<JavaCompile>("compileJava") ③
tasks.register<Copy>("myCopy1") ④

tasks.named("assemble") { ⑤
 dependsOn(":myTask1")
}
tasks.register("myTask2") { ⑥
 description = "Some meaningful words"
}

tasks.named<Test>("test") { ⑦
 testLogging.showStackTraces = true
}
tasks.register<Copy>("myCopy2") { ⑧
 from("source")
 into("destination")
}

① Gets a reference of type Task to the existing task named check

② Registers a new untyped task named myTask1

③ Gets a reference to the existing task named compileJava of type JavaCompile

https://docs.gradle.org/8.12/dsl/org.gradle.api.NamedDomainObjectContainer.html#org.gradle.api.NamedDomainObjectContainer
https://docs.gradle.org/8.12/dsl/org.gradle.api.PolymorphicDomainObjectContainer.html#org.gradle.api.PolymorphicDomainObjectContainer
https://docs.gradle.org/8.12/dsl/org.gradle.api.NamedDomainObjectContainer.html#org.gradle.api.NamedDomainObjectContainer:named(java.lang.String)
https://docs.gradle.org/8.12/dsl/org.gradle.api.NamedDomainObjectContainer.html#org.gradle.api.NamedDomainObjectContainer:register(java.lang.String)
#ex-using-the-container-api

④ Registers a new task named myCopy1 of type Copy

⑤ Gets a reference to the existing (untyped) task named assemble and configures it — you can only
configure properties and methods that are available on Task with this syntax

⑥ Registers a new untyped task named myTask2 and configures it — you can only configure
properties and methods that are available on Task in this case

⑦ Gets a reference to the existing task named test of type Test and configures it — in this case you
have access to the properties and methods of the specified type

⑧ Registers a new task named myCopy2 of type Copy and configures it

NOTE
The above sample relies on the configuration avoidance APIs. If you need or want to
eagerly configure or register container elements, simply replace named() with
getByName() and register() with create().

Using Kotlin delegated properties

Another way to interact with containers is via Kotlin delegated properties. These are particularly
useful if you need a reference to a container element that you can use elsewhere in the build. In
addition, Kotlin delegated properties can easily be renamed via IDE refactoring.

The following sample does the exact same things as the one in the previous section, but it uses
delegated properties and reuses those references in place of string-literal task paths:

Example 164. Using Kotlin delegated properties

build.gradle.kts

val check by tasks.existing
val myTask1 by tasks.registering

val compileJava by tasks.existing(JavaCompile::class)
val myCopy1 by tasks.registering(Copy::class)

val assemble by tasks.existing {
 dependsOn(myTask1) ①
}
val myTask2 by tasks.registering {
 description = "Some meaningful words"
}

val test by tasks.existing(Test::class) {
 testLogging.showStackTraces = true
}
val myCopy2 by tasks.registering(Copy::class) {
 from("source")
 into("destination")
}

#ex-using-kotlin-delegated-properties

① Uses the reference to the myTask1 task rather than a task path

NOTE
The above rely on configuration avoidance APIs. If you need to eagerly configure or
register container elements simply replace existing() with getting() and
registering() with creating().

Configuring multiple container elements together

When configuring several elements of a container one can group interactions in a block in order to
avoid repeating the container’s name on each interaction. The following example uses a
combination of type-safe accessors, the container API and Kotlin delegated properties:

Example 165. Container scope

build.gradle.kts

tasks {
 test {
 testLogging.showStackTraces = true
 }
 val myCheck by registering {
 doLast { /* assert on something meaningful */ }
 }
 check {
 dependsOn(myCheck)
 }
 register("myHelp") {
 doLast { /* do something helpful */ }
 }
}

Working with runtime properties

Gradle has two main sources of properties that are defined at runtime: project properties and extra
properties. The Kotlin DSL provides specific syntax for working with these types of properties,
which we look at in the following sections.

Project properties

The Kotlin DSL allows you to access project properties by binding them via Kotlin delegated
properties. Here’s a sample snippet that demonstrates the technique for a couple of project
properties, one of which must be defined:

build.gradle.kts

val myProperty: String by project ①

https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/existing.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/getting.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/registering.html
https://docs.gradle.org/8.12/kotlin-dsl/gradle/org.gradle.kotlin.dsl/creating.html
#ex-container-scope

val myNullableProperty: String? by project ②

① Makes the myProperty project property available via a myProperty delegated property — the
project property must exist in this case, otherwise the build will fail when the build script
attempts to use the myProperty value

② Does the same for the myNullableProperty project property, but the build won’t fail on using the
myNullableProperty value as long as you check for null (standard Kotlin rules for null safety
apply)

The same approach works in both settings and initialization scripts, except you use by settings and
by gradle respectively in place of by project.

Extra properties

Extra properties are available on any object that implements the ExtensionAware interface. Kotlin
DSL allows you to access extra properties and create new ones via delegated properties, using any
of the by extra forms demonstrated in the following sample:

build.gradle.kts

val myNewProperty by extra("initial value") ①
val myOtherNewProperty by extra { "calculated initial value" } ②

val myProperty: String by extra ③
val myNullableProperty: String? by extra ④

① Creates a new extra property called myNewProperty in the current context (the project in this case)
and initializes it with the value "initial value", which also determines the property’s type

② Create a new extra property whose initial value is calculated by the provided lambda

③ Binds an existing extra property from the current context (the project in this case) to a
myProperty reference

④ Does the same as the previous line but allows the property to have a null value

This approach works for all Gradle scripts: project build scripts, script plugins, settings scripts and
initialization scripts.

You can also access extra properties on a root project from a subproject using the following syntax:

my-sub-project/build.gradle.kts

val myNewProperty: String by rootProject.extra ①

① Binds the root project’s myNewProperty extra property to a reference of the same name

Extra properties aren’t just limited to projects. For example, Task extends ExtensionAware, so you can
attach extra properties to tasks as well. Here’s an example that defines a new myNewTaskProperty on
the test task and then uses that property to initialize another task:

https://kotlinlang.org/docs/reference/null-safety.html
https://docs.gradle.org/8.12/dsl/org.gradle.api.plugins.ExtensionAware.html#org.gradle.api.plugins.ExtensionAware

build.gradle.kts

tasks {
 test {
 val reportType by extra("dev") ①
 doLast {
 // Use 'suffix' for post processing of reports
 }
 }

 register<Zip>("archiveTestReports") {
 val reportType: String by test.get().extra ②
 archiveAppendix = reportType
 from(test.get().reports.html.destination)
 }
}

① Creates a new reportType extra property on the test task

② Makes the test task’s reportType extra property available to configure the archiveTestReports
task

If you’re happy to use eager configuration rather than the configuration avoidance APIs, you could
use a single, "global" property for the report type, like this:

build.gradle.kts

tasks.test.doLast { ... }

val testReportType by tasks.test.get().extra("dev") ①

tasks.create<Zip>("archiveTestReports") {
 archiveAppendix = testReportType ②
 from(test.get().reports.html.destination)
}

① Creates and initializes an extra property on the test task, binding it to a "global" property

② Uses the "global" property to initialize the archiveTestReports task

There is one last syntax for extra properties that we should cover, one that treats extra as a map.
We recommend against using this in general as you lose the benefits of Kotlin’s type checking and it
prevents IDEs from providing as much support as they could. However, it is more succinct than the
delegated properties syntax and can reasonably be used if you only need to set the value of an extra
property without referencing it later.

Here’s a simple example demonstrating how to set and read extra properties using the map syntax:

build.gradle.kts

extra["myNewProperty"] = "initial value" ①

tasks.create("myTask") {
 doLast {
 println("Property: ${project.extra["myNewProperty"]}") ②
 }
}

① Creates a new project extra property called myNewProperty and sets its value

② Reads the value from the project extra property we created — note the project. qualifier on
extra[…], otherwise Gradle will assume we want to read an extra property from the task

Kotlin lazy property assignment

Gradle’s Kotlin DSL supports lazy property assignment using the = operator . Lazy property
assignment reduces the verbosity for Kotlin DSL when lazy properties are used. It works for
properties that are publicly seen as final (without a setter) and have type Property or
ConfigurableFileCollection. Since properties have to be final, our general recommendation is not
to implement custom setters for properties with lazy types and, if possible, implement such
properties via an abstract getter.

Using the = operator is the preferred way to call set() in the Kotlin DSL.

Example 166. Kotlin lazy property assignment

build.gradle.kts

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(17)
 }
}

abstract class WriteJavaVersionTask : DefaultTask() {
 @get:Input
 abstract val javaVersion: Property<String>
 @get:OutputFile
 abstract val output: RegularFileProperty

 @TaskAction
 fun execute() {
 output.get().asFile.writeText("Java version: ${javaVersion.get()}")
 }
}

tasks.register<WriteJavaVersionTask>("writeJavaVersion") {
 javaVersion.set("17") ①
 javaVersion = "17" ②
 javaVersion = java.toolchain.languageVersion.map { it.toString() } ③
 output = layout.buildDirectory.file("writeJavaVersion/javaVersion.txt")

#ex-kotlin-lazy-property-assignment

}

① Set value with the .set() method

② Set value with lazy property assignment using the = operator

③ The = operator can be used also for assigning lazy values

IDE support

Lazy property assignment is supported from IntelliJ 2022.3 and from Android Studio Giraffe.

The Kotlin DSL Plugin

The Kotlin DSL Plugin provides a convenient way to develop Kotlin-based projects that contribute
build logic. That includes buildSrc projects, included builds and Gradle plugins.

The plugin achieves this by doing the following:

• Applies the Kotlin Plugin, which adds support for compiling Kotlin source files.

• Adds the kotlin-stdlib, kotlin-reflect and gradleKotlinDsl() dependencies to the compileOnly
and testImplementation configurations, which allows you to make use of those Kotlin libraries
and the Gradle API in your Kotlin code.

• Configures the Kotlin compiler with the same settings that are used for Kotlin DSL scripts,
ensuring consistency between your build logic and those scripts:

◦ adds Kotlin compiler arguments,

◦ registers the SAM-with-receiver Kotlin compiler plugin.

• Enables support for precompiled script plugins.

Avoid specifying a version for the kotlin-dsl plugin

Each Gradle release is meant to be used with a specific version of the kotlin-dsl plugin and
compatibility between arbitrary Gradle releases and kotlin-dsl plugin versions is not guaranteed.
Using an unexpected version of the kotlin-dsl plugin in a build will emit a warning and can cause
hard to diagnose problems.

This is the basic configuration you need to use the plugin:

Example 167. Applying the Kotlin DSL Plugin to a buildSrc project

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

repositories {

https://kotlinlang.org/docs/reference/using-gradle.html#targeting-the-jvm
https://kotlinlang.org/docs/sam-with-receiver-plugin.html
#ex-applying-the-kotlin-dsl-plugin-to-a-buildsrc-project
#ex-applying-the-kotlin-dsl-plugin-to-a-buildsrc-project
#ex-applying-the-kotlin-dsl-plugin-to-a-buildsrc-project

 // The org.jetbrains.kotlin.jvm plugin requires a repository
 // where to download the Kotlin compiler dependencies from.
 mavenCentral()
}

The Kotlin DSL Plugin leverages Java Toolchains. By default the code will target Java 8. You can
change that by defining a Java toolchain to be used by the project:

Example 168. Changing the JVM target using toolchains

buildSrc/src/main/kotlin/myproject.java-conventions.gradle.kts

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 }
}

buildSrc/src/main/groovy/myproject.java-conventions.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 }
}

The embedded Kotlin

Gradle embeds Kotlin in order to provide support for Kotlin-based scripts.

Kotlin versions

Gradle ships with kotlin-compiler-embeddable plus matching versions of kotlin-stdlib and kotlin-
reflect libraries. For details see the Kotlin section of Gradle’s compatibility matrix. The kotlin
package from those modules is visible through the Gradle classpath.

The compatibility guarantees provided by Kotlin apply for both backward and forward
compatibility.

Backward compatibility

Our approach is to only do backwards-breaking Kotlin upgrades on a major Gradle release. We will
always clearly document which Kotlin version we ship and announce upgrade plans before a major

#ex-changing-the-jvm-target-using-toolchains
https://kotlinlang.org/docs/reference/compatibility.html

release.

Plugin authors who want to stay compatible with older Gradle versions need to limit their API
usage to a subset that is compatible with these old versions. It’s not really different from any other
new API in Gradle. E.g. if we introduce a new API for dependency resolution and a plugin wants to
use that API, then they either need to drop support for older Gradle versions or they need to do
some clever organization of their code to only execute the new code path on newer versions.

Forward compatibility

The biggest issue is the compatibility between the external kotlin-gradle-plugin version and the
kotlin-stdlib version shipped with Gradle. More generally, between any plugin that transitively
depends on kotlin-stdlib and its version shipped with Gradle. As long as the combination is
compatible everything should work. This will become less of an issue as the language matures.

Kotlin compiler arguments

These are the Kotlin compiler arguments used for compiling Kotlin DSL scripts and Kotlin sources
and scripts in a project that has the kotlin-dsl plugin applied:

-java-parameters

Generate metadata for Java >= 1.8 reflection on method parameters. See Kotlin/JVM compiler
options in the Kotlin documentation for more information.

-Xjvm-default=all

Makes all non-abstract members of Kotlin interfaces default for the Java classes implementing
them. This is to provide a better interoperability with Java and Groovy for plugins written in
Kotlin. See Default methods in interfaces in the Kotlin documentation for more information.

-Xsam-conversions=class

Sets up the implementation strategy for SAM (single abstract method) conversion to always
generate anonymous classes, instead of using the invokedynamic JVM instruction. This is to
provide a better support for configuration cache and incremental build. See KT-44912 in the
Kotlin issue tracker for more information.

-Xjsr305=strict

Sets up Kotlin’s Java interoperability to strictly follow JSR-305 annotations for increased null
safety. See Calling Java code from Kotlin in the Kotlin documentation for more information.

Interoperability

When mixing languages in your build logic, you may have to cross language boundaries. An
extreme example would be a build that uses tasks and plugins that are implemented in Java,
Groovy and Kotlin, while also using both Kotlin DSL and Groovy DSL build scripts.

Quoting the Kotlin reference documentation:

Kotlin is designed with Java Interoperability in mind. Existing Java code can
be called from Kotlin in a natural way, and Kotlin code can be used from

https://kotlinlang.org/docs/compiler-reference.html#kotlin-jvm-compiler-options
https://kotlinlang.org/docs/compiler-reference.html#kotlin-jvm-compiler-options
https://kotlinlang.org/docs/java-to-kotlin-interop.html#default-methods-in-interfaces
https://youtrack.jetbrains.com/issue/KT-44912
https://kotlinlang.org/docs/reference/java-interop.html#compiler-configuration

Java rather smoothly as well.

Both calling Java from Kotlin and calling Kotlin from Java are very well covered in the Kotlin
reference documentation.

The same mostly applies to interoperability with Groovy code. In addition, the Kotlin DSL provides
several ways to opt into Groovy semantics, which we look at next.

Static extensions

Both the Groovy and Kotlin languages support extending existing classes via Groovy Extension
modules and Kotlin extensions.

To call a Kotlin extension function from Groovy, call it as a static function, passing the receiver as
the first parameter:

Example 169. Calling a Kotlin extension from Groovy

build.gradle

TheTargetTypeKt.kotlinExtensionFunction(receiver, "parameters", 42,
aReference)

Kotlin extension functions are package-level functions and you can learn how to locate the name of
the type declaring a given Kotlin extension in the Package-Level Functions section of the Kotlin
reference documentation.

To call a Groovy extension method from Kotlin, the same approach applies: call it as a static
function passing the receiver as the first parameter. Here’s an example:

Example 170. Calling a Groovy extension from Kotlin

build.gradle.kts

TheTargetTypeGroovyExtension.groovyExtensionMethod(receiver, "parameters",
42, aReference)

Named parameters and default arguments

Both the Groovy and Kotlin languages support named function parameters and default arguments,
although they are implemented very differently. Kotlin has fully-fledged support for both, as
described in the Kotlin language reference under named arguments and default arguments. Groovy
implements named arguments in a non-type-safe way based on a Map<String, ?> parameter, which
means they cannot be combined with default arguments. In other words, you can only use one or

https://kotlinlang.org/docs/reference/java-interop.html
https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html
https://groovy-lang.org/metaprogramming.html#_extension_modules
https://groovy-lang.org/metaprogramming.html#_extension_modules
https://kotlinlang.org/docs/reference/extensions.html
#ex-calling-a-kotlin-extension-from-groovy
https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html#package-level-functions
#ex-calling-a-groovy-extension-from-kotlin
https://kotlinlang.org/docs/reference/functions.html#named-arguments
https://kotlinlang.org/docs/reference/functions.html#default-arguments
https://groovy-lang.org/objectorientation.html#_named_arguments
https://groovy-lang.org/objectorientation.html#_default_arguments

the other in Groovy for any given method.

Calling Kotlin from Groovy

To call a Kotlin function that has named arguments from Groovy, just use a normal method call
with positional parameters. There is no way to provide values by argument name.

To call a Kotlin function that has default arguments from Groovy, always pass values for all the
function parameters.

Calling Groovy from Kotlin

To call a Groovy function with named arguments from Kotlin, you need to pass a Map<String, ?>, as
shown in this example:

Example 171. Call Groovy function with named arguments from Kotlin

build.gradle.kts

groovyNamedArgumentTakingMethod(mapOf(
 "parameterName" to "value",
 "other" to 42,
 "and" to aReference))

To call a Groovy function with default arguments from Kotlin, always pass values for all the
parameters.

Groovy closures from Kotlin

You may sometimes have to call Groovy methods that take Closure arguments from Kotlin code. For
example, some third-party plugins written in Groovy expect closure arguments.

NOTE
Gradle plugins written in any language should prefer the type Action<T> type in
place of closures. Groovy closures and Kotlin lambdas are automatically mapped to
arguments of that type.

In order to provide a way to construct closures while preserving Kotlin’s strong typing, two helper
methods exist:

• closureOf<T> {}

• delegateClosureOf<T> {}

Both methods are useful in different circumstances and depend upon the method you are passing
the Closure instance into.

Some plugins expect simple closures, as with the Bintray plugin:

#ex-call-groovy-function-with-named-arguments-from-kotlin
https://groovy-lang.org/closures.html
https://plugins.gradle.org/plugin/com.jfrog.bintray

Example 172. Use closureOf<T> {}

bintray { pkg(closureOf<PackageConfig> { // Config for the package here }) }

In other cases, like with the Gretty Plugin when configuring farms, the plugin expects a delegate
closure:

Example 173. Use delegateClosureOf<T> {}

build.gradle.kts

farms {
 farm("OldCoreWar", delegateClosureOf<FarmExtension> {
 // Config for the war here
 })
}

There sometimes isn’t a good way to tell, from looking at the source code, which version to use.
Usually, if you get a NullPointerException with closureOf<T> {}, using delegateClosureOf<T> {} will
resolve the problem.

These two utility functions are useful for configuration closures, but some plugins might expect
Groovy closures for other purposes. The KotlinClosure0 to KotlinClosure2 types allows adapting
Kotlin functions to Groovy closures with more flexibility.

Example 174. Use KotlinClosureX types

build.gradle.kts

somePlugin {

 // Adapt parameter-less function
 takingParameterLessClosure(KotlinClosure0({
 "result"
 }))

 // Adapt unary function
 takingUnaryClosure(KotlinClosure1<String, String>({
 "result from single parameter $this"
 }))

 // Adapt binary function
 takingBinaryClosure(KotlinClosure2<String, String, String>({ a, b ->
 "result from parameters $a and $b"
 }))

#ex-use-closureof
#ex-use-closureof
https://plugins.gradle.org/plugin/org.gretty
#ex-use-delegateclosureof
#ex-use-delegateclosureof
#ex-use-kotlinclosurex-types
#ex-use-kotlinclosurex-types
#ex-use-kotlinclosurex-types

}

The Kotlin DSL Groovy Builder

If some plugin makes heavy use of Groovy metaprogramming, then using it from Kotlin or Java or
any statically-compiled language can be very cumbersome.

The Kotlin DSL provides a withGroovyBuilder {} utility extension that attaches the Groovy
metaprogramming semantics to objects of type Any. The following example demonstrates several
features of the method on the object target:

Example 175. Use withGroovyBuilder {}

build.gradle.kts

target.withGroovyBuilder { ①

 // GroovyObject methods available ②
 if (hasProperty("foo")) { /*...*/ }
 val foo = getProperty("foo")
 setProperty("foo", "bar")
 invokeMethod("name", arrayOf("parameters", 42, aReference))

 // Kotlin DSL utilities
 "name"("parameters", 42, aReference) ③
 "blockName" { ④
 // Same Groovy Builder semantics on `blockName`
 }
 "another"("name" to "example", "url" to "https://example.com/") ⑤
}

① The receiver is a GroovyObject and provides Kotlin helpers

② The GroovyObject API is available

③ Invoke the methodName method, passing some parameters

④ Configure the blockName property, maps to a Closure taking method invocation

⑤ Invoke another method taking named arguments, maps to a Groovy named arguments
Map<String, ?> taking method invocation

Using a Groovy script

Another option when dealing with problematic plugins that assume a Groovy DSL build script is to
configure them in a Groovy DSL build script that is applied from the main Kotlin DSL build script:

https://groovy-lang.org/metaprogramming.html
#ex-use-withgroovybuilder
#ex-use-withgroovybuilder
https://docs.groovy-lang.org/latest/html/api/groovy/lang/GroovyObject.html

Example 176. Using a Groovy script

dynamic-groovy-plugin-configuration.gradle

native { ①
 dynamic {
 groovy as Usual
 }
}

build.gradle.kts

plugins {
 id("dynamic-groovy-plugin") version "1.0" ②
}
apply(from = "dynamic-groovy-plugin-configuration.gradle") ③

① The Groovy script uses dynamic Groovy to configure plugin

② The Kotlin build script requests and applies the plugin

③ The Kotlin build script applies the Groovy script

Limitations

• The Kotlin DSL is known to be slower than the Groovy DSL on first use, for example with clean
checkouts or on ephemeral continuous integration agents. Changing something in the buildSrc
directory also has an impact as it invalidates build-script caching. The main reason for this is
the slower script compilation for Kotlin DSL.

• In IntelliJ IDEA, you must import your project from the Gradle model in order to get content
assist and refactoring support for your Kotlin DSL build scripts.

• Kotlin DSL script compilation avoidance has known issues. If you encounter problems, it can be
disabled by setting the org.gradle.kotlin.dsl.scriptCompilationAvoidance system property to
false.

• The Kotlin DSL will not support the model {} block, which is part of the discontinued Gradle
Software Model.

If you run into trouble or discover a suspected bug, please report the issue in the Gradle issue
tracker.

#ex-using-a-groovy-script
https://github.com/gradle/gradle/issues/15886
https://www.jetbrains.com/help/idea/gradle.html#gradle_import
https://blog.gradle.org/state-and-future-of-the-gradle-software-model
https://blog.gradle.org/state-and-future-of-the-gradle-software-model
https://github.com/gradle/gradle/issues/
https://github.com/gradle/gradle/issues/

CORE PLUGINS

Gradle Plugin Reference
This page contains links and short descriptions for all the core plugins provided by Gradle itself.

JVM languages and frameworks

Java

Provides support for building any type of Java project.

Java Library

Provides support for building a Java library.

Java Platform

Provides support for building a Java platform.

Groovy

Provides support for building any type of Groovy project.

Scala

Provides support for building any type of Scala project.

ANTLR

Provides support for generating parsers using ANTLR.

JVM Test Suite

Provides support for modeling and configuring multiple test suite invocations.

Test Report Aggregation

Aggregates the results of multiple Test task invocations (potentially spanning multiple Gradle
projects) into a single HTML report.

Native languages

C++ Application

Provides support for building C++ applications on Windows, Linux, and macOS.

C++ Library

Provides support for building C++ libraries on Windows, Linux, and macOS.

C++ Unit Test

Provides support for building and running C++ executable-based tests on Windows, Linux, and
macOS.

Swift Application

Provides support for building Swift applications on Linux and macOS.

java_plugin.pdf#java_plugin
https://groovy-lang.org/
https://www.scala-lang.org/
antlr_plugin.pdf#antlr_plugin
http://www.antlr.org/
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
test_report_aggregation_plugin.pdf#test_report_aggregation_plugin
https://docs.gradle.org/8.12/dsl/org.gradle.api.tasks.testing.Test.html
cpp_application_plugin.pdf#cpp_application_plugin
cpp_library_plugin.pdf#cpp_library_plugin
cpp_unit_test_plugin.pdf#cpp_unit_test_plugin
swift_application_plugin.pdf#swift_application_plugin

Swift Library

Provides support for building Swift libraries on Linux and macOS.

XCTest

Provides support for building and running XCTest-based tests on Linux and macOS.

Packaging and distribution

Application

Provides support for building JVM-based, runnable applications.

WAR

Provides support for building and packaging WAR-based Java web applications.

EAR

Provides support for building and packaging Java EE applications.

Maven Publish

Provides support for publishing artifacts to Maven-compatible repositories.

Ivy Publish

Provides support for publishing artifacts to Ivy-compatible repositories.

Distribution

Makes it easy to create ZIP and tarball distributions of your project.

Java Library Distribution

Provides support for creating a ZIP distribution of a Java library project that includes its runtime
dependencies.

Code analysis

Checkstyle

Performs quality checks on your project’s Java source files using Checkstyle and generates
associated reports.

PMD

Performs quality checks on your project’s Java source files using PMD and generates associated
reports.

JaCoCo

Provides code coverage metrics for your Java project using JaCoCo.

JaCoCo Report Aggregation

Aggregates the results of multiple JaCoCo code coverage reports (potentially spanning multiple
Gradle projects) into a single HTML report.

swift_library_plugin.pdf#swift_library_plugin
xctest_plugin.pdf#xctest_plugin
war_plugin.pdf#war_plugin
ear_plugin.pdf#ear_plugin
distribution_plugin.pdf#distribution_plugin
java_library_distribution_plugin.pdf#java_library_distribution_plugin
checkstyle_plugin.pdf#checkstyle_plugin
https://checkstyle.org/index.html
pmd_plugin.pdf#pmd_plugin
http://pmd.github.io/
jacoco_plugin.pdf#jacoco_plugin
http://www.eclemma.org/jacoco/
jacoco_report_aggregation_plugin.pdf#jacoco_report_aggregation_plugin

CodeNarc

Performs quality checks on your Groovy source files using CodeNarc and generates associated
reports.

IDE integration

Eclipse

Generates Eclipse project files for the build that can be opened by the IDE. This set of plugins can
also be used to fine tune Buildship’s import process for Gradle builds.

IntelliJ IDEA

Generates IDEA project files for the build that can be opened by the IDE. It can also be used to
fine tune IDEA’s import process for Gradle builds.

Visual Studio

Generates Visual Studio solution and project files for build that can be opened by the IDE.

Xcode

Generates Xcode workspace and project files for the build that can be opened by the IDE.

Utility

Base

Provides common lifecycle tasks, such as clean, and other features common to most builds.

Build Init

Generates a new Gradle build of a specified type, such as a Java library. It can also generate a
build script from a Maven POM — see Migrating from Maven to Gradle for more details.

Signing

Provides support for digitally signing generated files and artifacts.

Plugin Development

Makes it easier to develop and publish a Gradle plugin.

Project Report Plugin

Helps to generate reports containing useful information about your build.

codenarc_plugin.pdf#codenarc_plugin
https://codenarc.org/
eclipse_plugin.pdf#eclipse_plugin
http://projects.eclipse.org/projects/tools.buildship
idea_plugin.pdf#idea_plugin
visual_studio_plugin.pdf#visual_studio_plugin
xcode_plugin.pdf#xcode_plugin
base_plugin.pdf#base_plugin
build_init_plugin.pdf#build_init_plugin
migrating_from_maven.pdf#migrating_from_maven
signing_plugin.pdf#signing_plugin
java_gradle_plugin.pdf#java_gradle_plugin
project_report_plugin.pdf#project_report_plugin

HOW TO GUIDES

How to share outputs between projects
A common pattern, in multi-project builds, is that one project consumes the artifacts of another
project.

In general, the simplest consumption form in the Java ecosystem is that when A depends on B, then
A would depend on the jar produced by project B.

Considerations and possible solutions

A frequent anti-pattern to declare cross-project dependencies is:

dependencies {
 // this is unsafe!
 implementation project(":other").tasks.someOtherJar
}

This publication model is unsafe and can lead to non-reproducible and hard to parallelize builds.

WARNING Don’t reference other project tasks directly!

You could define a configuration on the producer side which serves as an exchange of artifacts
between the producer and the consumer.

consumer/build.gradle

dependencies {
 instrumentedClasspath(project(path: ":producer", configuration:
'instrumentedJars'))
}

consumer/build.gradle.kts

dependencies {
 instrumentedClasspath(project(mapOf(
 "path" to ":producer",
 "configuration" to "instrumentedJars")))
}

However, the consumer has to explicitly tell which configuration it depends on and this is not

recommended. If you plan to publish the component which has this dependency, it will likely lead to
broken metadata.

This section explains how to properly create cross-project boundaries by defining "exchanges"
between projects by using variants.

Variant-aware sharing of artifacts

Gradle’s variant model allows consumers to specify requirements using attributes, while producers
provide appropriate outgoing variants using attributes as well.

For example, a single dependency declaration like project(":myLib") can select either the arm64 or
i386 version of myLib, based on the architecture.

To achieve this, attributes must be defined on both the consumer and producer configurations.

WARNING

When configurations have attributes, they participate in variant-aware
resolution. This means they become candidates for resolution whenever any
dependency declaration, such as project(":myLib"), is used.

Attributes on producer configurations must be consistent with other variants
provided by the same project. Introducing inconsistent or ambiguous attributes
can lead to resolution failures.

In practice, the attributes you define will often depend on the ecosystem (e.g.,
Java, C++) because ecosystem-specific plugins typically apply different
attribute conventions.

Consider an example of a Java Library project. Java libraries typically expose two variants to
consumers: apiElements and runtimeElements. In this case, we are adding a third variant,
instrumentedJars.

To correctly configure this new variant, we need to understand its purpose and set appropriate
attributes. Here are the attributes on the runtimeElements configuration of the producer:

$.gradle outgoingVariants --variant runtimeElements

Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-runtime

This tells us that the runtimeElements configuration includes 5 attributes:

1. org.gradle.category indicates that this variant represents a library.

2. org.gradle.dependency.bundling specifies that dependencies are external jars (not repackaged
inside the jar).

3. org.gradle.jvm.version denotes the minimum Java version supported, which is Java 11.

4. org.gradle.libraryelements shows that this variant contains all elements typically found in a jar
(classes and resources).

5. org.gradle.usage defines the variant as a Java runtime, suitable for both compilation and
runtime.

To ensure that the instrumentedJars variant is used in place of runtimeElements when executing
tests, we must attach similar attributes to this new variant.

The key attribute for this configuration is org.gradle.libraryelements, as it describes what the
variant contains. We can set up the instrumentedJars variant accordingly:

producer/build.gradle

configurations {
 instrumentedJars {
 canBeConsumed = true
 canBeResolved = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_RUNTIME))
 attribute(Bundling.BUNDLING_ATTRIBUTE, objects.named(Bundling,
Bundling.EXTERNAL))
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
JavaVersion.current().majorVersion.toInteger())
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE, objects
.named(LibraryElements, 'instrumented-jar'))
 }
 }
}

producer/build.gradle.kts

val instrumentedJars by configurations.creating {
 isCanBeConsumed = true
 isCanBeResolved = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage.JAVA_RUNTIME))
 attribute(Bundling.BUNDLING_ATTRIBUTE,
objects.named(Bundling.EXTERNAL))
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
JavaVersion.current().majorVersion.toInt())

 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
objects.named("instrumented-jar"))
 }
}

This ensures that the instrumentedJars variant is correctly identified as containing elements similar
to a jar, allowing it to be selected appropriately.

NOTE

Selecting the right attributes is the most challenging part of this process, as they
define the semantics of the variant. Before introducing new attributes, always
consider whether an existing attribute already conveys the required semantics. If
no suitable attribute exists, you can create a new one. However, be
cautious—adding a new attribute may introduce ambiguity during variant
selection. In many cases, adding an attribute requires applying it consistently across
all existing variants.

We’ve introduced a new variant for runtime that provides instrumented classes instead of the
normal ones. As a result, consumers now face a choice between two runtime variants:

1. runtimeElements - the default runtime variant provided by the java-library plugin.

2. instrumentedJars - the custom variant we’ve added.

If we want the instrumented classes to be included on the test runtime classpath, we can now
declare the dependency on the consumer as a regular project dependency:

consumer/build.gradle

dependencies {
 testImplementation 'junit:junit:4.13'
 testImplementation project(':producer')
}

consumer/build.gradle.kts

dependencies {
 testImplementation("junit:junit:4.13")
 testImplementation(project(":producer"))
}

If we stop here, Gradle will still resolve the runtimeElements variant instead of the instrumentedJars
variant.

This happens because the testRuntimeClasspath configuration requests a variant with the
libraryelements attribute set to jar, and our instrumented-jars value does not match.

To fix this, we need to update the requested attributes to specifically target instrumented jars:

consumer/build.gradle

configurations {
 testRuntimeClasspath {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE, objects
.named(LibraryElements, 'instrumented-jar'))
 }
 }
}

consumer/build.gradle.kts

configurations {
 testRuntimeClasspath {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
objects.named(LibraryElements::class.java, "instrumented-jar"))
 }
 }
}

We can look at another report on the consumer side to view exactly what attributes of each
dependency will be requested:

$.gradle resolvableConfigurations --configuration testRuntimeClasspath

Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = instrumented-jar
 - org.gradle.usage = java-runtime

The resolvableConfigurations report is the complement of the outgoingVariants report we ran
previously.

By running both of these reports on the consumer and producer sides of a relationship,
respectively, you can see exactly what attributes are involved in matching during dependency

resolution and better predict the outcome when configurations are resolved.

At this point, we’re specifying that the test runtime classpath should resolve variants with
instrumented classes.

However, there’s an issue: some dependencies, like JUnit, don’t provide instrumented classes. If we
stop here, Gradle will fail, stating that no compatible variant of JUnit exists.

This happens because we haven’t told Gradle that it’s acceptable to fall back to the regular jar when
an instrumented variant isn’t available. To resolve this, we need to define a compatibility rule:

consumer/build.gradle

abstract class InstrumentedJarsRule implements AttributeCompatibilityRule
<LibraryElements> {

 @Override
 void execute(CompatibilityCheckDetails<LibraryElements> details) {
 if (details.consumerValue.name == 'instrumented-jar' && details
.producerValue.name == 'jar') {
 details.compatible()
 }
 }
}

consumer/build.gradle.kts

abstract class InstrumentedJarsRule:
AttributeCompatibilityRule<LibraryElements> {
 override fun execute(details: CompatibilityCheckDetails<LibraryElements>)
= details.run {
 if (consumerValue?.name == "instrumented-jar" && producerValue?.name
== "jar") {
 compatible()
 }
 }
}

We then declare this rule on the attributes schema:

consumer/build.gradle

dependencies {
 attributesSchema {

 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE) {
 compatibilityRules.add(InstrumentedJarsRule)
 }
 }
}

consumer/build.gradle.kts

dependencies {
 attributesSchema {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE) {
 compatibilityRules.add(InstrumentedJarsRule::class.java)
 }
 }
}

And that’s it! Now we have:

• Added a variant which provides instrumented jars.

• Specified that this variant is a substitute for the runtime.

• Defined that the consumer needs this variant only for test runtime.

Gradle provides a powerful mechanism for selecting the right variants based on preferences and
compatibility. For more details, check out the variant aware plugins section of the documentation.

WARNING

By adding a value to an existing attribute or defining new attributes, we are
extending the model. This means that all consumers must be aware of this
extended model.

For local consumers, this is usually not a problem because all projects share
the same schema. However, if you need to publish this new variant to an
external repository, external consumers must also add the same rules to their
builds for them to work.

This is generally not an issue for ecosystem plugins (e.g., the Kotlin plugin),
where consumption is not possible without applying the plugin. However, it
becomes problematic if you add custom values or attributes.

Therefore, avoid publishing custom variants if they are intended for internal
use only.

LICENSE INFORMATION

License Information

Gradle Documentation

Copyright © 2024 Gradle, Inc. All rights reserved. Gradle is a trademark of Gradle, Inc.

Gradle’s Build Tool source code is open-source and licensed under the Apache License 2.0.

Gradle’s User Manual and DSL Reference Manual are licensed under Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Gradle Build Scan Plugin

Use of the Build Scan plugin is subject to Gradle’s Terms of Service.

https://github.com/gradle/gradle/blob/master/LICENSE
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://scans.gradle.com/plugin/
https://gradle.com/legal/terms-of-service/

	Gradle User Manual: Version 8.12
	Table of Contents
	OVERVIEW
	Gradle User Manual

	RELEASES
	Installing Gradle
	Compatibility Matrix
	The Feature Lifecycle

	UPGRADING
	Upgrading your build from Gradle 8.x to the latest

	RUNNING GRADLE BUILDS
	CORE CONCEPTS
	Gradle Basics
	Gradle Wrapper Basics
	Command-Line Interface Basics
	Settings File Basics
	Build File Basics
	Dependency Management Basics
	Task Basics
	Plugin Basics
	Gradle Incremental Builds and Build Caching
	Build Scans

	AUTHORING GRADLE BUILDS
	CORE CONCEPTS
	Gradle Directories
	Multi-Project Build Basics
	Build Lifecycle
	Writing Settings Files
	Writing Build Scripts
	Using Tasks
	Writing Tasks
	Using Plugins
	Writing Plugins

	GRADLE TYPES
	Understanding Properties and Providers
	Understanding Collections
	Understanding Services and Service Injection

	STRUCTURING BUILDS
	Structuring Projects with Gradle
	Declaring Dependencies between Subprojects
	Sharing Build Logic between Subprojects
	Composite Builds
	Configuration On Demand

	DEVELOPING TASKS
	Understanding Tasks
	Controlling Task Execution
	Organizing Tasks
	Configuring Tasks Lazily
	Developing Parallel Tasks
	Advanced Tasks
	Using Shared Build Services

	DEVELOPING PLUGINS
	Understanding Plugins
	Understanding Implementation Options for Plugins
	Implementing Pre-compiled Script Plugins
	Implementing Binary Plugins
	Testing Gradle plugins
	Publishing Plugins to the Gradle Plugin Portal

	OTHER TOPICS
	Working With Files
	Initialization Scripts
	Dataflow Actions
	Testing Build Logic with TestKit
	Using Ant from Gradle

	OPTIMIZING BUILD PERFORMANCE
	Configuring the Build Environment
	Gradle-managed Directories
	Logging
	Improve the Performance of Gradle Builds
	Configuration cache
	Continuous Builds
	Inspecting Gradle Builds
	Isolated Projects
	File System Watching

	THE BUILD CACHE
	Build Cache
	Use cases for the build cache
	Build cache performance
	Important concepts
	Caching Java projects
	Caching Android projects
	Debugging and diagnosing cache misses
	Solving common problems

	DEPENDENCY MANAGEMENT
	CORE CONCEPTS
	1. Declaring dependencies
	2. Dependency Configurations
	3. Declaring repositories
	4. Centralizing dependencies
	5. Dependency Constraints and Conflict Resolution
	6. Dependency Resolution
	7. Variant Aware Dependency Resolution

	DECLARING DEPENDENCIES
	Declaring Dependencies Basics
	Viewing Dependencies
	Declaring Versions and Ranges
	Declaring Dependency Constraints
	Declaring Dependency Configurations

	DECLARING REPOSITORIES
	Declaring Repositories Basics
	Centralizing Repository Declarations
	Repository Types
	Metadata Formats
	Supported Protocols
	Filtering Repository Content

	CENTRALIZING DEPENDENCIES
	Platforms
	Version Catalogs
	Using Catalogs with Platforms

	MANAGING DEPENDENCIES
	Locking Versions
	Using Resolution Rules
	Modifying Dependency Metadata
	Dependency Caching

	UNDERSTANDING DEPENDENCY RESOLUTION
	Understanding the Dependency Resolution Model
	Capabilities
	Variants and Attributes

	CONTROLLING DEPENDENCY RESOLUTION
	Dependency Resolution Basics
	Dependency Graph Resolution
	Artifact Resolution
	Artifact Transforms

	PUBLISHING LIBRARIES
	Publishing a project as module
	Understanding Gradle Module Metadata
	Signing artifacts
	Customizing publishing
	The Maven Publish Plugin
	The Ivy Publish Plugin

	OTHER TOPICS
	Verifying dependencies
	Aligning dependency versions
	Modeling library features

	PLATFORMS
	JVM BUILDS
	Building Java & JVM projects
	Testing in Java & JVM projects
	Managing Dependencies of JVM Projects

	JAVA TOOLCHAINS
	Toolchains for JVM projects
	Toolchain Resolver Plugins

	JVM PLUGINS
	The Java Library Plugin
	The Application Plugin
	The Java Platform Plugin
	The Groovy Plugin
	The Scala Plugin

	INTEGRATION
	Gradle & Third-party Tools

	REFERENCE
	Gradle Wrapper Reference
	Gradle Daemon
	Command-Line Interface Reference

	GRADLE DSL/API
	A Groovy Build Script Primer
	Gradle Kotlin DSL Primer

	CORE PLUGINS
	Gradle Plugin Reference

	HOW TO GUIDES
	How to share outputs between projects

	LICENSE INFORMATION
	License Information

